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Abstract— Camouflaging user’s actual location with fakes is a
prevalent obfuscation technique for protecting location privacy.
We show that the protection mechanisms based on the existing
(ad hoc) techniques for generating fake locations are easily
broken by inference attacks. They are also detrimental to many
utility functions, as they fail to credibly imitate the mobility
of living people. This paper introduces a systematic approach
to synthesizing plausible location traces. We propose metrics
that capture both geographic and semantic features of real
location traces. Based on these statistical metrics, we design a
privacy-preserving generative model to synthesize location traces
which are plausible to be trajectories of some individuals with
consistent lifestyles and meaningful mobilities. Using a state-
of-the-art quantitative framework, we show that our synthetic
traces can significantly paralyze location inference attacks. We
also show that these fake traces have many useful statistical
features in common with real traces, thus can be used in
many geo-data analysis tasks. We guarantee that the process
of generating synthetic traces itself is privacy preserving and
ensures plausible deniability. Thus, although the crafted traces
statistically resemble human mobility, they do not leak significant
information about any particular individual whose data is used
in the synthesis process.

I. INTRODUCTION

It is preferable not to travel with a dead man.

Henri Michaux

A popular method to protect the privacy of a mobile user,

who queries a location-based service (LBS), is to hide her

true query among fake queries. Users keep the obtained

information to their real queries and discard the responses

to all their fake queries. The existing techniques to generate

fake locations [10], [23], [24], [26], [45], [49], [56], are based

on very simple heuristics such as i.i.d. location sampling and

sampling locations from a random walk on a grid or on the

road network or between points of interest. The generated

location traces using these types of techniques fail to capture

the essential semantic and even some basic geographic features

of the mobility of a living human who has a consistent lifestyle

and meaningful mobility. Thus, as we quantitatively show, they

poorly protect users’ privacy against location inference attacks

that can easily filter out the trajectories of the jumping dead.

In order to be plausible, synthetic traces need to statistically

resemble real traces, thus themselves should be generated in a

privacy-preserving manner. Consider the most naive protection

scheme where location samples from the trajectory of Alice

(a real person who perhaps is not even using the LBS) are

used to mask locations of Bob (a LBS user). Clearly this is

too intrusive with respect to the privacy of Alice, although it

confuses the attacker about Bob’s truly visited locations. The

obfuscation techniques that compose an area of fake locations

around the user’s true location, e.g., [30], [39], [52], are

inappropriate for similar reasons: they have a strong statistical

correlation with the user’s true trace and do not introduce

much error to location inference attacks. Thus, they are less

privacy preserving than even, for example, i.i.d generated fake

locations [45].

In this paper, we present and evaluate the first formal

and systematic methodology to generate fake yet semantically

real privacy-preserving location traces. In this approach, we

propose two mobility metrics that capture how realistic a

synthetic location trace is with respect to the geographic and

semantic dimensions of human mobility. We then construct

a probabilistic generative model that produces synthetic yet

plausible traces according to these metrics. We build our gen-

erative model upon a dataset of real location traces as seeds.

Thus, the model itself needs to be privacy-preserving. To this

end, we design privacy tests to control and limit information

leakage about the seed dataset. We then use state-of-the-art

location inference attacks to evaluate the effectiveness of our

fake traces in preserving the privacy of LBS users. On a set

of real location traces, we show that the attacker’s probability

of error [46] in estimating the true location of users over

time is 0.9972 when using our method, i.e., we achieve close

to maximum privacy. By comparison, the attacker’s error is

0.2958, 0.3066, 0.3802, and 0.7486 when using existing i.i.d.

sampling and random walk methods.

Our scheme is based on the fact that mobility patterns of

different individuals are semantically similar, regardless of

which geographic locations they visit. These common features

of human mobility stem from their similar lifestyles, e.g.,

traversing between home, workplace, friends’ place, favorite

shops and recreational places, and occasional new locations.

These mobility patterns share a similar structure that reflect

the general behavior of a population (at a high level [48]).

We model the mobility of each individual in two dimensions:

geographic and semantic. In addition to the common mobility

patterns (i.e., how people move in a city), the geographic

features are mostly specific to each individual (e.g., what

everyone refers to as her “home” is located in a geographically

distinct place), whereas the semantic features are mostly

generic and representative of overall human mobility behavior

(e.g., most people have a “home” where they stay overnight).

Thus, the semantic representations of human mobilities are

very similar, especially within a culture group with similar life
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styles. We extract these common semantic features as well as

the aggregate geographic features from real mobility datasets,

as seed. Using this, we probabilistically generate synthetic

traces which are geographically probable and semantically

similar to real traces. This results in a set of traces for

nonexistent individuals with meaningful lives and consistent

mobility patterns as any real individual in the seed dataset.

We preserve the privacy of seed traces. Our first step is

a random and independent sampling of the seeds, which

is shown to be very effective in boosting the privacy of

individuals in a database [16]. We generate synthetic traces

from sampled seed traces. We then accept a synthetic trace

only if (1) it is geographically dissimilar to seeds and (2) the

same synthetic trace could have been generated from k ≥ 1
non-sampled alternatives. This ensures plausible deniability.

This is intrinsically similar to the notions of crowd blending

privacy [16], zero knowledge privacy [17], and outlier privacy

[31]. Our privacy guarantees protect the privacy of seed traces

against the following threats: inference attacks (to learn which

locations the seed contributors have visited), and membership
inclusion attack (to learn if a particular individual with certain

semantic habits has been in the seed dataset).

The application of our generated synthetic traces goes be-

yond protecting the privacy of mobile users in location-based

services. Our generated traces can also be used for a variety of

geo-data analysis tasks such as modeling human mobility [28],

map inference [29], points of interest extraction [59], semantic

annotation of locations [55], and location optimization for

opening new shops [22]. We list six features of traces that

contribute to these applications and show that our synthetic

traces exhibit a similar performance to what is achieved from

real traces on these tasks. For example, out of 400 locations,

the accuracy of synthetic traces in extracting the top-35 points

of interest is 96.7% compared to real traces. This is 88.5% and

100% respectively for the top-30 and top-40 points of interest.

Novelty. We design, implement as a tool, and evaluate with

real data the first formal privacy-preserving generative model

to synthesize plausible location traces. Our privacy guarantees

ensure plausible deniability for individuals whose trace is

used by our algorithm. In a LBS scenario, we show that our

fake traces can bring near maximum location privacy (against

state-of-the-art inference attacks) for the users with minimum

overhead (i.e., the number of fake locations needed to be sent

to the LBS server along with the true location). We also show

that these traces do not perturb the semantic profile of the user

in location-based recommender systems. In the dataset release
scenario, where only synthetic traces are released for analysis,

we show that useful features are preserved for multiple geo-

data analysis tasks. We design privacy tests to ensure that the

synthetic traces do not leak more information about the real

traces from which they are generated than alternative traces.

II. RELATED WORK

Synthetic (also called fake or dummy) information can

protect privacy and security in many different systems such as

web search [18], [20], anonymous communications [5], [12],

authentication systems [21], and statistical analysis [33], [42].

In all these scenarios, the main challenge and the still open

problem is to generate context-dependent fake information that

resembles genuine user-produced data and also provides an

acceptable level of utility while enhancing privacy of users.

In location-based services, location obfuscation is a preva-

lent non-cryptographic technique to protect location privacy. It

does not require changing the infrastructure, as it can also be

done entirely on the user’s side either by altering (perturbing)

the location coordinates to be reported or by sending fake

location reports interleaved or along with the true locations.

Many location perturbation techniques are based on adding

some noise to the user’s location coordinates or reducing its

granularity, e.g., [3], [4], [19], [47]. The downside of these

techniques is that they reduce the users’ experienced LBS

service quality. This is because the server provides contextual

information related to the queried location and not the true

location of the user. So, users have to trade service quality

for privacy. Optimal solutions for location perturbation are

proposed [7], [47] which show the high cost of this technique.

Hiding the user’s true location among fake locations is a

promising yet not systematically-approached method to pro-

tecting location privacy. There are few simple techniques pro-

posed so far: adding independently selected locations drawn

from the population’s location distribution [45], generating

dummy locations from a random walk on a grid [24], [56],

constructing fake driving trips by building the path between

two random locations on the map given the more probable

paths traveled by drivers [26], adding noise to the paths

generated by road trip planner algorithms [10], or generating

the path between points of interests [49] and pausing at

those points [23]. All these solutions lack a formal model for

human mobility and do not consider the semantics associated

with location traces. Thus, the generated traces can be easily

distinguished from real trajectories, as we show in this paper.

To address potential misunderstandings, we contrast our

work with anonymization, and releasing aggregate statistics.

(1) Anonymization consists in removing identifiers of individ-

uals in the data, and publishing only the resulting (sanitized)

dataset. While this preserves utility, it does not provide much

privacy protection. Indeed, many researchers have shown that

anonymous traces are easily re-identifiable [32], [50], [58].

(2) Releasing privacy-preserving aggregate statistics has been

proposed in many contexts. In particular, there has been a lot of

recent work on releasing differentially-private histograms for

various types of data [1], [2], [54]. These are totally unsuitable

to be used in the LBS scenario and, in general, in applications

which require full location traces. For example, to obtain a

full location trace from a private histogram, one way is to

repeatedly and independently sample locations from it. This

results in an unlikely trace which include “jumps” between lo-

cations regardless of their distance and mobility constraints. In

particular, [1] considers the problem of releasing differentially-

private location histograms at various time intervals. Also,

[9] releases variable length n-grams with differential privacy

guarantee, which cannot produce full location traces.
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In summary, the existing approaches do not evaluate how

plausible and privacy-preserving their synthesized traces are.

They are only based on simple heuristics about human mobil-

ity. Hence, they do not properly preserve geographic features

of it, and completely ignore its semantic features. As a result,

their produced traces are not suitable in many scenarios.

They also lack privacy guarantees (and fail) against inference

attacks. This paper fixes these shortcomings and enables us to

reason about and generate plausible synthetic location traces.

There are also several notable related works which appear

similar to this work but have subtle and important differences.

An example is DP-WHERE [36] which uses Call Detail

Records (CDRs) databases to produce differentially-private

synthetic databases with a distribution close to real CDRs.

However, CDRs are not equivalent to full location trajectories

because the location is only known at the time when a call

is made. Another example, is wPINQ [40] which achieves

differential privacy by calibrating down the weight of some

data records. wPINQ further proposes a way of generating

synthetic datasets using Markov chain Monte Carlo methods.

The techniques used, scenarios, and utility evaluation prohibit

a direct comparison with our work: wPINQ focuses on graphs

given noisy measurements about the number of triangles,

whereas we consider the problem of generating plausible full

location trajectories.

Finally, Dwork et al. [15] introduce a class of mechanisms

called Propose-Test-Release (PTR) which first picks a bound

on the sensitivity (of a statistic of interest) and then (privately)

tests whether noise calibrated to this candidate bound is

sufficient to ensure differential privacy. If so, then a noised

output is released, otherwise no output is produced. There are

two major differences between PTR and our work. First, we

aim to generate synthetic location traces, whereas [15] seeks

privacy-preserving ways to estimate robust statistics such as

discovering the median of a dataset without prior knowledge

of the scale of the data. Second, the PTR framework performs

a test of the sensitivity of a statistic before deciding to release

a noised output, whereas our privacy tests are there to test the

synthetic traces generated themselves before deciding whether

to release them.

III. OUR SCHEME

In this section, we present a sketch of, and describe the

main intuition behind our scheme for generating fake traces.

We assume that time and space are discrete, so a location

trace is represented as a sequence of visited locations over

time. In our scheme, we synthesize a trace through a multiple

step process. We transform a (geographic) seed trace into the

semantic space and probabilistically transform it back to the

geographic space. Thus, the sampled trace is geographically

and semantically plausible. Figure 1 illustrates our scheme.

A. Subsampling the Seeds

We generate synthetic location traces by using a set of real

traces, from which we randomly subsample a set which we

refer to as the seed dataset. We refer to the set of traces

A trace is a sequence of locations 
visited over time

Real Location Traces

Sampled Seeds

   From the similarity between 
mobility traces, infer the semantic 
similarity between locations, build 

a similarity graph and cluster it

Location Semantic 
Graph with Classes

Mobility Models per 
Location Trace

Aggregate Mobility 
Model

Compute mobility model for 
each trace and also their 

aggregate mobility (as e.g., 
the probabilistic model for 

average mobility)

Semantic Seed

Transform each seed trace into 
the semantic domain by 

replacing each location with all 
equivalent locations in its cluster

Proposed Fake Trace

     Generate a fake trace that can 
be mapped back to the same 
semantic seed and follows the 

aggregate mobility model

Fake Location Traces

Privacy Test

Reject the fake traces if their 
geographic similarity with the 

seed exceeds a threshold or do 
not satisfy plausible deniability 

1

2 3

4

6

5

Fig. 1: Sketch of the proposed scheme.

that are not sampled as the alternative dataset. The reason for

subsampling becomes more clear when we explain our privacy

guarantees. Put simply, to guarantee plausible deniability, we

ensure that there are k alternative traces that could have

produced a similar synthetic trace generated from a seed.

B. Computing the Semantic Similarity

Our goal here is to compute the semantic similarity between

locations. To this end, we start with modeling mobility of seed

locations. For each trace (i.e., sequence of locations visited

in the trace) in the seed dataset, we compute a probabilis-

tic mobility model that represents the visiting probability to

each location and transition probability among the locations

(see Section IV-A). The mobility model encompasses the

spatiotemporal behavior of each individual across different

locations. Time, duration, and probability of visiting a location,

as well as the probable previous and subsequent locations are

computable from the mobility model.

We analyze and discover the semantic relation between

different locations in a consistent manner by considering all

locations together. To this end, we propose a semantic similar-
ity metric (see Section IV-D). Intuitively, we assign a higher

similarity value to a pair of locations if multiple individuals

have similar spatiotemporal activities in them. We find the

optimal way to map the visited locations in a pair of traces

such that the mapping maximizes the statistical similarity

between their mobility models. The semantic similarity metric

is therefore the statistical similarity between mobility models

under the optimal semantic mapping between locations. This

means that if we were to translate the locations visited by two

individuals according to the discovered best mapping, they

would follow the same mobility model when their semantic

similarity is high (i.e., have similar life styles). For example,

consider Alice and Bob spending all day at their respective

work locations wA and wB , and all night at their respective

home locations hA and hB . Obviously, their mobility models

are semantically very similar, although it might be the case that

hA �= hB and wA �= wB . In this example, the best semantic

mapping between locations will be wA ↔ wB and hA ↔ hB .
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That said, the semantic similarity metric we propose goes

beyond simply finding the best mapping for home and work.

Indeed, the best mapping is over all locations, so it may be

that Alice’s favorite bar is mapped to Bob’s favorite nightclub,

if Alice and Bob visit those places in a similar way.

For each pair of mobility models of traces in the seed

dataset, we compute their semantic similarity as well as

the best semantic mapping between their locations. Note

that the semantic similarity is quantifying the similarity of

two mobility models, not that of two location traces. This

incorporates the similarity between statistical information in

the traces rather than their exact sequence of locations. We

then aggregate all the location matchings across all seed trace

pairs, with weights based on the semantic similarity between

mobility models, and construct a location semantic graph,

where the nodes are locations and the weight of the edges

is the average semantic similarity between the locations over

the dataset.

C. Forming Location Semantic Classes

The location semantic graph enables us to infer which

locations have similar meanings (or purpose) for different

people. The locations that have higher semantic similarity

can be grouped together to represent one location semantic
class. We run a clustering algorithm on the location semantic

graph to partition locations into distinct classes. Regardless

of their geographic positions, the locations that fall into the

same class are visited in the same way by different people.

In other words, their visit probability, time of visit, and the

probabilities of transition from/to them to/from other locations

with the same type is similar. Thus, we can consider them

as being semantically equivalent. So, using the notations of

our previous example, wA and wB should belong to the

same cluster that can represent “workplace” locations, and hA

and hB should be grouped into another cluster representing

residential or “home” locations.

D. Synthesizing a Trace

We use the location semantic classes as the basis to generate

synthetic traces. In addition to being semantically realistic, the

fake traces must be geographically consistent with the general

mobility of individuals in the considered area. For example,

the speed of moving between locations and the duration time

of staying in a location depend on the time of the day or

the probabilities of different paths that cross those locations.

To capture these patterns, we compute an aggregate mobility
model from the traces in the seed dataset by averaging their

corresponding mobility models.

The goal is to synthesize traces that are semantically similar

to real traces. To this end, our algorithm starts with a seed trace

and converts it to a probabilistically generated semantically

similar synthetic trace which is consistent with the aggregate

mobility model. We first transform the geographic seed trace

into the semantic domain, then we use the transformed seman-

tic trace to sample from the domain of all geographic traces

that could have been transformed to the same semantic trace.

The transformation and sampling procedures, which are at the

heart of this step, are done as follows.

In the transformation process, we replace the geographic

locations in the seed with the locations that are in the

same semantic class. This semantic trace is a sequence of

location sets. For sampling a synthetic trace, we address the

following problem. We want to construct a trace that follows

the aggregate mobility model under the constraint that its

locations over time are a subset of locations of the seed

semantic trace. Hence, both the synthetic trace and the seed

trace can be transformed to the same semantic trace. This

makes the synthetic trace semantically plausible. We add some

randomness to the locations in the semantic trace to increase

the flexibility of our algorithm. Many methods can be used to

sample the fake trace that satisfies our constraints. We make

use of dynamic programming algorithms that construct the

traces efficiently (see Section V).

We can repeatedly generate synthetic traces from each

seed trace in the dataset, each of which having a probability

according to the aggregate mobility model. After generating

each trace, however, we need to make sure that it is not

geographically similar to the seed trace. This is because we

do not want to leak information about the real seed trace. To

this end, we add a test to compute the geographic similarity
between the seed trace and the fake trace to reject the sample

traces that are more similar than a threshold to the seed trace.

Thus, we make sure that the semantically similar synthetic

traces are indeed geographically dissimilar to the traces in our

dataset, hence do not leak information about visited locations

in the real traces. We also ensure that the semantics of a

synthetic trace do not leak about a seed trace more than what

they leak about alternative traces (which are not among the

seeds and our algorithm is independent of). To this end, we

run the plausible deniability privacy test (see Section V).

IV. MOBILITY SIMILARITY METRICS

In this section, we present a probabilistic model for mobility,

and propose two metrics to analyze the geographic and seman-

tic similarity between two mobility models. Table I presents

the list of notations that we use in this paper.

A. Mobility Model

We model the user mobility as a time-dependent first-order

Markov chain on the set of regions (locations). As users

have different activities and mobility patterns during different

periods of time, we assume that time is partitioned into time

periods, e.g., morning - afternoon - evening - night. So, the

mobility profile 〈p(u), π(u)〉 of a given user u is a transition
probability matrix of the Markov chain associated with the

user’s mobility (from a region to another), and the user’s

visiting probability distribution over the regions, respectively.

Note that these probabilities are dependent on each other, and

together they constitute the joint probability of two regions

that are subsequently visited by the user. The entry pr
′

r,τ,τ ′(u)
of p(u) is the probability that user u will move to region r′ in

the next time instant (which will be in time period τ ′), given
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R Set of locations

R Number of locations

r A location

r Random variable associated with a location

T Number of time periods

τ A time period

p(u) Transition probability matrix of user u

π(u) Visiting probability vector of user u

〈p(u), π(u)〉 Mobility profile of user u

px
y(u) Probability of x given y according to u’s mobility model

d(·) A distance function (between locations)

Md(p, q) Mallows distance between probability distributions
p and q based on a distance function d(·)

σ A permutation function

simG(u, v) Geographic similarity between mobility of u and v

simS(u, v) Semantic similarity between mobility of u and v

σv
u Optimal semantic mapping between locations of u and v

S Set of real traces used as seeds to generate synthetic traces

A Set of alternative real traces used in plausible deniability test

〈p̄, π̄〉 Aggregate mobility model

C A partition on R, representing location semantic classes.
Ci is the set of locations in class (partition) i

F A set of fake locations generated from S

TABLE I: Table of notations

that she is now (in time period τ ) in region r. The entry πr
τ (u)

is the probability that user u is in region r in time period τ .

We can compute π(u) from traces or directly from p(u) (in

some circumstances). Let the random variable At
u represent

the actual location of user u at time t, and τ t be the time

period associated with At
u. So, the mobility profile of a given

user u consists of the following probabilities:

pr
′

r,τ,τ ′(u) = Pr{At+1
u = r′ |At

u = r; τ t+1 = τ ′, τ t = τ},
πr
τ (u) = Pr{At

u = r; τ t = τ} (1)

This Markovian model can predict the location of an in-

dividual to a great extent, as it takes both location and time

aspects into account. It can become even more precise, by

increasing its order, or by enriching its state. Our framework

can incorporate new dimensions similar to the way we model

the time periods. To learn the probabilities of the mobility

profile (1), from location traces, we can use maximum like-

lihood estimation (if the traces are complete) or make use of

algorithms such as Gibbs sampling (if the traces have missing

locations or are noisy) [46].

B. Mobility Similarity Metrics

We propose two metrics to compare the mobility of two

users and compute their similarities: geographic and semantic
similarity. In this subsection, we describe the intuition behind

these metrics, and in the following subsections, we formally

define and provide the algorithms to compute them.

The geographic similarity metric captures the correlation

between location traces that are generated by two mobility

profiles. It reflects if two users visit similar locations over

time with similar probabilities and if they move between those

locations also with similar probabilities. Using this metric, for

example, two individuals who live in the same region A and

their workplace is in the same region B potentially have very

similar mobilities, as they spend their work hours in B and

most of their evenings in A.

The geographic similarity between the mobility models

of two random individuals is usually low. However, if we

ignore their exact visited locations, they tend to share similar

patterns for visiting locations with similar semantics (locations

therein they have similar activities). Consider the semantic

dimension of locations as a coloring of them on the map.

Besides the geographic correlation between location traces,

we can compute their correlation at the semantic level too

(by reducing the set of locations to colors and computing

the similarity of colored traces). This is the intuition behind

our semantic similarity metric. In this case, if the pair of

locations that two individuals visit over time have the same

semantic, their mobility models are also semantically similar

(even if they do not intersect geographically). For example,

if we transform trace X by replacing its locations with their

corresponding semantically similar locations in trace Y, the

transformed trace becomes statistically similar to Y. So, two

traces are semantically similar if their locations can be mapped

(translated) to each other in this way.

C. Geographic Similarity Metric

We define this similarity metric based on the Earth Mover’s

Distance (EMD) for probability distributions. The EMD is

widely used in a range of applications [43], [44], and can

be understood by thinking of the two distributions as piles of

dirt where it represents the minimum amount of work needed

to turn one pile of dirt (i.e., one distribution) into the other;

the cost of moving dirt being proportional to both the amount

of dirt and the distance to the destination. The special case

of EMD for probability distributions has been shown to be

equivalent to the Mallows distance [27].

Let X and Y be discrete random variables with probability

distributions p and q, such that Pr{X = xi} = pi and

Pr{Y = yi} = qi, respectively, for i = 1, 2, . . . , n. We also

have
∑

i pi = 1 and
∑

i qi = 1.

Definition 1. (From [27]) Let d(·) be an arbitrary distance
function between X and Y. The Mallows distance Md(p, q)
is defined as the minimum expected distance between X and
Y with respect to d(·) and to any joint distribution function
f for (X,Y) such that p and q are the marginal distributions
of X and Y, respectively.

Md(p, q)=min
f
{Ef [d(X,Y)] : (X,Y)∼f,X∼p,Y∼q} , (2)

where the expectation, minimized under f , is

Ef [d(X,Y )] =
n∑

i=1

n∑
j=1

fij d(xi, yj). (3)

In addition to the two constraints
∑n

i=1

∑n
j=1 fij = 1 and

fij ≥ 0, for all i, j, the joint probability distribution function

f must also satisfy
∑n

i=1 fij = qj and
∑n

j=1 fij = pi.
Note that, for given p and q, the minimum f is easily

computed by expressing the optimization problem as a linear

program.
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Using the previous definition, we define the geographic

similarity metric based on the Mallows distance.

Definition 2. Let d(·) be an arbitrary distance function. The
dissimilarity between two mobility profiles 〈p(u), π(u)〉 and
〈p(v), π(v)〉 (belonging to individuals u and v), is defined as
the expected Mallows distance of the next random locations
r′ and r′′ according to the mobility profiles of u and v,
respectively. More formally, it is

E(u)[Md(p
r′
r,τ,τ ′(u), p

r′′
r,τ,τ ′(v))], (4)

where pr
′

r,τ,τ ′(u) and pr
′′

r,τ,τ ′(v) denote the conditional prob-
ability distributions of the next location, given the current
location and the current and next time periods. The Mallows
function is computed over random variables r′ and r′′, and
the expectation is computed over random variable r and time
periods τ and τ ′.

We define the geographic similarity between mobility pat-
terns of u and v as

simG(u, v) = 1− E[Md(p
r′
r,τ,τ ′(u), p

r′′
r,τ,τ ′(v))]

zg
, (5)

where zg is a normalization constant equal to the maximum
value of (the expectation of) the Mallows distance given d(·),
ensuring that the geographic similarity always lie in [0, 1].

We compute the geographic dissimilarity using the law of

total expectation. This also clarifies its meaning by showing

more directly the role of the random variables.

E[Md(p
r′
r,τ,τ ′(u), p

r′′
r,τ,τ ′(v))]

=
∑
r,τ,τ ′

Md(p
r′
r,τ,τ ′(u), p

r′′
r,τ,τ ′(v)) · pr,τ,τ

′
(u). (6)

This is simply the average, for each time and location, of

the EMD between the distributions of the next location of u
and v. So, for each current location (and time), we use the

EMD to compute the dissimilarity between the distributions

representing the next locations of users u and v, respectively.

The current location is taken according to user u’s mobility

profile, making this definition asymmetric.

For a particular distance function d(·), the Mallows distance

definition can be expanded and previous expressions can be

further simplified. This is the case for d(i, j) = �i�=j , for

which Md(p, q), for arbitrary probability distributions p and

q, has closed form 1−∑
i min {pi, qi}.

Using the dissimilarity metric, we can compute the geo-
graphic similarity between the mobility profiles 〈p(u), π(u)〉
and 〈p(v), π(v)〉, for any distance function (e.g., hamming dis-

tance, Euclidean distance). For example, considering hamming

distance d(r, r′) = �r �=r′ , the geographic similarity is:
∑

r,r′,τ,τ ′
pτ
′

r,τ (u)π
r,τ (u)min{pr′r,τ,τ ′(u), pr

′
r,τ,τ ′(v)}. (7)

We emphasize that this definition leads to an asymmetrical

similarity measure, i.e., the similarity of u to v need not be the

same as the similarity of v to u. In principle, this metric can

also be computed using measures other than EMD. For exam-

ple, one can use Kullback-Leibler divergence measure [11] to

compute the difference between two probability distributions,

ignoring the distance between the locations. We emphasize that

we use EMD, in our geographic similarity metric, as we also

want to include the distance function d(·) between locations

in computing the difference between two mobility models.

Consider now the computation of the geographic similarity.

For the case, d(r, r′) = �r �=r′ , the computation according

to closed-form of (7) takes O(T 2 · R2) operations, where

T is the number of time periods and R is the number of

locations (regions). For arbitrary d(·) with no closed-form

expressions, the geographic similarity is obtained through

T 2 ·R EMD computations. Each of these EMD computations

involves minimizing the Mallows distance, that is equivalent

to solving the linear program given by (2).

D. Semantic Similarity Metric

The semantic similarity metric builds upon the basic as-

sumption that for two individuals u and v there exists an

(unknown) semantics mapping σ of locations R onto itself

(i.e. a permutation) such that R for u, and σ−1(R) for v
semantically match. It is important to note that assuming such

a mapping does not commit us to trying to learn it based on

modeling location semantics directly. Instead, we define the

hidden semantic similarity between u and v as the maximum

geographic similarity taken over all possible mappings σ. We

define semantic similarity metric as follows.

Definition 3. Let σ be the mapping of locations of u to
locations of v. Let r, r′, and r′′ be random variables for
locations, and τ and τ ′ be two time periods. We define the
semantic dissimilarity between u and v for moving in the
sequence of time periods {τ, τ ′} as

Dv
u({τ, τ ′}) = min

σ
E

[
Md(p

r′
r,τ,τ ′(u), p

σ(r′′)
σ(r),τ,τ ′(v))

]
, (8)

where the Mallows distance Md(·) is computed over the
random variable r′ and the expectation is computed over the
random variable r given time periods τ and τ ′.

Now, we define the semantic similarity between u and v
over any sequences of time periods as

simS(u, v) = 1− E [Dv
u({τ, τ ′})]
zs

, (9)

where zs is a normalization constant equal to the maximum
value of (the expectation of) the Mallows distance given d(·),
ensuring that the semantic similarity always lie in [0, 1].

What we compute in (8) is the minimum geographic mo-

bility dissimilarity between u and v where the locations of v
are relabeled and mapped to locations of u according to the

permutation function σv
u (which is the σ that minimizes 8). The

intuition is the following. Consider two individuals u and v
are at r and σ(r), respectively, at time period τ . The Mallows

distance Md computes how dissimilar their movement will

be to the next location which are represented with random

variables r′ for u and σ(r′′) for v. If, according to a mapping,
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the way that they move between these locations is similar,

they behave similarly with respect to those locations. If this

is true across different time periods and location pairs, their

mobilities are similar. So, the semantic similarity between two

individuals is determined by σv
u.

We compute this metric at two different levels of accuracy of

the mobility model. If we only consider the visiting probability

π part of each individual’s mobility profile, we compute simS

as follows: Let us consider the hamming distance function

d(r, r′) = 1r �=σ−1(r′). In this case, we can compute the

semantic similarity metric as

1−
∑
τ

Pr{τ} max
σ

∑
r

min{πr
τ (u), π

σ(r)
τ (v)}. (10)

Note that the computation of (10) requires finding the

mapping σ which maximizes the inner term for each time

period τ . Since there are R! possible candidates for the

maximum mapping σ, a brute-force approach is inefficient.

However, the problem’s structure resembles that of a linear

assignment. Focusing on the inner sum, we see that each term

(each r) can be associated with R values of σ(r) independently

of the other components of σ. To recast the problem as

a linear assignment, we construct a bipartite graph where

the nodes represent R and σ(R), and each edge represents

the association (through σ) of r with σ(r). The maximum

weight assignment of the constructed bipartite graph gives the

permutation σ. The running time of this procedure is O(T ·R3)
using the Hungarian algorithm [37].

In the case where we consider the more accurate mobility

profile 〈p, π〉, it can be computed as follows:

1−
∑
τ,τ ′

max
σ

∑
r,r′

πr,τ (u)pτ
′

r,τ (u)min{pr′r,τ,τ ′(u), pσ(r
′)

σ(r),τ,τ ′(u)} .
(11)

It is not known whether there is an efficient algorithm

to compute the semantic similarity according to (11). The

difficulty comes from having to consider assignments of pairs:

(r, r′) to (σ(r), σ(r′)), which makes this computation look

similar to the Quadratic Assignment Problem (QAP) [38],

known to be NP-Hard and APX-Hard. But, (11) can be ap-

proximated using e.g., the Metropolis-Hastings algorithm [35]

which we use in the case of considering both visiting and

transition probabilities (see [34] for details), or Simulated

Annealing [8].

V. SYNTHESIZING LOCATION TRACES

In this section, we present the details of our algorithms for

generating synthetic traces. See also Figure 2. Note that the

processes of generating and using fake traces are completely

separate. When a set of traces is synthesized, they can be used

in different scenarios accordingly.

A. Transforming Traces into Semantic Domain

We sample a dataset S from some real traces. We use traces

in S as seeds to generate synthetic traces. Each seed trace

in the dataset comes from a different individual. Generating

a fake trace starts by transforming a real trace (taken as

SemanticSimilarity(u, v)

Compute mobility models 〈p(u), π(u)〉 and 〈p(v), π(v)〉
Compute optimal mapping σv

u from (8)
Compute semantic similarity simS(u, v) from (9)

Return simS(u, v), σ
v
u

SemanticClustering(R,S, κ)
Initiate weighted graph G with locations R as vertices
Forall u, v ∈ S, u �= v:

Let svu, σ
v
u ← SemanticSimilarity(u, v)

Forall locations r, r′ ∈ R such that r′ = σv
u(r):

Let edge weight wG(r, r′)← wG(r, r′) + svu
Let C ← K-Means(G, κ)

Return C

PrivacyTest(fake, seed,A, δs, δi, δd)

Let geographic similarity sim← simG(fake, seed)
Let intersection between fake and seed int← |intersection(fake, seed)|
Let pl← TRUE if

∃a1, · · · , ak ∈ A s.t. ∀i, |simS(seed, fake)− simS(ai, fake)| ≤ δd

Return TRUE if int ≤ δi and sim ≤ δs and pl

Synthesizer(R,S,A, all parameters)

Let aggregate mobility model 〈p̄, π̄〉 be average of 〈p(u), π(u)〉 over all u ∈ S
Let C ← SemanticClustering(R,S, κ)
Forall seed ∈ S:

Let C′ ← C
Update C′ by removing locations in any partition with probability parc
Let semantic seed semseed← seed
Update semseed by replacing locations r in it with C′i where r ∈ C′i
Update semseed by removing the location r = seed(t) from time t

with probability parl
Update semseed by merging locations that are located with time distance

Δt with probability parm
Δt

Let fake← HMMDecode(semseed, 〈p̄, π̄〉)
If PrivacyTest(fake, seed,A, δs, δi, δd)

Let F ← F ∪ fake

Return F
Fig. 2: Trace synthesis algorithm. We present it simplified for the
case with a single time period. If C is a semantic clustering, then
Ci represents the set of locations belonging to the cluster i. The
procedure HMMDecode is described in Section V-B.

seed) to a semantic trace. To this end, we require to know

the semantic coordinates of the seed trace. We compute the

semantic similarity between all locations in R, and create a

location semantic graph G〈R, E, w〉 such that the vertices are

in R and the weight wG(r, r
′) on the edge between locations

r and r′ is the weighted sum of the number of pairs of users

u and v for whom r and r′ are semantically mapped (i.e.,

r = σv
u(r

′)), weighted according to their similarity. Then, we

create the equivalent semantic classes C by running a clus-

tering algorithm on this graph. We make use of the k-means

clustering algorithm, and we choose the number of clusters

such that it optimizes the clustering objective. We present the

sketch of this algorithm in Figure 2 – SemanticClustering().
We then convert the seed location trace seed into its

corresponding semantic trace semseed by simply replacing

each location in the trace with all its semantically equivalent

locations (according to the semantic classes C). Figure 3

depicts an example of such a semantic seed. Intuitively, this

composite trace encompasses all possible geographic traces

that are semantically similar to the original seed trace. To be

more flexible with respect to the traces that we can generate,
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we add some randomness to the semantic seed trace. In the

transformation process of the seed trace into the semantic

trace, we sub-sample locations from the semantic classes as

opposed to using them all. We also remove each location in

a cluster with probability parc. The result is a new cluster

C′. We allow locations of different classes to merge into each

other around time instants where the user moves from one

class to the other. We add a location from one time instant to

another with a Δt gap with a geometric probability parm
Δt.

B. Sampling a Trace from the Semantic Domain

Any random walk on the semantic seed trace that travels

through the available locations at each time instant is a valid

location trace that is semantically similar to the seed trace.

However, the synthetic traces we want to generate also need

to be geographically consistent with the general mobility of

people in the considered area. We cast the problem of sampling

such traces as a decoding problem in Hidden Markov Models

(HMMs) [41]. The symbols are locations, the observables

are the semantic classes (which are the set of semantically

equivalent locations in the same class), and the transition

probability matrix follows the aggregate mobility model.

We construct the aggregate mobility model by averaging

over the mobility models of all traces in dataset S, as well as

giving a small probability to the possible movements between

locations according to their distance and connectivity. More

precisely, we compute the aggregate transition probability p̄r
′

r

as z−1
r ·∑u∈S p

r′
r (u) + ε · max(1, d(r, r′))−2

, where ε is a

small constant, and zr is the normalizing factor. We compute

the aggregate visiting probability π̄r as the average of πr(u).1

By decoding the semantic trace into geographic traces, we

generate traces that are plausible according to aggregate mo-

bility models, i.e., there could be an individual who could have

made that trace. Among existing HMM decoding algorithms,

we use the Viterbi algorithm [51] that finds

argmax
fake

Pr{fake|semseed(t), 〈p̄, π̄〉}

assuming that fake(t) can only choose from locations in

semseed(t). Finding the most likely fake trace is equivalent

to finding the shortest path in an edge-weighted directed graph

where each location at time instant t is linked to all locations

at the subsequent time in the semantic seed trace.

By using this encoding technique, we make sure that the

sampled trace is consistent with the generic mobility and has

a significant probability of (geographically) being a real trace.

However, the Viterbi algorithm produces a single trace (which

is the most likely one). To generate multiple fake traces per

seed, we add randomness to the trace reconstruction of Viterbi.

We modify the Viterbi algorithm, which originally, at each step

(time instant) selects the most probable location in the path;

1We use the aggregate mobility model instead of that of a specific user
to avoid constraining the reconstructed geographic trace to follow the user’s
profile too closely. For example, this means that the produced traces may visit
locations which are never visited in the seed trace. This allows for greater
utility because the input traces only cover a very small subset of the set of
geographically meaningful traces.

semantic classes:

f t t z x x pseed:

f t t z x x p

d d d d w w b

y y y y a a l

g g

semantic seed:

t t x x

d d d d w w b

y y y y a a l

g g

synthetic trace:

d b

w x

f t t z x x p

d d d d w w b

y y y y a a l

g g

synthetic trace:

d b

w x

f t t z x x p

d d d d w w b

y y y y a a l

g g

semantic seed:

semantic classes:

f t t z x x pseed:

Fig. 3: A sketch of generating a fake trace from a seed. Each location
is represented by an English letter in a box. The semantic class
associated with each location is represented by a different color. The
semantic seed trace is a trace that includes the locations in the seed
along with other locations in the same cluster at each time instant.
Here, locations are clustered as {y, d, f, t, z}, {g, a, w, x}, {l, b, p}.
To generate a fake trace, we first probabilistically remove the seed lo-
cation and probabilistically merge subsequent classes. In our example,
f, z, p are removed, and w, d, b, x are merged into their neighboring
visited clusters. We then run a decoder to generate a probable trace
given the possibility of choosing from all available locations at each
time instant. The fake trace, shown with connected dashed boxes,
will be approved if it passes the privacy tests.

we add some randomness to the probabilities such that the

algorithm does not deterministically select the most probable

location. More precisely, we slightly perturb the probabilities

in such a way that Viterbi selects randomly among a set of

locations that are close in probability to the most probable

location. We implement this idea by choosing a parameter

parv and multiplying all the probabilities of moving from one

location to the next with a random number between 1 and

parv , which slightly randomizes our trace decoding.

Each generated trace is tested against our privacy test

(Sections V-D and V-E). If it passes, we compute its likelihood

based on the aggregate mobility model. At a later stage, we

can randomly select fake traces to use based on this likelihood.

Appendix A contains a brief discussion of the computational

efficiency of the generation algorithm.

C. Threat Model

There are two types of privacy threats that we need to

consider, which should not be confused with each other as

they apply to different settings. The first threat is against the

individuals whose traces are sampled and used as seeds in our

algorithm. This is of more concern in the scenario of synthetic

dataset release. In this scenario, the adversary knows that all

traces are synthetic. Yet, he wants to extract geographic or

semantic information about the seed traces, or find the identity

of the individuals behind them. This is the threat that we are

concerned about, in this section, in the process of generating

synthetic traces. We define two privacy requirements to defeat
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this threat: statistical dissimilarity and plausible deniability. At

the last step of synthesizing traces, we run a PrivacyTest()
to enforce these two privacy requirements on each synthetic

trace that is to be released.
The second type of attack is not perpetrated on the synthetic

traces themselves. It is rather implemented against the queries

received from LBS users that use the fake traces to hide

their true locations. We do not need to address such threat

here. However, we evaluate the effectiveness of our synthetic

traces against location inference attacks in preserving location

privacy of LBS users later in Section VII.

D. Privacy Requirement: Statistical Dissimilarity
A synthetic trace and its seed are statistically dependent,

otherwise we cannot achieve utility. This is at the core of

the privacy and utility tradeoff in any privacy-preserving

sanitization algorithm. The goal is to guarantee some statistical

privacy while preserving utility.
In our case, we guarantee a statistical dissimilarity between

synthetic trace and its seed. To this end, two types of distance

functions can be considered: (i) a distance between two

probability distributions that model the synthetic trace and its

seed. And, (ii) a distance between the two traces themselves.
As for the statistical distance (i), because there is a notion of

(Euclidean) distance between locations that form a trace, we

use Earth Mover’s Distance between two probability distribu-

tions that represent the mobility models behind the two traces.

This is exactly what we compute as geographic similarity

metric. So, for all seeds s and all synthetic traces f generated
from s, we ensure that the statistical similarity between f and
s is bounded by δs.

simG(f, s) ≤ δs (12)

As for the trace distance (ii) between f and s, we use the

intersection between the two. In this case, for all seeds s and
all synthetic traces f generated from s, we ensure that the size
of their intersection set is bounded by δi.

|intersection(f, s)| ≤ δi (13)

We reject any synthetic trace that fails to satisfy either of

the above conditions. Thus, we ensure a minimum statistical

dissimilarity between a seed and its fake trace.
Intuitively, these tests prevent the leakage of privacy-

sensitive locations. To understand why, consider Alice, a seed

contributor, and the locations she visits daily, such as her home

and workplace. In a released synthesized trace (from Alice’s

seed) these locations will not be visited. This is enforced

by (12). But, what about atypical behaviors? Suppose Alice

spends her morning at a women’s health clinic (something

out of the ordinary for her). (13) enforces that the women’s

health clinic will also not be visited in the released synthesized

trace. However, locations visited that morning are likely to

include health-related services locations (e.g., hospitals), since

these may belong to the same semantic cluster. Could this

information (i.e., that Alice visited a health-related location)

be leaked? No, this is prevented by plausible deniability

(Section V-E).

E. Privacy Requirement: Plausible Deniability

Enforcing a minimum statistical dissimilarity between a fake

f and its seed s would limit the information leakage of f
about s. In other words, this ensures a minimum error in

reconstructing s by observing f . However, this is not enough

to guarantee the location privacy of the individual associated

with s due to the semantic similarity between s and f . Note

that, due to utility requirements, our algorithm synthesizes

traces f that are semantically very similar to s. Although,

because of the randomness of our decoding algorithm, this

semantic similarity varies, but it is mostly small. The threat

is that an adversary, who has some background information

about the individual associated with s, might be able to infer

the inclusion of that individual’s record in the seed dataset by

observing f .2

The membership inclusion attack would work if s is by far

the only real trace from which we could have generated f ,

i.e., when s is an outlier. To defeat such attacks, we introduce

plausible deniability as a privacy requirement. To guarantee

plausible deniability, we make use of the alternative real

dataset A which is disjoint with the seed dataset S . Concretely,

the generated fakes (and their corresponding seeds) need to

satisfy the following definition.

Definition 4. A synthetic trace f (generated from seed s ∈ S)
satisfies (k, δ)-plausible deniability if there are at least k ≥ 1
alternative traces a ∈ A such that:

|simS(s, f)− simS(a, f)| ≤ δ . (14)

In other words, for any fake f generated from seed s,

we want to guarantee that we can find at least k alternative

traces a ∈ A for which (14) holds for δ = δd. Specifically,

the privacy test rejects all synthetic traces that do not satisfy

(k, δd)-plausible deniability.

If condition (14) holds for a synthetic trace, then its seed is

not the only real trace that could have generated it, and it is

plausible that the same synthetic trace is generated from some

other real traces (those that are even outside the seed dataset

and have no contribution to generation of the synthetic trace).

Thus, the inclusion of a particular trace in the seed dataset is

plausibly deniable.

Intuitively, this safeguards the privacy of semantic outliers

(i.e., seed contributors with atypical semantic behavior). To

understand why, consider Alice, a seed contributor, who works

the night shift, whereas most contributors work during the day.

(14) enforces that Alice’s synthetic trace can only be released

if there exist k other semantically similar traces in A (i.e.,

only if at least k other alternative dataset contributors work

during the night in a manner similar to Alice). Therefore, an

adversary trying to run a membership inclusion attack will

be thwarted even if he has the knowledge that Alice works

during the night. Note that, as we select the alternatives from

2However, this does not imply that the adversary can accurately reconstruct
s, especially if f satisfies the statistical dissimilarity requirements (12),(13).
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outside the seed dataset, this holds even if Alice is the only

seed dataset contributor who works during the night.

F. Discussion: Plausible Deniability as a New Privacy Notion

In this paper, we present plausible deniability as a new

notion of privacy for data synthesis. In this section, we further

discuss this notion and compare it with similar definitions in

the literature. As said before, plausible deniability implies that

a synthetic trace could have been generated from alternative

location traces other than its own seed. This means that the

information that is learned from observing a fake trace could

have also been learned if the same fake trace was generated

from other traces.

Note that we generate utility-preserving traces and release

them only if they satisfy plausible-deniability privacy require-

ments. Other sanitization techniques in the literature, based on

e.g., differential privacy [14] and crowd-blending privacy [16],

enforce privacy in the process of sanitizing data. This makes

it very challenging to design utility-preserving mechanisms

under the constraints of privacy requirements.

To better understand the implications of plausible deniability

on privacy, let us consider the cases where an adversary

observes a synthetic trace generated from a seed trace that

exhibits some rare characteristics, due to the particular lifestyle

of the person who produced that trace. To avoid leaking about

its seed, either (1) the synthetic trace must be semantically far

enough from its seed so that it is equally close to alternative

real traces, or else (2) there must already be alternative traces

with similar rare characteristics. If neither of the two is true,

the synthetic trace will not be released. This is similar to the

notion of suppressing the sanitized data from outliers [16].

In fact, the overlap between the set of possible synthetic

traces that can be generated from different real traces is the

acceptable area for releasing synthetic data.

Plausible deniability, in spirit, is similar to some other

notions of privacy. In crowd blending privacy [16] and its

followup outlier privacy [31], the space from which data

records are drawn is publicly split into partitions. Then, only

the partitions that contain a minimum number of data points

can produce sanitized data. The rest of data records, called

outliers, need to perturbed with magnified noise, which would

not lead to higher utility than simply suppressing them. The

authors show that if crowd blending privacy is combined with

subsampling of data records, it can achieve zero knowledge

privacy [17] which is stronger that differential privacy [14].

Plausible deniability can also be guaranteed by differentially

private mechanisms. Although it is possible, in theory, to gen-

erate fake traces in a differential private way, we do not know

methods to do this efficiently due to the high-dimensionality of

location traces. Specifically, this is practically infeasible given

the existing mechanisms such as the Exponential Mechanism

that require to assign a score to each possible trace given the

input dataset.

Lastly, the plausible deniability privacy test, which requires

each synthetic trace to be δd-indistinguishable from at least k
alternative traces, should not be confused with k-anonymity.

(a) Visited Locations. The size of locations

are proportional to their total visits.

(b) Visited locations colored according to
their semantic clustering (20 clusters).

Fig. 4: 400 locations visited around Lausanne and nearby towns by
the 30 users. Some users commute between two towns whereas the
majority of them live and work in the same city of Lausanne (the
area with higher concentration).

Unlike our notion of privacy, k-anonymity is a syntactic metric,

achieved by suppressing or generalizing data, which does not

prevent attribute disclosure. It has also been shown to be

severely vulnerable to inference attacks when used to protect

location privacy [46].

VI. EVALUATION SETUP

In this section, we run our algorithms on a set of real

location traces and evaluate the resulting utility and privacy

in two scenarios: sharing locations with LBS, and releasing

synthetic location datasets.

A. Dataset

The dataset we use for the evaluation is collected through

the Nokia Lausanne Data Collection Campaign (see [25]). We

prepare the dataset for our needs in two phases, filling gaps

in the traces and discretizing the time and location.

The raw dataset contains combination of events of three

types: GPS coordinates, WLAN and GSM identifiers. We

construct valid traces (out of partial traces) by filling gaps. We

interpolate along the path of consecutive GPS points, using the

WLAN and GSM information.

We then extract two days of traces for each user, such

that each trace (of one day) contains a sequence of 72
locations (i.e., one location is reported every 20 minutes).

Some locations are visited very rarely only by very few users.

Thus, we reduce the number of locations from 1491 to 400
by clustering close-by locations together. We use a hierarchical

clustering algorithm for this purpose, and place the locations

that are geographically close or have very few visits in one

cluster. The geographical distribution of visits of all users over

the locations in the considered area is shown in Figure 4(a).

From all traces, we then sub-sample 30 user traces. The 1st

day of traces for these users is used as seed dataset S , whereas

the 2nd day of traces will be used as baseline (testing set)

during the evaluation. Using the seed dataset, we compute

the mobility profiles of all 30 users, and then the semantic

location graph by calculating a similarity score for each pair

of locations, averaged across all users. After clustering this

semantic location graph, we obtained 20 location clusters. We

choose this number of clusters as it provides optimal clustering

555555



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Geographic Similarity

P
ro

po
rti

on
 o

f p
ai

rs

(a)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

Semantic Similarity

P
ro

po
rti

on
 o

f p
ai

rs

(b)

Fig. 5: Normalized histogram of (a) the geographic similarity and (b)
semantic similarity between all distinct pairs of 30 users in the seed
dataset. (a) Mobility models of different individuals is geographically
very specific to themselves, i.e., they are unique. This is well reflected
in the skewed distribution of geographic similarity towards very small
values. (b) As hypothesized in this paper, majority of individuals have
high semantic similarities between their mobility models.

i.e., it maximizes the ratio of inter-cluster similarity over intra-

cluster similarity. This clustering is illustrated in Figure 4(b),

where each location is drawn with the color of the cluster it

belongs to. The figure allows us to distinguish some patterns,

for example locations at the center of cities are mostly in blue,

while many locations representing roads and highways are

colored in red. Also notice that the semantic clustering does

not seem to depend on the geographical distance of locations.

To illustrate our geographic and semantic similarity metrics,

we compute those metrics pairwise over all 30 users.3 The

result is shown in Figures 5. The first histogram shows that

the 30 users are not strongly geographically similar to each

other, except for a few pairs of users. This is expected given the

range of locations they explore overall, as seen in Figure 4(a).

On the other hand, the distribution of the semantic similarity

across all distinct pairs of users has a larger variance, and a

large number of users are highly similar.

B. Tool: Synthetic Trace Generator

We build a tool [6] to generate fake traces on top of the

open-source Location Privacy Meter (LPM) [46]. To exploit

LPM’s modularity we split our algorithm into modules. To

implement the time-dependent sub-sampling of clusters and

merging around transitions, and the transformation of users’

actual traces into semantic traces, we use the location obfus-

cation mechanism feature of the tool. The reconstruction of

geographically valid synthetic traces from the semantic traces

is done using the Viterbi algorithm. To cluster the semantic

location graph, we employ the CLUTO toolkit [53].

C. Simulation Setup

Recall that from the input dataset, we sub-sampled 30 user

traces (day 1) that we use for the seed dataset S. As for

the parameters of the GenerateFake() algorithm, we set

the location-removal probability parc to 0.25, and we set

the location merging probability parm to 0.75. We set the

probability parl of removing the true location visited in the

3We exclude the geometric/semantic similarity of a user with herself, as it’s 1.0.

seed to 1.0. We set the randomization multiplication factor for

Viterbi randomization parv to 4.

We set very tight values for the privacy parameters. Specif-

ically, we set δi, the maximum intersection between fake and

seed, to 0. So, we do not tolerate any intersection between

fake and seed. We set the geographic similarity threshold δs
to 0.1, and the differential semantic similarity threshold δd
also to 0.1. See Figure 5 to see comparatively how restrictive

these thresholds are. Last, we set k the number of required

alternatives to pass the plausible deniability to 1.

For each of the 30 seed traces, we generated about 500
fake traces. We then select and use these traces according to

the scenario evaluated. For example, for the LBS scenario,

we sampled traces (for each user) according to the synthetic

traces likelihoods (see Section V), out of the pool of traces

that passed the privacy test.

D. Evaluation Metrics

In the following two sections we evaluate the use of

synthetic traces in two popular scenarios: using fake locations

along with real locations when accessing location-based ser-

vices (Section VII), and releasing synthetic location datasets

to be used for various geo-data analysis tasks (Section VIII).

In both scenarios, we evaluate our fake traces with respect

to two metrics: privacy and utility. Our privacy guarantees

apply to both scenarios. However, there are some differences

in terms of the adversary model between different scenarios.

Therefore, there are additional considerations regarding the

privacy of users in location-based services, e.g., their privacy

against inference attacks, that we discuss in the corresponding

section. The utility metric is also dependent on the application

(scenario), hence is measured differently in each case.

Note that the generative power of our model (and similarly

any statistical or machine learning model) depends on the

available (training) data. Yet, similar to a machine learning

algorithm, we do not require a “minimum” number of data

records to start working. However, the quality of the input

dataset does not impact data privacy, as privacy is guaranteed

in the phase when we are generating traces (and not in the

phase when model is trained), by running our privacy tests.

So, the output is privacy preserving regardless of the size of

the input and quality of the model.

VII. EVALUATION: LOCATION-BASED SERVICES

In this section, we consider the use of fakes in accessing

location-based services (LBS). Specifically, we compare our

proposed technique with all existing fake generation methods.

Concretely, we evaluate the utility and privacy according to

well-established metrics for this scenario. In particular, we

measure how well our fakes perform against state-of-the-art

inference attacks. Note that the fakes used here have already

passed our privacy tests with tight constraints, but as explained

in Section V-C, we still need to test their effectiveness in

protecting privacy of LBS users against inference attacks.
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A. Setup

In this setting, a user shares her current location with a

location-based service. The service provider, in return, pro-

vides contextual information about the shared locations (e.g.,

list of nearby restaurants, current traffic information on the

road). The user makes such queries over time whenever she

wishes to obtain contextual information.

In order to protect her location privacy, i.e., hiding her

location at the time of access to the LBS and also preventing

the inference of the full trajectory, the user’s device sends a

number of fake locations along with her true location. For

example, if two fake locations are used, then every time the

user makes a query, the device sends locations x, y, z to the

service provider. Out of {x, y, z}, one location is the user’s

actual (i.e., true) location and the other two are fakes. The

service provider does not know which of x, y, z is the true

location, but may be able to filter out fake locations over time

(i.e., over multiple queries over time), if the fake locations are

not believable (i.e., plausible). This is why it is crucial to use

synthetic traces as opposed to independent fake locations.

The fake locations are obtained as followed. First, we

generate a collection of synthetic traces. The users can select

from these traces and store them in their devices. Then, when

a user makes an LBS query, say at time t, she picks the ith

fake location (reported to the LBS) as the location which is

visited at time t in fake trace i. Note that the processes of

generating and using the synthetic traces are independent.

We emphasize that all existing fake location generation

methods (i.e., [10], [23], [24], [26], [45], [49], [56]) work this

way; but the techniques differ in how the fake locations are

generated. Existing fake locations generation methods can be

classified into four categories, which are the following.

Uniform IID ([45]): Generate each fake location indepen-

dently and identically distributed from the uniform probability

distribution. So, the fake trace is a sequence of uncorrelated

fake locations.

Aggregate Mobility IID ([45]): Generate each fake location

independently and identically distributed from the aggregate

mobility probability distribution π̄. Again, the fake trace is a

sequence of uncorrelated fake locations.

Random Walk on Aggregate Mobility ([10], [24], [26], [56]):
Generate a fake trace by doing a random walk on the set of

locations following the probability distribution p̄.

Random Walk on User’s Mobility ([23], [49]4): Do a

random walk on the set of locations following the probability

distribution p(u) to generate a fake trace.

For Uniform IID and Aggregate Mobility IID, we evaluate

exactly the method described in [45]. For the other two we

evaluate a representative method in each case. In addition to

this, we evaluate our proposed technique, which only differs

4[23], [49] make fakes dependent on the user’s location over time (used to
establish the position of dummies). We make this probabilistic and so assume
usage of the user’s mobility profile instead. This leads to overestimating the
privacy gain of the original algorithm.

from these in that the fake traces are generated using the

method described in Section V. In all cases when a user makes

use of a location-based service, both a query for her real

location and queries for the fake locations are sent to the LBS.

Because of this, the user’s device must, upon receiving the

responses from the service provider, filter out the information

which are not related to her true query.
Using a Uniform IID mechanism may seem too simplistic

and unfair, but we point out that the related work [45] evaluates

this technique so we provide it as a point of comparison.

B. Privacy Metric
The adversary (e.g., the service provider) who observes the

LBS queries made by the user’s device wants to find the

true sequence of locations visited by the user. To do this,

the adversary runs an inference attack which (if successful)

results in filtering out the fake locations. For this, he makes use

of the aggregate mobility model 〈p̄, π̄〉 and uses state-of-the

art location inference attack [46]. The attack is a localization

attack which consists in finding the user’s (true) location at

each time, given the observation (i.e., the sequence of locations

queried to the LBS). This is a well-known inference problem

for Hidden Markov models which can be solved efficiently

using dynamic programming.
The metric to quantify the privacy is the probability of

error of inference attack on guessing the correct location. This

is the metric predominantly used in the literature, in works

such as [45], [46]. To put it simply, this metric consists in

calculating the fraction of true locations that are missed by

the adversary. For example, if the user queries LBS on three

different occasions, but the adversary only correctly infers the

true location once (i.e., the inference attack correctly filters

out the fake locations) then the user’s location privacy is 2/3.

C. Utility Metric
With all synthetic generation techniques (i.e., ours and [10],

[23], [24], [26], [45], [49], [56]), the user’s real location will

always be among the locations queried to the LBS. Therefore,

as identified by related work, there is no utility loss in terms

of quality of service degradation. That is, the user will always

obtain an accurate response to her query (after filtering out

responses corresponding to fake location queries).
Therefore, we measure the utility loss as the bandwidth

overhead. This is the metric used in the literature on fake

generation techniques (e.g., [56], [24], [23]). The bandwidth

overhead is calculated as the number of locations (i.e., real +

fakes) sent to the LBS provider for each user query.
Beyond traditional location-based services, some service

providers (e.g., Google Now) profile the user’s interest over

time based on the type of locations she visits. This is to provide

recommendations or reminders. In such cases, queries that are

sent to the server can “pollute” the user’s profile, hence reduce

the predictability power of the service provider to provide

useful recommendations. To further evaluate utility for such

location-based recommender services, we calculate the number

of (distinct) semantic clusters among the locations sent by the

user at each time. We call this metric: profile pollution.
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Fig. 6: Location privacy versus utility loss for different fake gener-
ating algorithms. The privacy is measured as probability of error of
adversary in guessing the correct location of users ([45], [46]). We
plot the median location privacy across all LBS users. A user makes,
on average, an LBS query every 40 minutes. We evaluate the use of
1, 5, 10 fake traces, hence three dots for each algorithm. (We repeated
the experiment 20 times and took the average: 4 times with a different
selection of fake traces, and for each of such selection, 5 times
to eliminate the randomness.) The utility loss is (a) the bandwidth
overhead ([56], [24]), i.e., number of distinct locations that are sent
to the server; and (b) the profile pollution, i.e., the number of distinct
semantic classes exposed for each LBS access.

D. Results

Figure 6 shows the tradeoff between location privacy and

utility for various methods of generating fake traces. We evalu-

ate the utility loss in terms of two metrics: bandwidth overhead

(Figure 6a) which is predominantly used in the literature, and

also the profile pollution (Figure 6b). We evaluate the privacy

for three different number of fake traces: 1, 5, 10. Although the

number of fake traces are the same, across different algorithms,

the average number of distinct locations sent to the LBS is not

the same. This is because of the potential overlap between fake

traces available to the user. Methods such as Uniform IID, Agg
Mobility IID, and RW Agg Mobility have a high randomness

in selecting fake traces from all possible locations. Thus, the

chance of overlap is small. Our method and the RW User
Profile method have both lower bandwidth overhead.

Results show that our method clearly outperforms all the

existing techniques, especially the random strategies. For the

case of RW User Profile method, the privacy level against the

tracking attack gets closer to what we achieve (which is almost

maximum), due to the fact that the fake traces generated by

RW User Profile are semantically very similar to the user’s

locations, and hence creates high confusion, hence error, for

the adversary. However, it is very important to note that the

RW User Profile is never a privacy-preserving fake injection

method as the adversary can easily de-anonymize the user, no

matter if he makes mistakes on exactly tracking the user at

each access time (as shown here).

Overall, the plot shows that our method is the strongest

fake generating algorithm. Note that the absolute privacy levels

changes if the adversary knowledge changes. But, what we are

interested in is the relative gain of our method to others.

VIII. EVALUATION: SYNTHETIC DATA RELEASE

In this scenario, the synthetic traces form a location dataset

that is meant to be used for various geo-data analysis tasks

in place of real location traces. We emphasize that the seed

traces and the alternative dataset are not released. Only the

generated synthetic traces are supposed to be released.

A. Setup

We generate a large number of fake traces out of which we

ultimately select: 10 datasets each containing 30 traces. This

is done in order to have each fake dataset of the same size

and format as the seed dataset, so that we can compare the

suitability of using one of those fake dataset instead of the

seed dataset for various geo-data analysis tasks.

B. Privacy

The location privacy of those individuals who contributed

to the seed dataset is already guaranteed by our use of the

privacy test. However, we must make sure that we are able

to generate traces which pass the privacy test with acceptably

tight constraints. Therefore, this is what we evaluate here. Out

of all fake traces generated from our 30 seed traces, on average

80% of them could pass the geographic and intersection

privacy tests with tight constraints (δi = 0, and δs = 0.1), so

it is not difficult to synthesize traces that satisfy such privacy

guarantees. Regarding the plausible deniability part of the test,

the question is whether we are able to find enough real traces

in alternative dataset A.

In Figure 7, we show the difference between semantic

similarity of a synthetic trace and its seed with the semantic

similarity of the same synthetic trace and any location trace in

our alternative dataset. The histogram shows that the majority

of fake traces have very low distinguishability to alternative

traces, in the semantic domain. This is due to the high

semantic similarity between real traces (Figure 5b). Therefore,

we conclude that it is not difficult to find potential alternative

traces for a synthetic trace. Recall that we set δd to 0.1 to

obtain a high level of plausible deniability.

C. Utility

Because we release a set of synthetic traces to be used

instead of a real location dataset, to evaluate utility we must

take into account how the released traces are to be used.

Specifically, we must determine to what extent the key features

and statistics, which are relevant for the considered applica-

tions, are preserved. Clearly, we cannot expect all statistics

(of real traces) to be preserved (in the synthetic dataset)

since some may conflict our privacy goal. Specifically, certain

geographic features are expected not to be preserved, e.g., if

a location is primarily visited by a single user in a seed, it is

unlikely that that location is visited with similar frequency in

a synthetic trace. This is because if such a synthetic trace were

generated from that seed, the privacy test would reject it. An

example of property that we do not preserve is the relationship

in the mobility of input traces, e.g., individuals commuting to

work together. Indeed, if two individuals carpool to work, the

corresponding synthetic traces will not exhibit analogous co-

traveling behavior (because each synthetic trace is generated
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Fig. 9: Q-Q plot for comparing two dis-
tributions: semantic similarity among all
real seed traces, and semantic similarity
among all fake traces. The plot shows a
very strong correlation between two dis-
tributions.

independently). However, their common semantic features are

preserved.

That said, from the literature, we identified the following

prominent geo-data analysis tasks to evaluate utility of syn-

thetic traces.

(1) Points of Interests (PoIs) extraction. The goal is to dis-

cover locations that are frequently visited and are prominently

of interest to the public. PoIs can be used to provide travel

recommendations. In particular, [59] proposes techniques to

mine the top n interesting locations in a given region. A key

feature to preserve is the distribution of visits among locations,

specifically the most visited (i.e., popular) locations.

(2) Semantic annotation / labeling of locations. The goal is

to automatically assign labels to locations according to their

semantics (e.g., restaurant, bar, shopping mall). For exam-

ple, [55] proposes an SVM classifier to assign multiple labels

to location-based social network check-ins. In contrast, [13]

proposes to do automatic labeling of locations into 10 semantic

categories using smartphone recorded GPS, WiFi, and cell-

tower data. In all cases, the distribution of visitors (and unique

visitors) per location are key features of the input data. In

addition, [13], [55] use users’ temporal behavioral data, such

as the amount of time a user spends in a location.

(3) Map inference. [29] evaluates the two main approaches

to infer road maps from a large scale GPS traces: using

the sample coordinates themselves, or using the transitions

between samples. A related task is the discovery of semantic

regions in a city [57]. In both cases, key features of the

input data include the distribution of visited locations, and

transitions, particularly the popular ones.

(4) Modeling human mobility. [28] proposes to learn a multi-

layer spatial density model from social network check-ins.

In this case, temporal features of location data are largely

overlooked. Rather the focus is on features such as the spatial

location distribution in aggregate and at individual level.

(5) Determining optimal locations for retail stores. The goal

is to find ideal geographic placement for a retail store, or a new

business. In particular, [22] proposes to mine online location-

based services to evaluate the retail quality of a geographic

area. Specifically, the focus is on a combination of mobility

features such as popularity of an area, and semantic features

such as visits to semantically similar venues (e.g., coffee shops

of the same franchise) or transitions between venues.

Based on the input features that those geo-data analysis

tasks require, we identified six statistics that need to be

preserved to guarantee that such tasks can reasonably be

performed on a set of synthetic traces instead of a real dataset.

In order to experimentally evaluate to what extent these

statistics are preserved, we must use appropriate baselines.

We use the value of the statistic on the testing (day 2) dataset,

which consists of location traces of the same users as the seed

(day 1) dataset, as the baseline. When appropriate, we also

use uniformly random location traces as a baseline.

The corresponding useful features are the following.

(a) Distribution of the number of visits. Tasks such as (2)

and (3) exploit the fact that some locations are more frequently

visited than others. In fact, [13] explicitly mention “how often

places are visited” as a major feature.

In order to evaluate this, we do the following. For each

dataset, we compute the spatial allocation, i.e., for each

location (from least to most popular, for that dataset), we

calculate the number of visits spent in that location across all

traces in the dataset. We then normalize this quantity to obtain

a probability distribution over locations (sorted by popularity),

i.e., for each location we have the probability of a random visit

to that location. From these distributions, we compute the KL-

divergence of the real (seed, i.e., day 1) dataset to each of

our synthetic datasets, and to a variety of baselines.5 The KL-

divergence is a natural way to compare distributions: it returns

a non-negative real number, where a larger value means a

greater distance between the two distributions. Note that some

related work such as [9] has used the relative error of counting

5We set zero probabilities to 0.1, before normalizing, for the sake of computing KL-
divergence (that requires nonzero probabilities). This is required because there may be
locations which are visited in the synthetics but not in the real traces, or vice-versa.
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Real Synthetic Uniform Single
KL-divergence 0.037 0.384 ± 0.043 1.191 4.666

Relative error [9] 0.144 0.370 ± 0.010 1.621 0.542

TABLE II: KL-divergence and relative error of the location visiting
probabilities of the real (seed, day 1) datasets against the 10 fake
datasets, and various baselines. “Real” is the testing (day 2) portion
of the real dataset (see Section VI-C); “Uniform” is the uniform
distribution over all locations; and “Single” is the distribution where
all users always visit the same location.

queries as a metric instead of the KL-divergence. Therefore,

we additionally calculate the relative error by interpreting the

number of visits to each location as the answer to a counting

query. That is, if the number of visits to location x is n1 for

dataset 1 and n2 for dataset 2, then we calculate the relative

error as
|n1−n2|

max (n1,0.001·N) , where N is the total number of visits

to any location (the same for all the datasets) [9]. We report

the average relative error over all locations. The results of both

metrics are shown in Table II. The results suggest that a lot of

information is preserved in this case: while the error for the

fakes is greater than that for the real (testing, day 2) dataset,

the error is significantly lower than the other baselines.

(b) Distribution of number of visits for top 50 locations.
For most tasks, features of the most popular locations (i.e.,

the most frequently visited locations) are the most important

ones to preserve. In particular, this is consistent with the results

provided in [13] for automatic labeling.

To evaluate this, we use the same procedure as for fea-

ture (a), except we only consider the top 50 locations, and

plot the distribution instead of calculating the KL-divergence.

Figure 10 shows the results for this case, which plots a

histogram where the distributions for different datasets are

overlayed (with some transparency). The error (of the synthetic

dataset) for this case (i.e., top 50) is significantly lower than

that for the entire distribution. This strongly indicates that

the information about the popular locations (i.e., the most

important ones) is largely preserved.

(c) Top n coverage of locations. For tasks such as (1), (3),

and (5), it may not be sufficient to ensure that the distribution

of visits is preserved. Indeed, it may be required to ensure that

if a location is in the top n most frequently visited locations in

the real dataset, it is also in the top n most frequently visited

locations in the released (synthetic) dataset.

Therefore, we measure across two datasets (e.g., one real

and one synthetic), how many locations in their respective top-

n they have in common, for various values of n.

Specifically, we take the n most frequently visited locations

of the real (seed, day 1) dataset. For each of the other datasets,

we then compute how many top n locations (from the seed

dataset) are also in the top n most frequently visited locations

of that dataset. For the synthetic datasets and the uniform

baseline, we report the relative coverage as the ratio of the

coverage of that dataset and of the testing (day 2) dataset.

That is, if the coverage of the real (testing, day 2) dataset

is y (of the top n locs of the seed dataset), and the average

coverage of the fake datasets is x, then we report the relative

Fig. 10: Distribution of visiting probability for top-50 locations in
the real (seeds) datasets against the synthetic datasets. We overlay
(with some transparency) the histograms of the three datasets (i.e.,
seeds day 1, in black; real day 2, in red; synthetics, in yellow). The
difference in distribution between two datasets is the area where the
two corresponding histograms’ bars do not overlap. For example,
the lightest yellow region is where the synthetics’ histogram is non-
overlapping with the other two histograms; the darker yellows are
areas where the synthetics’ histogram overlaps with one (or both) of
the real datasets’ histograms. The majority of the colored area is a
region where all three datasets overlap, indicating that the synthetics
highly preserve the distribution of the top-50 most popular locations.
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Fig. 11: Relative coverage of top n (most frequently visited) loca-
tions. The coverage is reported relative to the real (testing, day 2)
dataset. Uniform visiting of all locations (400 in total) is used as
comparative baseline.

coverage as min (xy , 1.0). The results are shown in Figure 11.

The relative coverage of the synthetic traces is typically in the

61% to 100% range, whereas for the uniform baseline it is in

the 11% to 24% range, indicating a high-level of preservation.

(d) Users’ time allocation. For semantic labeling (2) and

other tasks, the users’ temporal behavior cannot be ignored.

Indeed both [13], [55] use the amount of the time spent per

location for each user as a major feature.

In order to evaluate this, we do the following: for each

dataset and each user, we calculate the time spent at each

location, among the locations visited. That is, we calculate, for

the three most popular locations of that user, what proportion

of the time is spent in each. We perform this calculation

across all 30 users and normalize the result. We compare this
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Real (day 2) Synthetics Uniform Random
1st 0.0189 0.0125 ± 0.0022 0.1652 0.6794
2nd 0.0026 0.0092 ± 0.0031 0.0778 0.5360
3rd 0.0114 0.0089 ± 0.0036 0.0779 0.5092

TABLE III: KL-divergence of the users’ time allocation distribution
among the three most popular locations (of each user) of the real
(seed, day 1) datasets against synthetic datasets, and baselines.

Fig. 12: Distribution of the proportion of time spent in the most
popular location (of each user) of the real datasets against synthetic
datasets. The information is presented as an area plot, where the
distribution for each dataset is plotted as surface of a different color
(i.e., seeds day 1, in blue; real day 2, in red; synthetics, in yellow).
The areas are overlayed on top of one another. Therefore, the distance
between the distribution of two datasets is represented by their non-
overlapping area. For example, the yellow and orange regions repre-
sent areas where the synthetics’ distribution is either non-overlapping
(yellow) or overlaps with the real day 2 dataset’s distribution, but
not with seeds (day 1) dataset. The majority of the colored area is a
region where the real and synthetics distributions overlap (i.e., purple
region). This indicates a high-level of preservation.

distribution for the real and synthetic datasets. Table III shows

the KL-divergence of the real (seed, day 1) dataset to the

synthetic datasets and baselines: real (testing, day 2) dataset;

uniform time allocation (each user spends 1/k proportion of

time at each of the k locations); random time allocation (each

user spends a uniformly random proportion of time at the

location). To visualize those results further, Figure 12 shows

the distribution across all 30 users (for each dataset) for the

most popular location (only). The statistic is highly preserved

in the synthetic traces; sometimes the synthetics’ distribution

is closer to that of the real (seed, day 1) dataset, than the

distribution of the real (testing, day 2) dataset is.

(e) Spatiotemporal mobility features. When constructing

mobility models from location data (4), the overall geographic

and temporal behavior of users’ mobility is used.

To evaluate this, we compare the basic mobility statistics

obtained from the real and synthetic datasets. We compute

the aggregate mobility model for each synthetic dataset, and

compare its geographic similarity with the real (seeds, day 1)

dataset. More precisely, for a synthetic dataset F , we compute

〈p̄F , π̄F 〉 and compute its similarity to 〈p̄, π̄〉. The statistical

similarity of p̄F with p̄ over all synthetic datasets is

[0.8061 (average), 0.8073 (median), 0.0060 (std)],

and the results for the statistical similarity of π̄F with π̄ is

[0.7856 (average), 0.7867 (median), 0.0152 (std)].

Both these results show a strong correlation between aver-

age/aggregate mobility information of real and fake datasets.

(f) Semantic mobility features. In contrast to other appli-

cations, identifying areas for new businesses, i.e., task (5)

explicitly takes into account semantic features of the input

location data. Specifically, it takes into account visits to

semantically similar venues and transitions between different

types of venues. Consequently, it is meaningful to measure

the extent to which semantic features of a real dataset are

preserved in a released fake dataset.

To evaluate this, we proceed in two steps. We first compute

the semantic similarity of each synthetic trace with its own

seed trace to check if the semantic features of the original

traces are indeed preserved. Figure 8 illustrates the distribution

of this value over all fake traces. Clearly, the distribution is

biased towards higher similarity values. So, the fake traces

considerably preserve the semantic features of the real traces.

In the second step, we look at whether the set of synthetic

traces preserves the inner similarity between the set of traces.

In Figure 9, we present the correlation between two distri-

butions: semantic similarity among real traces, and semantic

similarity among synthetic traces. The Q-Q plot shows a

significant correlation between these two distributions; they

are strongly linearly related. This reflects that in addition to

maintaining the information about each seed, we also preserve

the statistical relation among the traces.

Overall, the statistics we have identified are largely pre-

served in the synthetic datasets. Thus, we conclude that our

technique is suitable for the aforementioned geo-data analysis

tasks and those that rely primarily on similar features.

IX. CONCLUSIONS

This is the first paper to systematically generate plausi-

ble synthetic location traces based on quantitative metrics.

We propose statistical dissimilarity and plausible deniability

as privacy requirements for synthesizing location traces. By

enforcing these requirements, synthetic traces would not leak

information about real traces from which they are generated

more than what they have in common with any random real

trace. Through extensive privacy and utility evaluations, we

show the application of our mechanism in two mainstream

scenarios: protecting the location privacy of users in LBSs, and

geo-data analysis on synthetic location data. Our synthesized

traces can be of extreme help in protecting location privacy of

LBS users with very low utility cost. We show that inference

attacks cannot identify the true location of mobile users if

our fake traces are used as protection. We also quantitatively

show that our method is superior to all existing methods

of generating fake traces. Our synthetic traces also preserve

useful features of real traces and can be useful in five popular

geo-data analysis tasks.
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APPENDIX

A. Computational Efficiency

The fake generation process, which results in a pool of

fake traces having passed the privacy test, is run offline on

powerful machines, before the user’s device retrieves and uses

such fakes. Therefore, this computational burden is not placed

on the user’s device. Nevertheless, the generation process is

reasonably efficient. For example, with the experimental setup

described in Section VI, we could generate one fake trace in

less than 2 minutes, per CPU-core, using a regular laptop.

Using a powerful machine, we generated thousands of fakes

in a few hours. Also note that the computation of both the

aggregate mobility and the semantic clustering needs to be

done only once for each input set of real traces. The former’s

computation time is O(SL + (RT )2) where S = |S| is the

number of seed traces, L is the length (i.e., number of events)

of each seed trace. The latter is dominated by S(S − 1)
semantic similarity computations (e.g., each taking O(TR3) in

the zeroth-order case) and one clustering operation. Excluding

the final clustering, this step is embarrassingly parallel: the

semantic similarity for any two users u, v can be computed

independently. Also, if a few input traces are added, both the

aggregate statistics and the semantic clustering can be updated

and do not need to be recomputed from scratch. Once the

semantic clustering has been computed, an arbitrarily large

number of fakes for each seed can be generated. This process is

also embarrassingly parallel, since each fake can be generated

independently of other fakes for that seed, and other seeds.
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