
CaSE: Cache-Assisted Secure Execution on ARM Processors

Ning Zhang∗, Kun Sun†, Wenjing Lou∗, Y. Thomas Hou∗
∗Virginia Polytechnic Institute and State University, VA

†Department of Computer Science, College of William and Mary, Williamsburg, VA

Abstract—Recognizing the pressing demands to secure em-
bedded applications, ARM TrustZone has been adopted in
both academic research and commercial products to protect
sensitive code and data in a privileged, isolated execution
environment. However, the design of TrustZone cannot prevent
physical memory disclosure attacks such as cold boot attack
from gaining unrestricted read access to the sensitive contents
in the dynamic random access memory (DRAM). A number
of system-on-chip (SoC) bound execution solutions have been
proposed to thaw the cold boot attack by storing sensitive data
only in CPU registers, CPU cache or internal RAM. However,
when the operating system, which is responsible for creating
and maintaining the SoC-bound execution environment, is
compromised, all the sensitive data is leaked.

In this paper, we present the design and development of
a cache-assisted secure execution framework, called CaSE, on
ARM processors to defend against sophisticated attackers who
can launch multi-vector attacks including software attacks and
hardware memory disclosure attacks. CaSE utilizes TrustZone
and Cache-as-RAM technique to create a cache-based isolated
execution environment, which can protect both code and data
of security-sensitive applications against the compromised OS
and the cold boot attack. To protect the sensitive code and
data against cold boot attack, applications are encrypted in
memory and decrypted only within the processor for execution.
The memory separation and the cache separation provided by
TrustZone are used to protect the cached applications against
compromised OS.

We implement a prototype of CaSE on the i.MX53 running
ARM Cortex-A8 processor. The experimental results show
that CaSE incurs small impacts on system performance when
executing cryptographic algorithms including AES, RSA, and
SHA1.

Keywords-TrustZone; Cache; Memory Encryption

I. INTRODUCTION

Smart devices are playing an increasingly important role

in our daily life. As the most widely deployed CPU in

mobile devices, ARM family processors have been used

in 4.5 billion mobile phones to process and store sensitive

data [1], [2]. For instance, around 51% of U.S. adults bank

online and 35% of them use mobile phones to perform

online transactions [3]. Meanwhile, fueled by the lucrative

black market for mobile malware, an increasing number of

system vulnerabilities have been identified and exploited to

compromise the mobile OS [4]. McAfee Lab reported a 24%

increase in the unique number of mobile malware in Q4

2015 [5].

To enhance the security of embedded systems, ARM

provides a hardware security extension named TrustZone to

protect sensitive code and data of applications in an isolated

execution environment against a potentially compromised

OS [6]. TrustZone has been widely adopted not only in

academic research projects [7], [8], [9], [10], [11], [12],

but also in commercial products [13], [14], [15]. However,

the design of TrustZone cannot prevent physical memory

disclosure attacks such as cold boot attacks [16], [17],

[18], [19]. Since mobile phones are frequently stolen, when

attackers have physical access to the mobile devices, they

can gain unrestricted access to the contents in the DRAM.

Unfortunately, TrustZone does not enforce encryption of

memory in the privileged environment like SGX [20], [21].

As a result, sensitive information, such as cryptographic key

material, is not secured even if it is stored in TrustZone

protected physical memory when adversaries have physical

access to the mobile device.

To protect against physical memory disclosure attacks,

SoC-bound execution solutions have been proposed to move

sensitive data out of DRAM and save them in proces-

sor registers [22], [23], [24], processor cache [25], [26],

[27], [18] or internal RAM [18]. All these SoC-bound

execution solutions can effectively thaw physical memory

attacks under a strong assumption that the OS, which is

responsible for creating and maintaining the SoC-bound

execution environment, can be trusted. The justification for

this design assumption is that when the OS is compromised,

there is no need for attackers to launch a cold boot attack,

because the OS can directly access the entire DRAM.

However, it is not true for ARM processors with TrustZone

support. Though TrustZone can prevent a malicious OS

from accessing protected secure memory, it cannot defend

against cold boot attacks. Thus, it is critical to protect mobile

systems against multi-vector attacks [28] including software

attacks and physical memory disclosure attacks.

In this paper, we propose a cache-assisted secure exe-

cution system called CaSE that can protect against both

software attacks and physical memory disclosure attacks on

ARM-based devices. The basic idea is to create a secure

environment in the CPU cache and use TrustZone to prevent

the potentially compromised OS from accessing the secure

environment. Thus, CaSE can protect both confidentiality

and integrity of the application’s code and data against both

software attacks and physical memory disclosure attacks.

To protect against physical memory disclosure attacks,

CaSE creates an execution environment inside the ARM pro-

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.13

72

2016 IEEE Symposium on Security and Privacy

© 2016, Ning Zhang. Under license to IEEE.

DOI 10.1109/SP.2016.13

72

cessor by loading and executing an application completely

within the CPU cache. Cache is designed to be a hardware

mechanism that is transparent to the system software except

for a small number of maintenance instructions. Therefore,

we solve several challenges to create a cache-assisted exe-

cution environment.

First, to make computation SoC-bound, the application

code, data, stack and heap have to be stored in and only

in the cache. The memory for each component in the

application address space has to be allocated carefully to

eliminate cache contention. Unfortunately, none of the pub-

licly available ARM documents details the mapping from

memory addresses to cache line indexes. In order to correctly

place and optimize application memory in the cache, we

design and perform experiments to obtain cache mapping

schemes of the targeted hardware platform.

Second, once the application is loaded in the cache, we

make use of the hardware-assisted cache locking function

to pin down portions of the cache, without significantly im-

pacting the system performance. With the ability to control

eviction policy on cache lines that store the sensitive data, it

is possible to enable context switching between the protected

application and the rest of the system without concerning

the execution of other programs will cause eviction of the

sensitive contents from cache to DRAM.

Third, since the application is still encrypted when loaded

into DRAM, it needs to be decrypted completely within

cache before being executed. In many processor architec-

tures, including ARM, instruction cache and data cache are

not guaranteed to be coherent. When an application decrypts

its own code back into the process address space, instruction

cache and data cache become incoherent. Such issue of

incoherent cache caused by self-modifying programs is often

resolved by flushing the cache. In CaSE, flushing the cache

fails our efforts of running applications entirely inside the

SoC. To solve this problem, we synchronize the incoherent

data cache and instruction cache by utilizing the unified last

level cache in the processor.

TrustZone is used to protect the cache-assisted isola-

tion environment against an untrusted OS. Cache lines in

TrustZone-enabled ARM processors are built with an extra

non-secure (NS) bit to indicate whether the line belongs to

the secure world or the normal world. Therefore, the rich

OS in the normal world cannot access or manipulate the

cache lines used by the secure world. The secret key to

decrypt the application is saved in the secure world cache.

Without the key, a compromised rich OS cannot decrypt

the application code, which may be misused by attackers

to reverse engineer proprietary algorithms or find potential

vulnerabilities. CaSE offers two running modes depending

on whether secure world cache or normal world cache is

used to create the environment for the SoC-bound execution.

These two modes provide a trade-off between the system

security and the run-time performance.

We implement a prototype of CaSE on the i.MX53 run-

ning ARM Cortex-A8 processor. Using the CaSE, we show

that it is possible to execute a kernel integrity checker and a

suite of cryptographic algorithms including AES, RSA, and

SHA1 in the cache with small performance impacts.

In summary, we make the following contributions,

• We propose a secure cache-assisted SoC-bound exe-

cution framework that can protect sensitive code and

data of applications against both software attacks from a

compromised rich OS and physical memory disclosure

attacks that can gain unrestricted access to the DRAM.

• We present a systematic study on designing and secur-

ing our cache-assisted SoC-bound execution environ-

ment on ARM platforms. We demonstrate the appli-

cability of our system by prototyping several popular

cryptographic algorithms along with a kernel integrity

checker.

• We implement a prototype on the i.MX53 running

ARM Cortex-A8 processors. The experimental results

show that CaSE has small impacts on the system

performance.

The remainder of the paper is organized as follows.

Section II introduces background knowledge. Section III

presents the threat model and assumptions. The CaSE ar-

chitecture is presented in Section IV. The prototype is

detailed in Section V. Section VI provides discussion on the

experimental results. The extensions of CaSE are discussed

in VIII. Related works are presented in Section IX. Finally,

Section X provides the conclusion of the paper.

II. BACKGROUND

We first introduce the ARM TrustZone hardware security

extension. Then we discuss the generic ARM cache archi-

tecture along with the changes in the cache design due to

the addition of TrustZone.

A. ARM TrustZone

TrustZone is a set of hardware security extensions, con-

sisting of modifications to the processor, memory, and

peripherals [6]. It has been supported since ARMv6, and

most of the recent ARM system-on-chip processors support

this security extension. The main purpose of TrustZone is

to provide an end-to-end, complete system isolation for

secure code execution. The isolated environment provided

by TrustZone is often referred to as the secure world, while

the traditional operational environment is often referred to

as the normal world, the non-secure world, or the rich OS.

Based on the world that the processor is in, different

system resources can be accessed. The security configuration
register (SCR) in the CP15 coprocessor is one of the registers

that can only be accessed while the processor is in the secure

world. SCR contains an NS (non-secure) bit that governs the

security context of the processor. When NS bit is cleared,

the processor is in the secure world. When NS bit is set,

7373

Figure 1: Cache Architecture in ARM TrustZone

the processor is in the normal world. The only exception is

when the processor is in the monitor mode, which can be

triggered by either interrupts or secure monitor call (SMC)
instruction.

B. Cache Architecture in ARM Processors

Cache is considered to be the first level memory system

in ARM. It is usually constructed with a fast and expensive

static random access memory (SRAM). Most of the current

processors have multiple levels of cache, including level one

(L1) cache, level two cache (L2), and translation lookaside

buffer (TLB). Modern high-end processors typically have 32

KB to 1 MB L1 cache, and the size of L2 ranges from 256

KB to 2 MB. Since cache is small compared to the total

amount of addressable memory, N-way set associative table

is often used to organize the cache.

A typical 4-way set associative table is shown in Figure. 1.

A physical memory address is indexed into k cache lines,

where k is the set size. As there are four tables of size k,

the way number is four. Therefore, for any given memory

address, it can be in kth set entry of any way. For each cache

line, there is a tag carrying the hash value of the index along

with the status bits. With the introduction of TrustZone in

the ARM architecture, all levels of cache have been extended

with an additional NS tag bit, which records the security state

of the transaction that accesses the memory [6]. It eliminates

the need for a cache flush when switching between the two

worlds, significantly improving the system performance. The

content of the caches, with regard to the security state, is

dynamic. Any cache line can be evicted to make space for

new data, regardless of its security state. In other words, it

is possible for a secure cache line fill to evict a non-secure

cache line, and vice versa.

III. THREAT MODEL AND ASSUMPTIONS

A. Threat Model

Sophisticated cyber attacks nowadays involve multi-stage,

multi-vector attacks [28]. We assume that attackers can

use both software attacks and physical memory disclosure

attacks to obtain sensitive information in the DRAM.

1) Software Attack: Due to the increasing complexity of

the mobile OS kernel, attackers can often exploit various

kernel vulnerabilities to compromise the mobile OS. There-

fore, we assume that successful software attacks can lead to

the compromise of the OS and thus gain unrestricted access

to not only DRAM but also the CPU cache and registers.

It is well known that an adversary can use direct memory

access (DMA) attacks [29] to gain arbitrary access to phys-

ical memory on desktop computers through DMA channels

such as FireWire, Thunderbolt, and PCI Express. Though

DMA ports are not commonly available on current mobile

devices and USB ports are not DMA capable, it is still

possible for the attacker to misuse built-in DMA capable I/O

devices such as LCD controller and storage controller [4].

Therefore, we consider DMA attack as an attack vector

available to the compromised OS.

2) Physical Memory Disclosure Attack: With physical

access to the mobile devices, there are many types of

physical attacks, and it is hard to anticipate all of them.

For example, if the JTAG interface is enabled on production

systems, the attacker can connect a JTAG debugger to

manipulate system states of the normal world. Fortunately,

the secure world is protected from JTAG with the built-in

protections from TrustZone. Instead, the attacker can use

other advanced hardware to examine SoC internals or change

DRAM state [30].

In this work, we focus on physical memory disclosure

attacks, such as cold boot attacks [16], [17], [31], which

exploit the remanence effect of physical memory to gain

unrestricted read access to system memory. In general, there

are two types of cold boot attacks: (1) resetting the computer

to load a malicious OS from the attacker, and (2) unplugging

and placing DRAM chips into another machine controlled

by the attacker. Moreover, attackers can use bus snooping

attacks [32] to capture the sensitive data when it is being

loaded from or written to the DRAM. Note that though

TrustZone can be used to protect secure code execution

against the compromised rich OS in the normal world, the

DRAM used by the secure world is still vulnerable to a

physical memory disclosure attack since no encryption is

enforced on the DRAM.

B. Assumptions

We assume the ARM platform supports the TrustZone

hardware security extension. The high assurance boot (HAB)

and system isolation between the two worlds provided by

TrustZone can be trusted. We assume the secure application

running in the secure world can be trusted and will not

leak its information deliberately. The attackers can launch

various software attacks and physical memory disclosure

attacks in order to freely access the sensitive data in DRAM

memory. Moreover, after gaining the root privilege in the

normal world through software attacks, the attacker can also

access the CPU cache and registers of the normal world

7474

inside the processor. However, she will not be able to access

the processor cache or registers in the secure world due

to the protection of TrustZone. We assume that attackers

with physical access to the mobile devices cannot utilize

sophisticated hardware to access the SoC-bound data in

cache or registers. Side channel attacks such as timing and

power analysis are out of the scope of this paper.

IV. CASE ARCHITECTURE

CaSE is designed to provide a secure and isolated SoC-

bound execution using the commodity hardware components

running ARM processors. We first present our security goals

and then give a system overview which focuses on how these

goals are achieved in CaSE.

A. Security Goals

To protect against both software attacks and physical

memory disclosure attacks, we design CaSE to satisfy the

following security goals:

1) SoC-bound Execution Environment: The computation

and memory of the application shall be within the physical

boundary of the SoC. Since physical memory disclosure

attacks are capable of revealing all memory contents outside

the SoC, CaSE needs to use the memory that is within the

physical boundary of the SoC, such as on-chip memory or

processor cache to create a SoC-bound execution environ-

ment.

2) Isolated Execution Environment: The system shall

be able to provide an isolated execution environment. In

other words, it shall be able to bootstrap and maintain an

execution environment that is completely isolated from the

compromised mobile OS, including separation for processor,

memory, and peripherals. On ARM processors, TrustZone

can be used to achieve this goal.

3) Memory Protection Outside the Execution Environ-
ment: To protect both integrity and confidentiality of ap-

plication code and data, all program information outside the

physical boundary of the SoC shall be protected by cryp-

tography. More specifically, code and data of the application

shall be encrypted when they are saved into external DRAM

due to memory paging, context switch, etc.

B. CaSE Overview

The overall system architecture is shown in Figure. 2.

Cold boot attackers can gain unrestricted read access to all

external DRAM, including those used by the system as either

the secure world memory or the normal world memory. On

the other hand, software attacks allow adversaries to access

and manipulate memory contents of the normal world. The

protected application is encrypted in the DRAM to ensure

its confidentiality. When a user invokes an application, the

CaSE controller will first load the encrypted application into

the L2 unified cache. Then CaSE controller verifies and

decrypts the application completely within cache and sets

Figure 2: System Architecture

up the execution environment with cached memory. Using

the hardware-assisted memory protection by TrustZone, the

cache-based execution environment is isolated from software

attacks from the rich OS in the normal world. Lastly, the

application context is encrypted before written to memory

such that sensitive information never leaves the SoC in plain

text.

By executing applications only in the cache of an iso-

lated environment provided by TrustZone, CaSE can defend

against both software attacks that compromise the OS in the

normal world and physical memory disclosure attacks such

as cold boot attacks.

C. Constructing the SoC-bound Execution Environment

SoC-bound execution ensures that the execution of a piece

of code is entirely enclosed within the physical boundary of

the SoC. More specifically, the code, data, stack, and heap

of the application should all be allocated to the CPU cache.

Therefore, cold boot attacks cannot read either the program

state or the program itself. To enable a SoC-bound execution

in CPU cache, we need to solve several key challenges.

First, none of the publicly available ARM documents

describes the mapping from physical memory address to

cache line index in the cache way. We have to design and

perform experiments to figure out this mapping for both L1

and L2 caches in ARM processors. Our results indicate that

the cache organization of Cortex-A8 is similar to many other

platforms in x86 systems [33], [34]. Second, since there is

no direct access to cache lines from system software, we

need to develop a method to precisely load memory into

cache lines and avoid cache eviction during the load, run

7575

and exit stages of the application. Third, when processor

cache is used to store both code and data, self-modifying

programs can cause cache incoherency between Instruction

Cache (I-Cache) and Data Cache (D-Cache) in the first level

cache. We solve this problem by redirecting memory write

to the second level unified cache, where the cache lines are

used for both instruction and data.

By tackling the three challenges above, our SoC-bound

execution can load both code and data into L2 cache and

protect the confidentiality of code and data against cold boot

attack. However, a compromised OS from software attacks

can still access the contents of the CPU cache. Therefore,

CaSE also needs to isolate the SoC-bound execution from

the compromised OS.

D. Isolating the SoC-bound Execution from Rich OS

TrustZone provides an NS flag in each cache line indicat-

ing its security state. Based on the security context of the

system, CPU cache is marked as either secure or normal.

We call the cache lines used by the secure world secure
cache and the ones used by the normal world normal cache.

TrustZone can ensure that the rich OS in the normal world

cannot access the secure cache. Thus, a straightforward

solution is to use secure cache to create the SoC-bound

execution environment, as shown in Figure. 2. Alternatively,

it is possible to use normal cache to protect sensitive code

and data against the rich OS. More details can be found in

Section V-A.

E. Memory Protection Outside the Execution Environment

In CaSE, processor cache is used to create a SoC-bound

execution environment. As long as sensitive data resides

within this environment, it will remain protected. However,

SoC-bound memory, such as cache, is often small in size.

When the protected application in CaSE attempts to relin-

quish resource for other applications, the program context

needs to be saved to external DRAM. In order to protect the

confidentiality and integrity of these sensitive data, any data

leaving the SoC boundary needs to have a checksum, which

is then encrypted along with the data. When this data is

loaded back in the SoC environment, it is decrypted within

the SoC and the integrity is verified with the checksum.

Due to the lack of hardware support automatic encryp-

tion/decryption like Intel SGX [20], the cryptographic pro-

tection for memory has to be provided by CaSE.

V. DESIGN AND IMPLEMENTATION

In this section, our design and implementation of the

CaSE architecture on the i.MX53 platform is presented.

Two execution modes using two TrustZone worlds are first

presented. The challenges and our solutions in creating

a cache-bound execution environment are then discussed.

Next, details on how to isolate the running environment

from the rich OS and secure the data outside the SoC are

Figure 3: Execution Flow using Secure Cache

presented. Lastly, the locked cache layout in our prototype

and two secure application prototypes of a cryptographic

library and a kernel integrity checker in CaSE are discussed.

A. Two SoC-bound Execution Modes

SoC-bound execution can be performed in either the

secure world or the normal world, and these two execution

modes offer a trade-off between system security and perfor-

mance. The overall execution flows of the two modes are

introduced in the following.

1) Execution Flow Using Secure Cache: The CaSE se-

cure mode uses secure cache to create the SoC-bound exe-

cution environment. As shown in Figure. 3, when a request

to run a secure application is received, the CaSE controller

loads the encrypted application in the secure cache. After

being decrypted completely within the secure cache, the

application will run in the secure world until it finishes

and sends the results to the normal world. Since the rich

OS cannot access secure cache, it is not necessary to clean

the application execution environment. Figure. 3 shows that

in the second run of the same application, the processor

can simply branch to the application entry address in the

secure cache. Thus, for frequently invoked applications such

as cryptographic modules, this property can improve the

system performance by eliminating repeated loading and

decryption of the application. However, since we run the

secure application in the secure world, it will increase the

size of the code running in the secure world of the system.

2) Execution Flow Using Normal Cache: Since the nor-

mal cache can be read, flushed or invalidated by the rich OS,

it seems difficult, if not impossible, to protect normal cache

from a compromised rich OS. CaSE solves this problem by

relying on temporal separation rather than space separation

of the resource. To achieve the temporal isolation between

the secure application and the rich OS, we suspend the rich

OS when the secure application is running in the normal

world.

As shown in Figure. 4, when a secure application needs

to run, the rich OS will help load the encrypted application

into the cache and set up the execution environment in the

normal world. After the system switches to the secure world,

the rich OS will be suspended. Then the CaSE controller will

7676

Figure 4: Execution Flow using Normal Cache

check the integrity of the application code and its execution

environment. If successfully verified, the application payload

is decrypted in the cache by an unpacker provided by the

CaSE framework. Lastly, control flow will be directed to the

application entry function from the unpacker.

For most secure applications such as kernel integrity

checking, there is no information that needs to be retained

between consecutive executions. However, there are some

applications whose states between executions should be kept.

Since the application context stored in the CPU cache cannot

be protected once the control flow is directed back to the rich

OS, we need to encrypt the application context before saving

it to the memory.

The benefit of using normal cache is to reduce code

running in the secure world since the application runs in

the normal world and it cannot compromise the secure world

even if it has a vulnerability. When the application execution

makes use of the normal world cache, it is necessary to

clean the application context including the cache lines and

registers before exiting the application and resuming the rich

OS.

As a result, the environment needs to be instantiated and

torn down each time the same secure application runs, which

has an impact on the system performance.

B. Cache-Assisted SoC-bound Execution on ARM Processor

We tackle three challenges in creating a cache-based

SoC-bound execution. First, to optimize the use of the

limited cache size, the mapping from memory address to

cache lines has to be explored. Unfortunately, neither the

architecture document nor the processor document provides

details on this translation. We design experiments on real

ARM processors to figure out the detailed mappings. The

second challenge is to load and lock both code and data

of the application along with the execution environment

within the physical boundary of the processor. The third

challenge is to handle self-modifying programs, particularly,

the decryption of the packed application code in the cache.

1) Reversing Cache Structures: One of the key enablers

of our system is the ability to reliably maintain contents in

the processor cache. In order to maximize cache utilization,

we need to know exactly how the cache controller maps

memory addresses to cache set indexes. Only with such

knowledge can we precisely and reliably utilize the entire

cache. To figure out the mapping from physical addresses to

cache set numbers, we first flush both L1 and L2. An LDR
instruction is used to trigger a cache line fill on the memory

location. Once the cache line is filled, we use STR instruction

to change the values in the cache. Individual cache lines are

then invalidated by set and way iteratively. When the set and

way being invalidated is the same as the set and way that was

used for the cache line fill, the loaded value after invalidation

would be different from the value before the invalidation. By

repeating this test on different physical memory addresses,

we successfully reverse the cache indexing scheme. On

ARM Cortex-A8 processors, we conclude that the mapping

from memory to cache is linear.

2) Loading in and Locking down Cache: It is critical

in CaSE to load and store the application and its execu-

tion environment completely only within the cache. ARM

architecture offers the ability to lock down cache entries so

that system developers can optimize the cache performance

on embedded devices. We utilize this hardware function to

lock all the cache lines used by the secure application. The

pseudocode for cache locking is shown in Listing 1.

The first step of loading memory into cache is to configure

the memory address to be cacheable. Memory in the ARM

architecture can be categorized into three types, strongly or-
dered, device, and normal. Furthermore, for normal memory,

there are three caching strategy, write-back, write-through,

and write-allocate. Write-back and write-through are mutu-

ally exclusive. The caching attributes on ARM processors

are controlled by various registers, including system control
(SysCtrl) register, aux control register, L2 lockdown register,

L2 aux control register, as well as page table entry. The pag-

ing table entry controls the caching strategy of the address

location using the type extension (TEX), bufferable (B), and

cacheable (C) bits. The combination of the 4 bits yields

various caching strategies for the memory address location.

However, it can be remapped via the tex remap enable (TRE)
remapping capability in ARM. TRE allows an operating

system to have finer granularity control of the types and

provides additional room to store OS specific information.

When TRE is enabled, memory attributes are mapped to

primary region remap register (PRRR) and normal region
remap register (NRRR).

Since any data written to write-through cacheable memory

is directly forwarded to DRAM, we set the cache strategy of

the targeted memory area to be write-back, so that memory

modifications will be buffered in the cache.

ARM processors provide hardware-assisted cache locking

on L2 cache as part of coprocessor functions in CP15. The

cache lock register allows system designers to enable and

disable the allocation of individual cache way. Once the

cache allocation is disabled, the locked cache lines will never

be evicted. On the i.MX53, the granularity of L2 cache lock-

ing is by individual ways of the cache. Other platforms have

7777

1 d i s a b l e l o c a l i r q () ;
e n a b l e C a c h i n g (memArea) ;

3 d i s a b l e C a c h i n g (l o a d e r C o d e) ;
d i s a b l e C a c h i n g (l o a d e r S t a c k) ;

5 i n v a l i d a t e c a c h e (v i r t u a l a d d r e s s o f memArea) ;
unlockWay (wayToFi l l) ;

7 lockWay (al lWay XOR wayToF i l l) ;
whi le (has more t o l o a d in memArea)

9 LDR r0 , [memArea + i] ;
lockWay (wayToF i l l) ;

11 unlockWay (al lWay XOR wayToFi l l) ;

Listing 1: Lock Memory in Cache

different cache locking functionality enabled. For instance,

Tegra 3 supports a finer cache locking granularity on each

cache line [35].

Using the hardware cache lock is straightforward, but the

challenge lies in how to place memory contents in L2 cache

instead of L1 cache. This is because we can only lock cache

lines in L2 cache. The presence of a cache line in one

cache level does not necessarily guarantee its appearance

in the other levels. For inclusive cache, any cache line in

L1 cache is also in L2 cache. Intel processors largely adopt

this inclusive cache paradigm [36]. On the other hand, for

exclusive cache, any line in L1 cache is not in L2 cache,

and AMD processors usually follow this exclusive cache

paradigm [37]. However, for ARM Cortex-A8 processors,

there is no indication of inclusiveness or exclusiveness in

any document. A closer examination of the cache fill strategy

reveals that when there is a cache miss on data or instruction,

a cache line fill to both L1 and L2 from the advanced

extensible interface (AXI) bus will be triggered. Thus, cache

line should be cleaned before executing LDR instruction on

a memory address.

The code and data that are used in the cache loading have

to be configured to the non-cacheable attribute. Otherwise

the code itself can be loaded in the cache, causing unin-

tended evictions of the cache lines that need to be locked.

Upon completion of cache filling, the cache way can then be

locked. With the cache lines locked in L2 cache, the physical

memory addresses corresponding to these cache lines can

be used as cache-based memory. In the ARM Cortex-A8

processor, L2 cache locking is achieved via the L2 cache
lockdown register [38].

3) CPU Bound Application Decryption: One of the sys-

tem design goals of CaSE is to offer code confidentiality,

which is a challenging task. First, the file storage is in the

normal world, so the application has to be encrypted while

it is saved in the file system. Second, memory contents

of neither the normal world nor the secure world are

protected from cold boot attacks, so the application has to be

encrypted in the DRAM as well. Lastly, the rich OS can be

compromised by malware. As a result, the application can

only be decrypted either when the rich OS is not running

or in the secure world where the rich OS cannot interfere.

One of the well-established binary manipulation techniques,

code encryption [39], [40], is used to tackle this challenge.

We develop a cache-only packer, CaSE Packer, which uses

AES to encrypt the code and data of the CaSE application.

The entire code to be executed is loaded into cache. The

unpacker then decrypts the encrypted code and places them

back in the same position inside the cached memory, so

that the code will remain in cache. CaSE packer, however,

has a unique difference from existing application packers on

handling the decryption process, due to the cache coherency

problems in the ARM platform.

In modern processors [41], [37], [36], [38], the L1 cache

(also known as the primary cache) is often split into two

parts of equal size, the instruction cache (I-Cache) to speed

up executable instruction fetch and data cache (D-Cache) to

speed up data fetch and store. The instruction cache is often

preloaded with binaries of the executable speculatively using

algorithms in the hardware. However, this magic speedup

falls apart when application modifies its own code in mem-

ory. In many processor architectures including ARM, the I-

Cache and D-Cache are not guaranteed to be coherent, and

it is up to the system software to handle cache coherency.

During the decryption of the application payload, the

ciphertext needs to be loaded into the cache first. This

will trigger a cache line fill into the L1 cache. When the

ciphertext is decrypted, the results are stored using an STR
instruction. Due to the close locality between the ciphertext

and plaintext, the cache lines that were filled with the

encrypted text will be used by the processor to store the

decrypted text. Since I-Cache and D-Cache are separated in

L1, the STR instruction will place the decrypted plaintext

code in the L1 D-Cache of the processor. When the control

flow is branched to the newly decrypted code, the L1 I-

Cache will fetch the instructions from the L2 unified cache

instead of the L1 D-Cache because of the cache hierarchy.

Therefore, the processor will execute the encrypted code,

which will most likely generate an undefined instruction

exception.

This problem is often described as the cache coherency

issue between I-Cache and D-Cache. The recommended

approach to this problem is to flush out the affected portion

or the entire cache to the point of coherence (PoC). Cache

contents are written to memory to make sure all masters

in the system see the same copy of memory content.

Unfortunately, this approach is not suitable for SoC-bound

execution, since flushing out contents to memory defeats

the purpose of SoC-bound execution. On some platforms, it

is also possible to use cache maintenance instruction clean
to point of unification (PoU) to synchronize the internal

caches. PoU is the point by which the instruction and data

caches and the translation table walks of that processor are

guaranteed to see the same copy of a memory location [41].

The location of PoU is platform and environment dependent.

7878

For example, the PoU for Cortex-A15 can be either the L1

data cache or the external memory [42]. Though the location

of PoU for ARM Cortex-A8 processor is not explicitly

documented in the manual, we find through observations

in the platform that it is possible to use the clean to PoU

instruction to synchronize the internal I-Cache and D-Cache.

Besides using specific instruction, we also devise a

method to manually load code into unified cache so that

the same method can be used on other platforms where

synchronized to PoU instruction is not suitable. Since L2

is a unified cache, synchronization between I-Cache and D-

Cache is not needed. We first invalidate the cache lines in L1

for the code memory location. After L1 is cleaned, we use

write-alloc feature in L2 cache to write to only the unified

L2 cache. When write-alloc in the L2 auxiliary control is

set, STR instruction will trigger only the L2 cache fill. We

use this method in CaSE packer to enable the decryption of

the application.

C. Securing Cache-Assisted SoC-bound Execution

It is not an easy task to secure the cache-assisted SoC-

bound execution on ARM processors. In the following, some

key design efforts to secure the execution environment are

presented.

1) Key Management: Applications are encrypted and

packed with a secret key to protect code confidentiality.

This key should be stored in the secure storage provided

by TrustZone. In our implementation, we make use of the

second generation Security Controller (SCC) equipped on

the i.MX53 SoC. Using the platform key that is stored in

e-Fuse based secure storage on SCC, we encrypt the CaSE

master key and store it along with the TrustZone code. When

the system boots, the master key is decrypted and stored in

the secure cache.

2) Secure Code Loading in Normal Cache: In order to

load the CaSE application in the normal cache, the loading

operation should be carried out in the normal world. Since

the rich OS may be compromised, we must verify the

integrity of the encrypted application code in the secure

world. However, according to the TrustZone cache design,

the secure world cannot access the contents in the normal

cache. Therefore, it becomes a challenge for the integrity

checker in the secure world to verify the integrity of CaSE

application in the normal cache.

We use the cache array access feature in the CP15

coprocessor to overcome this difficulty. The cache array

function allows a process running in the secure world to

retrieve the contents of cache lines whether they are tagged

as secure or non-secure. Specifically, we use the c9 function

to read the cache tags and lines into the general purpose

registers for inspection. However, since the parameter used

in this function is the physical cache array index instead of

the cache line index and there is no one-to-one mapping from

the array index to the memory location, we have to carry

out several experiments to work out the mapping from the

physical array index to the cache set and way number. After

obtaining the cache tag, we can reconstruct the physical

address for each cache line. Then, the memory contents can

be used to verify the integrity of the code in the normal

cache.

The application stored in the cache is indexed and tagged

with physical address, while the processor executes in-

structions using virtual address. If an attacker inserts a

malicious translation from the virtual address to the physical

address, she could redirect the control flow of CaSE into

any arbitrary physical address [43]. To defend against this

memory address translation redirection attack, the translation

needs to be locked down in the TLB cache as well.

TLB lockdown function in Cortex-A8 processor is based

on the modification of eviction policy [41]. To lock down an

entry, the TLB cache for the address has to be cleared out

first. The TLB lockdown register is then modified to indicate

which TLB line to fill for the next result of translation table

walk. To fill the intended address translation at this position,

a TLB preload instruction is executed to force hardware to

perform a page table walk. Once the cache is filled, the

TLB lockdown register is modified again to never evict the

entry to achieve the TLB lock. However, similar to the

L2 cache, TLB cache is also extended with an extra NS
bit for the TrustZone architecture. Therefore, if the TLB

preload instruction is performed in the secure world, the

corresponding translation is for the secure world only. To

resolve this problem, we fill the TLB in the normal world

and then use the TLB data access array function in CP15

coprocessor to verify the translation.

3) Application Context Sanitization: The CaSE applica-

tion context consists of the decrypted code, the decrypted

data, stack, and heap. All of them are considered sensitive.

When the application finishes execution, the context needs to

be sanitized. There are two ways to perform the sanitization:

overwriting the cache contents or invalidating the cache

lines.

When cache overwriting is used, all sensitive cached

memory locations are written with a known pattern using

STR instruction. Then all the cache lines are flushed out to

the DRAM such that the changes to the memory is written to

DRAM and is no longer cached. When the cache invalidation

method is used, all sensitive cache memory addresses are

invalidated using the cache maintenance operation invalidate
by modified virtual address (MVA). When the cache memory

is invalidated, the cache line is marked as invalid. Thus, all

values in the cache line pertaining to the memory address

become invalid.

We choose to use the cache invalidation method because

it can be used to verify that no sensitive context information

is leaked to the memory. To check for cache leaking after

the execution of a protected application, we first write pre-

defined pattern to the memory location that would be used

7979

for the application runtime environment before loading the

application. The cache is then flushed to make sure the

predefined pattern is in the DRAM. At the end of execution,

cache lines used for application execution are invalidated. If

there is no cache leak, the result of the LDR instruction

should return the pre-defined pattern. Otherwise, if the

sensitive cache lines had been evicted during the execution

of the protected application, then the value will be different.

4) Handling Cache Coherency between TrustZone
Worlds: The cache coherency issue between the normal

world and the secure world creates not only the challenge for

integrity verification, but also the delivery of computation

output. In some application configurations, when the

output is cached in the secure world, it is not immediately

available to the normal world. For our cryptography library

prototypes, the results of encryption that are cached in the

secure world are not accessible by the CaSE driver in the

normal world until the cache lines are evicted.

To make the output immediately available to users in the

normal world, the CaSE application in the secure world

has to flush the outputs that are being cached. However,

we cannot simply flush the entire cache, since sensitive

contents in the cache will also be written to DRAM. There

are two methods to solve this problem: clean by MVA or

clean by set and way of individual level of cache. When

the clean by MVA method is used, CaSE needs to invoke

clean by MVA for all the memory addresses of the output

buffer. When the clean by set and way method is used,

CaSE needs to walk through all the non-sensitive sets in

all ways across all cache layers. More specifically, since L1

does not provide locking capability, there is no way to know

if a line contains sensitive data or the computation results.

Therefore, all the lines in L1 are clean. However, for L2,

we know the memory organization of cache ways that are

locked. Thus, we can clean all the non-sensitive sets and

ways. Our implementation uses the aforementioned method

based on the size of the output. When the size of the output

is large, it is better to flush the all the non-sensitive cache.

On the i.MX53, c7 c10 system coprocessor function is

invoked with opcode 1 to clean the set and way, and the

same function is invoked with opcode 2 to clean by MVA

to point of coherency (PoC). Point of coherency is where the

processor core and other masters such as DMA controller

see the same copy. For i.MX53, PoC is the DDR memory.

5) Securing Across Power States: An energy-conscious

mobile device will switch the processor into different power

states to save energy. When the processor is put in the

sleep state, power supply to processor cache is cut down,

so all data stored in the cache will be erased. This poses a

challenge for CaSE, which uses processor cache to create

the execution environment.

A simple solution is to keep the cache powered. Both

L1 cache and L2 cache can be placed in a different power

domain than the integral core. However, this approach has

its drawback in power consumption. Modern cache is often

constructed with SRAM, which consumes more power than

DRAM. An alternative method is to store the cache context

in memory that is physically inside the SoC, such as

the on-chip RAM (OCRAM). However, many BSPs have

claimed the usage of OCRAM for other subsystems [44].

Furthermore, some platforms might not have built-in support

to include OCRAM in the secure domain.

In CaSE, we adopt the method that encrypts the cache and

saves it in DRAM when the device is in power saving modes.

When the system sleeps, the rich OS notifies the CaSE

controller to encrypt the cache contents with the master

key and then save them into the DRAM. When the system

resumes, the contents are loaded back from the DRAM into

the cache along with the master key recovered from the

secure storage.

D. Application Development

CPU Cache is one of the key elements to improve system

performance in modern processor design. Cache-assisted

SoC-bound execution system will inevitably have an impact

on the system performance when locking down portions

of cache for special usage. Therefore, it is important to

optimize the usage of locked cache. We first present the

general layout of the locked cache and then our prototypes

of two secure applications using CaSE.

1) Layout of Locked Cache Way: In a typical layout of

CaSE application, we place the master key, which is used

to decrypt CaSE applications in the first set of the way,

followed by the encrypted code and data sections of the

CaSE application. CaSE packer code and the environment

setup code are immediately after that. Lastly, the rest of the

cache lines in the way are used for stack and heap of the

application.

There are several essential components for the execution

of a binary image, including the libraries, the virtual memory

address space layout, code packer/unpacker, and the stack

and heap. First, applications cannot use the library provided

by the rich OS, since the library integrity cannot be guar-

anteed. Therefore, CaSE applications need to be statically

linked into the binary itself. For our prototypes, we make an

effort to modify all the code so that they are self-contained.

This is also a byproduct of the effort to minimize the binary

code size.

Second, the physical address of the application address

space needs to be carefully crafted to fit in a single cache

way without causing a collision on the same cache set. We

create a set of linker scripts to work with our customized

CaSE loader instead of using the default loader and linker

script. More specifically, the linker script configures the start

address of the binary and the section arrangements.

Third, a CaSE packer is used to encrypt the application

binary to provide code confidentiality outside the cache. The

packer in our prototype uses AES encryption in CBC mode.

8080

Using our own loader simplifies the design of the packer

and unpacker, since it is not necessary to implement all the

ELF file standards.

Lastly, a custom heap and stack is provided. The stack

is allocated by the CaSE loader from the cache memory.

Furthermore, we create a simple heap management library,

which allocates heap spaces in the cached memory, as well.

2) Two Secure Applications: Unlike the previous ap-

proaches [22], [24], [26] that are designed for a specific

algorithm, CaSE offers a generic execution environment. In

other words, users do not need in-depth knowledge of the

application to create a SoC-bound execution. We develop

two secure applications using CaSE application framework.

First, we build a cryptography library by porting AES,

RSA, and SHA1 from polarSSL library [45]. Cryptography

is one of the fundamental building blocks in modern day

computer and network security. Due to the small size of

cryptography libraries, it is feasible to place them in the

secure cache. The unique advantage of executing in the

secure world is the ability to switch context without en-

vironment sanitization. As shown later in the experiments,

this execution mode has little performance impact on the

rich OS, yet offering enhanced security protection. We place

AES, RSA and SHA1 all into one library called CaSE

crypto library. By combining SHA1 and RSA in the same

library, we are able to save some code space due to the use

of shared library. Lastly, we need less than one L2 cache

way to construct the CaSE cryptography library execution

environment.

Second, we build a kernel integrity checker that is invoked

periodically to verify the integrity of the rich OS kernel code

page. In particular, we calculate a SHA1 checksum of the all

the kernel code pages to make sure that it is not modified

by any malicious software. Most development efforts are

to remove the dependency on the rest of the polarSSL

library and the c standard library. We run the kernel integrity

checker as normal world SoC-bound execution application,

since there could be different implementations of system

integrity check and it is difficult to include all variances

in the secure code base of the system. Thus, the normal

world execution environment is more suitable for the kernel

integrity checker.

VI. EXPERIMENTAL EVALUATION

In this section, we first introduce the experiment setup

in VI-A. The sizes of various system codes are exam-

ined in VI-B. Cache behavior on the platform is studied

in VI-C. The last part of the evaluation in VI-D examines

the performance of CaSE application system as well as the

performance impact of cache locking on the system.

A. Experiment Setup

We implement our prototype of CaSE on the FreeScale

i.MX53 mobile development board. It features a single ARM

Cortex-A8 processor with 1GB DDR3 DRAM and 128 KB

onboard internal RAM (iRAM) and 16 KB secure iRAM.

The system boots with onboard flash along with the uboot

and kernel supplied by the Micro-SD card inserted. We use

the FreeScale Android 2.3.4 platform with a 2.6.33 Linux

kernel. There are two levels of cache in the ARM Cortex-A8

processor. Both the L1 data cache and L1 instruction cache

are 4 way 128 set associative cache with 32 KB size. L2

cache is an 8 way 512 set associative cache with 256 KB

size. The Android OS is ported from secure domain to the

normal domain based on the Board Support Package (BSP)

published by Adeneo Embedded [44].

B. Code Size

The system TCB consists of three components. The first

component is the trusted boot code, which is about 500

source line of code (SLOC). The second component is CaSE

controller, which is responsible for handling CaSE environ-

ment initialization and clean up. It has approximately 500

SLOC of code. The third component is related to specific

application implementation. In CaSE, we use SHA1 to check

the integrity of isolated execution environment cache, and

AES to encrypt application state while it is paused. The

SHA1 implementation is 166 SLOC, and the AES is 579

SLOC. In total, there is 745 SLOC for the cryptographic

libraries. This additional SLOC does not necessarily have to

be included in the TCB if the system only requires secure

execution mode.

While SLOC number offers a good estimation of the size

of the TCB, it is also important to show the size of the

binary code for SoC-bound execution. This gives an idea of

the feasibility of fitting the application in the cache. On the

Cortex-A8 processor, one L2 cache way is 32 KB.

Application Code+Data (KB)

AES 2.4

RSA 10

SHA1 5

CaSE Crypto Lib 17.4

Kernel Integrity Checker 6.6

CaSE Packer 2.8

Packed CaSE Crypto Lib 20.4

Packed Kernel Checker 9.5

Table I: CaSE Application Size

The code size shown in Table I is compiled from C and

assembly source code using ARM Thumb-II encoding. We

turn on the ARM interworking mode during code generation

in the compiler. This increases the code size but makes

it easier to interwork with the ARM code in our security

monitor. With careful coding between function calls, one

can remove this compiler flag to further reduce the size of

the binary code.

8181

C. Cache Bound Verification

Cache-bound verification is designed to verify the security

attributes of CaSE. Specifically, there are several aspects of

the system we want to verify. First, we need to verify that

the location of the CaSE application data indeed exists only

in cache, and there is no cache leak during the execution of

the program. Second, we want to verify that the processor

cache that has been locked down using hardware functions

cannot be read or written by the DMA attacks. Third, we

examine the interaction of the locked cache lines with cache

maintenance operations.

1) Verifying Applications Exist Only in Cache: The pri-

mary goal of this test is to show that the sensitive application

is indeed in and only in the processor cache. Furthermore,

we want to verify that the CaSE execution environment will

not leak any application code or data into the DRAM at

any point in time during the execution. Without hardware

support, it is difficult, if not impossible, to verify this

property for each processor clock cycle the application uses.

We choose two points in the execution flow that are likely

to show leaked contents if the cache had been flushed to

memory. The first point of inspection is at the completion of

unpacking action. The second point is when CaSE execution

completes, but before the environment is cleaned up.

In this test, we use the packed kernel check application as

the test case. We inspect right after unpacking and when the

kernel check completes. For both tests, we instrument the

code to invoke leakage check routine right after the unpack

operation and kernel check. The leakage routine is stored

in memory outside CaSE application. The check routine

will invalidate all the cache lines occupied by the CaSE

application, and then read back the memory location. If the

read back value is not the default value for those memory

(0xFFFFFFFF), then there is a leak from the protected

application. In both points of execution, we detect no leak

in the CaSE environment from cache to memory. In order to

assure that there is no integer value of 0xFFFFFFFF leaked,

we also try another pattern (0xABABABAB), and the results

are the same.

2) Verifying the Effect of DMA Attack on Cache: One of

the main design objectives of CaSE execution is to defend

against compromised rich OS. Even though the rich OS

is paused during the execution of CaSE application in the

normal world, it is still possible for the rich OS to program

an I/O device to perform DMA memory read and write to

the normal world memory. To see how DMA will interact

with cache lines, we program the serial controller to perform

DMA read and write to the memory that we lock in cache.

More specifically, we load the application in the normal

world cache, and use a kernel module in the normal world to

program the serial port using DMA to dump memory over

serial. We observe that the dump fails to extract contents

from cache.

3) Verifying the Effects of Maintenance Operations on
Locked Cache: This test studies the effects of cache main-

tenance operations on locked cache lines on the i.MX53 and

verifies that secure cache cannot be manipulated by cache

maintenance operations executed in the normal world.

Common cache maintenance operations include cache

clean and cache invalidation. These cache maintenance op-

erations are coprocessor functions that can only be initiated

by the CPU itself. Thus, attackers can only launch cache

maintenance attack from the rich OS. When one CaSE

application is running in the normal cache, the rich OS is

suspended, so there is no software attack from the rich OS.

However, when the rich OS resumes the system control, it

can attempt to use cache maintenance operations to launch

attacks on the secure cache, where the master key and the

secure CaSE application are stored. In this experiment, we

want to verify that malicious code loaded in the rich OS

cannot clean or invalidate the secure cache.

We begin the experiment by writing 0xFF to all the

memory buffers. We then fill one cache way with normal

world cache lines of pattern 0xAB, and another with secure

cache lines with pattern 0xBC. Once the two ways are

locked, we use the CaSE driver in the normal world to

execute the cache maintenance operation. To see if cache

clean instruction in the normal world can evict the locked

cache lines, we execute clean instruction on all the locked

cache lines in both the secure world and the normal world.

If the cache contents were written to memory due to the

clean instruction, the value read back will be 0xAB for

normal world and 0xBC for secure world. In our experiment,

memory in the normal world reads back as 0xAB while the

memory in the secure world reads back as 0xFF. This verifies

that cache clean instruction invoked by the normal world

will not be able to affect cache lines in the secure world.

We follow a similar procedure for cache invalidation, except

that INVD instruction is used instead. We observe that cache

lines in the normal world are invalidated, because the read

back value is 0xFF, while values read back from the cache

lines in secure world remain 0xBC. Therefore, the rich OS

cannot use cache maintenance instruction to manipulate the

cache lines of the secure world.

D. SoC-bound Execution Performance

We study the performance of the system by examining

the time breakdown of the CaSE application execution. We

also compare the performance difference when the secure

application is running in the normal cache or the secure

cache.

1) CaSE Isolated Application Performance: As a case

study, we use the kernel integrity checker as a normal

world application. The packed CaSE kernel integrity check

application is 9.5 KB in size. The timing breakdown for each

major operation in the CaSE execution is shown in Table II.

8282

Operation Time (μs)

Environment Preparation 613

Environment Integrity Check 1540

CaSE Unpacking 5973

Kernel Check 18676

Environment Cleanup 412

Total Time 27214

Table II: Kernel Integrity Checker in Normal Cache

From the time breakdown, we can see that though environ-

ment setup and cleanup consume some processor cycles, the

major computation overhead originates from the unpacking

process, which decrypts the encrypted CaSE application

payload. The entire kernel check takes 0.02 second to

complete, and the application context saving time is 94 μs.

2) CaSE Secure Application Performance: Using the

crypto library as a case study for the CaSE secure execution

mode, we measure the benchmarks for a secure cache execu-

tion similar to the normal cache execution. Table III shows

the time breakdown of a secure call to perform encryption

using AES CBC mode. In the secure mode, the cache is

protected against the compromised rich OS. Therefore, it is

not necessary to clean up the execution environment.

Operation Time (μs)

World Switching 2.6

AES CBC Encrypt (1KB) 443

Output Synchronization (1KB) 2

Total Time 447.6

Table III: AES Encryption in Secure Cache

3) Performance Trade-off between Execution Modes: To

find out the impact of SoC-bound execution environment on

application performance, we run AES, RSA, and SHA1 in

different environments and compare their performance. First,

we port the application into a kernel module and load the

module into the rich OS to measure the performance without

any security enhancement. Second, we run the application

in the two CaSE execution environments, one in the normal

world and the other in the secure world. We consider that

the first experiment should achieve similar performance as

other kernel encryption solutions, and should serve as a

good baseline for comparison. On the other hand, the CaSE

execution will suffer performance penalty for the enhanced

security.

The experimental results on AES algorithm are shown

in Figure. 5. The performance of secure executed AES is

almost identical to that of generic AES. The secure AES

has a small advantage over the generic kernel AES when

the memory buffer to be encrypted is small. This is due

to preloaded cache lines for the AES data section. For

Figure 5: AES Speed Comparison

smaller size encryption requests, the normal cache execution

is significantly slower than the other two methods. This

is because the environment is created and destroyed for

each request in order to protect the confidentiality and

integrity of the execution environment. However, as the size

of the plaintext increases, the difference in the encryption

bandwidth diminishes. This is because the overhead to create

and destroy the environment becomes insignificant.

We have also performed the same set of experiments on

RSA algorithm and SHA1 algorithm. The results for RSA

algorithm are shown in Figure. 6. In this experiment, we

measure the number of 1024-bit RSA decryptions that the

system can carry out in one second. Similar to AES, the

normal cache execution takes a penalty in the environment

initialization and clean up. However, as the number of

messages in the request becomes larger, this fixed cost can

be ignored. Lastly, we also benchmark the performance of

SHA1. We build up our test case by sending fixed size 512

byte packet to the SHA1 module to calculate the hash. Due

to simplicity of SHA1, the normal world execution overhead

is high when the number of messages per request is low.

Similar to RSA and AES, the environment penalty becomes

small as the number of messages increases.

Figure 6: Comparison of RSA Operation

8383

Figure 7: Comparison of SHA1 Operation

4) Impact of Cache Locking: Cache is originally designed

to enhance system performance. When it is locked intention-

ally for non-performance reason, the system suffers. We use

various benchmarking tools to assess the impact of cache

locking on the system performance when different portions

of cache are locked down. In our implementation, only one

way of the L2 cache is locked to reduce the impact on the

system.

This experiment is designed to explore the trade-offs

between the size of the CaSE application and the impact

on system performance due to its monopoly on the L2

cache of the system. We use three benchmarking tools,

randspeed [46], linpack [47] and AnTuTu [48]. RandMem

measures the performance of random access on large array

of memory [46]. The performance benchmark of this tool

relates closely to the performance of the memory subsystem.

Therefore, with more cache locked away, the system suffers

bigger penalty in memory performance. Since Linpack mea-

sures integer operation speed of the system [47], the reduc-

tion in L2 cache has a smaller impact in LinPack benchmark.

Lastly, AnTuTu [48] is a comprehensive benchmark suite. It

measures the performance of the system in integer compu-

tation, float point operation, 2D and 3D graphic rendering

etc. AnTuTu can provide the overall system impact when

the L2 cache is locked.

As shown in Figure. 8, locking one out of eight ways

in L2 cache has at most 3% performance penalty. However,

the overall system performance degrades more quickly when

more than 60% of the L2 cache is locked and becomes

unavailable. This pattern is consistent with other benchmarks

in the AnTuTu suite including 2D GPU, single thread integer

operation, and multi-thread integer operation.

VII. SECURITY ANALYSIS

With the physical possession of the mobile device, adver-

saries have two attack vectors, software attack and cold boot

attack. We assume that attackers with physical access can

only examine contents of the physical memory but not the

cache and registers inside the processor. The attack model is

Figure 8: Performance Impact of L2 Cache Locking

summarized in Table IV. The adversary who compromises

the rich OS can gain unrestricted read and write access to the

normal memory and cache, but neither the secure memory

nor the secure cache. The adversary who utilizes cold boot

attacks can gain unrestricted read access to the memory of

both the normal world and the secure world, but not the

cache contents.

CaSE is designed to protect confidentiality and integrity of

the application. Applications are encrypted with a checksum

while stored in memory. Code and the data of the application

are only decrypted in the cache-assisted SoC-bound execu-

tion environment.

A. Software Attacks from Compromised Rich OS

In the CaSE execution using normal cache, the rich OS

is suspended by disabling all local interrupts. There is

no Non-Maskable interrupt (NMI) on the i.MX53. When

CaSE is built on platforms with NMI, system designers

should redirect these interrupts to TrustZone temporarily

for secure processing. With the OS suspended, it cannot

launch any attacks to compromise either the integrity or the

confidentiality of the processor cache.

In the CaSE execution using secure cache, the rich OS

cannot read or modify the secure memory or the secure

cache. This is because the memory space is completely

separated between the two worlds by TrustZone. To improve

performance during context switching, the CaSE execution

environment in the secure cache is not sanitized. Because

of this design choice, the rich OS may also attempt to use

cache maintenance instruction to evict the secure cache out

to DRAM, and then use cold boot attack to read out the

DRAM contents. However, we verify via experiments that

cache maintenance instructions executed in the normal world

affect only the normal cache. This is because secure cache

is handled differently by the cache controller due to the

8484

Attack Vector S Mem NS Mem S Cache NS Cache

Rd Wr Rd Wr Rd Wr Rd Wr

Software Attack � � � �
Cold Boot Attack � �

Table IV: Attacker Capability on ARM TrustZone

TrustZone protection.

The rich OS can also launch an impersonation attack. The

compromised rich OS can send an application request as the

original user. CaSE does not have any built-in mechanism to

mitigate this attack. However, an application can use mutual

authentication to thaw this attack. For the cryptographic

modules in our prototype, adversaries can launch chosen

plaintext attack and chosen cipher text attack. However, most

modern cryptography methods, including AES, are designed

to resist such attacks.

DMA requests on secure memory from peripheral devices,

such as LCD controller, are prevented by the TrustZone-

aware DMA controller (DMAC). Therefore, the rich OS

cannot program peripheral devices in the normal world to

read or write secure memory.

Lastly, the compromised rich OS can change the power

state without notifying the CaSE controller in the secure

world. In this case, all cached sensitive contents of the CaSE

controller will be lost. On subsequent invocation to CaSE

controller, all requests will be dropped. We do not consider

this as a real threat, since the attacker who already has

physical access can simply power off the device to deny

services.

B. Unrestricted Memory Read from Cold Boot Attack

Cold boot attacks are capable of reading both the normal

world memory and the secure world memory. Since a cold

boot attack physically removes DRAM chip from the system,

we assume it will be too difficult for the attacker to modify

the value in DRAM circuit without interrupting the operation

of the system. Therefore, only the confidentiality of the

memory is compromised, but not the integrity. In CaSE,

application contexts and application binaries are always

encrypted while in DRAM. The key for the encryption

is stored in the processor cache or in the on-chip secure

storage while the system is in power saving mode. Thus, it

is protected from cold boot attacks.

Since modern processor cache is built using SRAM which

does exhibit the remanence effect similar to DRAM, the

compromised OS can attempt to reboot the system to run

on a malicious OS to exploit this fact to extract sensitive

information from the cache. However, the malicious OS

would fail the high assurance booting process. Furthermore,

the SoC firmware on the ARM Cortex-A8 processor resets

the cache contents upon power reset event. Therefore, we

can prevent this attack too.

VIII. DISCUSSION AND FUTURE WORK

A. Migrating CaSE to Other Platforms

Though our prototype implementation of CaSE is on the

i.MX53 development board, the system design is widely

applicable to other hardware platforms that can provide

isolated execution and SoC-bound memory storage.

1) Multi-core Processors: The i.MX53 has a single core

processor. For multi-core processors, it is no longer neces-

sary to suspend the execution of the rich OS. When the SoC-

bound execution runs on a subset of the cores, the other cores

can continue executing the workloads of the rich OS. It will

bring some new challenges. Though applications running in

the secure cache can still be protected by the TrustZone

isolation, applications running in the normal cache may be

compromised by the rich OS running on the other cores.

Thus, system designers need to rely on some dedicated

system features in the multi-core SoC to enable the cache

isolation. For instance, new cache controllers in both ARM

and AMD platforms [56], [57] have the capability to assign

individual last level cache block to specific processor cores.

2) On-chip Memory: To improve system performance on

embedded devices, SoC designers are continuously increas-

ing the use of silicon layout for allocating more on-chip

memory. The average percentage of layout used for memory

is 80% in the year 2008 and has been rising [58]. There are

three main categories of on-chip memory, SRAM, DRAM,

and ROM, where SRAM and DRAM are more suitable to

construct SoC-bound execution.

In our implementation of CaSE on the i.MX53, processor

cache (SRAM) is used as memory space for SoC-bound

execution. There are other choices of on-chip memory as

well. For example, the internal DRAM (iRAM) has been

used to store cryptographic data of AES [18]. The size of

iRAM varies in different systems, and it is usually small.

For example, there is only 144 KB iRAM for i.MX53 [59]

and 272 KB iRAM for i.MX6 [60]. Furthermore, certain

Board Support Package (BSP) uses the iRAM for other

purposes such as video processing [44]. Another important

difference between iRAM and processor cache is the iso-

lation mechanism. Unlike cache, iRAM occupies a range

of physical address space. The protection of this address

space from the compromised rich OS or malicious DMA-

capable I/O devices might not be available, and it is platform

specific [59], [60].

Another important consideration is the remanence effect

for on-chip memory storage. On-chip memory is free from

the physical memory extraction in cold boot attacks due to

its proximity on die. However, they still exhibit remanence

effect just as the external DRAM. When the contents are

not sanitized upon system reset, sensitive information could

leak out during the boot up process. System designers should

verify that the on-chip memory is well protected across

different power state changes including full system reset.

8585

Platform Software Attack Cold Boot Attack
x86 ARM Data Data Code Code Data Code

Confidentiality Integrity Confidentiality Integrity Confidentiality Confidentiality

Hardware-Assisted Execution
Intel VT-x/AMD-v based [49] � � � �
Intel TXT/AMD SVM based [50] � � � �
Intel SGX based [20] � � � � � � �
System Management Mode (SMM) based [51] � � � �
Coprocessor based [52], [53] � � � � �
TrustZone based [54] � � � �
SoC-bound Execution
Register based [24], [22] � � �
Cache-based [26], [55], [18] � � �
On-Chip Memory Based [18] � � �
CaSE � � � � � � �

Table V: Comparison of Secure Execution Environment under Software Attack and Cold Boot Attack

For example, on the i.MX53, processor firmware resets the

cache contents when the processor is rebooted. This can be

confirmed by the L1RSTDISABLE and L2RSTDISABLE bits

on the auxiliary control register of the Cortex-A8 processor.
3) Secure Information Flow: It is critical to secure the

information flow between the external DRAM and the on-

chip memory when adopting CaSE on other platforms.

Our implementation on the i.MX53 relies on the isolation

provided by TrustZone and the ability to lock memory

contents in cache to prevent malicious attacks. Program

contexts are encrypted before being written to the external

DRAM. Though cache locking has been supported by a

wide range of ARM processors, most x86 processors still

do not support fine-grained cache manipulation. On those

processors, information flowing out of the processor due to

cache contention can be protected by temporal separation,

which clears sensitive contents between the two executions

of the protected application.
On some new platforms that support I/O coherent

cache [61], [62], it is allowed for an I/O device to ac-

cess cache contents. To protect against potential DMA

attacks, system designers can use the inputoutput memory

management unit (IOMMU) [36] or the system memory

management unit (SMMU) [63] to secure DMA operations.

B. Supporting Unmodified Applications
CaSE has made it possible to execute arbitrary self-

contained applications in a secure execution environment

that provides both confidentiality and integrity for the code

and data of the application. To support non-trivial unmodi-

fied legacy applications, we must enhance the platform with

support for encrypted memory paging and verified system

calls in the untrusted rich OS.
1) Encrypted Memory Paging: In our current implemen-

tation of CaSE, applications are loaded and decrypted com-

pletely within the cache. However, for large size applications

that fail to fit in the cache, the current method of SoC-bound

execution will not be sufficient. CaSE can be extended to

support larger applications by keeping only the most recently

used memory pages decrypted inside the SoC while leaving

other pages encrypted in memory.
Due to the lack of hardware supported enclave such as

Intel SGX [20], memory encryption and decryption will be

triggered by the software. In order to provide seamless sup-

port for memory paging into and out of the SoC boundary,

the page fault handling routine has to be interposed. When

the application accesses a page that is not in the SoC, the

page fault can then either be handled by the rich OS [18]

or the security monitor in TrustZone [15].
While it is fairly straight forward to extend CaSE to

handle applications that do not fit in the cache, similar to

other memory encryption system [18], [64], [65] there is

a high performance penalty for applications that frequently

swap memory pages [18].
2) Verified System Calls to Rich OS: Many non-trivial

applications require OS support to perform meaningful tasks.

Our current implementation of CaSE can be further extended

to support the use of system call. Before the system call is

made, the application is paused and the application context

will be encrypted and then stored in DRAM. The system

call request is then forwarded to the untrusted rich OS. Upon

completion of the system call, the application is resumed by

decrypting the application context in the processor cache.

Unfortunately, it is not sufficient to simply enable system

call from the application. When the OS is compromised, it

is possible for the malicious OS to launch Iago attacks [66]

where the result of system calls is manipulated to subvert

a protected application. Protecting unmodified applications

in commodity operating system has been an active area of

research [67], [68], [69]. CaSE can benefit from system call

behavior verification techniques from these systems [68].

IX. RELATED WORK

To protect the wide spread of software vulnerabilities

in applications and operating systems, hardware-assisted

isolation has been widely adopted in both x86 and ARM

8686

processors [50], [51], [20], [15], [54]. On the other hand,

physical memory disclosure attacks [16], [17] achieve com-

plete memory exposure through a different attack vector.

CaSE aims to provide a SoC-bound execution environment

that can defend against both attacks. Our work is closely

related to the research on isolated execution environments

and cold boot resistant computations.

A. Isolated Execution

A line of research on isolated execution environ-

ments [50], [70], [49], [71], [72], [27], [51], [73], [74], [75],

[20], [54], [4], [10], [12], [9], [8], [7], [14], [76], [53], [52]

has attracted much attention as security becomes one of the

most important aspects in modern information systems. One

of the key challenges is to bootstrap a trusted environment

and to isolate it from the untrusted environment. Earlier work

focuses on bootstrapping an isolated environment using a

high privileged entity, such as hypervisor [70], [49], [72] or

System Management Mode (SMM) [51].

As vulnerabilities are discovered routinely in the highly

complex modern OS, hardware-assisted protection is widely

used in information systems due to the attractive prop-

erty of shielding applications from potentially compromised

OS [50], [15], [54], [51], [4], [10], [12]. Intel Trusted Exe-

cution Technology (TXT) and AMD Secure Virtual Machine

(SVM) are used in [50] to create a trusted isolated execution

environment for protecting security sensitive applications.

Recognizing the lack of efficient context switching in the

TXT technology, Intel recently proposed Intel Secure Guard

Extension (SGX) [20] to provide an efficient secure enclave

for isolating sensitive applications. Moreover, data stored

outside of the processor bound enclave is automatically

encrypted by the processor. We share the same design

concept as the Intel SGX and target at achieving the same

security goals. However, SGX is a processor extension on

the x86 platform, while CaSE builds on the commodity

TrustZone enabled ARM systems.

For mobile devices that are running on ARM processors,

TrustZone has been widely adopted in [54], [4], [10], [12],

[9], [8], [7], [14]. Different from the previous works that

utilize TrustZone, CaSE attempts to address the threat of

cold boot attacks on the system. Lastly, coprocessor has

also been proposed to achieve secure computation in adverse

environment [76], [53], [52]. CaSE runs on the commodity

hardware and does not require additional dedicated copro-

cessor for code execution.

B. SoC-bound Execution

In order to defend against cold boot attack, sensitive

information has to be kept in memory areas outside the

DRAM. There are several types of memory that are inside

the physical boundary of the SoC, namely, register, cache,

and on-chip RAM. Several research works [24], [22], [23],

[77] use register to store cryptographic sensitive materials. In

[25], [26], [18], [55], the sensitive cryptographic materials

are stored in the processor cache. Alternatively, OCRAM is

used in [18]. Sentry [18] is closely related to our work. It

also uses cache locking function for CPU-bound execution.

However, similar to other cache-based SoC-bound execution,

the security of Sentry builds on the strong assumption that

the mobile OS can be trusted. We address the risk of

compromised OS attack in CaSE. Lastly, even though the

use of TrustZone and support for unmodified application

are briefly mentioned in [18], no further description of

implementations is provided.
Table. V compares CaSE with other approaches towards

secure execution environment in terms of the security pro-

tections under software attacks and cold boot attacks. As

indicated in the table, CaSE is the first to provide a SoC-

bound execution environment on ARM platforms against

both cold boot attacks and software attacks. Furthermore,

both code and data of the program are protected in CaSE.

X. CONCLUSION

In this paper, we present CaSE, a TrustZone enabled SoC-

bound execution environment to protect against both cold

boot attack and compromised rich OS attack. CaSE offers

two modes of operation, SoC-bound execution in the normal

cache and SoC-bound execution in the secure cache, which

provide a trade-off between system performance and secu-

rity. We build a crypto library and a kernel integrity checker

to demonstrate the practical usage of our system on real

ARM platform. The experimental results show that CaSE

environment only introduces little performance overhead.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for

their valuable comments and suggestions. This work is

supported in part by US National Science Foundation un-

der grants CNS-1217889, CNS-1446478, CNS-1405747 and

CNS-1443889. Dr. Kun Sun is supported by U.S. Office

of Naval Research under grants N00014-15-1-2396 and

N00014-15-1-2012. Ning Zhang is supported in part by

Raytheon advanced scholar program.

REFERENCES

[1] “World has 6 billion cell phone subscribers.”
http://www.huffingtonpost.com/2012/10/11/
cell-phones-world-subscribers-six-billion n 1957173.html.

[2] “ARM strategic report.” http://ir.arm.com/phoenix.zhtml?c=
197211&p=irol-reportsannual, 2014. Accessed: 2015-04-30.

[3] S. Fox, “51% of u.s. adults bank online.”
http://www.pewinternet.org/2013/08/07/51-of-u-s-adults-
bank-online/.

[4] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M.
McCune, “Trustworthy execution on mobile devices: What
security properties can my mobile platform give me?,” in
Proceedings of the 5th International Conference on Trust and
Trustworthy Computing (Trust 2012), June 2012.

8787

[5] “Mobile threat report: Whats on the horizon for 2016,” 2015.

[6] “ARM Security Technology, Building a Secure System using
TrustZone Technology,” apr 2009.

[7] C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and
S. Capkun, “Smartphones as practical and secure location ver-
ication tokens for payments,” in Proceedings of the Network
and Distributed System Security Symposium, NDSS’14, 2014.

[8] Y. Zhou, X. Wang, Y. Chen, and Z. Wang, “Armlock:
Hardware-based fault isolation for ARM,” in Proceedings
of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-
7, 2014, pp. 558–569, 2014.

[9] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure
online mobile advertisement attestation using trustzone,” in
Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys 2015,
Florence, Italy, May 19-22, 2015, pp. 75–88.

[10] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret:
Secure channel between rich execution environment and
trusted execution environment,” in Proceedings of the Net-
work and Distributed System Security Symposium, NDSS’15,
2015.

[11] J. Winter, “Trusted computing building blocks for embedded
linux-based arm trustzone platforms,” in Proceedings of the
3rd ACM workshop on Scalable trusted computing, pp. 21–
30, ACM, 2008.

[12] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm
trustzone to build a trusted language runtime for mobile ap-
plications,” in ACM SIGARCH Computer Architecture News,
vol. 42, pp. 67–80, ACM, 2014.

[13] “Sierraware.” http://www.sierraware.com/
open-source-ARM-TrustZone.html.

[14] “Samsung knox.” https://www.samsungknox.com/en.

[15] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen, “Hypervision across worlds:
Real-time kernel protection from the arm trustzone secure
world,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 90–102,
ACM, 2014.

[16] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten, “Lest we remember: cold-boot attacks on
encryption keys,” Communications of the ACM, vol. 52, no. 5,
pp. 91–98, 2009.

[17] T. Müller and M. Spreitzenbarth, “Frost,” in Applied Cryp-
tography and Network Security, pp. 373–388, Springer Berlin
Heidelberg, 2013.

[18] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj,
S. Saroiu, and A. Wolman, “Protecting data on smartphones
and tablets from memory attacks,” in Proceedings of the
Twentieth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pp. 177–189, ACM, 2015.

[19] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet,
and R. Vaslin, “Reconfigurable hardware for high-
security/high-performance embedded systems: the safes
perspective,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 16, no. 2, pp. 144–155, 2008.

[20] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative
technology for cpu based attestation and sealing,” in Proceed-
ings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, p. 10, 2013.

[21] A. Baumann, M. Peinado, and G. C. Hunt, “Shielding applica-
tions from an untrusted cloud with haven,” in 11th USENIX
Symposium on Operating Systems Design and Implementa-
tion, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014.,
pp. 267–283.

[22] T. Müller, F. C. Freiling, and A. Dewald, “Tresor runs encryp-
tion securely outside ram,” in USENIX Security Symposium,
2011.

[23] P. Simmons, “Security through amnesia: a software-based
solution to the cold boot attack on disk encryption,” in Pro-
ceedings of the 27th Annual Computer Security Applications
Conference, pp. 73–82, ACM, 2011.

[24] J. Gotzfried and T. Muller, “Armored: Cpu-bound encryption
for android-driven arm devices,” in Availability, Reliability
and Security (ARES), 2013 Eighth International Conference
on, pp. 161–168, IEEE, 2013.

[25] J. PABEL, “Frozencache mitigating cold-boot attacks for
full-disk-encryption software,” in 27th Chaos Communication
Congress (Berlin, Germany, 2010.

[26] L. Guan, J. L. amd Bo Luo, and J. Jing, “Copker: Comput-
ing with Private Keys without RAM.,” in In Network and
Distributed System Security Symposium (NDSS), 2014.

[27] A. Vasudevan, J. McCune, J. Newsome, A. Perrig, and
L. Van Doorn, “Carma: A hardware tamper-resistant isolated
execution environment on commodity x86 platforms,” in
Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, pp. 48–49, ACM,
2012.

[28] A. Aziz, “The evolution of cyber attacks and next generation
threat protection,” RSA Conference, 2013.

[29] E.-O. Blass and W. Robertson, “Tresor-hunt: attacking cpu-
bound encryption,” in Proceedings of the 28th Annual Com-
puter Security Applications Conference, pp. 71–78, ACM,
2012.

[30] C. Tarnovsky, “Attacking hardware: Unsecuring [once] secure
devices,” 2009.

[31] E. M. Chan, J. C. Carlyle, F. M. David, R. Farivar, and
R. H. Campbell, “Bootjacker: Compromising computers using
forced restarts,” in Proceedings of the 15th ACM Conference
on Computer and Communications Security, CCS ’08, 2008.

[32] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang,
“Vigilare: Toward snoop-based kernel integrity monitor,” in
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, 2012.

8888

[33] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$a: A shared
cache attack that works across cores and defies vm sand-
boxing – and its application to aes,” in Security and Privacy
(SP), 2015 IEEE Symposium on, pp. 591–604, May 2015.

[34] R. Hund, C. Willems, and T. Holz, “Practical timing side
channel attacks against kernel space aslr,” in Security and
Privacy (SP), 2013 IEEE Symposium on, pp. 191–205, IEEE,
2013.

[35] Technical Reference Manual - VIDIA TEGRA 3, Sep 2013.

[36] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Sep 2013.

[37] Advanced Micro Devices. Amd64 Architecture Programmer’s
Manual, may 2013.

[38] ARM Cortex-A8 Processor Technical Reference Manual, June
2012.

[39] A. Griffiths, “Binary protection schemes.” https://www.
exploit-db.com/docs/59.pdf. Accessed: 2016-03-01.

[40] M. Oberhumer, L. Molnár, and J. F. Reiser, “Upx: Ultimate
packer for executables,” 2004.

[41] ARM Architecture Reference Manual ARMv7-A and ARMv7-R
edition, Dec 2011.

[42] ARM Cortex-A15 MPCore Processor, Technical Reference
Manual, june 2013.

[43] D. Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. B.
Kang, “Atra: Address translation redirection attack against
hardware-based external monitors,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 167–178, ACM, 2014.

[44] “Reference bsps for freescale i.mx53 quick start
board.” http://www.adeneo-embedded.com/Products/
Board-Support-Packages/Freescale-i.MX53-QSB. Accessed:
2015-04-30.

[45] P. Bakker, “Polarssl.” https://github.com/ARMmbed/mbedtls.
Accessed: 2015-04-30.

[46] R. Longbottom, “Roy longbottom’s pc benchmark collection,”
2014.

[47] J. Dongarra and P. Luszczek, “Linpack benchmark,” Encyclo-
pedia of Parallel Computing, pp. 1033–1036, 2011.

[48] “Antutu benchmark.” http://www.antutu.com/en/Ranking.
shtml.

[49] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation,”
in Security and Privacy (SP), 2010 IEEE Symposium on,
pp. 143–158, IEEE, 2010.

[50] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki, “Flicker: An execution infrastructure for tcb
minimization,” in ACM SIGOPS Operating Systems Review,
vol. 42, pp. 315–328, ACM, 2008.

[51] A. M. Azab, P. Ning, and X. Zhang, “Sice: a hardware-level
strongly isolated computing environment for x86 multi-core
platforms,” in Proceedings of the 18th ACM conference on
Computer and communications security, pp. 375–388, ACM,
2011.

[52] G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Pixelvault: Using gpus for securing cryp-
tographic operations,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Se-
curity, pp. 1131–1142, ACM, 2014.

[53] M. Lindemann, R. Perez, R. Sailer, L. Van Doorn, and
S. W. Smith, “Building the ibm 4758 secure coprocessor,”
Computer, vol. 34, no. 10, pp. 57–66, 2001.

[54] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “Trustice:
Hardware-assisted isolated computing environments on mo-
bile devices,” in Dependable Systems and Networks (DSN),
2015 45th Annual IEEE/IFIP International Conference on,
pp. 367–378, IEEE, 2015.

[55] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang, “Protecting pri-
vate keys against memory disclosure attacks using hardware
transactional memory,” in Security and Privacy (SP), 2015
IEEE Symposium on, pp. 3–19, May 2015.

[56] CoreLink Level 2 Cache Controller L2C-310, Technical Ref-
erence Manual, June 2012.

[57] Advanced Micro Devices, Inc., BIOS and Kernel Developer’s
Guide (BKDG) For AMD Family 15h Processors, Jan 2013.

[58] “Everything you wanted to know about soc memory.”
http://www.low-powerdesign.com/Everything You Wanted
to Know About SOC Memory.pdf.

[59] i.MX53 Multimedia Applications Processor Reference Man-
ual, June 2012.

[60] i.MX 6Dual/6Quad Applications Processor Reference Man-
ual, July 2015.

[61] ARM Cortex-A9 Processor Technical Reference Manual, June
2012.

[62] Intel Data Direct I/O Technology (Intel DDIO) A Primer, Feb
2012.

[63] ARM System Memory Management Unit Architecture Speci-
fication - SMMU architecture version 2.0, July 2015.

[64] M. Henson and S. Taylor, “Memory encryption: a survey
of existing techniques,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 53, 2014.

[65] G. Duc and R. Keryell, “Cryptopage: an efficient secure
architecture with memory encryption, integrity and informa-
tion leakage protection,” in Computer Security Applications
Conference, 2006. ACSAC’06. 22nd Annual, pp. 483–492,
IEEE, 2006.

[66] S. Checkoway and H. Shacham, “Iago attacks: Why the
system call api is a bad untrusted rpc interface,” SIGARCH
Comput. Archit. News, vol. 41, pp. 253–264, Mar. 2013.

8989

[67] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Over-
shadow: a virtualization-based approach to retrofitting pro-
tection in commodity operating systems,” in ACM SIGARCH
Computer Architecture News, vol. 36, pp. 2–13, ACM, 2008.

[68] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel, “Inktag: Secure applications on an untrusted
operating system,” in ACM SIGARCH Computer Architecture
News, vol. 41, pp. 265–278, ACM, 2013.

[69] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost:
Protecting applications from hostile operating systems,” ACM
SIGARCH Computer Architecture News, vol. 42, no. 1,
pp. 81–96, 2014.

[70] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig,
“Lockdown: Towards a safe and practical architecture for se-
curity applications on commodity platforms,” in Proceedings
of the 5th International Conference on Trust and Trustwor-
thy Computing, TRUST’12, (Berlin, Heidelberg), pp. 34–54,
Springer-Verlag, 2012.

[71] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall, “Toward
trustworthy mobile sensing,” in Proceedings of the Eleventh
Workshop on Mobile Computing Systems & Applications,
pp. 31–36, ACM, 2010.

[72] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to
provide lifetime hypervisor control-flow integrity,” in Security
and Privacy (SP), 2010 IEEE Symposium on, pp. 380–395,
IEEE, 2010.

[73] A. Baumann, M. Peinado, and G. Hunt, “Shielding applica-
tions from an untrusted cloud with haven,” in Proceedings
of the 11th USENIX conference on Operating Systems De-
sign and Implementation, pp. 267–283, USENIX Association,
2014.

[74] E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Perrig,
and A. Vasudevan, “Oasis: On achieving a sanctuary for
integrity and secrecy on untrusted platforms,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & com-
munications security, pp. 13–24, ACM, 2013.

[75] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev,
N. Abu Ghazaleh, and R. Riley, “Iso-x: A flexible architecture
for hardware-managed isolated execution,” in Microarchitec-
ture (MICRO), 2014 47th Annual IEEE/ACM International
Symposium on, pp. 190–202, IEEE, 2014.

[76] S. W. Smith and S. Weingart, “Building a high-performance,
programmable secure coprocessor,” Computer Networks,
vol. 31, no. 8, pp. 831–860, 1999.

[77] B. Garmany and T. Müller, “Prime: private rsa infrastructure
for memory-less encryption,” in Proceedings of the 29th
Annual Computer Security Applications Conference, pp. 149–
158, ACM, 2013.

9090

