
Helping Johnny to Analyze Malware

A Usability-Optimized Decompiler and Malware Analysis User Study

Khaled Yakdan∗†, Sergej Dechand∗, Elmar Gerhards-Padilla†, Matthew Smith∗
∗University of Bonn, Germany

{yakdan, dechand, smith}@cs.uni-bonn.de

†Fraunhofer FKIE, Germany

elmar.gerhards-padilla@fkie.fraunhofer.de

Abstract—Analysis of malicious software is an essential task
in computer security; it provides the necessary understanding
to devise effective countermeasures and mitigation strategies.
The level of sophistication and complexity of current malware
continues to evolve significantly, as the recently discovered
“Regin” malware family strikingly illustrates. This complexity
makes the already tedious and time-consuming task of manual
malware reverse engineering even more difficult and challenging.
Decompilation can accelerate this process by enabling analysts
to reason about a high-level, more abstract from of binary
code. While significant advances have been made, state-of-the-
art decompilers still produce very complex and unreadable code
and malware analysts still frequently go back to analyzing the
assembly code.

In this paper, we present several semantics-preserving code
transformations to make the decompiled code more readable,
thus helping malware analysts1 understand and combat malware.
We have implemented our optimizations as extensions to the
academic decompiler DREAM. To evaluate our approach, we con-
ducted the first user study to measure the quality of decompilers
for malware analysis. Our study includes 6 analysis tasks based
on real malware samples we obtained from independent malware
experts. We evaluate three decompilers: the leading industry
decompiler Hex-Rays, the state-of-the-art academic decompiler
DREAM, and our usability-optimized decompiler DREAM++. The
results show that our readability improvements had a significant
effect on how well our participants could analyze the malware
samples. DREAM++ outperforms both Hex-Rays and DREAM
significantly. Using DREAM++ participants solved 3× more tasks
than when using Hex-Rays and 2× more tasks than when using
DREAM.

I. INTRODUCTION

The analysis of malware is a fundamental problem in com-

puter security. It provides the necessary detailed understanding

of the functionality and capabilities of malware, and thus

forms the basis for devising effective countermeasures and mit-

igation strategies. Created by professional and highly skilled

adversaries, modern malware is increasingly sophisticated and

complex. Advanced malware families such as Stuxnet [26],

Uroburos [29], and Regin [50] are examples of the level of

sophistication and complexity of current malware. These mal-

ware families show the extraordinary lengths malware authors

go to to conceal their activities and make the already tedious

1While some people have come to interpret Johnny as a derogatory name in
usability studies, the name was never meant as such. So in this study malware
analysts are our Johnnies and are highly skilled people.

and time-consuming task of manual reverse engineering of

malware even more challenging and difficult.

Due to the inability of a program to identify non-trivial

properties of another program, the generic problem of auto-

matic malware analysis is undecidable [44]. As a result of

this limitation, security research has focused on automatically

analyzing specific types of functionality, such as the identi-

fication of cryptographic functions [13], automatic protocol

reverse engineering [12, 53], and the detection of DGA-based

malware [2]. As another result of this limitation, security

analysts often have to resort to manual reverse engineering for

detailed and thorough analysis of malware, a difficult and time-

consuming process. As a remedy, security researchers have

started to explore approaches that assist analysts during analy-

sis instead of replacing them. The proposed methods accelerate

the analysis process by correctly identifying functions in bina-

ries [4, 47], reliably extracting binary code [7, 35, 37, 42, 58],

deobfuscating obfuscated executable code [20, 56], and re-

covering high-level abstractions from binary code through

decompilation [45, 57].

Decompilation offers an attractive method to assist malware

analysis by enabling analyses to be performed on a high-

level, more abstract form of the binary code. At a high

level, decompilation consists of a collection of abstraction
recovery mechanisms to recover high-level abstractions that

are not readily available in the binary code. Both manual and

automated analyses can then be performed on the decompiled

program code, reducing both the time and effort required.

Towards this goal, the research community has addressed prin-

cipled methods for recovering high-level abstractions required

for source code reconstruction. This includes approaches for

recovering data types [39, 40, 48] and high-level control-

flow structure such as if-then-else constructs and while

loops [45, 57] from binary code. While significant advances

have been made, state-of-the-art decompilers still create very

complex code and do not focus on readability.

In this paper, we argue that a human-centric approach can

significantly improve the effectiveness of decompilers. To this

end, we present several semantics-preserving code transforma-

tions to simplify the decompiled code. Improved readability

makes the decompiled code easier to understand and thus

can accelerate manual reverse engineering of malware. The

key insight of our approach is that the abstractions recovered

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.18

158

2016 IEEE Symposium on Security and Privacy

© 2016, Khaled Yakdan. Under license to IEEE.

DOI 10.1109/SP.2016.18

158

during previous decompilation stages can be leveraged to

devise powerful optimizations. The main intuition driving

these optimizations is that the decompiled code is easier to

understand if it can be formed in a way that is similar to what

a human programmer would write. Based on this intuition,

we devise optimizations to simplify expressions and control-

flow structure, remove redundancy, and give meaningful names

to variables based on how they are used in code. Also, we

develop a generic query and transformation engine that allows

analysts to easily write code queries and transformations. We

have implemented our usability extensions on top of the state-

of-the-art academic decompiler DREAM [57]. We call this

extended version DREAM++.

While a lot of work has been done on improving decom-

pilers, the evaluation of these approaches has never included

user studies to validate if the optimizations actually help

real malware analysts. Cifuentes et al.’s pioneering work [16]

and numerous subsequent works [15, 17, 24, 27, 45, 57] all

evaluated the decompiler quality based on some machine-

measurable readability metric such as the number of goto

statements in the decompiled code or how much smaller the

decompiled code was in comparison to the input assembly.

Moreover, a significant amount of previous work featured a

manual qualitative evaluation on a few, small, sometimes self-

written, examples [16, 24, 27, 28].

In this paper, we present the first user study on malware

analysis. We conducted a study with 21 students who had

completed a course on malware analysis and 9 professional

malware analysts. The study included 6 reverse engineering

tasks of real malware samples that we obtained from inde-

pendent malware experts. The results of our study show that

our improved decompiler DREAM++ produced significantly

more understandable code and outperformed both the lead-

ing industry and academic decompilers: Hex-Rays [30] and

DREAM. Using DREAM++ participants solved 3× more tasks

than when using Hex-Rays and 2× more tasks than when

using DREAM. Both experts and students rated DREAM++

significantly higher than the competition.

In summary, we make the following contributions:

• Usability extensions to decompiler. We present several

semantics-preserving code transformations to simplify

and improve the readability of decompiled code. Our op-

timizations leverage the high-level abstractions recovered

by previous decompilation stages. We have implemented

our techniques as extensions to the state-of-the-art aca-

demic decompiler DREAM [57]. We call the extended

decompiler DREAM++.

• New usability metric to evaluate decompiler quality. We

propose to include the human factor in a metric to

evaluate how useful a decompiler is for malware analysis.

Although previous work has proposed several quantitative

metrics to measure decompiler quality, surprisingly the

human factor has not yet been studied. Given that man-

ual reverse engineering is a main driving factor behind

decompilation research, this is a serious oversight and

we hope our approach will also serve as a benchmark for

future research.

• Evaluation with user study. We conduct the first user

study to evaluate the quality and usefulness of decompil-

ers for malware analysis. We conduct our study both with

students trained in malware analysis as well as profes-

sional malware analysts. The results provide a statistically

significant evidence that DREAM++ outperforms both the

leading industry decompiler Hex-Rays and the original

DREAM decompiler in the amount of tasks successfully

analyzed.

II. PROBLEM STATEMENT & OVERVIEW

The focal point of this paper is on improving the read-

ability of decompiler-created code to accelerate the anal-

ysis of malware. Code readability is essential for humans

to correctly understand the functionality of code [10]. We

conducted several informal interviews with malware analysts

to identify shortcomings of state-of-the-art decompilers that

negatively impact readability. We also conducted cognitive

walkthroughs stepping through the process of restructuring

malware code produced by Hex-Rays and DREAM to see what

the problems of these two decompilers are. We group the

discovered problems into three categories

1) Complex expressions: State-of-the-art decompilers often

produce overly complex expressions. Such expressions are

rarely found in source code written by humans and are thus

hard to understand. This includes

a) Complex logic expressions: Logic expressions are

used inside control constructs (e.g., if-then or while loops)

to decide the next code to be executed. Complex logic expres-

sions make it difficult to understand the checks performed in

the code and the decisions taken based on them.

b) Number of variables: Decompiled code often contains

too many variables. This complicates analysis since one must

keep track of a large number of variables. Although decom-

pilers apply a dead code elimination step, they still miss op-

portunities to remove redundant variables. In many scenarios,

several variables can be merged into a single variable while

preserving the semantics of the code.

c) Pointer expressions: Array access operations are usu-

ally recovered as dereference expressions involving pointer

arithmetic and cast operations. Moreover, accesses to arrays

allocated on the stack are recovered as expressions using the

address-of operator (e.g., *(&v + i)).

We present our approach to tackle these problems in Sec-

tion III.

2) Convoluted control flow: The readability of a program

depends largely upon the simplicity of its sequencing con-

trol [23]. Two issues often complicates the control flow

structure recovered by decompilers

a) Duplicate/inlined code: Binary code often contains

duplicate code blocks. This usually results from macro ex-

pansion and function inlining during compilation. As a result,

analysts may end up analyzing the same code block several

times.

159159

1 void *__cdecl sub_10006390(){
2 __int32 v13; // eax@14
3 int v14; // esi@15
4 unsigned int v15; // ecx@15
5 int v16; // edx@16
6 char *v17; // edi@18
7 bool v18; // zf@18
8 unsigned int v19; // edx@18
9 char v20; // dl@21

10 char v23; // [sp+0h] [bp-338h]@1
11 int v30; // [sp+30Ch] [bp-2Ch]@1
12 __int32 v36; // [sp+324h] [bp-14h]@14
13 int v37; // [sp+328h] [bp-10h]@1
14 int i; // [sp+330h] [bp-8h]@1
15 // [...]
16 v30 = *"qwrtpsdfghjklzxcvbnm";
17 v37 = *"eyuioa";
18 // [...]
19 v14 = 0;
20 v15 = 3;
21 if (v13 > 0)
22 {
23 v16 = 1 - &v23;
24 for (i = 1 - &v23; ; v16 = i)
25 {
26 v17 = &v23 + v14;
27 v19 = (&v23 + v14 + v16) & 0x80000001;
28 v18 = v19 == 0;
29 if ((v19 & 0x80000000) != 0)
30 v18 = ((v19 - 1) | 0xFFFFFFFE) == -1;
31 v20 = v18 ? *(&v37 + dwSeed / v15 % 6)
32 : *(&v30 + dwSeed / v15 % 0x14);
33 ++v14;
34 v15 += 2;
35 *v17 = v20;
36 if (v14 >= v36)
37 break;
38 }
39 }
40 // [...]
41 }

(a) Hex-Rays

1 LPVOID sub_10006390(){
2 int v1 = *"qwrtpsdfghjklzxcvbnm";
3 int v2 = *"eyuioa";
4 // [...]
5 int v18 = 0;
6 int v19 = 3;
7 if(num > 0){
8 do{
9 char * v20 = v18 + (&v3);

10 int v21 = v18 + 1;
11 int v22 = v21;
12 int v23 = v21 & 0x80000001L;
13 bool v24 = !v23;
14 if(v23 < 0)
15 v24 = !(((v23 - 1) | 0xfffffffeL) + 1);
16 char v25;
17 if(!v24)
18 v25 = *(((dwSeed / v19) % 20) + (&v1));
19 else
20 v25 = *(((dwSeed / v19) % 6) + (&v2));
21 v18++;
22 v19 += 2;
23 *v20 = v25;
24 }while(v18 < num);
25 }
26 // [...]
27 }

(b) DREAM

1 LPVOID sub_10006390(){
2 char * v1 = "qwrtpsdfghjklzxcvbnm";
3 char * v2 = "eyuioa";
4 // [...]
5 int v13 = 3;
6 for(int i = 0; i < num; i++){
7 char v14 = i % 2 == 0 ? v1[(dwSeed / v13) % 20]
8 : v2[(dwSeed / v13) % 6];
9 v13 += 2;

10 v3[i] = v14;
11 }
12 // [...]
13 }

(c) DREAM++

Fig. 1: Excerpt from the decompiled code of the domain generation algorithm of the Simda malware family. This example

shows the main loop where the domain names are generated. At a high level, letters are picked at random from two arrays.

Choosing the array from which to copy a letter is based on whether the loop counter is even or odd.

b) Complex loop structure: Control-flow structuring al-

gorithms used by decompilers recognize loops by analyzing

the control flow graph. For this reason, they recover the

structure produced by the compiler which is optimized for

efficiency but not readability. Stopping at this stage prevents

decompilers from recovering more readable forms of loops as

those seen in the source code written by humans.

We address these problems in Section V. At the core of our

optimization is our code query and transformation framework

which we describe in Section IV.

3) Lack of high-level semantics: High-level semantics such

as variable names are lost during compilation and cannot be

recovered by decompilers. For this reason, decompilers usually

assign default names to variables. Also, some constants have

a special meaning in a given context, e.g., used by an API

function or as magic numbers for file types. In Section VI,

we describe several techniques to give variables and constants

meaningful names based on how they are used in the code.

As an example illustrating these problems, we consider the

code shown in Figure 1. This Figure shows the decompiled

code of the domain generation algorithm (DGA) of the Simda

malware family produced by three decompilers: Hex-Rays

(Figure 1a), DREAM (Figure 1b), and our improved decompiler

DREAM++ (Figure 1c). Here, due to space restrictions, we

only show the main loop where the domains are computed2.

As shown in the snippets, the code produced by Hex-Rays and

DREAM is rather complex and hard to understand. In the code

produced by Hex-Rays, the loop variable i is never used inside

the loop and the loop ends with a break statement. Moreover,

the recovered checks for the parity of the loop counter involves

complex low-level expressions (lines 26-30). Accessing the

char arrays (v37 and v30) uses pointer arithmetic, address-

of operators, and dereference operators.

2The complete code can be found in the supplemental document https://
net.cs.uni-bonn.de/fileadmin/ag/martini/Staff/yakdan/sm-oakland-2016.tar.gz

160160

DREAM produced a slightly more readable code but still

has a number of issues. Here, the recovered loop structure

is not optimal and can be further simplified. Since the initial

value of v18 is zero, the condition of the if statement and

the enclosed do-while loop are identical at the first iteration.

This opens up the possibility to transform the whole construct

into a more readable while loop.

Finally, the optimizations developed during the course of

this paper further reduce the complexity of the code. As can

be seen from Figure 1c, the code contains a simple for loop

with a clear initialization step, condition, and increment step.

With each loop iteration, a letter is selected from two char

arrays (v1 and v2) depending on the parity of the loop counter

(i % 2 == 0) and the result is stored in the output array (v3).

Scope. DREAM++ is based on the DREAM decompiler which

uses IDA Pro [33] to disassemble the binary code and build

the control-flow graph of functions in the binary. Arguably,

the resulting disassembly is not perfect and may contain errors

if the binary is deliberately obfuscated. For the scope of this

paper, we assume that the assembly provided to the decompiler

is correct. Should the binary code be obfuscated, tools such as

[7, 37, 58] can be used to extract the binary code. Furthermore,

recent approaches such as [20, 56] can be used to deobfuscate

the binary code before providing it as input to the decompiler.

A high-level overview of our approach is as follows. First,

the binary file is decompiled using DREAM. This stage decom-

piles each function and generates the corresponding control

flow graph (CFG) and the abstract syntax tree (AST). Each

node in the AST represents a statement or an expression in

DREAM’s intermediate representation (IR). Our work starts

here. We develop three categories of semantics-preserving

code transformations to simplify the code and increase read-

ability. These categories are expression simplification, control-
flow simplification and semantics-aware naming. In the follow-

ing sections, we discuss our optimizations in detail.

III. EXPRESSION SIMPLIFICATION

In this section, we present our optimizations to simplify

expressions and remove redundancy from decompiled code.

A. Congruence Analysis

Congruence analysis is our approach to remove redundant

variables from the decompiled code. The key idea is to identify

variables that represent the same value and can be replaced by

a single representative variable while preserving semantics. We

denote such variables as congruent variables. DREAM already

performs several optimizations to remove redundancy such as

expression propagation and dead code elimination. However,

there exist scenarios where traditional dead code elimination

algorithms cannot remove redundant code. A prominent ex-

ample is when compilers emit instructions to temporarily save

some values that are later restored for further use. Depending

on the control structure, this may result in circular dependency

between the corresponding variables in the decompiler IR,

preventing dead code elimination from removing them. As

an example illustrating these scenarios, we consider the code

1 int foo(){
2 int x = bar();
3 int z = 10;
4 int y = x;
5 while(x < z){
6 z = qux();
7 x = y;
8 }
9 y = y + z

10 return y;
11 }

(a) Example code.

1 int foo(){
2 int v = bar();
3 int z = 10;
4 while(v < z){
5 z = qux();
6 }
7 v = v + z;
8 return v;
9 }

(b) Optimized code.

Fig. 2: Congruence Analysis

sample shown in Figure 2a. In this example, lines 4 and 7 copy

a value between variables x and y. Also, replacing x and y by

a single representative, e.g., variable v, does not change the

semantics of the program. Moreover, this replacement results

in two trivial copy statements of the form v = v (lines 4

and 7) which can be safely removed, resulting in the more

compact and readable code shown in Figure 2b.

This simple example gives insight into the different proper-

ties of code that play a role in the characterization of variable

congruence. In summary, the following aspects need to be

covered.

1) Same Types: Congruent variables have the same data types.

This requirement is necessary to avoid the changing seman-

tics because of implicit type conversions. For example, the

transformation would not be semantics-preserving if y was

of type short.

2) Non-Interfering Definitions: Replacing congruent variables

by a single representative does not change the definitions

that reach program points where these variables are used.

Note that this does not require that the live ranges of

congruent variables do not interfere. For example, the

definition of x at line 7 is located in the live range of y,

i.e., between a definition of y (line 4) and a corresponding

use of y (line 9). However, the definition is a simple copy

statement x = y and therefore using any of x or y at line

9 preserves semantics.

3) Congruence-Revealing Statements: The previous checks

are enough to guarantee the semantics-preserving property

of unifying variables. However, applying this to all vari-

ables without limitation may negatively impact readability.

Two non-interfering variables of the same type may have

different semantics (e.g., one integer variable used as a loop

counter and a second integer used as the size of a buffer).

Not merging such variables enables us to give each of them

a representative name based on how the variable is used

in code. Based on that we limit congruence analysis to

variables for which the code contains indications that they

are used for the same purpose. That is, we only check

variables involved in copy statements of the form x = y,

which we denote as congruence-revealing statements.

At the core of these checks is information about liveness of

variables. To this end, we perform a fixed-point intraprocedural

161161

Algorithm 1 Congruence analysis

1: procedure MERGECONGRUENTVARS(V)
2: for (a, b) ∈ CANDIDATATES(V) do
3: if CONGRUENT(a, b) then
4: v ← UNIFY(a, b)
5: V ← V \ {a, b}
6: V ← V ∪ {v}
7: UPDATELIVENESS(v)

8: procedure CONGRUENT(a, b)
9: return INTERFENCEFREE(a, b) ∧ INTERFENCEFREE(b, a)

10: procedure INTERFENCEFREE(x, y)
11: for all d ∈ DEF(y) do
12: if d ∈ LIVERANGE(x) ∧ d �≡ y = x then
13: return false
14: return true

live variable analysis, a standard problem from compiler

design [41, p. 443]. At a high level, live variable analysis

determines which variables are live at each point in the

program. A variable v is live at a particular point in the

program p ∈ P if p is located on an execution path from

a definition of v and a use of v that does not contain a

redefinition of v. This set of program points constitute the

live range of the variable.

LIVERANGE(v) = {p ∈ P : v live at p}
Algorithm 1 implements this idea by first calculating the set

of candidate variable pairs, i.e., variables of the same types

that are involved in congruent-revealing statements, and then

checking these pairs for congruence. For each candidate pair

(x, y), the algorithm checks if they do not have interfering

definitions. In particular, the procedure INTERFERENCEFREE

checks if each definition of variable y is either not located

in the live range of x, or it is a copy statement of the form

y = x. The same check is also done at the definitions of

x. When two congruent variables are identified, the procedure

UNIFY 1) chooses one representative variable v; 2) replaces all

occurrences of the concurrent variables by the representative;

and 3) removes the trivial copy statements resulted from this

unification (of the form v = v). Next, the set of variables V
is updated. Finally, liveness information of the newly added

variable is updated as follows:

LIVERANGE(v) = LIVERANGE(x) ∪ LIVERANGE(y)

Not that we do not require that congruent variables must

have the same values at all program points. They may have

different values at points where their live ranges do not

interfere. For example, although different values of variables

x and y reach the return statement in the code shown in

Figure 2a, x is not live at lines 9 and 10. This enables us

to use the same variable for both x and y.

B. Condition Simplification

The goal of this step is to find the simplest high-level form

of logic expressions in the decompiled code. These expressions

are very important for understanding the control flow of a

program since they are used in control statements, such as

1 [...]
2 result = GetVersionExW(&VersionInformation);
3 if(result
4 && VersionInformation.dwPlatformId == 2
5 && (VersionInformation.dwMajorVersion >= 5
6 || VersionInformation.dwMajorVersion <= 6))
7 [...]

(a) Hex-Rays

1 [...]
2 BOOL result = GetVersionExW(&VersionInformation);
3 if(result != 0
4 && VersionInformation.dwPlatformId == 2)
5 [...]

(b) DREAM++

Fig. 3: Excerpt from the decompiled code from a Stuxnet

sample. The code checks the version of the Windows operating

system.

if-then-else statements or while loops, to decide what

code to execute next. Simplifying logic expressions is helpful

in two aspects: first, it helps to recover the semantically equiv-

alent high-level conditions to the low-level checks emitted by

the compiler. Second, it helps to clear any misunderstanding

caused by errors in the original code.

Low-level checks. During compilation a compiler uses a

transformation called tiling to reduce the high-level program

statements into assembly statements. As a result, each high-

level statement can be transformed into a sequence of seman-

tically equivalent assembly instructions. During this process,

high-level predicates are transformed to semantically equiv-

alent low-level checks that can be executed efficiently. As

an example, we consider the code shown in Figure 1a. The

right-hand side of the assignment at line 30 is a complex

expression that checks whether the variable v19 is an even or

odd number. This does not look like a common operation used

in source code, but it is equivalent to the high-level operation

of computing v19 % 2 == 0.

Errors in the code. Malware code may contain logic errors

that can create confusion for analysts. Malware analysts as-

sume that the code they analyze performs some meaningful

task they need to find out. They also know that malware

often uses several tricks to hide its true functionality. With

this mindset, when analysts observe a seemingly useless code,

they need to double-check in order to exclude the possibility

of a trick aimed at making the code looks useless. As a result,

some time is wasted. The simple example from the Stuxnet

malware family shown in Figure 3a illustrates this case. This

code checks the version of the Windows operating system,

a common procedure in environment-targeted malware [55].

However, the OR expression (marked in red) is always sat-

isfied; any integer is either bigger than 5 or smaller than 6.

Most probably, the malware authors intended to use an AND

expression instead but did not for some reason. Simplifying

this expression results in the code shown in Figure 3b.

162162

To provide a generic simplification approach, we base our

techniques on the Z3 theorem prover [21]. Our approach pro-

ceeds as follows. First, we transform logic expressions in the

DREAM IR into semantically equivalent symbolic expressions

for the Z3 theorem prover. To achieve a faithful representation,

we model variables as fixed-size bit-vectors depending on

their types. The theory of bit-vectors allows modeling the

precise semantics of unsigned and signed two-complements

arithmetic. During this transformation, we keep a mapping be-

tween each symbolic variable and the corresponding variable

it represents in the original logic expression. Second, we use

the theorem prover to simplify and normalize the symbolic

expressions. Finally, we use the mapping to construct the

simplified version of the logic expression in DREAM IR.

C. Pointer Transformation
Accessing values through pointer dereferencing using

pointer arithmetic can be confusing. Also, accessing buffers

allocated on the stack may result in convoluted decompiled

code that is difficult to understand.

Pointer-to-array transformation. Here, we use the observa-

tion that in C a pointer can be indexed like an array name.

This representation clearly separates the pointer variable from

the expression used to compute the offset from the start

address. To guarantee the semantics-preserving property of this

transformation, we search for variables of pointer types that

are accessed consistently in the code. That is, all data that is

read or written using the pointer variable have the same type τ .

In this case, dereferencing these variables can be represented

as array with elements of type τ . Here the resulting offset

expression must be adjusted according to the size of type τ .

For example, if a pointer p is consistently used to access

4-byte integers, then expressions such as *(p + 4 * i) can

be transformed into the more readable p[i] form.

Reference-to-pointer transformation. In this step, we trans-

form variables that are only used in combination with address-
of operator (&) into pointer variables. One of the first steps in

DREAM is variable recovery that recovers individual variables

from the binary code. For example, functions usually allocate

a space on the stack to store local variables. Expressions

accessing values in this stack frame are then recovered as

local variables. For efficiency, buffers are often allocated on

the stack when the maximum size is known at compile time.

In this case, the variable recovery step represents the buffer

as local variable v and expressions that access items inside

this buffer are represented using the address-of operator as

&v, resulting in a decompiled code that is hard to understand.

For example, reading a character from a buffer allocated on

the stack is represented as *(&v37 + dwSeed / v15 % 6)

(line 31 in Figure 1a). If a variable v is only accessed in

the code using address expressions, i.e., &v, we replace these

expressions by a pointer variable v_ptr. This creates an

opportunity to further simplify pointer dereferencing expres-

sions in which the resulting pointer variable is involved as

array indexing. The previous example can be represented as

v37_ptr[dwSeed / v15 % 6].

IV. CODE QUERY AND TRANSFORMATION

At the core of our subsequent optimizations is our generic

approach to search for code patterns and apply corresponding

code transformations. The main idea behind our approach is

to leverage the inference capabilities of logic programming

to search for patterns in the decompiled output. To this

end, we represent the decompiled code as logic facts that

describe properties of the corresponding abstract syntax tree.

This logic-based representation enables us to elegantly model

search patterns as logic rules and efficiently perform complex

queries over the code base. Usability is a key design goal, and

therefore we enable users of our system to define search rules

using normal C code and provide a rule compiler to compile

them into the logic rules needed by our engine. We use the

platform-independent, free SWI-Prolog implementation [52].

In the following, we describe our approach in detail.

A. Logic-Based Representation of DREAM IR

This step takes as input the abstract syntax tree (AST)

generated by DREAM and outputs the corresponding logic

facts, denoted as code facts. We represent each AST node as

a code fact that describes its properties and nesting order in

the AST. Table I shows the code facts for selected statements

and expressions in DREAM’s intermediate representation (IR)3.

The predicate symbol (fact name) represents the AST node

type. The first parameter is a unique identifier of the respective

node. The second parameter is the unique identifier of the

parent node (e.g., the containing if statement). Node ids

and parent ids represent the hierarchical syntactic structure of

decompiled code. Remaining parameters are specific to each

fact and are described in detail in Table I.

We generate the code facts by traversing the input AST and

producing the corresponding code fact for each visited node.

The code facts are stored in a fact base F , which will be

later queried when searching for code patterns. As a simple

example illustrating the concept of code facts, we consider

the code sample shown in Figure 4a. The corresponding code

facts for the function body are shown in Figure 4c. The body

is a sequence (id = 3) of two statements: an if-then-else

statement (id = 4) and a return statement (id = 14). These

two statements have the sequence node as their parent and

their order in the sequence is represented by the order of the

corresponding ids inside the sequence code fact.

B. Transformation Rules

The logic-based representation of code enables us to ele-

gantly model search patterns as inference rules of the form

P1 P2 . . . Pn

C

The top of the inference rule bar contains the premises

P1, P2, . . . , Pn. If all premises are satisfied, then we can

conclude the statement below the bar C. The premises describe

the properties of the code pattern that we search for. In case

3We cannot show the full list due to space restrictions.

163163

CODE FACT DESCRIPTION

sequence(id, pid, [#s1, . . . ,#sn]) sequence of statements s1, . . . , sn

loop(id, pid, τ,#ec,#sb)
loop of type τ ∈ {τwhile, τdowhile, τendless} and continuation condition ec and
body sb

if(id, pid,#ec,#sthen,#selse) if statement with condition ec, the then part sthen, and the else part selse
switch

(
id, pid,#ev ,

[
#s1case, . . . ,#sncase

])
switch statement with variable ev and a set of cases s1case, . . . , s

n
case

case(id, pid,#elabel,#s) case statement with a label elabel and a statement s
assignment(id, pid,#elhs,#erhs) assignment of the form elhs = erhs
return(id, pid,#e) return statement that returns expression e

Statements

break(id, pid) break statement

call
(
id, pid,#ecallee,

[
#e1arg, . . . ,#enarg

])
call expression of the function ecallee with arguments e1arg, . . . , e

n
arg

operation
(
id, pid,op,

[
#e1e, . . . ,#ene

]) operation (e.g., addition or multiplication) with operand op involving expressions
e1e, . . . , e

n
e

ternaryOp(id, pid,#ec,#sthen,#selse) ternary operation of the form ec?sthen:selse
numericConstant(id, pid, v) numeric constant of value v
stringConstant(id, pid, v) string constant of value v
memoryAccess(id, pid,#eaddress) memory access to address eaddress
localVariable(id, pid,name, τ) local variable with name name and type τ
globalVariable(id, pid,name, τ) global variable with name name and type τ

Expressions

identifier(id, pid,#evar) identifier represents the occurrence of a variable evar in an expression pid

TABLE I: Logic-based predicates for the DREAM IR. Each predicate has an id to uniquely represent the corresponding statement

or expression. The second argument of each code fact is the parent id pid that represents the id of containing AST node. For

a statement or expression e, we denote by #e the id of e.

1 int foo(int a, int b)
2 {
3 int x;
4 if(a > b)
5 x = a;
6 else
7 x = b;
8 return x + 32;
9 }

(a) Exemplary code

1 int foo(int a, int b)
2 {
3 int x = max(a, b);
4 return x + 32;
5 }

(b) Transformed code

localVariable(0, ’int’, ’a’).
localVariable(1, ’int’, ’b’).
localVariable(2, ’int’, ’x’).
sequence(3, _, [4, 14]).
if(4, 3, 5, 8, 11).
operation(5, 4, ’>’, [6, 7]).
identifier(6, 5, 0).
identifier(7, 5, 1).
assignment(8, 4, 9, 10).
identifier(9, 8, 2).
identifier(10, 8, 0).
assignment(11, 4, 12, 13).
identifier(12, 11, 2).
identifier(13, 11, 1).
return(14, 3, 15).
operation(15, 14, ’+’, [16, 17]).
identifier(16, 15, 2).
numericConstant(17, 15, 32).

(c) Code facts

Fig. 4: Code representations.

of code queries, the conclusion is to simply indicate the

existence of the searched pattern. For code transformation, the

conclusion represents the transformed form of the identified

code pattern.

We realize inference rules as Prolog rules, which enables

us to ask Prolog queries about the program represented as

code facts. Figure 5 shows two simple examples that illustrate

the idea of modelling code search patterns as Prolog rules.

The rule if_condition searches for condition expressions

used in if statements. Rule parameters are Prolog variables

that represent the pieces of information to be extracted from

the matched pattern. The rule body represents the premises

that must be fulfilled in order for the rule to return a match.

At a high level, when a query is executed, Prolog tries to

find a satisfying assignment to the variables of the rule that

makes it consistent with the facts. For example, the query

if_condition(Condition) executed on the fact base in

Figure 4c returns the match {Condition=5}, the id of the

1 if_condition(Condition) :-
2 if(_, _, Condition, _, _).
3

4 assignment_to_local(Assignment, VarName) :-
5 assignment(Assignment, _, Lhs, _),
6 identifier(Lhs, Assignment, Variable),
7 localVariable(Variable, _, VarName).

Fig. 5: Sample search patterns.

code fact corresponding to the condition of the if statement

in Figure 4a. This unification is done by matching the rule only

premise with the corresponding code fact of the if statement.

A very powerful aspect of logic rules is that the correspond-

ing queries can be adapted for multiple purposes. For example,

the second rule assignment_to_local searches for assign-

ments to a local variable given its name. Using a concrete

variable name, the query returns all assignments to the corre-

sponding variable (e.g., assignment_to_local(Assignment,

’x’)). On the other hand, using a Prolog variable for the

name, the query returns all assignments to all variables (e.g.,

assignment_to_local(Assignment, Name)).

Transformation rules can be written in normal C code.

Figure 6 shows a sample transformation rule that searches

for if statements that compute the largest of two values

and replace them by a call to the max library function.

A transformation rule consists of two parts: rule signature
and code transformation. The rule signature describes the

code pattern to be searched for and is written as normal C

function declaration: the list of parameters, denoted as rule
parameters, represents the variables that need to be matched

to the actual variables by Prolog inference engine so that

the transformed code can be constructed. The function body

represents the code pattern. The transformation part describes

the transformed code that should replace the matched pattern.

164164

Signature:
max(result, v1, v2){

if(v1 > v2)
result = v1;

else
result = v2;

}
Transformation:

result = max(v1, v2);

Fig. 6: Sample transformation rule.

We compile transformation rules into logic rules that can

be used by Prolog’s inference engine. To this end, we parse

the rule body and then traverse the resulting AST. For each

visited AST node, we generate the corresponding code fact.

Here, we use Prolog variables for the generated fact identifiers.

These variables will be then bound to the actual identifiers

from the fact base when the inference engine finds a match.

Finally, the compiled rule is stored in the rule base R and the

corresponding query in the query base Q.

C. Applying Transformation

We first initialize Prolog with the code base F and the rule

base R. We then iteratively apply the queries in the query

set Q. If a match is found, the inference engine unifies the

rule arguments to the identifiers of the corresponding code

facts. In this case, we construct the equivalent transformed

code. To this end, we first parse the transformation string to

construct the corresponding AST. During this process, we use

the corresponding AST node for each rule argument to get

the transformed code in terms of the original variables from

the initial code base. For example, applying the sample rule in

Figure 6 to the fact base shown in Figure 4c returns one match:

{result = x, v1 = a, v2 = b}. This enables us to replace the

complete if statement by the function call x = max(a, b)

to get the code shown in Figure 4b. Finally, we update the

fact base F so that it remains consistent with the AST.

The code query and transformation engine is the basis for

our subsequent code optimizations that identify certain code

patterns and apply corresponding transformations aimed to

simplify code and improve readability.

V. CONTROL-FLOW SIMPLIFICATION

In this section we present our techniques to simplify the

control flow of decompiled code.

A. Loop Transformation

Compiler optimizations often change the structure of loops

in the source code. While this optimization is aimed to increase

efficiency, the resulting loop structure becomes less readable,

reducing the quality of decompiled code. A well-known loop

optimization is inversion, which changes the standard while

loop into a do-while loop wrapped in an if conditional,

reducing the number of jumps by two for cases where the

loop is executed. That is, loops of the form while(e){...}

are transformed into if(e){do{...}while(e);}. Doing so

duplicates the condition check (increasing the size of the code)

but is more efficient because jumps usually cause a pipeline

stall. Additionally, if the initial condition is known to be true

at compile-time and is side-effect-free, the if guard can be

skipped.

Here we make the observation that while loops are more

readable than do-while loops since the continuation condi-

tion is clear from the start. Moreover, some while loops can

be further simplified into for loops where the initialization

statement, continuation condition, and the increment state-

ments are clear from the start. Based on this observation, we

analyze do-while loops and check if they can be transformed

into while loops. Here, we distinguish between to cases:

Guarded do-while loops. loops of the form if(c1){do

{...}while(c2);} are transformed into while(c2){...}

if it can be proven that c1 == c2 at the start of the first

iteration of the loop. Note that c1 and c2 does not have to be

identical logical expressions. As an example, we consider the

code sample shown in Figure 7a. The conditions *(_BYTE

*)v7 != 0 and *(_BYTE *)(v8 + v7)!= 0 both yield the

same Boolean value at the entry of loop. Note that the reaching

definition of variable v8 at this point is v8 = 0.

Unguarded do-while loops. For these loops we only check

if the loop condition is true for the first iteration. In this case,

the loop can be transformed into while loop.

To check the value of logic expressions at loop entry, we

compute the set of definitions for loop variables that reach the

loop entry. To this end, we perform a fixed-point intraproce-

dural reaching definitions analysis, a standard problem from

compiler design [41, p. 218]. Often the reaching definitions

for loop variables are assignments of constant values that

represent the initial value of a loop counter. This makes it

easy to substitute this initial value in the logic expressions

and check for equivalence at loop entry.

B. Function Outlining

Function inlining is a well-known compiler optimization

where all calls into certain functions are replaced with an

in-place copy of the function code. This improves runtime

performance since the overhead of calling and returning from

a function is completely eliminated. In the context of code

obfuscation, inlining is a powerful technique [19]. It makes re-

verse engineering harder in two ways: first, several duplicates

of the same code are spread across the program. As a result,

analysts end up analyzing several copies of the same code.

Second, internal abstractions such as the calling relationships

between functions in the program are eliminated.

Reversing function inlining is valuable for the manual

analysis of malware. As a simple example illustrating the

benefits of function outlining, we consider the excerpt code

from the Cridex malware family shown in Figure 7. Each

of the two loops in Hex-Rays decompiled code shown in

Figure 7a computes the length of a string by incrementing the

counter by one for each character until the terminating null-

character is found. DREAM++ identified these two blocks as

an implementation of the strlen library function and replaced

165165

1 int sub_408A70(int a1, int a2){
2 [...]
3 v8 = 0;
4 if (*(_BYTE *)v7)
5 {
6 do
7 ++v8;
8 while (*(_BYTE *)(v8 + v7));
9 }

10 v9 = 0;
11 if (*(_BYTE *)a1)
12 {
13 do
14 ++v9;
15 while (*(_BYTE *)(v9 + a1));
16 }
17 if (v8 == v9){
18 [...]
19 }
20 [...]
21 }

(a) Hex-Rays

1 int sub_408A70(char * str2, void * a2){
2 [...]
3 len1 = strlen(str1);
4 if(len1 == strlen(str2)){
5 [...]
6 }
7 [...]
8 }

(b) DREAM++

Fig. 7: Excerpt from the code of the Cridex malware family

showing the code inlining technique.

them with corresponding function calls as shown in Figure 7b.

This simple example gives insights into the benefits of function

outlining for code analysis.

1) Compact code. Replacing a code block by the equivalent

function call eliminates duplicate code blocks and results in

a more compact decompiled output. The whole code block

is replaced by a function call whose name directly reveals

the functionality of the code block. Moreover, temporary

variables used inside the block are removed from code,

reducing the number of variables that an analyst should

keep track of.

2) Meaningful variable names. Outlined functions have

known interfaces that include the names of their param-

eters. These names represent their semantics and reveals

important information about the variable job. We leverage

this information to give meaningful names the variables in

the decompiled output.

3) Improved Type Recovery. Approaches to recover types from

binary code such as [39, 40] rely on type sinks as reliable

starting points. Type sinks are points in the program where

the type of a given variable is known. This includes calls to

functions whose signatures are known. Outlining a function

generates a new type sink that can be used to improve the

performance of type inference algorithms.

4) Recovering inter-dependencies. Function outlining implic-

itly recovers calling relationships between the inlined func-

tion and the functions calling it. That is, it identifies points

in the program that call the function. Calling relationships

are very important for manual reverse engineering. After

having analyzed a given function, malware analysts can

draw conclusions about the calling functions.

The original DREAM decompiler contained hard-coded sig-

natures for a minimal set of string functions, which are hard

to extend. We leverage our code query and transformation

engine to easily include multiple transformation rules for

several functions that copy, compare, compute the length, and

initialize buffers. For example, we handle strcpy, strlen,

strcmp, memset. For string functions, both 8-bit and 16-

bit character versions are handled. We also include signatures

for the version of string functions that take buffer length as

argument.

Users of our system can easily add new transformation rules

to handle new functions. When an analyst observes a repeating

code pattern, she can simply write a transformation rule that

replaces the whole code block by a function call with a name

that represents its functionality. All other copies of the same

block will be outlined. Code blocks are not only duplicated

as a result of function inlining. In C, function-like macros are

pre-processor macros that accept arguments and are used like

normal function calls. These macros are handled by the pre-

processor, and are thus guaranteed to be inlined.

VI. SEMANTICS-AWARE NAMING

In this section we describe several readability improvements

at the level of variables in the decompiled code.

A. Meaningful Names

Variable names play an important role when analyzing

source code. These names reveal valuable information about

the purpose of variables and how they are used in the program.

We give variables meaningful names based on the context in

which they occur. Here we distinguish the following cases:

Standard library calls. With well-defined API, standard

library calls are important source of variable names. For

example, the Windows API URLDownloadToFile, which

downloads data from the Internet and saves them to a file, takes

five arguments. Among them one argument, named szURL,

represents the URL to download. A second argument, named

szFileName, represents the name or full path of the file to

create for the download. By analyzing library function calls

and returns, we rename variables used as parameters or return

values, directly revealing their purpose to the analyst.

Context-based naming. The way a variable is used in code

gives insights into its purpose. We analyze the context in which

variables are used to provide meaningful names to them. More

specifically, we distinguish the following cases:

1) Loop counters. We query the decompiled code for counting
loops, i.e., loops that update a variable inside their body and

then test the same variable in their continuation condition.

Counting variables in short for loops are renamed to i,

j, or k. Counting variables for other loops are renamed to

counter.

166166

2) Array indexes. We rename variables used as indexes for

arrays to index

3) Boolean variables. Variables that contain the result of

evaluating logic expressions are renamed to cond. This

encodes the fact that they represent testing a condition in

the variable name.

When multiple variables are identified that can take the same

name, we add subscripts to the default names to have unique

names. For example if three loop counters are identified, they

are renamed to counter1, counter2, and counter3.

B. Named Constants

Constants are important corner pieces in the process of

reverse engineering. For example, some cryptographic algo-

rithms uses magic numbers, and several file formats include

magic numbers to identify the file type. Also standard library

functions assign specific constants to special meanings. Usu-

ally these numbers have a textual representation in the source

code. We use two sources to identify these special constants.

Library API constants. Many functions in the C standard

library and Windows API define special named constants.

These constants have a specific meaning and are thus given

representative names. During compilation compilers replace

this symbolic representation of the constant by the correspond-

ing numeric value. For example, the function CreateFile

uses the constant GENERIC_READ to request a read access to

the opened file. This becomes 0x80000000 in the binary. To

recover the symbolic, easily remembered names of these con-

stants, we check for the occurrence of named constants for a

wide range of library functions. For example, this would trans-

form the function call CreateFileA(f, 0x80000000, 1, ...)

into the more readable form CreateFileA(f, GENERIC_READ,

FILE_SHARE_READ, ...).

File magic numbers. For many file types, a file starts with

a short sequence of bytes (mostly 2 to 4 bytes long) to

uniquely identify its type. Detecting such constants in files

is a simple and effective way of distinguishing between many

file formats. For example, DOS MZ executable file format and

its descendants (including NE and PE) begin with the two

bytes 4D 5A (characters ’MZ’). Malware usually downloads

files from its C&C server at runtime and may check which

file type it received. We check if such constants are used in

the conditions of flow control statements.

VII. USER STUDY DESIGN

The goal of our study is to test the readability of the code

produced by our improved decompiler DREAM++ compared

to the academic predecessor DREAM and the industry standard

Hex-Rays4. We planned a user study in which participants

have to solve a number of reverse engineering tasks with

different decompilers. The participants’ task was to analyze

the code snippets and answer a number of questions about

the functionality of the code. Our web-based study platform

4We opted to not compare DREAM++ to any other decompilers because
of the upper bound of the number of participants (see §VII-C).

showed the code in split screen together with the questions.

Participants could edit the code to help with the analysis.

To measure user perception, after each task we asked the

participants for feedback and a couple of questions regarding

readability. Each participant got a number of code snippets

produced by different decompilers without being told which

decompiler was being used, so we would get an unbiased

evaluation of the code. Only at the end of the study we showed

the users the code produced by all decompilers side by side

and asked them to give an overall rating for the decompilers.

A. Task Selection

To minimize the risk of bias, i.e., subconsciously selecting

tasks which would favor our decompiler, we approached three

independent professional malware analysts for the process of

task selection. The analysts were known to us, but were not

involved in the study or the work on the decompiler. We told

them that we wanted to conduct a study on malware analysis

and requested that they supply us with malware code snippets

they themselves had to analyze in the course of their work.

We requested that the snippets fulfil some sort of function

that should be understandable without needing the rest of the

malware code. In total we got 8 snippets of code. Two of

the snippets contained an XOR based encryption/decryption

algorithm, so we removed one of those and were left with 7

malware snippets. We ran a pre-study which will be described

in more detail below to test the tasks. For this pre-study,

an even number of tasks was preferable so we added one

additional code snippet. Based on the results of the pre-study

we removed this and one other snippet, so we are left with 6

snippets. We grouped these snippets into two groups: Medium
(three tasks), and Hard (three tasks). In the following, we

describe the tasks in detail.5

1) Encryption: Encoding functions are used widely in

malware as well as benign applications. Malware can encrypt

exchanged messages with C&C servers and encode internal

strings to avoid static analysis. This task is a function from

the Stuxnet malware that decrypts the .stub section which

contains Stuxnet’s main DLL.
2) Custom Encoding: This task is an XOR encryption/de-

cryption function from the Stuxnet malware family. This

function performs a word-wise XOR with 0xAE12 and is used

by many Stuxnet components to disguise some strings.
3) Resolving API Dynamically: In order to avoid static

analysis, malware usually avoids listing the API functions

it needs in the import table. Instead, it can resolve them

dynamically at runtime. The task is a function from the Cridex

malware that takes as input the name of an API function and

returns the corresponding starting address.
4) String Parsing: Malware often receives commands and

configuration files from a C&C server. Thus, it needs to parse

these commands to extract parameters and other information

from C&C messages. This task is the injects parsing function

from the URLZone malware. The function examines a string

5For information on the snippets which were removed the reader is referred
to the supplemental document.

167167

for the first occurrence of the sequence %[A-Z0-9]% and

returns a pointer to the start of such a string and its length.

5) Download and Execute: A very common function is to

download an executable from a C&C server and later execute

it. This can for example be the case for pay-per-install ser-

vices [11]. The task involves analyzing the update mechanism

of the Andromeda malware. The snippet downloads a file from

a remote server and checks if it is a valid PE executable or a

Zip archive containing an executable. In this case the file is

saved on disk and executed.

6) Domain Generation Algorithm: Malware is often

equipped with domain generation algorithms (DGA) to dy-

namically generate domain names used for C&C (e.g., depend-

ing on seed values such as the current date/time and Twitter

trends) [2]. It is a powerful technique to make botnets more

resilient to attacks and takedown attempts. The task contains

the DGA of the Simda malware.

Due to space constraints, we cannot present the full

decompiled malware source code used in our study in

this paper. For this reason, we have created a supplemen-

tal document which can be accessed under the follow-

ing URL: https://net.cs.uni-bonn.de/fileadmin/ag/martini/Staff/

yakdan/sm-oakland-2016.tar.gz. Here, we present all data re-

lated to our user study including the decompiled code from

the three decompilers as well as the set of tasks.

B. Pre-Study

Before conducting our main user study, we conducted a

small scale pre-study for the following purpose: it is best

practice to test user studies in a pre-study to unearth problems

with the task design and the study platform. We also wanted

to check whether our cognitive walkthrough and informal

interviews had missed any important issues that should be dealt

with before conducting the full study. To plan the study and

the appropriate compensation, we needed estimates on how

long each task would take.

Since malware analysis is a highly complex task requiring

specialized skills, we recruited students who had successfully

completed our malware boot camp. The malware boot camp

is a lab course held each semester at our university, in which

students are introduced to the field of malware and binary code

analysis. For the pre-study we recruited two of these students.

We conducted the pre-study in our usability lab and used

a think-aloud protocol, asking participants to vocalize their

thought processes and feelings as they performed their tasks.

We chose this protocol to obtain insights into the users’

thought processes, and the barriers and problems they faced.

In the pre-study we only tested DREAM++ and Hex-Rays. The

first participant got four tasks decompiled with DREAM++ and

four decompiled with Hex-Rays and had to answer questions

about the functionality of the code. The second participant got

the inverse selection. Assignment was randomized. After each

task, the participants were asked to provide feedback about

the quality of the code they analyzed. Then, they were shown

the output generated by the other decompiler and asked which

code they find more readable and how long they think they

would take to analyze that output.

1) Pre-Study Results: There were only minor bugs with

the study platform and the participants understood the task

descriptions without problems. Based on their think-aloud

feedback, we did not find any open problems that had not

been discovered during the cognitive walkthrough. We also

ranked our tasks based on reported difficulty.

In the main study, we wanted to additionally test DREAM

implying a smaller number of task samples since we never

show any participant code from different decompilers for the

same task. Based on the pre-study we estimated that the main

study should be completed in 3 hours. For the detailed pre-

study results including the participants feedback, we refer to

Appendix E.

C. Methodology

We conducted a within-subjects design experiment where

participants had to analyze the code snippets decompiled by

the three different decompilers (DREAM++, DREAM and Hex-

Rays). To begin with, we provided a detailed explanation of

the concept and the procedure to participants. Participants

were allowed to use the Internet during the study since this

mirrors how analysts actually work. The goal was to remove

all aspects not related to the quality of decompiled code. The

tutorial was followed by a training phase to ensure that the

participants were familiar enough with the system to avoid

system-related mistakes. We provided a sample code snippet

and instructed the participants to rename variables in it and

look for information about a library function online.

The main user study is almost unchanged from the pre-

study. The methodology differs in the following points. The

decompiler names were blinded so as not to bias the partic-

ipants. Also, the study was not conducted in the lab but via

our online study platform. This decision was made for several

reasons: First, not all of the students who had completed the

malware boot camp were still living locally and we wanted to

maximise our recruiting pool, since participants at this level

are very scarce. Second, we also wanted to conduct the study

with professional malware analysts and it is unrealistic to

expect them to come to the lab. We decided to conduct the

entire study online in order to keep the results comparable.

1) Variables and Conditions: In our experiment, we have

two independent variables:

Decompiler: Decompiler used to solve a given task and

has three conditions: DREAM++, DREAM, and Hex-Rays.

Hex-Rays is the leading industry decompiler that is widely

used by malware analysts. Therefore, we compare DREAM++

to Hex-Rays to examine whether our approach improves the

current state of malware analysis. We tested the latest Hex-

Rays version, which is 2.2.0.150413 as of this writing. Also,

we compare DREAM++ to the original DREAM decompiler to

evaluate the usefulness of our new extensions.

Difficulty: A within-subjects factor that represents the

difficulty of the task. Based on the results from our pre-

study (§VII-B), we grouped the tasks according to their

168168

H D D++ H D D++

D D++ H D D++ H

D++ H D D++ H D

H D++ D H D++ D

D H D++ D H D++

D++ D H D++ D H

H D D++ H D D++

D++ D H D++ D H

...
...

co
u
n
te

rb
al

an
ci

n
g

d
ec

o
m

p
il

er
o
rd

er

co
u
n
te

rb
al

an
ci

n
g

ta
sk

d
if

fi
cu

lt
y

le
v
el

Fig. 8: Counterbalancing the order of decompiler and diffi-

culty levels. Nodes in each horizontal sequence represent the

tasks performed by one participant. Letters denote the used

decompiler for the task and colors represent task difficulty

level: medium (black) or hard (red).

difficulty into two groups (medium and hard), each containing

three tasks.

2) Condition Assignment: We chose a within-subjects de-

sign since personal skill is a strong factor in performance.

To avoid learning and fatigue effects in our within-subjects

design, the order in which participants used decompilers within

each difficulty level, and the difficulty levels were permutated

using the counterbalanced measures design. Figure 8 shows

the details of our counterbalance design: Within each difficulty

level, there are 6 possibilities to order the three decompilers.

The two difficulty levels are also permutated (red vs. black

in the figure). Counterbalancing the order of difficulty level

doubles the total numbers of possible orderings. We opted

to balance on difficulty level instead of task level since

this gives us a counterbalance permutations of 12 (3! ∗ 2!)
instead of 4320 (3! ∗ 6!). Since we could not hope to recruit

4320 participants we opted for the compromise of recruiting

multiples of 12 participants using all rows of our counter. This

design ensures that each decompiler and each difficulty level

gets the same exposure across the study and minimizes the

overall learning and fatigue effects. This also guarantees that

each participant gets the same number of medium and hard

tasks for each decompiler. This is important to control for

individual differences between participants and avoid skewing

the results by eliminating the possibility of a skilled and

motivated participant performing all of her tasks using one

decompiler, while a less skilled participant performs her tasks

with another decompiler.

3) User Perception: After finishing each task, participants

are shown a brief questionnaire, where they can score the

quality of the code produced by the decompiler, and a text

field for additional feedback. Here, the participants are able to

see the code again. We asked a total of 8 questions, 6 on read-

ability properties and 2 on trust issues. Similar to the System

Usability Score (SUS) [8], the questions are counterbalanced

(positive/negative) to minimize the response bias, e.g., "This
code was easily readable" and "It was strenuous to understand
what this code did". The full question set can be found in

Appendix B.

In addition to the questionnaire after each task, at the end

of the study, we asked the participants about an overall rating

on a scale from 1 (worst) to 10 (best). During this step

they were shown the code snippets for every task and every

decompiler to facilitate the direct comparison. To avoid biasing

the participants the decompilers were named M, P and R.

4) Statistical Testing: For all statistical hypothesis testing,

we opted for the common significance level of α = 0.05. To

account for multiple testing, all p-values are reported in the

Holm-Bonferroni corrected version [32].

Continuous tests such as time intervals or user-ratings are

tested with a Holm-Bonferroni corrected Mann–Whitney U

test (two-tailed). Rather than testing all pairs for the pair-

wise comparison, we only perform tests with our decompiler

(DREAM++ vs. DREAM and DREAM++ vs. Hex-Rays). The

effect size is reported by mean comparisons and the usage

of the common language effect size method. Categorical con-

tingency comparisons are tested with the two-tailed Holm-

Bonferroni corrected Barnard’s Exact test.

VIII. USER STUDY

In this section, we present our study results: after discussing

the demographics of our participants, we proceed with the

code analysis experiment, and then the user perception dis-

cussion.

A. Participants

We sent 36 invitations to students who had completed the

malware boot camp at our university with the aim of getting

24 participants to join for a compensation of 40 Euro. The

malware boot camp is a lab course held each semesters at

our university, in which students are introduced to the field of

malware and binary code analysis. The invitation text can be

found in Appendix A.

22 students took part in the study. One student began

the study but only completed one task, so we removed this

student from the sample, leaving us with 21 participants.

Among the student group, the median age was 26 years. The

oldest participant was 31 years old and the youngest was 19
years old. Two participants did not report their age. One of

the participants was female. The median malware analysis

experience in years is 1 year. One participant reported to have

14 years malware analysis experience, 7 participants reported

less than a year.

We also invited 31 malware experts from commercial se-

curity companies. Based on informal talks, we were told

that offering these experts the same compensation would

169169

Decompiler Avg. Score p-value Pass Fail p-value

Students
DREAM++ 70.24 30 12
DREAM 50.83 0.002 16 26 0.002
Hex-Rays 37.86 <0.001 11 31 <0.001

Experts
DREAM++ 84.72 15 3
DREAM 79.17 0.234 15 3 0.570
Hex-Rays 61.39 0.086 9 9 0.076

TABLE II: Aggregated experiment results.

not motivate them since time is more valuable than money.

However, it was suggested that many would be intrinsically

motivated to help because any improvements made in this

domain would ultimately benefit them. Based on this feedback,

we opted to offer early access to an academic decompiler
for the participants and give them access to DREAM++ after

the study. 17 malware analysts started the study. However,

8 looked at the first task only without actually starting the

study. In total 9 malware analysts took part in the study, all

male with a median age of 30 years (2 did not disclose their

age and gender).

B. Malware Analysis Experiment

We assigned a weight to each question according to its

importance in understanding the task and scored all answers.

We conducted a two-pass scoring approach for calibration

purposes. Since the answers contained variable names and

referred to loop structures, it was not possible to blind this

part of the evaluation. Table II summarizes the results of

the code analysis experiment. Unsurprisingly, professional

analysts performed better than students. In both groups par-

ticipants performed better when using DREAM++ compared

to both DREAM and Hex-Rays. In the student group, our

sample size provides sufficient statistical power to confirm a

statistically significant difference in scores. Another interesting

observation is that experts did much better with Hex-Rays

than the students did, suggesting that they have gotten used to

working with code produced by Hex-Rays. A more detailed

table is provided in Appendix C.

To get a better feeling for the results, we additionally

marked each task as a pass if participants scored over 70%.

This level was chosen based on our judgement that these

tasks had been answered sufficiently, meaning that their re-

sults would be useful in a malware analysis team. Here, the

difference between the professional analysts and the students

becomes more apparent. However, in both groups DREAM++

performed better than the competition.

We also measured the time needed to complete the dif-

ferent tasks. We cannot do a statistical analysis of the time

means because of a limited number of samples. Note that

only successfully completed tasks can be considered in that

comparison. Unfortunately, many participants failed or gave

up tasks using Hex-Rays and DREAM. Nonetheless, there is a

trend for participants solving tasks faster with DREAM++, but

more samples are needed to quantify this reliably. A detailed

Fig. 10: Boxplot for decompiler rating.

overview on task level, including average time spent on a task,

can be found in Appendix C.

C. User Perception

To measure user perception, after each task, we asked our

participants 8 questions. The full list of questions can be

seen in Appendix III. Figure 9 summarizes the aggregated

user perception results. Here, we distinguish between two

groups of questions: usability perception (questions 1-6) and

trust perception (questions 7&8). The trust issue is interesting

because decompilers do make mistakes or create misleading

code and it is common for malware analysts to fall back to

analyzing assembly code. Thus, we wanted to see whether

there were different levels of trust in the code.

A pairwise comparison between the decompilers shows a

high statistical significance difference (p < 0.001) for usability

related questions for experts and students. The trust related

questions showed only a statistically significant difference in

comparison to Hex-Rays (p < 0.001 in the student group, p =
0.03 in the expert group). The color coding in Figure 9 shows

the agreement level and the percentage numbers on the right

and left hand side summarize the percentage of participants

who rated positively and negatively respectively.

After finishing all tasks, we asked for an overall rating for

each decompiler. Figure 10 shows a boxplot with a rating

distribution overview. It can be clearly seen that DREAM++

achieves higher scores than the competition for both students

and experts (adjusted p < 0.001 for all pairwise comparisons).

Interestingly, while it can be clearly seen that the experts rated

Hex-Rays better compared to the students, they were also

more enthusiastic about DREAM++. These are very promising

results, both groups clearly prefer the code produced by our

improved decompiler and even though the experts cope well

with Hex-Rays they gave DREAM++ outstanding marks.

170170

13%

7%

21%

59%

69%

45%

52%

30%

71%

29%

44%

17%

Trust Related Statements

Usability Related Statements

DREAM++
DREAM

Hex-Rays

DREAM++
DREAM

Hex-Rays

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

(a) Students

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

18%

24%

40%

45%

63%

38%

29%

29%

55%

42%

57%

27%

Trust Related Statements

Usability Related Statements

DREAM++
DREAM

Hex-Rays

DREAM++
DREAM

Hex-Rays

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

(b) Experts

Fig. 9: Aggregated participant agreement with the statements related to usability perception (6 questions) and trust in correctness

(2 questions).

IX. RELATED WORK

A wealth of research has been conducted on decompilation

and the development of principled methods for recovering

high-level abstractions from binary code. At a high level, there

are four lines of research relevant to the work presented in

this paper. First, approaches to extract binary code from exe-

cutables. Second, research on recovering abstractions required

for source code reconstruction. Third, work on end-to-end

decompilers. Finally, techniques to query code bases and apply

transformations.

Binary code extraction. A fundamental step for decompila-

tion is the correct extraction of binary code. Kruegel et al. [37]

presented a method to disassemble x86 obfuscated code.

Kinder et al. [35] proposed a method that interleaves multiple

disassembly rounds with data-flow analysis to achieve accurate

and complete CFG extraction. The binary analysis platform

BitBlaze [49] and its successor BAP [9] use value set anal-

ysis (VSA) [3] to resolve indirect jumps. Run-time packers

are often used by malware-writers to obfuscate their code and

hinder static analysis [51]. To handle these cases, the research

community proposed approaches that rely on dynamic analysis

to cope with heavily obfuscated. This include approaches

to extract a complete CFG [42], extract binary code from

obfuscated binaries [58], deobfuscate obfuscated executable

code [20, 56]. A closely related topic is the identification of

functions in binary code. Recently, security research started

to explore approaches based on machine learning to solve this

problem. BYTEWEIGHT [4] learn signatures for function starts

using a weighted prefix tree, and recognize function starts by

matching binary fragments with the signatures. Shin et al. [47]

use neural networks.

Abstractions recovery from binary code. Source code re-

construction requires the recovery of two types of abstrac-

tions: data type abstractions and control flow abstractions.

Previous work addressed principled methods to recover these

abstractions from binary code. Recent work proposed static

and dynamic approaches to recover both scalar types (e.g., in-

tegers or shorts) and aggregate types (e.g., arrays and structs).

Prominent examples include REWARDS [40], Howard [48],

TIE [39], and MemPick [31]. Other work [22, 27, 28, 34]

focused on C++ specific issues, such as recovering C++

objects, reconstructing class hierarchy, and resolving indirect

calls resulting from virtual inheritance.

Early work on control structure recovery relied on interval

analysis [1, 18], which deconstructs the CFG into nested re-

gions called intervals. Sharir [46] subsequently refined interval

analysis into structural analysis. Structural analysis recovers

the high-level control structure by matching regions in the

CFG against a predefined set of patterns or region schemas.

Engel et al. [25] extended structural analysis to handle C-

specific control statements. They proposed a Single Entry

Single Successor (SESS) analysis as an extension to structural

analysis to handle the case of statements that exist before

break and continue statements in the loop body.

171171

Significant advances has been made recently in the field of

control flow structure recovery. Schwartz et el. [45] proposed

two enhancements to vanilla structural analysis: first, iterative
refinement chooses an edge and represents it using a goto

statement when the algorithm cannot make further progress.

This allows the algorithm to find more structure. Second,

semantics-preserving ensures correct control structure recov-

ery. Yakdan et. al. [57] proposed pattern-independent control

flow structuring, an approach that relies on the semantics

of high-level control constructs rather than the shape of the

corresponding flow graphs. Their method is a departure from

the traditional pattern-matching approach of structural analysis

and is able to produce a goto-free output.

Code query and transformation. Several code query tech-

nologies based on first-order predicate logic have been pro-

posed. They are mainly used in software engineering for

detecting design patterns or patterns of problematic design.

These techniques support specific source languages and they

either introduce new languages for modeling code queries such

as CrocoPat [5, 6] and SOUL [54], or users of these tools

have to write logic rules directly such as JTransformer [36].

Our code query and transformation engine is based on the

DREAM IR and enables malware analysts to directly write

transformation rules as normal C code.

Decompilers. Cifuentes laid the foundations for modern de-

compilers. In her PhD thesis [16], she presented several tech-

niques for decompiling binary code that spans a wide range of

techniques from data-flow analysis and control-flow analysis.

These techniques were implemented in dcc, a decompiler for

Intel 80286/DOS to C. Cifuentes et al. also developed asm2c,

a SPARC assembly to C decompiler, and used it to decompile

the integer SEPC95 programs [17].

Van Emmerik proposed to use the Static Single Assignment

(SSA) form for decompilation in his PhD thesis [24]. His

work shows that SSA enables efficient implementation of

many decompiler components such as expression propagation,

dead code elimination, and type analysis. His techniques were

implemented in the open-source Boomerang decompiler. Al-

though faster than interval analysis, it recovers less structure.

Another open-source decompiler [14] is based on the work of

van Emmerik.

Chang et el. [15] created a modular framework for building

pipelines of cooperating decompilers. Decompilation is per-

formed by a series of decompilers connected by intermediate

languages. Their work demonstrates the possibility of using

source-level tools on the decompiled source to find bugs that

were known to exist in the original C code.

Hex-Rays is the de facto industry standard decompiler [30].

Hex-Rays is developed by Ilfak Guilfanov and built as plugin

for the Interactive Disassembler Pro (IDA). Since it is closed

source, little is known about the exact approach used. It uses

an enhanced version of vanilla structural analysis and has

an engine to recognize several inlined functions. There are

also other decompilers available online such as DISC [38]

and REC [43]. However, our experience suggests that all

previously mentioned decompilers are not as advanced as Hex-

Rays.

Phoenix is an advanced academic decompiler created by

Schwartz et al. [45]. It is built on top of the Binary Analysis

Platform (BAP) [9], which lifts sequential x86 assembly in-

structions into the BIL intermediate language. It also uses TIE

[39] to recover types from binary code. Phoenix uses an en-

hanced structural analysis algorithm that can correctly recover

more structure than vanilla structural analysis. Schwartz et al.

were the first to measure correctness of decompiler as a whole.

Their methods rely on checking if the decompiled code can

pass the automatic checks written for source code.

DREAM is the newest academic decompiler developed by

Yakdan et al. [57]. DREAM uses IDA to extract binary code

and build CFGs. Type recovery is based on TIE. It uses a

novel control-flow structuring algorithm to recover high-level

control construct without relying on patterns. DREAM is the

first decompiler to produce a goto-free decompiled output.

It is assumed that this makes DREAM the decompiler which

currently produces the most readable code. For this reason, we

use DREAM as the basis for our work.

All presented works presented above share two common

characteristics. First, they do not leverage the recovered ab-

straction to simplify the decompiled code, and thus they

miss opportunities to improve readability. At best, minimal

readability enhancements are implemented.

User studies. To the best of our knowledge we are the first

to conduct user studies in the domain of malware analysis.

X. CONCLUSION

In this paper we made two contributions. First, we created

a host of novel readability-focused code transformations to

improve the quality of decompiled code for malware analysis.

Our transformations simplify both program expressions and

control flow. They also assign meaningful names to variables

and constants based on the context in which they are used.

Second, we validated our improvements with the first user

study in this domain, involving both students and professional

malware analysts. The results clearly show that our human-

focused approach to decompilation offers significant improve-

ments, with DREAM++ outperforming both DREAM and Hex-

Rays. Despite these large improvements, we believe we have

only barely scratched the surface of what can be done in this

highly technical domain. We hope that our user study can serve

as a template for similar studies in malware analysis.

ACKNOWLEDGEMENTS

We are grateful to Daniel Plohmann for reaching out to

malware analysts and inviting them to the study. We sincerely

thank all the students and experts that agreed to support our

research by taking part in our user study. We also thank

Houssam Abdoullah for the fruitful discussions on logic-based

code representation and transformation. Finally, we thank the

anonymous reviewers for their valuable feedback.

172172

REFERENCES

[1] F. E. Allen. Control Flow Analysis. In Proceedings of ACM Symposium
on Compiler Optimization, 1970.

[2] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon. From Throw-Away Traffic to Bots: Detecting
the Rise of DGA-Based Malware. In Proceedings of the 21st USENIX
Security Symposium, 2012.

[3] G. Balakrishnan. WYSINWYX What You See Is Not What You eXecute.
PhD thesis, University of Wisconsin at Madison, 2007.

[4] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley. BYTEWEIGHT:
Learning to Recognize Functions in Binary Code. In Proceedings of the
23rd USENIX Security Symposium, 2014.

[5] D. Beyer. Relational Programming with CrocoPat. In Proceedings of the
28th International Conference on Software Engineering (ICSE), 2006.

[6] D. Beyer, A. Noack, and C. Lewerentz. Efficient Relational Calculation
for Software Analysis. IEEE Transactions on Software Engineering
(TSE), 31(2), 2005.

[7] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and
A. Thierry. CoDisasm: Medium Scale Concatic Disassembly of Self-
Modifying Binaries with Overlapping Instructions. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2015.

[8] J. Brooke. Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7, 1996.

[9] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A Binary
Analysis Platform. In Proceedings of the 23rd International Conference
on Computer Aided Verification (CAV), 2011.

[10] R. P. L. Buse and W. R. Weimer. Learning a Metric for Code Readability.
IEEE Transactions on Software Engineering, 36(4):546–558, July 2010.

[11] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring Pay-per-
Install: The Commoditization of Malware Distribution. In Proceedings
of the 20th USENIX Security Symposium, 2011.

[12] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dispatcher:
Enabling Active Botnet Infiltration Using Automatic Protocol Reverse-
Engineering. In Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS), 2009.

[13] J. Calvet, J. M. Fernandez, and J.-Y. Marion. Aligot: Cryptographic
Function Identification in Obfuscated Binary Programs. In Proceedings
of the 19th ACM Conference on Computer and Communications Security
(CCS), 2012.

[14] F. Chagnon. Decompiler. https://github.com/EiNSTeiN-/decompiler.
Page checked 8/20/2015.

[15] B.-Y. E. Chang, M. Harren, and G. C. Necula. Analysis of Low-
level Code Using Cooperating Decompilers. In Proceedings of the 13th
International Static Analysis Symposium (SAS), 2006.

[16] C. Cifuentes. Reverse Compilation Techniques. PhD thesis, Queensland
University of Technology, 1994.

[17] C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to High-Level
Language Translation. In Proceedings of the International Conference
on Software Maintenance (ICSM), 1998.

[18] J. Cocke. Global Common Subexpression Elimination. In Proceedings
of the ACM Symposium on Compiler Optimization, 1970.

[19] C. Collberg, C. Thomborson, and D. Low. A Taxonomy of Obfuscating
Transformations. Technical report, Department of Computer Sciences,
The University of Auckland, 1997.

[20] K. Coogan, G. Lu, and S. Debray. Deobfuscation of Virtualization-
obfuscated Software: A Semantics-based Approach. In Proceedings of
the 18th ACM Conference on Computer and Communications Security
(CCS), 2011.

[21] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Pro-
ceedings of the 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2008.

[22] D. Dewey and J. T. Giffin. Static detection of C++ vtable escape
vulnerabilities in binary code. In Proceedings of the 19th Network and
Distributed System Security Symposium (NDSS), 2012.

[23] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1976.

[24] M. J. V. Emmerik. Static Single Assignment for Decompilation. PhD
thesis, University of Queensland, 2007.

[25] F. Engel, R. Leupers, G. Ascheid, M. Ferger, and M. Beemster. En-
hanced Structural Analysis for C Code Reconstruction from IR Code.
In Proceedings of the 14th International Workshop on Software and
Compilers for Embedded Systems (SCOPES), 2011.

[26] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet Dossier.
Symantec Corporation, 2011.

[27] A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina. SmartDec:
Approaching C++ Decompilation. In Proceedings of the 2011 18th
Working Conference on Reverse Engineering (WCRE), 2011.

[28] A. Fokin, K. Troshina, and A. Chernov. Reconstruction of Class
Hierarchies for Decompilation of C++ Programs. In Proceedings of the
14th European Conference on Software Maintenance and Reengineering
(CSMR), 2010.

[29] G Data SecurityLabs. Uroburos Highly complex espionage software
with Russian roots. G Data Software AG, 2014.

[30] I. Guilfanov. Decompilers and Beyond. In Black Hat, USA, 2008.

[31] I. Haller, A. Slowinska, and H. Bos. MemPick: High-Level Data
Structure Detection in C/C++ Binaries. In Proceedings of the 20th
Working Conference on Reverse Engineering (WCRE), 2013.

[32] S. Holm. A simple sequentially rejective multiple test procedure.
Scandinavian journal of statistics, pages 65–70, 1979.

[33] The IDA Pro disassembler and debuger. http://www.hex-rays.com/
idapro/.

[34] W. Jin, C. Cohen, J. Gennari, C. Hines, S. Chaki, A. Gurfinkel,
J. Havrilla, and P. Narasimhan. Recovering C++ Objects From Binaries
Using Inter-Procedural Data-Flow Analysis. In Proceedings of ACM
SIGPLAN on Program Protection and Reverse Engineering Workshop
(PPREW), 2014.

[35] J. Kinder and H. Veith. Jakstab: A Static Analysis Platform for Binaries.
In Proceedings of the 20th International Conference on Computer Aided
Verification (CAV), 2008.

[36] G. Kniesel, J. Hannemann, and T. Rho. A Comparison of Logic-based
Infrastructures for Concern Detection and Extraction. In Proceedings of
the 3rd Workshop on Linking Aspect Technology and Evolution (LATE),
2007.

[37] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static Disassembly
of Obfuscated Binaries. In Proceedings of the 13th Conference on
USENIX Security Symposium, 2004.

[38] S. Kumar. DISC: Decompiler for TurboC. http://www.debugmode.com/
dcompile/disc.htm. Page checked 8/20/2015.

[39] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled Reverse
Engineering of Types in Binary Programs. In Proceedings of the 18th
Network and Distributed System Security Symposium (NDSS), 2011.

[40] Z. Lin, X. Zhang, and D. Xu. Automatic Reverse Engineering of Data
Structures from Binary Execution. In Proceedings of the 17th Annual
Network and Distributed System Security Symposium (NDSS), 2010.

[41] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[42] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su. X-Force: Force-
Executing Binary Programs for Security Applications. In Proceedings
of the 23rd USENIX Security Symposium, 2014.

[43] REC Studio 4 - Reverse Engineering Compiler. http://www.backerstreet.
com/rec/rec.htm. Page checked 8/20/2015.

[44] H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision
Problems. Transactions of the American Mathematical Society, 74:358–
366, 1953.

[45] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley. Native x86 Decom-
pilation using Semantics-Preserving Structural Analysis and Iterative
Control-Flow Structuring. In Proceedings of the 22nd USENIX Security
Symposium, 2013.

[46] M. Sharir. Structural Analysis: A New Approach to Flow Analysis
in Optimizing Compilers. Computer Languages, 5(3-4):141–153, Jan.
1980.

[47] E. C. R. Shin, D. Song, and R. Moazzezi. Recognizing Functions in
Binaries with Neural Networks. In Proceedings of the 24th USENIX
Security Symposium, 2015.

[48] A. Slowinska, T. Stancescu, and H. Bos. Howard: A Dynamic Excavator
for Reverse Engineering Data Structures. In Proceedings of the 18th
Annual Network and Distributed System Security Symposium (NDSS),
2011.

[49] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A New
Approach to Computer Security via Binary Analysis. In Proceedings
of the 4th International Conference on Information Systems Security
(ICISS), 2008.

[50] Symantec Security Response. Regin: Top-tier espionage tool enables
stealthy surveillance, 2014.

173173

[51] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas. [SoK]
Deep Packer Inspection: A Longitudinal Study of the Complexity of
Run-Time Packers (S&P). In Proceedings of the IEEE Symposium on
Security and Privacy, 2015.

[52] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog.
Theory and Practice of Logic Programming, 12(1-2):67–96, 2012.

[53] G. Wondracek, P. M. Comparetti, C. Kruegel, and E. Kirda. Automatic
Network Protocol Analysis. In Proceedings of the 15th Annual Network
and Distributed System Security Symposium (NDSS), 2008.

[54] R. Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Department of Computer Science, Vrije Universiteit Brussel, 2001.

[55] Z. Xu, J. Zhang, G. Gu, and Z. Lin. GoldenEye: Efficiently and
Effectively Unveiling Malware’s Targeted Environment. In Proceedings
of the 17th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2014.

[56] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A Generic
Approach to Automatic Deobfuscation of Executable Code. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy (S&P),
2015.

[57] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith. No
More Gotos: Decompilation Using Pattern-Independent Control-Flow
Structuring and Semantics-Preserving Transformations. In Proceedings
of the 22nd Annual Network and Distributed System Security Symposium
(NDSS), 2015.

[58] J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and D. Xu. Obfuscation
Resilient Binary Code Reuse Through Trace-oriented Programming. In
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security (CCS), 2013.

APPENDIX A

RECRUITMENT ADVERTISEMENT

To recruit our student participants, we sent the following

email:

Subject: Invitation to a Decompiler Study
we would like to invite you to participate in a research

study conducted by researchers at the University of Bonn and

Fraunhofer FKIE on the quality of binary code decompilers

for malware analysis. The study evaluates three state-of-the-

art industrial and academic decompilers. You will be asked

to complete six reverse engineering tasks. For each task you

will get the decompiled code of one function from a malware

sample and a set of questions regarding its functionality. That

is, you will be analyzing high-level C code. The study is not

aimed at testing your ability but the quality of the decompilers.

The study will take you approximately 3 hours and will take

place at the University of Bonn. There will be several dates

available to take part in the study. This study is anonymous,

so no personally identifying information will be collected

during the study and we will only report the aggregated results

in a scientific publication. In appreciation of your choice to

participate in the project, you will be paid 40 Euro.

To recruit our expert participants, we sent the following

email:

Subject: Invitation to a Decompiler Study
we would like to invite you to participate in a research

study conducted by researchers at the University of Bonn and

Fraunhofer FKIE on the quality of binary code decompilers

for malware analysis. The study evaluates three state-of-the-

art industrial and academic decompilers. You will be asked

to complete six reverse engineering tasks. For each task you

will get the decompiled code of one function from a malware

sample and a set of questions regarding its functionality. The

study is not aimed at testing your ability but the quality of the

decompilers.

The study will take you approximately 2 hours. You will

be given the URL to our online study platform and can

perform the study remotely. You can take breaks between the

tasks, however the tasks themselves need to be completed

uninterrupted. This study is anonymous, so no personally

identifying information will be collected and we will only

report the aggregated results in a scientific publication. In

appreciation of your choice to participate in the project, we

will pass along your comments to the developers of the

decompilers for consideration. Also, you will get free access to

an improved decompiler as soon as the decompiler is released.

You will also be helping the malware analysis community.

APPENDIX B

SURVEY QUESTIONS

A. Questions After each Task

Tabel III shows the questions asked to the participants after

finishing each task. The order of questions in this table is the

same order they were presented to the participants.

B. Questions About Participants’ Demographics

1. Gender?

◦ Male

◦ Female

◦ Prefer not to answer

2. What is your age? (text field)

3. Employment Status: Are you currently?

◦ Student

◦ Other: (text field)

4. How many years experience do you have in malware

analysis? (text field)

5. How many years experience do you have in reverse

engineering? (text field)

6. Which binary code decompilers did you use before?

� Boomerang

� Hex-Rays

� REC

� DISC

� Other: (text field)

APPENDIX C

DETAILED STUDY RESULTS

Table IV shows the detailed study results for the student

participants. For each task, the average score achieved and

corresponding standard deviation are shown. Next, we show

average time needed to complete the task and the correspond-

ing standard deviation. Finally, the number of tasks that were

solved successfully/unsuccessfully is mentioned.

APPENDIX D

DETAILED USER PERCEPTION

Figure 11 shows the participant agreement with each of the

statements in Table III.

174174

45%

30%

58%

40%

47%

30%

12%

19%

27%

46%

58%

33%

42%

50%

24%

38%

17%

61%

31%

44%

23%

49%

33%

64%

63%

75%

53%

18%

8%

29%

37%

59%

26%

34%

22%

50%

68%

53%

92%

14%

27%

3%

37%

27%

65%

42%

61%

23%

I am sure that I correctly understood what this code does

I trust that the decompiled code is correct

It was hard to understand what the variables mean

It was strenuous to understand what this code did

I would rather analyze the assembly code

The code is badly structured

This code looks similar to the way I would write code

This code was easily readable

DREAM++

DREAM

Hex-Rays

DREAM++

DREAM

Hex-Rays

DREAM++

DREAM

Hex-Rays

DREAM++

DREAM

Hex-Rays

DREAM++

DREAM

Hex-Rays

DREAM++

DREAM

Hex-Rays

DREAM++

DREAM

Hex-Rays

DREAM++

DREAM

Hex-Rays

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 11: Participant agreement with the statements from Table III. The positive statements are marked in green and the negative

statements are marked in gray.

175175

STATEMENT
Strongly

disagree
Disagree Neutral Agree

Strongly

agree

This code was easily readable ◦ ◦ ◦ ◦ ◦
It was strenuous to understand what this code did ◦ ◦ ◦ ◦ ◦
This code looks similar to the way I would write code ◦ ◦ ◦ ◦ ◦
The code is badly structured ◦ ◦ ◦ ◦ ◦
I am sure that I correctly understood what this code does ◦ ◦ ◦ ◦ ◦
It was hard to understand what the variables mean ◦ ◦ ◦ ◦ ◦
I trust that the decompiled code is correct ◦ ◦ ◦ ◦ ◦
I would rather analyze the assembly code ◦ ◦ ◦ ◦ ◦

TABLE III: Questions after each task.

Score Time Result
Decompiler Mean Stdev Median Stdev Pass Fail

Task 1
DREAM++ 45.71% 32.78 8.06 3.01 3 4
DREAM 56.43% 31.02 28.55 10.69 4 3
Hex-Rays 25.71% 36.3 57.42 23.65 2 5

Task 2
DREAM++ 71.88% 28.72 29.88 17.55 6 2
DREAM 61.67% 30.51 29.72 6.68 3 3
Hex-Rays 29.29% 33.85 18.58 0.0 1 6

Task 3
DREAM++ 80.83% 15.92 13.96 4.43 5 1
DREAM 32.5% 26.81 31.6 0.0 1 7
Hex-Rays 30.71% 26.65 26.94 0.0 1 6

Task 4
DREAM++ 74.29% 23.06 31.04 7.31 5 2
DREAM 55.71% 28.71 22.52 3.17 2 5
Hex-Rays 43.57% 27.87 50.34 10.86 2 5

Task 5
DREAM++ 81.25% 11.92 22.85 9.67 7 1
DREAM 80.0% 18.48 27.12 6.32 5 1
Hex-Rays 68.57% 21.99 37.13 15.65 4 3

Task 6
DREAM++ 66.67% 23.92 28.97 5.81 4 2
DREAM 30.0% 20.62 53.63 0.0 1 7
Hex-Rays 29.29% 27.31 44.12 0.0 1 6

Decompiler Mean Stdev Median Stdev Pass Fail

TABLE IV: Detailed study results for the students group.

APPENDIX E

PRE-STUDY RESULTS

Table V shows an overview of the results and the comments

made by the participants. Task 8 is the task we added to

balance the study.

176176

PARTICIPANT DECOMPILER PERFORMANCE DURATION PARTICIPANT FEEDBACK

Task 1: Encryption

P1 DREAM++ � 12 m 1.1 DREAM++’s output is similar to what I would write
3.2 I would need 2x more time for Hex-Rays.

P2 Hex-Rays � 16 m 1.3 DREAM++’s is shorter and easier to understand.

Task 2: Custom Encoding

P2 DREAM++ � 9 m 2.1 It was easy to follow and understand the code.
2.2 Hex-Rays code is complex and I would take longer to understand.

P1 Hex-Rays � 42 m 2.3 I was confused about the loop condition.
2.4 The code is difficult to understand.
2.5 default variable names makes it more difficult
2.6 DREAM++: shorter, less variables, loop is easier to understand
2.7 I would give DREAM++ 8/10 and Hex-Rays 4/10

Task 3: Resolving API Dynamically

P2 DREAM++ � 16 m 3.1 DREAM++’s output could be further simplified.
3.2 For the Hex-Rays output I would need at least 45 minutes.
3.3 I find the meaningful names assigned by DREAM++ helpful.

P1 Hex-Rays � 23 min 3.4 Hex-Rays has several redundant variables. DREAM++ output has less variable.
3.5 I find the code in the last loop a spaghetti code.

Task 4: String Parsing

P1 DREAM++ � 22 m 4.1 I find the code easy to understand because it looks like the code I would write
when programming.

4.2 DREAM++’s output is much better.
4.3 It helped me that the DREAM++ has less variables.

P2 Hex-Rays � 43 m 4.4 DREAM++’s code has less variables and thus easier to understand.
4.5 The control flow is easier to understand since no goto statements.
4.6 It is much easier to follow the control flow in DREAM++ output.

Task 5: Download and Execute

P2 DREAM++ � 16 m 5.1 Named constants help.
5.2 No goto spaghetti code.

P1 Hex-Rays � 36 m 5.3 goto statements are confusing: jumping out of the loop and then back in it.
5.4 DREAM++’s output is easier to understand. One can simply read the code

sequentially without worrying about these jumps.
5.5 I cannot say how much this will influence the time I need to solve the task when

analyzing DREAM++’s output.

Task 6: Domain Generation Algorithm

P1 DREAM++ � 33 m 6.1 The control flow inside the function is easy to understand
6.2 For the Hex-Rays code, I would need at least 60 minutes (probably 90 minutes).

Maybe I would give up after that.
P2 Hex-Rays �� 36 m 6.3 Code looks very weird.

6.4 I gave up because I do not think I could understand the code in the loop.

Task 7: Checking OS Version

P1 Hex-Rays � 3 m No Comments
P2 DREAM++ � 7 m No Comments

Task 8: Persistence

P1 DREAM++ � 2 m No Comments
P2 Hex-Rays � 2 m No Comments

TABLE V: Pre-study results. The third column denotes the result of performing the task: � task is completely solved, �� =

task is partially solved, and � = task is not solved.

177177

