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Abstract—The contentious battle between web services and
miscreants involved in blackhat search engine optimization and
malicious advertisements has driven the underground to develop
increasingly sophisticated techniques that hide the true nature
of malicious sites. These web cloaking techniques hinder the
effectiveness of security crawlers and potentially expose Internet
users to harmful content. In this work, we study the spectrum
of blackhat cloaking techniques that target browser, network, or
contextual cues to detect organic visitors. As a starting point, we
investigate the capabilities of ten prominent cloaking services
marketed within the underground. This includes a first look
at multiple IP blacklists that contain over 50 million addresses
tied to the top five search engines and tens of anti-virus and
security crawlers. We use our findings to develop an anti-cloaking
system that detects split-view content returned to two or more
distinct browsing profiles with an accuracy of 95.5% and a false
positive rate of 0.9% when tested on a labeled dataset of 94,946
URLs. We apply our system to an unlabeled set of 135,577
search and advertisement URLs keyed on high-risk terms (e.g.,
luxury products, weight loss supplements) to characterize the
prevalence of threats in the wild and expose variations in cloaking
techniques across traffic sources. Our study provides the first
broad perspective of cloaking as it affects Google Search and
Google Ads and underscores the minimum capabilities necessary
of security crawlers to bypass the state of the art in mobile,
rDNS, and IP cloaking.

I. INTRODUCTION

The arms race nature of abuse has spawned a contentious

battle in the realm of web cloaking. Here, miscreants seeking

to short-circuit the challenge of acquiring user traffic turn

to search engines and advertisement networks as a vehicle

for delivering scams, unwanted software, and malware to

browsing clients. Although crawlers attempt to vet content and

expunge harmful URLs, there is a fundamental limitation to

browsing the web: not every client observes the same content.

While split views occur naturally due to personalization, geo

optimization, and responsive web design, miscreants employ

similar targeting techniques in a blackhat capacity to serve

enticing and policy-abiding content exclusively to crawlers

while simultaneously exposing victims to attacks.

Where as a wealth of prior work focused on understanding

the prevalence of cloaking and the content behind cloaked

doorways, none precisely measured the spectrum of cloaking

techniques in the wild as it affects search engines and ad

networks. Indeed, earlier studies predicated their analysis on

a limited set of known cloaking techniques. These include

redirect cloaking in search engine results [16], [18], [24],

[27], [33], [34] or search visitor profiling based on the

User-Agent and Referer of HTTP requests [32], [35].

An open question remains as to what companies and crawlers

blackhat cloaking software targets, the capabilities necessary

for security practitioners to bypass state of the art cloaking,

and ultimately whether blackhat techniques generalize across

traffic sources including search results and advertisements.

In this paper, we marry both an underground and empirical

perspective of blackhat cloaking to study how miscreants scru-

tinize an incoming client’s browser, network, and contextual

setting and the impact it has on polluting search results and

advertisements. We root our study in the blackmarket, directly

engaging with specialists selling cloaking software. In total,

we obtain ten cloaking packages that range in price from $167

to $13,188. Our investigation reveals that cloaking software

spans simple Wordpress plugins written in PHP that check the

User-Agent of incoming clients, to fully customized forks of

the Nginx web server with built-in capabilities for blacklisting

clients based on IP addresses, reverse DNS, User-Agents,

HTTP headers, and the order of actions a client takes upon vis-

iting a cloaked webpage. We also obtain access to multiple IP

blacklist databases, one of which covers 54,166 IP addresses

associated with Bing, Yahoo, Google, Baidu, and Yandex,

and a second that contains over 50 million IP addresses

from universities (e.g., MIT, Rutgers), security products (e.g.,

Kaspersky, McAfee), VPNs, and cloud providers. Our analysis

yields a unique perspective of which web services miscreants

seek to evade and the technical mechanisms involved.

We leverage our tear-down of blackhat cloaking techniques

to build a scalable de-cloaking crawler and classifier that

detects when a web server returns divergent content to two

or more distinct browsing clients. We fetch content from 11

increasingly sophisticated user emulators that cover a com-

bination of Chrome, Android, and a simple robot accessing

the Internet via residential, mobile, and data center networks

including one associated with Google’s crawling infrastruc-

ture. In total, we crawl 94,946 labeled training URLs multiple

times from each profile, totaling over 3.5 million fetches. We

then build a classifier that detects deviations in the content,

structure, rendering, linguistic topics, and redirect graph be-

tween all pairs of crawlers, accurately distinguishing blackhat

cloaking from mobile and geo targeting with 95.5% accuracy

and a false positive rate of 0.9%. We analyze in depth which

features and browser profiles are critical to detecting cloaking,
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finding no single approach covers all cloaking techniques.

We apply our system to an unlabeled set of 135,577 Google

Search and Google Ads URLs keyed on high-risk terms com-

monly targeted by miscreants (e.g., luxury products, weight

loss supplements) and find 11.7% of the top 100 search results

and 4.9% of ads cloak against the Googlebot crawler. Of

these, the most popular blackhat cloaking techniques involve

detecting JavaScript, blacklisting Googlebot’s User-Agent and

IP, and requiring that visitors interact with content before

the server finally delivers the de-cloaked payload. Despite

a menagerie of cloaking techniques in the wild that vary

drastically between search and ads, our system nevertheless

succeeds at generalizable detection. We dig into specific case

studies and their monetization approaches, revealing a thriving

market that attempts to capitalize on legitimate consumer

interest in nutraceuticals, mobile gaming, and online shopping.

Finally, we explore the fragility of de-cloaking systems,

including our own, to miscreant’s adapting their cloaking

techniques. Rather than persist in the arms race to defeat

increasingly sophisticated browser fingerprinting techniques,

we argue our approach of comparing the content that cloaked

servers deliver to multiple browsing clients naturally extends

to real rather than emulated clients. We discuss the potential

for client-side detection of cloaking as well as centralized

reporting and scoring. Both of these approaches hinder the

ability of malicious servers to show benign content exclusively

to crawlers, though their adoption must overcome potential

privacy concerns.

In summary, we frame our contributions as follows:

• We provide the first broad study of blackhat cloaking

techniques and the companies affected.

• We build a distributed crawler and classifier that detects

and bypasses mobile, search, and ads cloaking, with

95.5% accuracy and a false positive rate of 0.9%.

• We measure the most prominent search and ad cloaking

techniques in the wild; we find 4.9% of ads and 11.7%

of search results cloak against Google’s generic crawler.

• We determine the minimum set of capabilities required

of security crawlers to contend with cloaking today.

II. BACKGROUND & RELATED WORK

We begin by outlining the incentives that bad actors have

to conceal their webpages from crawlers. We also summarize

existing techniques that websites employ to distinguish be-

tween crawlers and organic traffic. For the purposes of our

study, we consider websites that deliver optimized content to

small screens or localized visitors to be benign—our focus is

exclusively on blackhat cloaking.

A. Web Cloaking Incentives

Web cloaking refers to the set of techniques that a web

server uses to fingerprint incoming visitors in order to cus-

tomize page content. Benign examples include servers that

redirect mobile clients to pages optimized for small screens

(e.g., m.nytimes.com) as opposed to content-rich desktop

equivalents. The more insidious variety involves serving en-

tirely distinct content to (security) crawlers in order to inflate

a page’s search ranking to drive traffic, evade ad quality scan-

ners, or stealthily deliver drive-by exploits only to vulnerable

clients. These techniques create a discrepancy in how the web

is observed by bots and how it is perceived by organic clients.

There are many areas where blackhat cloaking can be

beneficial for miscreants, but here we focus on the following

three categories: search results, advertisements and drive-by

downloads.

Search results: Cloaking is one tool in an arsenal of tech-

niques that miscreants use for Search Engine Optimization

(SEO). Servers will manipulate fake or compromised pages

to appear enticing to crawlers while organic visitors are

shepherded to (illegal) profit-generating content such as store-

fronts selling counterfeit luxury products, pharmaceuticals,

and dietary supplements [16], [31], [32].

Advertisements: As an alternative to duping crawlers for

free exposure, miscreants will pay advertising networks to

display their URLs. Miscreants rely on cloaking to evade

ad policies that strictly prohibit dietary scams, trademark

infringing goods, or any form of deceptive advertisements–

including malware [9], [36]. Ad scanners see a benign page

while organic visitors land on pages hosting scams and

malware. Time of check versus time of use (e.g., delayed

URL maliciousness) may also play into a miscreant’s cloaking

strategy.

Drive-by downloads: Miscreants compromise popular web-

sites and laden the pages with drive-by exploits. In order to

evade security crawlers like Wepawet or Safe Browsing that

visit pages with vulnerable browsers [6], [26], these payloads

will first fingerprint a client and only attack vulnerable, organic

visitors. While we include this for completeness, we focus our

study on search and ad cloaking.

B. Prevalence of Cloaking

Previous studies have shown that finding instances of cloak-

ing in the wild requires intimate knowledge of the search

keywords or the vulnerable pages that miscreants target. Wang

et al. estimated only 2.2% of Google searches for trending

keywords contained cloaked results [32]. A broader method for

finding cloaked URLs involved targeted searches for specific

cocktails of terms such as “viagra 50mg canada” where

61% of search results contained some form of cloaking [32].

Leontiadis et al. reported a complementary finding where

32% of searches for pharmaceutical keywords advertised in

spam emails led to cloaked content [16]. Keyword targeting

extends to other realms of fraud: Wang et al. found 29.5% of

search results for cheap luxury products contained URLs that

redirected visitors to a cloaked storefront [31]. Our strategy

for selecting URLs to crawl is built on top of these previous

findings in order to minimize the bandwidth wasted fetching

benign content.
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C. Cloaking Detection Techniques

Researchers have responded to the steady adaptation of

cloaking techniques over time with a medley of anti-cloaking

(or de-cloaking) techniques. Early approaches by Wang et

al. relied on a cross-view comparison between search re-

sults fetched by a browser configured like a crawler and a

second fetch via a browser that emulated a real user [33],

[34]. They classified a page as cloaking if the redirect chain

deviated across fetches. This same approach dominates sub-

sequent cloaking detection strategies that fetch pages via

multiple browser profiles to examine divergent redirects (in-

cluding JavaScript, 30X, and meta-refresh tags) [16], [17],

[32], inspect the redirection chains that lead to poisoned

search results [18], isolate variations in content between two

fetches (e.g., topics, URLs, page structure) [31], [32], [35],

or apply cloaking detection to alternative domains such as

spammed forum URLs [24]. Other approaches exclusively

target compromised webservers and identify clusters of URLs

all with trending keywords that are otherwise irrelevant to

other content hosted on the domain [14]. Our study improves

upon these prior detection strategies. To wit, we build an

anti-cloaking pipeline that addresses previously unexplored

cloaking techniques as gleaned from the underground; and we

explore additional approaches for cross-view comparisons that

contends with page dynamism, interstitial ads, network-based

cloaking, and the absence of divergent redirect paths. Our

pipeline also improves on prior work as it discerns adversarial

cloaking from geo targeting and content optimization for

small screens. It does so by comparing across views both in

terms of textual topic and entities detected in images. These

improvements allow us to measure the dominant cloaking

strategies in the wild, and in turn, inform search, ad, and

malware pipelines that must contend with web cloaking.

III. UNDERGROUND PERSPECTIVE OF CLOAKING

Cloaking—like the commoditization of exploits, proxies,

and hosting [2], [28]—is an infrastructure component for sale

within the underground. To identify potential cloaking services

and software, we first exhaustively crawled and indexed a

selection of underground forums. We then ranked forum

discussions based on the frequency of keywords related to

cloaking software. The most discussed cloaking package was

mentioned 623 times, with the author of the software engaging

with the community to provide support and advertise new

deals. The least popular service was mentioned only 2 times.

Through manual analysis and labor, we successfully obtained

the top ten most popular cloaking packages which ranged in

price from $167 for entry level products up to $13,188 for the

most sophisticated advertised features. We note that for legal

protection and to avoid any potential de-anonymization of our

underground identities, we cannot publicly disclose the names

of the underground forums we harvested, or the names of the

cloaking software under analysis.

We analyzed all ten cloaking packages in order to gain an

insight into (1) fingerprinting capabilities; (2) switch logic

for displaying targeted content; and (3) other built-in SEO

TABLE I: Cloaking fingerprinting capabilities reverse engi-

neered from the most sophisticated six samples of cloaking

software.

Capability Cloaking Type C1 C2 C3 C4 C5 C6

IP Address Network � � � � � �
rDNS Network – � � � – �
Geolocation Network � – � � – �

User-Agent Browser � � � � � �
JavaScript Browser � – � – – �
Flash Browser – – – – – –

HTTP Referer Context � � � � � �
Keywords Context � – � – – –
Time window Context – – � – � –
Order of operations Context – – � – – �

capabilities such as content spinning and keyword stuffing.

We use this tear down later in Section IV to design an

anti-cloaking system capable of defeating all of the cloaking

techniques we discover. We make no claim our investigation

exhaustively covers cloaking software or whether our ten

particular programs are widely used by miscreants. Indeed, the

price and skill set required to operate some of the packages en-

sures their exclusivity to only the most affluent or sophisticated

miscreants. That said, in conducting our analysis, we observed

that the set of cloaking techniques among the packages we

analyzed quickly converged to a fixed set of signals. This may

indicate that while our coverage of cloaking software may be

incomplete, the best cloaking techniques are frequently shared

(or copied) much like exploit kits.

A. Cloaking Software Analysis

Of the cloaking applications we analyzed, only one (co-

incidentally, the most expensive) protected itself with a tool

with no publicly available unpacker. Languages for the various

cloaking applications ranged from C++, Perl, JavaScript, and

PHP. Sophistication ranged from drop-in scripts and plugins

for Wordpress pages, while others included a custom compi-

lation of Nginx for serving cloaked content. For each of the

applications, we manually investigated the underlying cloaking

logic and any embedded blacklists.

B. Cloaking Techniques

Cloaking techniques among the services we analyzed span a

gamut of network, browser, and contextual fingerprinting. We

present a detailed breakdown of key capabilities in Table I.

These techniques only scratch the surface of browser finger-

printing that can otherwise enumerate screen size, font lists,

header orders, and divergent JavaScript and HTML imple-

mentations [3], [7], [8], [20]–[23], [29]. Intuitively, cloaking

services need only to deliver a fingerprinting technique to

consumers that works. Without external pressure, there is no

reason for cloaking developers to adapt toward more complex

approaches proposed in research.

745745



TABLE II: Breakdown of crawling bots covered by the

blacklist-as-a-service. The top five search engines include

Bing, Yahoo, Google, Baidu, and Yandex.

Crawler Operator Blacklisted IPs Overall

msn.com Bing 21,672 40.01%
yahoo.com Yahoo 15,069 27.82%
googlebot.com Google 5,398 9.97%
baidu.com Baidu 2,846 5.25%
yandex.com Yandex 1,092 2.02%

Other Ask, Lycos, etc. 1,117 2.06%
Unknown – 6,972 12.87%

1) Network Fingerprinting

IP Address: Some crawlers make no effort to obfuscate the

IP addresses ranges they appear from. This allows cloaking

services to enumerate the set of bot IPs. Of the ten cloaking

services we examine, four embed an IP blacklist; the others

allowed operators to upload their own IP blacklist. Of the four

IP blacklists, three mirrored the same blacklist-as-a-service

available for a $350 annual fee. The list, updated twice daily,

contained 54,166 unique IP addresses tied to popular search

engines and crawlers at the time of our analysis. This same

service provided a capability for cloaking clients to report

back all IP addresses and HTTP headers tied to incoming

visitors to a centralized server which the blacklist service

recommended for timely detection of new crawling activities.

We note that, despite us crawling sites that we later learned

via side-channels relied on this blacklist, our IPs were never

identified (potentially due to limited crawling or ineffective

detection on the service’s part).

Examining the blacklist-as-a-service in detail, we find that

reverse DNS queries on the IP addresses surface crawlers

from Bing, Yahoo, Google, Baidu, and Yandex as detailed

in Table II—the top five search engines based on Alexa

ranking [1]. A tiny fraction of IPs relate to Ask, Lycos, and

smaller search engines. Consequently, any attempt to de-cloak

content from these IPs—even with seemingly organic browser

profiles—will fail. Another 6,972 IPs (12.9%) have no rDNS

information and appear from a distinct /16 CIDR block than

the top five search engines (which operate out of 77 CIDR

/16 blocks). We examine whether any of these overlap with

contemporaneous lists of proxies including 1,095 Tor exit

nodes and 28,794 HideMyAss IPs. We find no evidence of

Tor or HideMyAss blacklisting.

The last of the four blacklists contained a significant static

list of CIDR blocks encompassing 51,713,860 IP addresses

from 122 business entities as annotated in the blacklist

(shown in Table III). The coverage advertised by the blacklist

includes 30 security and anti-virus companies (e.g., Avira,

Comodo, Kaspersky) as well as 9 popular search engines

(e.g., Google, Microsoft, Yahoo). The list also covers multiple

hosting providers, public clouds (e.g., Amazon), registrars,

and proxy networks such as TOR that are unlikely sources

of organic traffic. We also find CIDR blocks that blacklist

entire ISPs, which as the blacklist author annotates, serve

TABLE III: Breakdown of the types of businesses targeted

by the static blacklist, including the number of subnets and IP

addresses in those ranges.

Entity Type Distinct Entities Subnets IP Coverage

Hosting providers 42 508 12,079,768
Security companies 30 346 541,860
Internet service providers 27 49 1,419,600
Search companies 9 32 1,392,640
Other companies 3 12 34,628
Proxy networks 3 10 1,334
Academic institutions 2 14 17,106,682
Hacker collectives 2 4 60
Individuals 2 4 780
Registrars 2 4 19,136,508

Total 122 983 51,713,860

the crawlers for some security companies. Finally, the list

contains a few academic institutions (e.g., MIT, Rutgers),

hacker collectives (e.g., Germany’s Chaos Computer Club),

and individual researchers. We note that the abnormally large

number of IP addresses associated with academic institutions

results from universities such as MIT controlling an entire

Class A subnet that the blacklist owner opted to cover.

Interestingly, when comparing the blacklist-as-a-service and

the static list of IPs, we find only two subnets in common, both

of which belong to Google. This indicates that the blacklist-as-

a-service is geared toward targeting search engines for SEO,

whereas the second blacklist focuses on security companies

and researchers.

Reverse DNS: In the event a crawler appears from a non-

blacklisted IP, four of the ten cloaking services perform a

rDNS lookup of a visitor’s IP. In the absence of a NXDOMAIN
error, the software compares the rDNS record against a list

of domains substrings belonging to Google (1e100, google),

Microsoft, Yahoo, Baidu, Yandex, Ask, Rambler, DirectHit,

and Teoma. Some of the cloaking services in turn add newly

identified crawler IPs to their embedded blacklists. As such,

any anti-cloaking pipeline must at a minimum crawl from IPs

with non-overlapping (or completely absent) rDNS informa-

tion.

Geolocation: We find that four of the ten cloaking services

allow geographic targeting at a country level granularity based

on mappings. One goes so far as to embed a duplicate of

the MaxMind public GeoIP list for live querying. We do

not observe any pre-configured list of blocked geo origins;

all targeting is left to the software’s operator. This poses

a significant challenge to anti-cloaking pipelines as network

infrastructure must support arbitrary network vantage points

around the globe. However, as we previously discussed, most

cloaking services fail to block Tor or major proxy providers.

As such, we consider these services as a potentially acceptable

sources of IP diversity.
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TABLE IV: User-Agent substrings used by cloaking software

to identify crawlers.

Crawler User-Agent substrings

altavista aol askj baidu bingbot crawler
gigablast google jeeves lycos msn slurp
sogou spider teoma yahoo yandex

2) Browser Fingerprinting

User-Agent: Well-behaving search and advertisement crawlers

announce their presence with specialized User-Agent strings

commonly advertised on the operator’s website. Examples

include Google’s googlebot; Microsoft’s bingbot and msnbot;
and Yahoo’s slurp. We find cloaking services ubiquitously rely

on User-Agent comparisons to explicitly block Google, Bing,

Yahoo, Ask, Baidu, Teoma, and Yandex. The cloaking services

also carve out generic exceptions for crawler and spider
to trigger cloaking logic. We provide a detailed breakdown

of the exact substring matching patterns in Table IV. Some

substrings capture overly broad applications. One cloaking

product contends with this fact by including a whitelist cover-

ing code.google.com/appengine (third-party services operating

on Google’s infrastructure) and via translate.google.com (in-

coming translation requests likely from users); however, all

other services make no exception.

JavaScript & Flash: JavaScript and Flash (or the lack thereof)

can serve as both a crawler fingerprinting technique as well as

a redirection delivery method. We find three cloaking services

rely on JavaScript execution as a technique for blocking

rudimentary crawlers. We find no support for Flash-based

cloaking, though there is evidence of such attacks in the

past [9]. One service also allows for operators to input custom

JavaScript fingerprinting logic executed on each visit—a po-

tential route to configure SEO-focused cloakers for drive-by

exploit targeting, though we argue such attacks are orthogonal

and more likely to come via exploit kits [12]. For our study,

we opt to support both JavaScript and Flash when crawling to

cover all possible bases.

3) Contextual Fingerprinting

HTTP Referer: The final ubiquitous cloaking technique

we observe across blackhat applications involves scanning

the HTTP Referer of incoming visitors to verify users

originate from search portals. The default whitelist matches

major crawlers (previously discussed in Table IV), though

miscreants can disable this feature. This technique prevents

crawlers from harvesting URLs and visiting them outside the

context they first appeared. We contend with this cloaking

approach by always spoofing a HTTP Referer, the details

of which we expand on in Section IV.

Incoming Keywords: Keyword cloaking—supported by two

services—takes HTTP Referer cloaking a step further and

checks the validity of the search keywords that brought a

purported visitor to a miscreant’s page. Mechanistically, the

cloaking software extracts the list of search terms embedded

in the HTTP Referer using a set of customized regular

expressions for each search portal and then compares the

terms against an operator-provided list of negative keywords

and positive keywords (e.g., viagra, Tiffany) associated with

a page. The software triggers cloaking logic if a HTTP

Referer contains any negative keywords or lacks any pos-

itive keywords. We adapt to this technique by embedding

expected keywords in our HTTP Referer—derived from ad

targeting criteria or page content. We note that since Google

has been serving search results over TLS to logged-in users

since 2013, and therefore not passing keywords in the HTTP

referrer, the effectiveness of keyword cloaking has diminished.

We have found that keyword cloaking is no longer pivotal, as

it has been in previous works [32].

Time Window: Timing-based cloaking prohibits visitors from

accessing uncloaked content more than once in a specific time

window. The two services we find offering this capability rely

on server side logs of a visitor’s IP address. Any repeat visitors

within 24 hours are redirected to cloaked content as if they

were a crawler. This raises a potential issue of false negatives

for an anti-cloaking pipeline without a sufficiently large IP

pool.

Order of Operations: While most of the cloaking services

we study rely on a single doorway page through which all

cloaking logic triggers, two of the services supports multiple

hops. Upon visiting a page, the software sets a short lived

cookie (e.g., seconds). When legitimate users interact with

the page, such as clicking on a URL, the next doorway

checks whether this cookie is present and within the expiration

window. This allows cloaked websites to enforce a specific

sequence of actions (e.g., visit, click) where crawlers would

likely enqueue the URL for visiting at a later time or on

an entirely different machine. Our pipeline consolidates all

crawling of a domain to a single short window.

C. Redirection Techniques

We observe three techniques that cloaking applications rely

on to deliver split-view content upon successfully fingerprint-

ing a client. The first involves redirecting clients via meta-

refresh, JavaScript, or 30X codes. Crawlers are either stopped

at a doorway or redirected to an entirely different domain than

legitimate clients. Alternatively, websites dynamically render

content via server-side logic to include new page elements

(e.g., embedding an iframe) without changing the URL that

appears in a browser’s address bar. The last technique involves

serving only crawlers a 40X or 50X error. We account for each

of these techniques when designing our anti-cloaking pipeline.

D. Built-in SEO Services

All but one (C6) of the cloaking software under analysis

supports automatic content generation aimed at SEO either

natively or through third-party plugins (e.g., SEnuke, XRumer

which are content spinning programs that create topically

747747



related documents [37]). The most advanced built-in solution

takes a set of targeted search terms from the software’s

operator, after which the program will automatically query

popular search engines for related content, scrape top-ranked

links, and synthesize the content into a seemingly relevant

document from a crawler’s perspective. Furthermore, these

systems automatically detect and exclude copyright infring-

ing content and trademarked names to avoid penalization

or removal by search ranking algorithms. As part of this

document construction, the software will intersperse targeted

search terms with stolen content to increase the frequency of

related terms. We rely on this observation later in Section IV

in order to detect contextual cloaking that requires a visitor’s

HTTP Referer to contain specific keywords as previously

discussed in this section.

IV. DETECTING CLOAKING

We leverage our tear-down of blackhat cloaking techniques

to build a scalable anti-cloaking pipeline that detects when two

or more distinct browsers are shown divergent content. We

preview our system’s design in Figure 1. We start by aggre-

gating a diverse sample of URLs to scan for cloaking (�). We

then fetch each of these URLs via multiple browser profiles as

well as network vantage points to trigger any cloaking logic

(�). We finally compare the content, structure, and redirect

graph associated with each fetch (�) before feeding these

features into a classifier to detect the presence of blackhat

cloaking (�). Whereas we note multiple prior studies have

proposed techniques to de-cloak URLs in specific settings—

particularly redirection cloaking—our goal with this system is

to understand which anti-cloaking techniques generalize across

web cloaking (including mobile and reverse-proxy cloaking),

and similarly, to understand the minimum set of capabilities

required of security scanners to contend with the current

cloaking arms race. We defer concrete implementation details

till Section V.

A. Candidate URL Selection

To conduct our study we aggregate a stream of URLs

from popular websites, search results, and mobile-targeted

advertisements. We split our dataset into two: one part for

training a classifier based on labeled data from previous studies

of cloaking outlined in Table V; and a second sample that we

feed into our classifier to analyze an unbiased perspective of

cloaking in the wild shown in Table VI.

Our training corpus of benign URLs consists of a random

sample of pages appearing in the Alexa Top Million, all of

which we assume to be non-cloaked.1 We later validate this

assumption in Section VII. For labeled instances of cloaked

domains we rely on a feed of counterfeit luxury storefronts

that fingerprint Google’s search bot, maintained by Wang et

al. [31], collected between February, 2015–May, 2015. In total,

we rely on 94,946 URLs for training. We note our labeled

1We reiterate that we treat personalization, geo targeting, and reactive
design as benign and thus non-cloaking. Many of these techniques are present
in the Alexa Top Million. We use a cloaking label only for blackhat techniques.

TABLE V: Breakdown of labeled data we use for training

and evaluating our classifier.

Labeled Dataset Source Volume

Legitimate websites Alexa 75,079
Cloaked storefronts SEO abuse [31] 19,867

Total 94,946

TABLE VI: Breakdown of unlabeled data that we classify to

study cloaking in the wild.

Unlabeled Dataset Source Volume

Luxury storefronts Google Search 115,071
Health, software ads Google Ads 20,506

Total 135,577

dataset has a class imbalance toward non-cloaked content

which helps to emphasize false negatives over false positives.

For studying blackhat fingerprinting techniques, we rely on

a sample of unlabeled URLs tied to Google Search and Google

Ads targeting mobile users.2 Unlike our training corpus, these

carry no biases from previous de-cloaking systems. Due to

the targeted nature of cloaking as previously explored by

Wang et al. [32], we predicate our searches on high-value

keywords related to luxury products (e.g., gucci, prada, nike,

abercrombie) and ad selection on keywords related to weight

loss (e.g., garcinia, keatone, acai) and popular mobile software

applications (e.g., whatsapp, mobogenie). While it is possible

this targeting biases our evaluation, we argue that the content

that miscreants serve is independent from the underlying

technology used to fingerprint crawlers. In total, we collect

135,577 URL samples, only a fraction of which we assume

will actually cloak.

B. Browser Configuration

While our dataset may appear small, this is because we

crawl each URL with 11 distinct browser and network config-

urations in an attempt to trigger any cloaking logic, repeating

each crawl three times to rule out noise introduced by dynamic

content or network errors. In total, we perform over 7 million

crawls. We detail each crawl configuration in Table VII. We

chose this set based on our domain knowledge of reversed

blackhat services which target various platforms, environment

variables, JavaScript, Flash, and cookie functionality. Also,

these configurations cover the three possible vantage points

of anti-cloaking deployments: a search engine advertising its

crawlers with their User Agents and IP addresses, a browser

farm deployed in the cloud, and a stealthy deployment using

mobile and residential networks. In section VI-D, we evaluate

how each of these vantage points contribute to our overall

cloaking detection performance.

In total, we provide three native platforms for fetching

content: Chrome on Desktop; Chrome on Android; and a

2We assume that Google deploys some defenses against cloaking. As such,
our dataset will capture only mature cloaking techniques that evade immediate
detection by Google crawlers.
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Fig. 1: Cloaking detection pipeline. We crawl URLs from the Alexa Top Million, Google Search, and Google Ads (�).

We dispatch requests to a farm of stratified browser profiles covering mobile, desktop, and simple crawlers and network

configurations that encompass residential, mobile, and cloud IP addresses to fetch content (�). We then compare the similarity

of content returned by each crawl (�), feeding the resulting metrics into a classifier that detects divergent content indicative

of cloaking (�).

TABLE VII: List of browser, network, and contextual configurations supported by our system.

Profile Name Platform User-Agent Network Referrer Click

Googlebot Basic HTTP Request only Googlebot Google � �
Googlebot Desktop Chrome Desktop Googlebot Google � �
Googlebot Android Chrome Android Googlebot Google � �

Basic Cloud (no referer) HTTP Request only Chrome OSX Cloud � �
Basic Cloud HTTP Request only Chrome OSX Cloud � �
Chrome Desktop Cloud (no referer) Chrome Desktop Chrome OSX Cloud � �
Chrome Desktop Cloud Chrome Desktop Chrome OSX Cloud � �
Chrome Mobile Cloud (no referer) Chrome Android Chrome Android 4.4 Cloud � �
Chrome Mobile Chrome Android Chrome Android 4.4 Cloud � �

Desktop User Chrome Desktop Chrome OSX Residential � �
Mobile User Chrome Android Chrome Android 4.4 Mobile � �

basic HTTP fetch that supports cookies and 30X redirects, but

does not handle Flash, JavaScript, meta redirects, or embedded

content (e.g., iframes, images). We then configure the User-

Agent of each platform to mirror the latest version of Chrome

on Mac OSX; Chrome on a Nexus 5 Android device; or the

Google search bot. Finally, we wire the browser to proxy all

requests through a pre-defined network (e.g., mobile, cloud)

described shortly. After a successful fetch, we save both the

HTML content of a page along with a screenshot. Due to the

possibility of URL visits introducing browser state, we tear

down our environment and clear all cookies between fetches.

As we show later in Section VII, in practice only a few of these

profiles are necessary to detect all cloaked content (though

not measure the precise cloaking logic). Security crawlers

can adopt this slimmed-down configuration to increase overall

throughput.

Context Selection: We support spoofing three contextual

features when fetching URLs: the keywords a user searches

for; the path our crawler takes to reach a destination (e.g.,

the HTTP Referer); and user actions taken upon reaching a

page (e.g., clicking). To determine which keywords to spoof,

we first fetch every non ad-based URL with a basic Googlebot

absent any HTTP Referer and then extract the (stuffed)

keywords on the page. Methodologically, we filter a page’s

HTML to include only visible, non-stopword text, after which

we select the top three most frequent words. Due to how

miscreants spin content to achieve a high search rank (as

discussed in Section III), these keywords are identical to those

miscreants expect from legitimate clients. For ad-based URLs,

the process is simpler: we rely on the keywords the advertiser

bids on for targeting (gathered from Google AdWords).

Since browsers have complex policies on when to set the

referrer (depending on whether the source and destination

URLs are over TLS, and the type of redirect [30], [33]), we

have opted not to spoof a crawler’s path by simply overwriting

the Referer field, as the difference in referrer handling

might not trigger the uncloaking of a target website. Instead,

we first load a Google search page and explicitly create a

new element on the page via JavaScript that directs to the

destination URL along with the aforementioned keywords

embedded in the URL’s parameters, after which we click the

element. We support this approach for all types of URLs.

Finally, to handle click walls that appear due to order of

operation-style cloaking, upon reaching a URL’s final landing

page we wait a few seconds and then select the largest element

and simulate a user click event. If the click fails to cause the

browser to load a different URL, we ignore the element and

repeat the process until a loading event occurs or no elements
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are left to consider. In this fashion we create a realistic context

in which a user visits a search engine, enters an appropriate

search query, clicks on the cloaked page’s search, ad, or drive-

by URL; and ultimately interacts with the cloaked page’s

content. Note that we only click when using Chrome Desktop

or Mobile, and not when using the simple HTTP fetcher (per

Googlebot’s typical behavior).

Network Selection: We proxy network requests through a tap

that records all inbound and outbound traffic. Additionally,

this tap provides a configurable exit IP belonging to either

Google’s network; a mobile gateway in the United States be-

longing to AT&T or Verizon; a datacenter network belonging

to Google Cloud; or a residential IP addresses belonging to the

researchers involved in this project. As some of our mobile and

residential IPs exist behind NATs with dynamically allocated

IP addresses, we establish a reverse tunnel to an entry point

with a statically allocated IP address that forwards requests

on to the exit node. Our diverse IP address pool allows us to

evade or trigger network-based cloaking on demand.

C. Features

Deviations in page content introduced by cloaking include

entirely unique HTML, distinct link locations, alternate cross-

origin content, or only a new button appearing on a page. We

compare the textual, visual, topical, and structural similarity

of content between all possible pairs of browser configurations

(e.g., Googlebot, Mobile User). Given we crawl every URL

three times per candidate profile, we heuristically select the

fetch that generated the largest volume of HTTP logs to serve

as the representative sample. We make no assumptions on

how significantly documents must differ to constitute blackhat

cloaking. Instead, we rely on classification to learn an optimal

cut that differentiates divergent content due solely to blackhat

cloaking versus benign dynamism (e.g., breaking news, mobile

optimization).

1) Pairwise Similarity Features

Content Similarity: We detect cloaking that returns entirely

distinct content by estimating the similarity of each docu-

ment’s visible text and overall HTML. We begin by removing

all whitespace and non-alphanumeric content (e.g., punctua-

tion, formatting). We then tokenize the content using a sliding

window that generates successive ngrams of four characters.

Finally, we calculate a 64-bit simhash of all of the tokens

which converts high-dimensional text into a low-dimensional

representation amenable to quick comparison, originally pi-

oneered for de-duping documents in search indexes [5]. To

measure the similarity of two documents, we calculate the

Hamming distance between two simhashes which is propor-

tional to the number of document tokens that failed to match.

A high score indicates two documents differ significantly. We

run this calculation twice, once for only paragraph and heading

text (that is, visible text in the page) and again for all HTML

content.

Screenshot Similarity: Our second similarity score estimates

visual differences in the layout and media presented to brows-

ing profiles of the same window dimensions (e.g., Mobile,

Desktop). This approach helps cover syntactically insignifi-

cant HTML changes, such as introducing an iframe, that

significantly change a page’s visible content. During each

crawl, we take a screenshot both upon visiting a URL and

after clicking on the largest hotlinked element. We convert

these screenshots from RGB into a grayscale n × m array,

after which we normalize each cell’s pixel intensity to a range

[0, 255]. We then calculate the per-pixel differences between

two screenshots S1 and S2, opting to measure the total pixels

that differ rather than the absolute value of their difference:

diff =
n∑

x=0

m∑

y=0

Sx1,y1
�= Sx2,y2

(1)

A high score in this regard indicates a substantially different

visual layout.

Element Similarity: While textual differences between crawls

may arise due to dynamic advertisements or newly generated

comments, deviations between a website’s template should be

less likely. To capture this intuition, we extract the set of URIs

E associated with all embedded images per document. We

then calculate the difference in media content between two

documents by using the Jaccard similarity coefficient:

1− |E1 ∩ E2|
|E1 ∪ E2| (2)

A high score indicates there were multiple embedded images

absent from one or another crawl. To measure the similarity

in the page HTML structure, we repeat this same process

with divs and iframes, first stripping the elements of any

attributes, and then calculating the fraction of overlapping tags

as an additional measure of structural similarity.

Request Tree Similarity: We compare the network requests

generated while crawling to detect divergent redirects, mis-

matched network errors, and additional content. We begin

by representing a sequence of network events (e.g., GET,

POST requests) as E = {e1, e2, . . . en} where an event ei
consists of a tuple 〈Method, Domain, Response Code, Path〉.
For two sequences E1 and E2 of potentially variable length,

we calculate the number of differing requests independent of

any timing information using the Jaccard similarity calculation

previously outlined in Equation 2. A high score indicates that

crawls triggered divergent network behavior. As an extension,

we separately calculate the difference in total response packet

size between two browsing profiles.

Topic Similarity: As an alternative to the previous fine-

grained similarity metrics which may suffer in the presence

of dynamic website content, we compare the overall semantic

similarity of webpage content by extracting representative

topics based on visible text. Mechanistically, we rely on an

Latent Dirichlet allocation (LDA) implementation to extract
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a set of at most ten topics T per document [10], [13]. We

then calculate the similarity between two document’s topics

T1, T2, repeating the Jaccard index calculation presented in

Equation 2. A high score indicates the topics between pages

differs significantly.

Screenshot Topic Similarity: Finally, due to potentially heavy

reliance on media rather than text, we also compare the topic

similarity of documents as detected by a deep convolutional

neural network that uses screenshots as an input [15]. As with

our text-based approach, for each screenshot we determine up

to ten topics T that describe the visual content. We then repeat

the same similarity calculation as outlined with text-based top-

ics. We use this method to catch pages that display additional

spam images (typically with sexual or pharmaceutical content)

that drastically changes a page’s perceived topic.

2) Per-page Dynamism Features
We estimate the natural, potentially legitimate dynamism

of individual pages per browser configuration to help our

classifier identify a minimum threshold above which divergent

content is likely indicative of blackhat cloaking. As previously

noted, we crawl each URL three times per browsing profile

which we denote C1, C2, C3 for clarity. We recompute all of

the previous metrics for each possible pair Ci, Cj for i �= j,

averaging each metric to arrive at a single per-feature, per-

page dynamism estimate. Finally, we provide the classifier

both these similarity scores as well as the previous cross-

browser pairwise similarity metrics divided by our dynamism

estimates for that same feature (effectively calculating the ratio

of cross-profile dynamism with intra-profile dynamism).

3) Domain-specific Features
We extend our feature set with domain-specific signals that

target the entire collection of content crawled per URL (as

opposed to pairwise metrics), outlined below. We use these

for both classification as well as to simplify analysis by

embedding meta-data about how miscreants cloak.

JavaScript, Meta, Flash Redirection: We include a single

boolean feature for whether a server redirects our crawler

via JavaScript, meta-refresh tag, or Flash to a domain

that does not match the final landing page. Such behavior is

common for (compromised) doorway pages where cloaking

logic operates.

Googlebot Errors: We compare the size of requests returned

to our basic Googlebot profile against all other profiles to

determine whether a server provides the crawler an error.

Several of the cloaking packages we reverse engineered offer

an option of serving Googlebot a page aimed at downplaying

the relevance of the page. Examples include a 404 interstitial

(e.g., “this site is no longer available”), parked domain page,

or fake security message such as “this site has been banned”).

Landing Domains: We annotate each URL with the total

number of landing page domains reached during all 33 visits,

with an intuition that divergent landing sites are suspicious.

D. Classification

We employ Extremely Randomized Trees—an ensemble,

non-linear, supervised learning model constructed from a

collection of random forests where candidate features and

thresholds are selected entirely at random [11]. For training,

we rely on our labeled dataset of benign URLs from Alexa

and cloaked search (discussed earlier in this section). Prior to

classification, we normalize all features into a range [0, 1] to

simplify the interpretation of which signals are most salient.

During classification, we rely on ten-fold cross validation. We

discuss the overall performance of this classifier in Section V

and its application to a holdout testing set for analysis in

Section VII.

V. IMPLEMENTATION

We implement our system on Google Compute Engine

with crawling and featurization distributed among 20 Ubuntu

machines. The classification is performed on a single instance.

Our scheduler is built on top of Celery backed by Redis.

We compose crawling tasks as a tuple of a URL and profile

that includes the target browser, network vantage point, and

context to appear from. Celery handles distributing tasks to

workers, monitoring success, and resubmitting failed jobs to

live workers. We operate three types of crawlers: a basic robot

that fetches URL content via the Python Requests library,

akin to wget; a headless instantiation of Chrome controlled

via Selenium, configured with a User-Agent for Mac OSX;

and the same Chrome browser except in mobile emulation

mode mimicking the Nexus 5 device with version 4.4 of the

Android operating system. Our network vantage points include

the authors’ residential networks, Google’s cloud network,

Google’s internal network, and mobile gateways belonging

to AT&T and Verizon as purchased via pre-paid plans. We

capture and log all network requests via mitmproxy. Finally,

for featurization and classification we rely on scikit-learn [25],

Pandas [19], and a mixture of libraries previously mentioned

in Section IV for estimating content similarity and topic

modeling.

VI. EVALUATION

In this section, we explore the overall performance of our

classifier, sources of false positives, the most salient features,

and the feasibility of unsupervised clustering. To conduct our

evaluation, we first train and test a decision tree classifier using

10-fold cross validation over our imbalanced dataset of 75,079

non-cloaked URLs and 19,867 cloaked URLs previously de-

tailed in Section IV. We rely on a grid search to tune classifier

parameters related to our decision forest (e.g., number of trees,

depth of trees), ultimately electing the configuration with the

optimum overall accuracy.

A. Overall Supervised Performance

We present the overall accuracy of our system in Table VIII.

We correctly detect 99.1% of Alexa URLs as non-cloaked

with a false positive rate of 0.9%. To achieve this degree of

accuracy, we overlook 18.0% of potentially cloaked counterfeit
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TABLE VIII: Performance of the supervised-learning classi-

fier on the labeled train/test set, with 10-fold stratified cross

validation.

Accuracy TN Rate TP Rate FN Rate FP Rate

95.5% 99.1% 82.0% 18.0% 0.9%

Fig. 2: Receiver operating characteristic curve for the super-

vised classifier (log-scale).

storefronts. If we examine the trade-off our system achieves

between true positives and false positives, presented in Fig-

ure 2, we find no inflection point to serve as a clear optimum.

As such, operators of de-cloaking pipelines must determine an

acceptable level of false positives. For the remainder of our

study we rely on a false positive rate of 0.9%.

B. Source of Errors

False Positives: We manually investigate a random sample

of URLs our classifier mislabeled to understand the principle

cause of errors. Qualitatively, we find three sources of false

positives: (1) websites revising content between crawls, (2)

connectivity issues, and (3) noisy labels where some Alexa

URLs in fact cloak. In our current crawler implementation,

we fail to enforce a time window during which all crawls

must complete. This raises the risk that content substantially

changes between successive fetches, incorrectly triggering our

detection. We can solve this problem moving forward by

enforcing an SLA on time-to-crawl. A similar problem arises if

our crawler receives a 40X error or if a page is not fully loaded

when we take a screenshot, resulting in divergent image-based

and network-based similarity scores. Along this vein, we also

find instances where CloudFlare DDoS protection automati-

cally blocks a fraction of our crawls, instead displaying an

interstitial “checking your browser” which we mistake for

a malicious interstitial. Finally, in rare cases, we find that

some of the top Alexa sites serve cloaked ads that swap

content when presenting to a crawler, likely unbeknownst to

the site embedding the ad. These instances, as observed from

our classifier, are in fact true positives, thus our overall false

positive rate will be lower in practice.

False Negatives: We execute a similar qualitative analysis

for false negatives, finding the majority of errors arise due

to stability issues tied to cloaked websites. In particular,

while crawling pages multiple times from the same profile

we often find that the storefronts involved will throw transient

errors. This causes intra-profile similarity metrics to deviate

as strongly as cross-profile metrics, preventing an accurate

assessment. We investigate whether cloaking servers introduce

these errors intentionally (e.g., potentially blacklisting our

crawler’s IP address), but we find no correlation between a

successful crawl and repeated errors afterward. Instead, errors

appear randomly during any crawl. Similarly, we find some

of the URLs were taken down or expired by the time we

crawled them. These pages return the same error regardless

of profile, thus leading the classifier to believe they are not

cloaking. We also find a high volume of counterfeit storefronts

that do not cloak, indicating that our labeled dataset is noisier

than expected from a cloaking perspective (while its original

collection was to study scams). These latter two sources of

errors indicate that our false negative rate is likely lower in

practice, though non-negligible.

Comparison to Previous Work: We note that our definition of

cloaking is the most comprehensive to date, including mobile

cloaking, graphical-only cloaking, and testing advanced cloak-

ing techniques such as rDNS cloaking. Because of this, the

performance of our classifier is not comparable with previous

works that target specific types of cloaking, such as redirection

cloaking [18], [27] or referrer and user agent cloaking [32]. If

we restrict our detection to a specific type of cloaking, such

as redirection cloaking, our classifier exhibits low to no false

positives. However, such technique-specific restrictions yield

a low recall that overlook sophisticated cloaking types such as

when cloaking software replaces a single embedded image’s

content to deliver a cloaked ad offering. As our study aims

to give a comprehensive overview of cloaking techniques in

the wild, we opted to favor high recall at the expense of some

false positives.

Additionally, our work is the first to distinguish between

benign cloaking (e.g., mobile optimization, geolocalization,

personalized results) from blackhat cloaking. For example, our

detector is capable of determining that the mobile and desktop

version of cnn.com differ in content, but that difference results

exclusively from content optimization and should not be

labeled as blackhat cloaking. This challenge leads to a higher

degree of false negatives as we favor precision over recall to

reduce false positives from polluting our subsequent analysis.

C. Salient Features

We rank the importance of the top 20 features that impact

the accuracy of our classifier according to their Gini impor-

tance [4], effectively calculating the weight of the feature

across all trees in our decision forest. We present our findings

in Figure 3. The classifier associates the highest weight with

JavaScript redirects that cross an origin boundary. Indeed,

41.8% of labeled cloaking URLs rely on this technique
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compared to 0.62% of presumed non-cloaking URLs. The

remaining top 19 features span a spectrum of feature categories

covering content, network request, topic, and screenshot simi-

larity among multiple combinations of browsing profiles. This

indicates all of our similarity metrics and profiles contribute

to classification results, each covering a non-overlapping ap-

proach to cloaking.

Exploring feature salience in more detail, we examine the

overall accuracy of our system when trained only a single

class of similarity metrics. Figure 4 indicates that comparing

the structure of pages is the most effective technique for

minimizing false negatives, whereas topic, embedded element,

and screenshot-based similarity metrics perform the worst in

isolation. We recast this same measurement in Figure 5, except

this time removing only a single comparison method from

training. We find that a model with no screenshot similarity

introduces the most false negatives, while removing page

structure alone has the least impact. Our findings reiterate

that an ensemble of comparison techniques are required to

accurately detect split-view content.

D. Minimum Profile Set

Finally, we quantify the trade-off between anti-cloaking

pipeline performance, and its efficiency and complexity. To

do so, we start with the full system described here, and we

repeatedly identify the crawling profile that, when removed,

least impacts the false positive rate. The result of this greedy

search of the anti-cloaking pipeline with the minimum capa-

bilities is shown in Figure 6.

As with all classification scores shown here, the scores are

the mean values in a ten-fold stratified cross validation. The

results indicate that an anti-cloaking pipeline would still have

an acceptable performance without a mobile user on a mobile

network, and without the content similarity feature class. If

any more capabilities are subtracted, the false negative rate

doubles, whereas the false positive rate remains fairly low

even for a pipeline composed only by a mobile browser,

desktop browser and Googlebot, all crawling from Google

IPs and cloud IPs. These browsers support clicking, taking

screenshots, and visit URLs with the same profile repeatedly.

Since any further simplification of this basic anti-cloaking

pipeline doubles the false positive rate, we have established

that this is the minimum anti-cloaking platform that is both

efficient, by avoiding unnecessary crawling and featurization,

and effective against current cloaking. We caution readers that

this evaluation of the minimum viable anti-cloaking pipeline

should be performed routinely, so to react in a timely manner

to a spread in popularity of more advanced cloaking tech-

niques.

E. Unsupervised Alternative

Supervised learning requires a steady stream of training data

in the event miscreants adapt their techniques for displaying

split-view content. As a potential alternative, we compare our

supervised classifier’s accuracy to that of an unsupervised

clustering equivalent based on Gaussian mixture models. We

TABLE IX: Performance of the unsupervised-learning classi-

fier on the labeled train/test set.

Accuracy TN Rate TP Rate FN Rate FP Rate

84.6% 90.3% 61.1% 38.9% 9.7%

TABLE X: Prevalence of cloaking in Google Search and Ads

for URLs tied to high-risk keywords.

Source Keyword Category % Cloaking

Google Ads Health, software ads 4.9%
Google Search Luxury storefronts 11.7%

measure accuracy based on the cluster’s separation of our la-

beled dataset. We present our results in Table IX. Unsupervised

learning achieves an overall accuracy 84.6% and false positive

rate of 9.7% compared to supervised learning which achieves

an accuracy of 95.5% with 0.9% false positives. While this

indicates there is substantial power in merely comparing the

similarity of content between multiple clients, a supervised

classifier far outperforms clustering when labeling edge cases.

VII. CLOAKING IN THE WILD

Having vetted our classifier, we apply it to an unlabeled

dataset of 135,577 search results and advertisements targeting

high-value, commonly abused keywords related to luxury

products, weight loss, and mobile gaming. We measure the

prevalence of cloaking in the wild and categorize the blackhat

techniques involved.

A. Frequency

In Table X, we show the incidence of cloaked content

for Google Search results and Google Ads. We estimate

4.9% of mobile-targeted advertisements predicated on high-

risk keywords direct to cloaked content. This demonstrates

that miscreants readily attempt to abuse the advertisement

ecosystem as a distribution channel for nutraceuticals and

knock-off mobile games and justifies a heightened scrutiny for

specific ad targeting practices. We make no claim that Google

fails to detect these cloaked URLs; only that miscreants

purposefully provide evasive content to Googlebot while URLs

remain operational.3 For search, we find 11.7% of URLs in

the top 100 results direct to cloaked content. This is consistent

with previous estimates of pharmaceutical-based cloaking in

Google search results where Wang et al. estimated 9.4% of

search results linked to cloaked doorways [32]. Our results

illustrate that cloaking remains a common blackhat practice

requiring constant maintenance on the part of security crawlers

to keep pace with the arms race. That said, our measurements

show that miscreants more commonly target search results

over advertisements, likely due to the cost of advertising.

3We do not track whether URLs are eventually pulled, precluding any
longitudinal evaluation for how long it takes before ads are disabled.
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Fig. 3: Top 20 features selected by our classifier ranked by their weight in our model.
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Fig. 4: Classifier performance when training only a single feature class. We include a magnified false positive rate (5x) to

emphasize an otherwise minimal variation. We order feature classes by ascending false positive rates.

B. Targeting Techniques

Cloaking sites hide their payload from everyone but the in-

tended audience of organic users. We analyze how miscreants

arrive at this distinction and study any differences between ad

and search-based cloaking. To do so, first we mark all cloaking

URLs in the unlabeled dataset with our full classifier. Then,

for each class of targeting techniques, such as checking that

the visitor has a HTTP Referer set, we train a classifier on

our labeled dataset but specifically exclude browser profiles

that include the targeting technique under evaluation. We then

measure the fraction of cloaking URLs in the unlabeled dataset

that this new classifier identifies as cloaking, effectively acting

as a proxy for which targeting criteria is critical to receive de-

cloaked content (and thus accurate detection). Note that we

use the unlabeled dataset as our test set to mitigate any bias

in our labeled dataset.

We show the fingerprinting checks miscreants use for

Google Search and Google Ads in Table XI. We find the most

prominent targeting criteria is the presence of JavaScript which

miscreants use for 49.6% of cloaked ads and 22.4% of cloaked

search results. This is followed in popularity by checking for

Googlebot’s IP address and User-Agent, and finally evidence

that a client interacts with a page (e.g., clicking). Our results

highlight that any anti-cloaking pipeline must come outfitted

with each of these capabilities to accurately contend with

cloaking.
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Fig. 5: Classifier performance when training on all but one class of features. We include a magnified false positive rate (5x)

to emphasize an otherwise minimal variation. We order feature classes by ascending false positive rates.

TABLE XI: Fingerprinting techniques in the wild that are

used to make a cloaking decision. Broken down for Google

Search and Ads.

Fingerprinting check Google Search Google Ads

Has referrer set? 6.1% 5.4%
User has clicked? 10.6% 18.0%
Is Google (IP, User Agent)? 14.3% 20.7%
Has JavaScript support? 22.4% 49.6%
Is mobile device? 4.9% 8.5%

C. Delivery Techniques

Cloaking sites deliver their uncloaked content to organic

visitors in a variety of ways. Some sites opt to redirect visitors

to a monetized URL, either via a server-side decision (via

a 30X redirection), or on the client-side via JavaScript. To

be less conspicuous, other sites opt to display the uncloaked

content directly in the landing page, either through a reverse

proxy, or a modification of the DOM such as adding div,

img, or iframe elements. We analyze the most popular

delivery techniques in our dataset as determined by our

network logs for sites labeled as cloaking, broken down by

type in Table XII. We find delivery techniques in the wild

differ substantially between search results and advertisements.

For instance, JavaScript redirects account for 29.9% of cloaked

search URLs compared to 6.6% of ads, with ads instead

favoring same-page modifications. Our result highlights that

while miscreants may cloak against products using a variety of

techniques, our anti-cloaking system nevertheless succeeds at

generalizing and captures each approach. Any security crawler

must address each of these techniques as well as prepare for

TABLE XII: Delivery techniques in the wild, broken down

for Google Search and Ads. Same-page modifications include

server-side targeting as well as client-side rendering.

Cloaking Type Google Search Google Ads

30X redirections 33.6% 19.9%
40X client errors 12.0% 8.5%
50X server errors 2.5% 4.4%
JavaScript redirections 29.9% 6.6%
Same-page modifications 22.0% 60.6%

future iterations of the cloaking arms race.

VIII. CASE STUDIES

In this section we present case studies exemplary of the

monetization strategies among the Google Search and Google

Ads URLs we identified as cloaking.

Lead Generation for Mobile Apps: We encountered multiple

sites that entice mobile users to install both dubious and

legitimate third-party apps. Interestingly, a minority of Alexa’s

top domains also exhibit this behavior. For example, we

show how mobile and desktop visitors see opensubtitles.org

in Figure 7. When this site detects a visitor with an Android

mobile User-Agent and a HTTP referrer set, it adds a new div
element via JavaScript. This element randomly loads an ad

for a legitimate Android app, or is stylized as fake Android

notification. When clicked, this notification leads to a dubious

app that acts as a free app store. When installed, this app

riddles the device with unwanted ads (through the AirPush

library).
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Fig. 6: Classifier performance degradation, when repeatedly removing the crawling profile that least affects the false positive

rate.

Fig. 7: Observing opensubtitiles.org from different devices can

yield completely different content.

Malware: A few of the cloaking websites we identified are

distributing malware. For example, saomin.com, delivers to

mobile user an Android app that is flagged as malicious by

19 AntiVirus engines on VirusTotal. In another case, the user

was encouraged to install a malicious browser extension called

FromDocToPDF.

Traffic Resellers: We have also observed cloaking sites selling

their organic traffic to a ring of advertisers. For example, in

Figure 8 we show a screenshot of pancakeshop.kim. This site

redirects users to third-party advertisers based on the type of

Fig. 8: Cloaking site that redirects to advertisements.

platform and Referer header. Also, this site geolocates the

visitor and uses this information to decide which ads to run.

Visiting the site from outside the US yields a blank page,

or a message “We currently don’t have any sponsors for this

domain name”.

Some traffic reseller employ a wide set of rules to decide

what content to display. An example of this is macauwinner.tk,

which pretends to be a parked domain when visited from

outside the US, whereas it delivers tailored content to users

on residential and mobile networks, detecting their Internet

provider (e.g., it also displays “Dear AT&T Uverse user”).

Also, it delivers content specific to the operating system of the

user, mimicking its appearance when creating fake windows

and alert boxes. The pages to which users get redirected
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range from fake AntiViruses, to fake popular websites (e.g.,

Facebook), to surveys.

Affiliate fraud: We found cases where the cloaking site

performs affiliate fraud. For example, drseks.com, redirects

every other user to a major shopping retailer with an affiliate

id set. By doing so, this retailer shares a fraction of the profits

from a sale to the cloaked domain.

IX. BREAKING THE CLOAKING ARMS RACE

As miscreants adopt increasingly sophisticated application-

specific cloaking techniques, it becomes difficult for defenders

to keep pace with the cloaking arms race. Currently, our

system is a viable solution, as it is designed to defeat current

cloaking capabilities. We have determined the minimum capa-

bilities a current anti-cloaking pipeline would need precisely

to guide the design of such a pipeline, spending engineering

time efficiently. On the long run, however, we envision that

miscreants will add to their cloaking arsenal (e.g., carrier-

specific mobile cloaking), increasing the cost of detection at

the expense of driving less organic traffic to their concealed

offers. To counter this trend, we propose two possible alterna-

tives that would render it significantly harder for miscreants

to deliver split-view content, although they would require an

in-browser component.

Client-side Cloaking Detection: As cloaking hinges on serv-

ing benign content to search engine and ad network crawlers,

one option is for those same services to embed a succinct

digest of a webpage’s content in the parameters tied to

search and advertisement URLs. When users are redirected

after clicking on one of these URLs, the user’s browser

can compare the newly served content against the crawler’s

digest. If the two substantially differ, the browser can raise a

warning interstitial that alerts the user to a suspected scam,

phishing, or malware attack. Mechanistically, this comparison

naturally follows the pairwise features we laid out for our anti-

cloaking system. The benefit over our current architecture is

that crawlers no longer need to maintain multiple browsing

profiles or network vantages—clients provide the second view.

Additionally, this approach respects the privacy of the users,

as only the potentially-dangerous pages will be reported by

the participating (i.e., opted-in) users.

There are however some open challenges with this approach.

First, dynamic content remains a concern. If miscreants can

limit the deviations introduced by cloaking to within typical

norms (e.g., including only a small new button or URL),

the system may fail to detect the attack. That said, this also

constrains an attacker in a way that reduces click through from

users. Additionally, there is a risk with news sites and other

frequently updated pages that a crawler will serve incoming

visitors a stale digest due to an outdated crawl, thus burdening

users with alerts that are in fact false positives. To avoid this,

the crawler would either need to immediately re-crawl the page

to confirm the change and suppress the alert, or the digest

should account for the category of the site, allowing for a

higher threshold for news sites.

Distributed Client Content Reporting: To overcome the

problem of staleness, we consider an alternative model where

a user’s browser opts to anonymously report a content digest

after clicking on a search result or advertisement to the

associated search engine or ad network. This server would

then review the incoming digest against the copy fetched by

its crawler. In the event of a mismatch, the server would

immediately re-crawl the URL to rule out the possibility of

an outdated digest. If there is still a client-server mismatch

after crawling, the search engine or ad network involved

could pull the reported URL from public listing to protect

all future clients. From a privacy perspective, the server

receiving reports would already be aware the user clicked on

the URL, such as how search engines currently redirect visitors

through analytic interstitials. However, as users may click

through to a signed-in page containing sensitive content (e.g.,

facebook.com), the digest reported must not leak personalized

content. Furthermore, this approach opens servers up to an

abuse problem where malicious clients may spoof digests to

unduly trigger the removal of legitimate search results and

advertisements. However, assuming there are more legitimate

clients than malicious and some form of rate limiting, servers

can rely on majority voting to solve this problem, though the

long tail of URLs may yet pose a challenge.

X. CONCLUSION

In this work, we explored the cloaking arms race playing out

between security crawlers and miscreants seeking to monetize

search engines and ad networks via counterfeit storefronts

and malicious advertisements. While a wealth of prior work

exists in the area of understanding the prevalence of content

hidden from prying eyes with specific cloaking techniques or

the underlying monetization strategies, none marries both an

underground and empirical perspective that arrives at precisely

how cloaking operates in the wild today. We addressed this

gap, developing an anti-cloaking system that covers a spec-

trum of browser, network, and contextual blackhat targeting

techniques that we used to determine the minimum crawling

capabilities required to contend with cloaking today.

We informed our system’s design by directly engaging with

blackmarket specialists selling cloaking software and services

to obtain ten of the most sophisticated offerings. The built-

in capabilities of these packages included blacklisting clients

based on their IP addresses, reverse DNS, User-Agent, HTTP

headers, and the order of actions a client takes upon visiting a

miscreant’s webpage. We overcame each of these techniques

by fetching suspected cloaking URLs from multiple crawlers

that each emulated increasingly sophisticated legitimate user

behavior. We compared and classified the content returned

for 94,946 labeled URLs, arriving at a system that accurately

detected cloaking 95.5% of the time with a false positive rate

of 0.9%.

When we deployed our crawler into the wild to scan 135,577

unknown URLs, we found 11.7% of the top 100 search

results related to luxury products and 4.9% of advertisements

targeting weight loss and mobile applications cloaked against
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Googlebot. In the process, we exposed a gap between cur-

rent blackhat practices and the broader set of fingerprinting

techniques known within the research community which may

yet be deployed. As such, we discussed future directions for

breaking the cloaking arms race that included clients reporting

browsing perspective to crawler operators, hindering the ability

of miscreants to show benign content exclusively to search

engines and ad networks.
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