
Cache Storage Channels:
Alias-Driven Attacks and Verified Countermeasures

Roberto Guanciale, Hamed Nemati, Christoph Baumann and Mads Dam

Department of Computer Science

KTH Royal Institute of Technology

Stockholm, Sweden

{robertog, hnnemati, cbaumann, mfd}@kth.se

Abstract—Caches pose a significant challenge to formal proofs
of security for code executing on application processors, as the
cache access pattern of security-critical services may leak secret
information. This paper reveals a novel attack vector, exposing
a low-noise cache storage channel that can be exploited by
adapting well-known timing channel analysis techniques. The
vector can also be used to attack various types of security-
critical software such as hypervisors and application security
monitors. The attack vector uses virtual aliases with mismatched
memory attributes and self-modifying code to misconfigure the
memory system, allowing an attacker to place incoherent copies
of the same physical address into the caches and observe which
addresses are stored in different levels of cache. We design and
implement three different attacks using the new vector on trusted
services and report on the discovery of an 128-bit key from an
AES encryption service running in TrustZone on Raspberry Pi
2. Moreover, we subvert the integrity properties of an ARMv7
hypervisor that was formally verified against a cache-less model.
We evaluate well-known countermeasures against the new attack
vector and propose a verification methodology that allows to
formally prove the effectiveness of defence mechanisms on the
binary code of the trusted software.

I. INTRODUCTION

Over the past decade huge strides have been made to

realise the long-standing vision of formally verified execu-

tion platforms, including hypervisors [32], [33], separation

kernels [18], [41], and microkernels [30]. Many of these plat-

forms have been comprehensively verified, down to machine

code [30] and Instruction Set Architecture (ISA) [18] levels,

and provide unprecedented security and isolation guarantees.

Caches are mostly excluded from these analyses. The veri-

fication of both seL4 [29] and the Prosper kernels [18], [33]

assume that caches are invisible and ignore timing channels.

The CVM framework from the Verisoft project [4] treats

caches only in the context of device management [24]. For

the verification of user processes and the remaining part of

the kernel, caches are invisible. Similarly, the Nova [45], [46]

and CertiKOS [21] microvisors do not consider caches in their

formal analysis.

How much of a problem is this? It is already well under-

stood that caches are one of the key features of modern com-

modity processors that make a precise analysis of, e.g., timing

and/or power consumption exceedingly difficult, and that this

can be exploited to mount timing-based side channels, even

for kernels that have been fully verified [13]. These channels,

thus, must be counteracted by model-external means, e.g., by

adapting scheduling intervals [44] or cache partitioning [40],

[28].
The models, however, should preferably be sound with

respect to the features that are reflected, such as basic memory

reads and writes. Unfortunately, as we delve deeper into the

Instruction Set Architecture we find that this expectation is not

met: Certain configurations of the system enable an attacker

to exploit caches to build storage channels. Some of these

channels are especially dangerous since they can be used to

compromise both confidentiality and integrity of the victim,

thus breaking the formally verified properties of isolation.
The principle idea to achieve this, is to break coherency

of the memory system by deliberately not following the

programming guidelines of an ISA. In this report we focus

on two programming faults in particular:

1) Accessing the same physical address through virtual

aliases with mismatched cacheability attributes.

2) Executing self-modifying code without flushing the in-

struction cache.

Reference manuals for popular architectures (ARM, Power,

x64) commonly warn that not following such guidelines may

result in unpredictable behaviour. However, since the under-

lying hardware is deterministic, the actual behaviour of the

system in these cases is quite predictable and can be reverse-

engineered by an attacker.
The first fault results in an incoherent memory configuration

where cacheable and uncacheable reads may see different val-

ues for the same physical address after a preceding write using

either of the virtual aliases. Thus the attacker can discover

whether the physical address is allocated in a corresponding

cache line. For the second fault, jumping to an address that

was previously written without flushing the instruction cache

may result in the execution of the old instruction, since data

and instruction caches are not synchronised automatically. By

carefully selecting old and new instructions, as well as their

addresses, the attacker can then deduce the status of a given

instruction cache line.
Obtaining this knowledge, i.e., whether certain cache lines

contain attacker data and instructions, is the basic principle

behind the Prime+Probe flavor of access-driven timing channel

attacks [47]. This type of attack can be adapted using the

new attack vector. The main advantage of this approach

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.11

38

2016 IEEE Symposium on Security and Privacy

© 2016, Roberto Guanciale. Under license to IEEE.

DOI 10.1109/SP.2016.11

38

is that the cache storage channels presented here are both

more stealthy, less noisy, and easier to measure than timing

channels. Moreover, an incoherent data cache state can be

used to subvert the integrity of trusted services that depend

on untrusted inputs. Breaking the memory coherency for the

inputs exposes vulnerabilities that enable a malicious agent

to bypass security monitors and possibly to compromise the

integrity of the trusted software.

The attacks sketched above have been experimentally val-

idated in three realistic scenarios. We report on the imple-

mentation of a prototype that extracts a 128-bit key from an

AES encryption service running in TrustZone on Raspberry

Pi 2. We use the same platform to implement a process that

extracts the exponent of a modular exponentiation procedure

executed by another process. Moreover, implementing a cache-

based attack we subverted the integrity properties of an

ARMv7 hypervisor that was formally verified against a cache-

less model. The scenarios are also used to evaluate several

existing countermeasures against cache-based attacks as well

as new ones that are targeted to the alias-driven attack vector.

Finally, we propose a methodology to repair the formal

analysis of the trusted software, reusing existing means as

much as possible. Specifically, we show (1) how a countermea-

sure helps restoring integrity of a previously formally verified

software and (2) how to prove the absence of cache storage

side channels. This last contribution includes the adaptation of

an existing tool [6] to analyse the binary code of the trusted

software.

II. BACKGROUND

Natural preys of side-channel attacks are implementations

of cryptographic algorithms, as demonstrated by early works

of Kocher [31] and Page [36]. In cache-driven attacks, the

adversary exploits the caches to acquire knowledge about the

execution of a victim and uses this knowledge to infer the

victim’s internal variables. These attacks are usually classified

in three groups, that differ by the means used by the attacker

to gain knowledge. In “time-driven attacks” (e.g. [48]), the

attacker, who is assumed to be able to trigger an encryption,

measures (indirectly or directly) the execution time of the

victim and uses this knowledge to estimate the number of

cache misses and hits of the victim. In “trace-driven attacks”

(e.g. [2], [36], [55]), the adversary has more capabilities: he

can profile the cache activities during the execution of the vic-

tim and thus observe the cache effects of a particular operation

performed by the victim. This highly frequent measurement

can be possible due to the adversary being interleaved with the

victim by the scheduler of the operating system or because the

adversary executes on a separate core and monitors a shared

cache. Finally, in “access-driven attacks” (e.g. [34], [47]), the

attacker determines the cache indices modified by the victim.

This knowledge is obtained indirectly, by observing cache

side effects of victim’s computation on the behaviour of the

attacker.

In the literature, the majority of trace and access driven

attacks use timing channels as the key attack vector. These

vectors rely on time variations to load/store data and to fetch

instructions in order to estimate the cache activities of the

victim: the cache lines that are evicted, the cache misses, the

cache hits, etc.

Storage channels, on the other hand, use system variables

to carry information. The possible presence of these channels

raises concerns, since they invalidate the results of formal

verification. The attacker can use the storage channels without

the support of an external measurement (e.g. current system

time), so there is no external variable such as time or power

consumption that can be manipulated by the victim to close

the channel and whose accesses can alert the victim about ma-

licious intents. Moreover, a storage channel can be less noisy

than timing channels that are affected by scheduling, TLB

misses, speculative execution, and power saving, for instance.

Finally, storage channels can pose risk to the integrity of a

system, since they can be used to bypass reference monitors

and inject malicious data into trusted agents. Nevertheless,

maybe due to the practical complexities in implementing these

channels, few works in literature address cache-based storage

channels.

One of the new attack vectors of this paper is based on

mismatched cacheability attributes and has pitfalls other than

enabling access-driven attacks. The vector opens up for Time

Of Check To Time Of Use (TOCTTOU) like vulnerabilities.

A trusted agent may check data stored in the cache that is

not consistent with the data that is stored in the memory by

a malicious software. If this data is later evicted from the

cache, it can be subsequently substituted by the unchecked

item placed in the main memory. This enables an attacker to

bypass a reference monitor, possibly subverting the security

property of formally verified software.

Watson [50] demonstrated this type of vulnerability for

Linux system call wrappers. He uses concurrent memory

accesses, using preemption to change the arguments to a

system call in user memory after they were validated. Using

non-cacheable aliases one could in the same way attack the

Linux system calls that read from the caller’s memory. A

further victim of such attacks is represented by run time

monitors. Software that dynamically loads untrusted modules

often uses Software-based Fault Isolation (SFI) [49], [43] to

isolate untrusted components from the trusted ones. If an on-

line SFI verifier is used (e.g. because the loaded module is the

output of a just-in-time compiler), then caches can be used to

mislead the verifier to accept stale data. This enables malicious

components to break the SFI assumptions and thus the desired

isolation.

In this paper we focus on scenarios where the victim and the

attacker are hosted on the same system. An instance of such

scenarios consists of a malicious user process that attempts to

compromise either another user process, a run-time monitor

or the operating system itself. In a cloud environment, the

attacker can be a (possibly compromised) complete operating

system and the victim is either a colocated guest, a virtual

machine introspector or the underlying hypervisor. Further

instances of such scenario are systems that use specialised

3939

hardware to isolate security critical components from untrusted

operating systems. For example, some ARM processors imple-

ment TrustZone [1]. This mechanism can be used to isolate

and protect the system components that implement remote at-

testation, trusted anchoring or virtual private networks (VPN).

In this case, the attacker is either a compromised operating

system kernel or an untrusted user process threatening a

TrustZone application.

III. THE NEW ATTACK VECTORS: CACHE STORAGE

CHANNELS

Even if it is highly desirable that the presence of caches is

transparent to program behaviour, this is usually not the case

unless the system configuration satisfies some architecture-

specific constraints. Memory mapped devices provide a trivial

example: If the address representing the output register of

a memory mapped UART is cacheable, the output of a

program is never visible on the serial cable, since the output

characters are overwritten in the cache instead of being sent

to the physical device. These behaviours, which occur due to

misconfigurations of the system, can raise to security threats.

To better understand the mechanisms that constitute our

attack vectors, we summarise common properties of modern

architectures. The vast majority of general purpose systems

use set-associative caches:

(i) Data is transferred between memory and cache in blocks

of fixed size, called cache lines.

(ii) The memory addresses are logically partitioned into sets

of lines that are congruent wrt. a set index; usually set

index depends on either virtual addresses (then the cache

is called virtually indexed) or physical addresses (then

the cache is called physically indexed);

(iii) The cache contains a number of ways which can hold

one corresponding line for every set index.

(iv) A cache line stores both the data, the corresponding

physical memory location (the tag) and a dirty flag

(which indicates if the line has been changed since it

was read from memory).

Caches are used by processors to store frequently accessed

information and thus to reduce the number of accesses to

main memory. A processor can use separate instruction and

data caches in a Harvard arrangement (e.g. the L1 cache in

ARM Cortex A7) or unified caches (e.g. the L2 cache in

ARM Cortex A7). Not all memory areas should be cached;

for instance, accesses to addresses representing registers of

memory mapped devices should always be directly sent to the

main memory subsystem. For this reason, modern Memory

Management Units (MMUs) allow to configure, via the page

tables, the caching policy on a per-page basis, allowing a fine-

grained control over if and how areas of memory are cached.

In Sections III-A, III-B and III-C we present three new

attack vectors that depends on misconfigurations of systems

and caches. These attacks exploit the following behaviours:

• Mismatched cacheability attributes; if the data cache

reports a hit on a memory location that is marked

A1) write(VA_c, 1)
A2) write(VA_nc, 0)
A3) call victim
A4) D = read(VA_nc)

V1) if secret
access(VA3)

else
access(VA4)

V2) access(VA3+secret)

Fig. 1. Confidentiality threat due to data-cache (for write-back caches with
inertia and lazy write)

A1) invalidate(VA_c)
A2) write(VA_nc, 0)
A3) D = read(VA_c)
A4) write(VA_nc, 1)
A5) call victim
A6) D = read(VA_c)

Fig. 2. Confidentiality threat due to data-cache (for write-through caches or
caches that do not guarantee inertia or lazy write)

as non-cacheable, the cache might access the memory

disregarding such hit. ARM calls this event “unexpected

cache hit”.

• Self-modifying code; even if the executable code is

updated, the processor might execute the old version of

it if this has been stored in the instruction cache.

The attacks can be used to threaten both confidentiality and

integrity of a target system. Moreover, two of them use new

storage channels suitable to mount access driven attacks. This

is particularly concerning, since so far only a noisy timing

channel could be used to launch attacks of this kind, which

makes real implementations difficult and slow. The security

threats are particularly severe whenever the attacker is able

to (directly or indirectly) produce the misconfigurations that

enable the new attack vectors, as described in Section III-D.

A. Attacking confidentiality using data-caches

Here we show how an attacker can use mismatched

cacheability attributes to mount access-driven cache attacks;

i.e. measuring which data-cache lines are evicted by the

execution of the victim.

We use the program in Figure 1 to demonstrate the attacker

programming model. For simplicity, we assume that the cache

is physically indexed, it has only one way and that it uses

the write allocate/write back policy. We also assume that the

attacker can access the virtual addresses vac and vanc, both

pointing to the physical address pa; vac is cacheable while

vanc is not. The attacker writes 1 and 0 into the virtual

addresses vac and vanc respectively, then it invokes the victim.

After the victim returns, the attacker reads back from the

address vanc.

Let idx be the line index corresponding to the address pa.

Since vac is cacheable, the instruction in A1 stores the value

1 in the cache line indexed by idx, the line is flagged as

dirty and its tag is set to pa. When the instruction in A2 is

executed, since vanc is non-cacheable, the system ignores the

4040

V1) D = access(VA_c)
A1) write(VA_nc, 1)
V2) D = access(VA_c)
V3) if not policy(D)

reject
[evict VA_c]

V4) use(VA_c)

Fig. 3. Integrity threat due to data-cache

A1) jmp A8
A2) write(&A8, {R0=1})
A3) call victim
A4) jmp A8
A5) D = R0
...
A8) R0=0
A9) return

V1) if secret
jmp f1

else
jmp f2

Fig. 4. Confidentiality threat due to instruction-cache

“unexpected cache hit” and the value 0 is directly written into

the memory, bypassing the cache. Now, the value stored in

main memory after the execution of the victim depends on

the behaviour of the victim itself; if the victim accesses at

least one address whose line index is idx, then the dirty line

is evicted and the value 1 is written back to the memory;

otherwise the line is not evicted and the physical memory still

contains the value 0 in pa. Since the address is non-cacheable,

the value that is read from vanc in A4 depends on the victim’s

behaviour.

This mechanism enables the attacker to probe if the line

index idx is evicted by the the victim. If the attacker has

available a pair of aliases (cacheable and non-cacheable) for

every cache line index, the attacker is able to measure the list

of cache lines that are accessed by the victim, thus it can mount

an access-driven cache attack. The programs V1 and V2 in

Figure 1 exemplify two victims of such attack; in both cases

the lines evicted by the programs depend on a confidential

variable secret and the access-driven cache attack can extract

some bits of the secret variable.

Note that we assumed that the data cache (i) is “write-

back”, (ii) has “inertia” and (iii) uses “lazy write”. That is,

(i) writing is done in the cache and the write access to the

memory is postponed, (ii) the cache evicts a line only when

the corresponding space is needed to store new content, and

(iii) a dirty cache line is written back only when it is evicted.

This is not necessarily true; the cache can be write-through

or it can (speculatively) write back and clean dirty lines when

the memory bus is unused. Figure 2 presents an alternative

attack whose success does not depend on this assumption.

The attacker (A1-A3) stores the value 0 in the cache, by

invalidating the corresponding line, writing 0 into the memory

and reading back the value using the cacheable virtual address.

Notice that after step A3 the cache line is clean, since the

attacker used the non-cacheable virtual alias to write the value

0. Then, the attacker writes 1 into the memory, bypassing

the cache. The value read in A6 using the cacheable address

depends on the behaviour of the victim; if the victim accesses

at least one address whose line index is idx, then the cache

line for pa is evicted and the instruction in A6 fetches the

value from the memory, yielding the value 1; otherwise the

line is not evicted and the cache still contains the value 0 for

pa.

B. Attacking Integrity Using Data-Caches

Mismatched cacheability attributes may also produce in-

tegrity threats, by enabling an attacker to modify critical data

in an unauthorized or undetected manner. Figure 3 demon-

strates an integrity attack. Again, we assume that the data-

cache is direct-mapped, that it is physically indexed and that

its write policy is write allocate/write back. For simplicity, we

limit the discussion to the L1 caches. In our example, vac
and vanc are virtual addresses pointing to the same memory

location pa; vac is the cacheable alias while vanc is non-

cacheable. Initially, the memory location pa contains the value

0 and the corresponding cache line is either invalid or the line

has valid data but it is clean. In a sequential model where reads

and writes are guaranteed to take place in program order and

their effects are instantly visible to all system components, the

program of Figure 3 has the following effects: V1) a victim

accesses address vac, reading 0; A1) the attacker writes 1 into

pa using the virtual alias vanc; V2) the victim accesses again

vac, this time reading 1; V3) if 1 does not respect a security

policy, then the victim rejects it; otherwise V4) the victim uses

1 as the input for a security-relevant functionality.

On a real processor with a relaxed memory model the same

system can behave differently, in particular: V1) using vac, the

victim reads initial value 0 from the memory at the location pa
and fills the corresponding line in the cache; A1) the attacker

use vanc to write 1 directly into the memory, bypassing the

cache; V2) the victim accesses again vac, reading 0 from the

cache; V3) the policy is evaluated based on 0; possibly, the

cache line is evicted and, since it is not dirty, the memory is

not affected; V4) the next time that the victim accesses pa it

will read 1 and will use this value as input of the functionality,

but 1 has not been checked against the policy. This enables

an attacker to bypass a reference monitor, here represented by

the check of the security policy, and to inject unchecked input

as parameter of security critical functions.

C. Attacking Confidentiality Using Instruction Caches

Similar to data caches, instruction caches can be used to

mount access-driven cache attacks; in this case the attacker

probes the instruction cache to extract information about the

victim execution path.

Our attack vector uses self-modifying code. The program in

Figure 4 demonstrates the principles of the attack. We assume

that the instruction cache is physically indexed and that it has

only one way. We also assume that the attacker’s executable

address space is cacheable and that the processor uses separate

instruction and data caches.

4141

Initially, the attacker’s program contains a function at the

address A8 that writes 0 into the register R0 and immediately

returns. The attacker starts in A1, by invoking the function at

A8. Let idx be the line index corresponding to the address

of A8: Since the executable address space is cacheable, the

execution of the function has the side effect of temporarily

storing the instructions of the function into the instruction

cache. Then (A2), the attacker modifies its own code, over-

writing the instruction at A8 with an instruction that updates

register R0 with the value 1. Since the processor uses separate

instruction and data caches the new instruction is not written

into the instruction cache. After that the victim completes

the execution of its own code, the attacker (A4) re-executes

the function at A8. The instruction executed by the second

invocation of the function depends on the behaviour of the

victim: if the execution path of the victim contains at least

one address whose line index is idx then the attacker code is

evicted, the second execution of the function fetches the new

instruction from the memory and the register is updated with

the value 1; otherwise, the attacker code is not evicted and the

second execution of the function uses the old code updating

the register with 0.

In practice, the attacker can probe if the line index idx is

evicted by the victim. By repeating the probing phase for every

cache line, the attacker can mount access-driven instruction

cache attacks. The program V1 in Figure 4 exemplifies a

victim of such attack, where the control flow of the victim

(and thus the lines evicted by the program) depends on a

confidential variable secret .

D. Scenarios

In this section we investigate practical applications and

limits of the attack vectors. To simplify the presentation,

we assumed one-way physically indexed caches. However,

all attacks above can be straightforwardly applied to virtually

indexed caches. Also, the examples can be extended to support

multi-way caches if the way-allocation strategy of the cache

does not depend on the addresses that are accessed: the

attacker repeats the cache filling phase using several addresses

that are all mapped to the same line index. The attack

presented in Section III-C also assumes that the processor

uses separate instruction and data caches. This is the case in

most modern processors, since they usually use the “modified

Harvard architecture”. Modern x64 processors, however, im-

plement a snooping mechanism that invalidates corresponding

instruction cache lines automatically in case of self-modifying

code ([26], Vol. 3, Sect. 11.6); in such a scenario the attack

cannot succeed.

The critical assumptions of the attacks are the ability of

building virtual aliases with mismatched cacheability attributes

(for the attacks in Sections III-A and III-B) and the ability of

self-modifying code (for the attack in Section III-C). These

assumptions can be easily met if the attacker is a (possibly

compromised) operating system and the victim is a colocated

guest in a virtualized environment. In this case, the attacker is

usually free to create several virtual aliases and to self-modify

its own code. A similar scenario consists of systems that use

specialised hardware to isolate security critical components

(like SGX and TrustZone), where a malicious operating system

shares the caches with trusted components. Notice also that in

case of TrustZone and hardware assisted virtualization, the

security software (e.g. the hypervisor) is not informed about

the creation of setups that enable the attack vectors, since it

usually does not interfere with the manipulation of the guest

page tables.

In some cases it is possible to enable the attack vectors

even if the attacker is executed in non-privileged mode. Some

operating systems can allow user processes to reconfigure

cacheability of their own virtual memory. The main reason of

this functionality is to speed up some specialised computations

that need to avoid polluting the cache with data that is accesses

infrequently [39]. In this case two malicious programs can

collude to build the aliases having mismatched attributes.

Since buffer overflows can be used to inject malicious

code, modern operating systems enforce the executable space

protection policy: a memory page can be either writable or

executable, but it can not be both at the same time. However,

to support just in time compilers, the operating systems allow

user processes to change at run-time the permission of virtual

memory pages, allowing to switch a writable page into an

executable and vice versa (e.g. Linux provides the syscall

“mprotect”, which changes protection for a memory page of

the calling process). Thus, the attack of Section III-C can still

succeed if: (i) initially the page containing the function A8 is

executable, (ii) the malicious process requests the operating

system to switch the page as writable (i.e. between step A1
and A2) and (iii) the process requests the operating system

to change back the page as executable before re-executing

the function (i.e. between step A2 and A4). If the operating

system does not invalidate the instruction cache whenever the

permissions of memory pages are changed, the confidentiality

threat can easily be exploited by a malicious process.

In Sections II and VII we provide a summary of existing

literature on side channel attacks that use caches. In general,

every attack (e.g. [2], [55], [34]) that is access-driven and

that has been implemented by probing access times can be

reimplemented using the new vectors. However, we stress that

the new vectors have two distinguishing characteristics with

respect to the time based ones: (i) the probing phase does

not need the support of an external measurement, (ii) the

vectors build a cache-based storage channel that has relatively

low noise compared channels based on execution time which

depend on many other factors than cache misses, e.g., TLB

misses and branch mispredictions.

In fact, probing the cache state by measuring execution time

requires the attacker to access the system time. If this resource

is not directly accessible in the execution level of the attacker,

the attacker needs to invoke a privileged function that can

introduce delays and noise in the cache state (e.g. by causing

the eviction from the data cache when accessing internal data-

structures). For this reason, the authors of [55] disabled the

timing virtualization of XEN (thus giving the attacker direct

4242

access to the system timer) to demonstrate a side channel

attack. Finally, one of the storage channels presented here

poses integrity threats clearly outside the scope of timing based

attacks.

IV. CASE STUDIES

To substantiate the importance of the new attack vectors, and

the need to augment the verification methodology to properly

take caches and cache attributes into account, we examine

the attack vectors in practice. Three cases are presented: A

malicious OS that extracts a secret AES key from a cryptoser-

vice hosted in TrustZone, a malicious paravirtualized OS that

subverts the memory protection of a hypervisor, and a user

process that extracts the exponent of a modular exponentiation

procedure executed by another process.

A. Extraction of AES keys

AES [17] is a widely used symmetric encryption scheme

that uses a succession of rounds, where four operations

(SubBytes, ShiftRows, MixColumn and AddRoundKey) are

iteratively applied to temporary results. For every round i, the

algorithm derives the sub key Ki from an initial key k. For

AES-128 it is possible to derive k from any sub key Ki.

Traditionally, efficient AES software takes advantage of

precomputed SBox tables to reach a high performance and

compensate the lack of native support to low-level finite field

operations. The fact that disclosing access patterns to the

SBoxes can make AES software insecure is well known in

literature (e.g. [51], [47], [2]). The existing implementations

of these attacks probe the data cache using time channels, here

we demonstrate that such attacks can be replicated using the

storage channel described in Section III-A. With this aim, we

implement the attack described in [34].

The attack exploits a common implementation pattern. The

last round of AES is slightly different from the others since the

MixColumn operation is skipped. For this reason, implemen-

tations often use four SBox tables T0, T1, T2, T3 of 1KB for

all the rounds except the last one, whereas a dedicated T4 is

used. Let c be the resulting cipher-text, n be the total number

of rounds and xi be the intermediate output of the round i.
The last AES round computes the cipher-text as follows:

c = Kn ⊕ ShiftRows(SubBytes(xn−1))

Instead of computing ShiftRows(SubBytes(xn−1)), the imple-

mentation accesses the precomputed table T4 according to an

index that depends on xn−1. Let b[j] denote the j-th byte of

b and [T4 output] be one of the actual accesses to T4, then

c[j] = Kn[j]⊕ [T4 output] .

Therefore, it is straightforward to compute Kn knowing the

cipher-text and the entry yielded by the access to T4:

Kn[j] = c[j]⊕ [T4 output]

Thus the challenge is to identify the exact [T4 output] for a

given byte j. We use the “non-elimination” method described

in [34]. Let L be a log of encryptions, consisting of a set of

pairs (cl, el). Here, cl is the resulting cipher-text and el is the

set of cache lines accessed by the AES implementation. We

define Lj,v to be the subset of L such that the byte j of the

cipher-text is v:

Lj,v = {(cl, el) ∈ L such that cl[j] = v}
Since c[j] = Kn[j] ⊕ [T4 output] and the key is constant,

if the j-th byte of two cipher-texts have the same value then

the accesses to T4 for such cipher-text must contain at least

one common entry. Namely, the cache line accessed by the

implementation while computing c[j] = Kn[j] ⊕ [T4 output]
is (together with some false positives) in the non-empty set

Ej,v =
⋂

(cl,el)∈Lj,v

el

Let T j,v
4 be the set of distinct bytes of T4 that can be

allocated in the cache lines Ej,v . Let v, v′ be two different

values recorded in the log for the byte j. We know that exist

ti,v4 ∈ T j,v
4 and ti,v

′
4 ∈ T j,v′

4 such that v = Kn[j] ⊕ ti,v4 and

v′ = Kn[j]⊕ ti,v
′

4 . Thus

v ⊕ v′ = tj,v4 ⊕ tj,v
′

4

This is used to iteratively shrink the sets T j,v
4 and T j,v′

4

by removing the pairs that do not satisfy the equation. The

attacker repeats this process until for a byte value v the set

T j,v
4 contains a single value; then the byte j of key is recovered

using Kn[j] = v ⊕ tj,v4 . Notice that the complete process can

be repeated for every byte without gathering further logs and

that the attacker does not need to know the plain-texts used

to produce the cipher-texts.

We implemented the attack on a Raspberry Pi 2 [42],

because this platform is equipped with a widely used CPU

(ARM Cortex A7) and allows to use the TrustZone extensions.

The system starts in TrustZone and executes the bootloader of

our minimal TrustZone operating system. This installs a secure

service that allows an untrusted kernel to encrypt blocks (e.g.

to deliver packets over a VPN) using a secret key. This key

is intended to be confidential and should not be leaked to the

untrusted software. The trusted service is implemented using

an existing AES library for embedded devices [53], that is

relatively easy to deploy in the resource constrained environ-

ment of TrustZone. However, several other implementations

(including OpenSSL [35]) expose the same weakness due to

the use of precomputed SBoxes. The boot code terminates

by exiting TrustZone and activating the untrusted kernel. This

operating system is not able to directly access the TrustZone

memory but can invoke the secure service by executing Secure

Monitor Calls (SMC).

In this setting, the attacker (the untrusted kernel), which is

executed as privileged software outside TrustZone, is free to

manipulate its own page tables (which are different from the

ones used by the TrustZone service). Moreover, the attacker

can invalidate and clean cache lines, but may not use debug-

ging instructions to directly inspect the state of the caches.

4343

The attacker uses the algorithm presented in Figure 2,

however several considerations must be taken into account to

make the attack practical. The attacker repeats the filling and

probing phases for each possible line index (128) and way (4)

of the data-cache. In practice, since the cache eviction strategy

is pseudo random, the filling phase is also repeated several

times, until the L1 cache is completely filled with the probing

data (i.e. for every pair of virtual addresses used, accessing to

the two addresses yield different values).

On Raspberry Pi 2, the presence of a unified L2 cache can

obstruct the probing phase: even if a cache line is evicted from

the L1 cache by the victim, the system can temporarily store

the line into the L2 cache, thus making the probing phase

yield false negatives. It is in general possible to extend the

attack to deal with L2 caches (by repeating the filling and

probing phases for every line index and way of the L2 cache

subsystem), however, in Raspberry Pi 2 the L2 cache is shared

between the CPU and the GPU, introducing a considerable

amount of noise in the measurements. For this reason we

always flushes the L2 cache between the step A5 and A6
of the attack. We stress that this operation can be done by the

privileged software outside TrustZone without requiring any

support by TrustZone itself.

To make the demonstrator realistic, we allow the TrustZone

service to cache its own stack, heap, and static data. This

pollutes the data extracted by the probing phase of the attack:

it can now yield false positives due to access of the victim

to such memory areas. The key extraction algorithm can

handle such false positives, but we decide to filter them out

to speed up the analysis phase. For this reason, the attacker

first identifies the cache lines that are frequently evicted

independently of the resulting cipher-text (e.g. lines where the

victim stack is probably allocated) and removes them from

the sets Ej,v . As common, the AES implementation defines

the SBox tables as consecutive arrays. Since they all consists

of 1 KB of data, the cache lines where different SBoxes are

allocated are non-overlapping, helping the attacker in the task

of reducing the sets Ej,v to contain a single line belonging to

the table T4 and of filtering out all evictions that are due the

previous rounds of AES.

For practical reasons we implemented the filling and prob-

ing phase online, while we implemented the key extraction

algorithm as a offline Python program that analyses the logs

saved by the online phase. The complete online phase (includ-

ing the set-up of the page tables) consists of 552 lines of C,

while the Python programs consists of 152 lines of code. The

online attacker generates a stream of random 128 bits plain-

texts and requests to the TrustZone service their encryption.

Thus, the frequency of the attacker’s measurements isolates

one AES encryption of one block per measurement. Moreover,

even if the attacker knows the input plain-texts, they are not

used in the offline phase. We repeated the attack for several

randomly generated keys and in the worst case, the offline

phase recovered the complete 128-bit key after 850 encryption

in less than one second.

B. Violating Spatial Isolation in a Hypervisor

A hypervisor is a low-level execution platform controlling

accesses to system resources and is used to provide isolated

partitions on a shared hardware. The partitions are used to

execute software with unknown degree of trustworthiness.

Each partition has access to its own resources and cannot

encroach on protected parts of the system, like the memory

used by the hypervisor or the other partitions. Here we

demonstrate that a malicious operating system (guest) running

on a hypervisor can gain illicit access to protected resources

using the mechanism described in Section III-B.

As basis for our study we use a hypervisor [33] that has

been formally verified previously with respect to a cache-

less model. The hypervisor runs on an ARMv7 Cortex-A8

processor [16], where both L1 and L2 caches are enabled. On

ARMv7 the address translation depends on the page tables

stored in the memory. Entries of the page tables encode a

virtual-to-physical mapping for a memory page as well as

access permissions and cacheability setting. On Cortex-A8

the MMU consults the data cache before accessing the main

memory whenever a page table descriptor must be fetched.

The architecture is paravirtualized by the hypervisor for

several guests. Only the hypervisor is executing in privileged

mode, while the guests are executed in non-privileged mode

and need to invoke hypervisor functionality to alter the critical

resources of the system, like page tables.

A peculiarity of the hypervisor (and others [7]) that makes

it particularly relevant for our purpose is the use of so-called

direct paging [33]. Direct paging enables a guest to manage its

own memory space with assistance of the hypervisor. Direct

paging allows the guest to allocate the page tables inside

its own memory and to directly manipulate them while the

tables are not in active use by the MMU. Then, the guest

uses dedicated hypervisor calls to effectuate and monitor the

transition of page tables between passive and active state. The

hypervisor provides a number of system calls that support the

allocation, deallocation, linking, and activation of guest page

tables. These calls need to read the content of page tables

that are located in guest memory and ensure that the proposed

MMU setup does not introduce any illicit access grant. Thus

the hypervisor acts as a reference monitor of the page tables.

As described in Section III-B, on a Cortex-A8 processor

sequential consistency is not guaranteed if the same mem-

ory location is accessed by virtual aliases with mismatched

cacheability attributes. This opens up for vulnerabilities. The

hypervisor may check a page table by fetching its content

from the cache. However, if the content of the page table in

the cache is clean and different from what has been placed by

the attacker in the main memory and the page table is later

evicted from the cache, the MMU will use a configuration that

is different from what has been validated by the hypervisor.

Figure 5 illustrates how a guest can use the aliasing of the

physical memory to bypass the validation needed to create a

new page table. Hereafter we assume that the guest and the

hypervisor use two different virtual addresses to point to the

4444

same memory location. Initially, the hypervisor (1) is induced

to load a valid page table in the cache. This can be done

by writing a valid page table, requesting the hypervisor to

verify and allocate it and then requesting the hypervisor to

deallocate the table. Then, the guest (2) stores an invalid page

table in the same memory location. If the guest uses a non-

cacheable virtual alias, the guest write (3) is directly applied

to the memory bypassing the cache. The guest (4) requests

the hypervisor to validate and allocate this memory area, so

that it can later be used as page table for the MMU. At this

point, the hypervisor is in charge of verifying that the memory

area contains a valid page table and of revoking any direct

access of the guest to this memory. In this way, a validated

page table can be later used securely by the MMU. Since the

hypervisor (4) accesses the same physical location through

the cache, it can potentially validate stale data, for example

the ones fetched during the step (1). At a later point in time,

the validated data is evicted from the cache. This data is not

written back to the memory since the hypervisor has only

checked the page table content and thus the corresponding

cache lines are clean. Finally, the MMU (5) uses the invalid

page table and its settings become untrusted.

Note that this attack is different from existing “double

mapping” attacks. In double-mapping attacks the same phys-

ical memory is mapped “simultaneously” to multiple virtual

memory addresses used by different agents; the attack occurs

when the untrusted agent owns the writable alias, thus being

able to directly modify the memory accessed by the trusted

one. Here, the attacker exploits the fact that the same physical

memory is first allocated to the untrusted agent and then

re-allocated to the trusted one. After that the ownership is

transferred (after step A1), the untrusted agent has no mapping

to this memory area. However, if the cache contains stale

data the trusted agent may be compromised. Moreover, the

attack does not depend on misconfiguration of the TLBs;

the hypervisor is programmed to completely clean the TLBs

whenever the MMU is reconfigured.

We implemented a malicious guest that managed to bypass

the hypervisor validation using the above mechanism. The

untrusted data, that is used as configuration of the MMU, is

used to obtain writable access to the master page table of the

hypervisor. This enables the attacker to reconfigure its own

access rights to all memory pages and thus to completely take

over the system.

Not all hypervisors are subject to this kind of vulnerability.

For example, if a hypervisor uses shadow paging, then guest

pages are copied into the hypervisor’s own memory where

they are transformed into so-called shadow page tables. The

guest has no access to this memory area and the hypervisor

always copies cached data (if present), so the attack described

above cannot be replicated. On the other hand, the adversary

can still attack secure services hosted by the hypervisor, for

example a virtual machine introspector. In [12] the hypervisor

is used to implement a run-time monitor to protect an untrusted

guest from its internal threats. The monitor is deployed in

a separate partition to isolate it from the untrusted guest.

Fig. 5. Compromising integrity of a direct paging mechanism using
incoherent memory. The MMU is configured to use a page table that was
not validated by the hypervisor.

y := 1
for i = m down to 1

y = Square(y)
y = ModReduce(y, N)
if e_i == 1

y = Mult(y,x)
y = ModReduce(y, N)

Fig. 6. Square and multiply algorithm

The policy enforced by the monitor is executable space

protection: each page in the memory can be either writable

or executable but not both at the same time. The monitor, via

the hypervisor, intercepts all changes to the executable codes.

This allows to use standard signature checking to prevent

code injection. Each time the guest operating system tries to

execute an application, the monitor checks if the binary of

the application has a valid signature. In case the signature is

valid, the monitor requests the hypervisor to make executable

the physical pages that contain the binary code. The security

of this system depends on the fact that the adversary cannot

directly modify a validated executable due to executable space

protection. However, if a memory block of the application code

is accessed using virtual aliases with mismatched cacheability

attributes, the untrusted guest can easily mislead the monitor

to validate wrong data and execute unsigned code.

C. Extraction of exponent from a modular exponentiation
procedure

The square and multiply algorithm of Figure 6 is often

used to compute the modular exponentiation xe modN , where

em . . . e1 are the bits of the binary representation of e. This

algorithm has been exploited in access-driven attacks, since the

sequence of function calls directly leaks e, which corresponds

to the private key in several decryption algorithms. Here

we demonstrate that an attacker that is interleaved with a

victim can infer e using the storage channel described in

Section III-C.

The attack was implemented on Raspberry Pi 2. We build a

setting where a malicious process (e.g. a just in time compiler)

can self-modify its own code. Moreover, we implement a

scheduler that allows the attacker to be scheduled after every

4545

loop of the victim.1

The attacker uses the vector presented in Figure 4, repeating

the filling and probing phases for every way of the instruction

cache and for every line index where the code of the functions

Mult and ModReduce can be mapped. Due to the separate

instruction and data L1 caches, the presence of the L2 cache

does not interfere with the probing phase. However, we must

ensure that the instruction overwritten in the step (A2) does not

sit in the L1 data-cache when the step (A4) is executed. Since

user processes cannot directly invalidate or clean cache lines,

we satisfy this requirement by adding a further step (A3.b).
This step writes several addresses whose line indices in the L1

data-cache are the same of the address &A8, thus forcing the

eviction from the L1 data-cache of the line that has contains

the instruction stored at &A8.

We repeated the attack for several randomly generated

values of e and in each case the attacker correctly identified

the execution path of the victim. This accuracy is due to the

simple environment (no other process is scheduled except the

victim and the attacker) and the lack of noise that is typical

in attacks that use time channels.

V. COUNTERMEASURES

Literature on access-based timing channel attacks suggests

a number of well-known countermeasures. Specifically, for

attacks on the confidentiality of AES encryption, a rather

comprehensive list of protective means is provided in [51].

Some of the approaches are specific to AES, e.g., using

registers instead of memory or dedicated hardware instructions

for the SBox table look-up. Others are specific to the timing

attack vector, e.g., reducing the accuracy of timing information

available to the attacker. Still, there are well-known solutions

addressing the presence of caches in general, thus they are

suitable to defend against attacks built on the cache storage

channel described in this paper.

In what follows we identify such known general counter-

measures (Sections V-A and V-C.1-5) and propose new ones

that are specific to the attack vector using uncacheable aliases

(Sections V-B, V-C.6, and V-D). In addition it is examined

which countermeasures are suitable to protect against the

integrity threat posed by incoherent aliases in the memory

system and propose a fix for the hypervisor example.

Different countermeasures are evaluated by implementing

them for the AES and hypervisor scenarios introduced in

the previous section and analysing their performance. The

corresponding benchmark results are shown in Tables I and II.

Since our main focus is on verifying systems in the presence of

caches, for each group of countermeasures we also sketch how

a correctness proof would be conducted. Naturally, such proofs

require a suitable model of the memory system including

instruction and data caches.

It should be emphasised that the verification of the coun-

termeasures is meant to be performed separately from the

1Forcing the scheduler of a general purpose OS to grant such high frequency
of measurements is out of the scope of this paper. The interested reader can
refer to [34], [55].

verification of the overall system which is usually assuming

a much simpler memory model for feasibility. The goal is to

show that the countermeasures neutralise the cache storage

channels and re-establish a coherent memory model. The nec-

essary program verification conditions from such a proof can

then be incorporated into the overall verification methodology,

supporting its soundness.

A. Disabling Cacheability

The simplest way to eliminate the cache side channel is

to block an attacker from using the caches altogether. In a

virtualization platform, like an operating system or a hypervi-

sor, this can be achieved by enforcing the memory allocated

to untrusted guest partitions to be uncacheable. Consequently,

cache-driven attacks on confidentiality and integrity of a sys-

tem are no longer possible. Unfortunately, this countermeasure

comes at great performance costs, potentially slowing down a

system by several orders of magnitude. On the other hand, a

proof of the correctness of the approach is straight-forward.

Since the attacker cannot access the caches, they are effectively

invisible to him. The threat model can then be specified using

a coherent memory semantics that is a sound abstraction of a

system model where caches are only used by trusted code.

B. Enforcing Memory Coherency

Given the dramatic slowdown expected for a virtualization

platform, it seems out of the question to completely deny the

use of caches to untrusted guests. Nevertheless, the idea of

enforcing that guest processes cannot break memory coherency

through uncacheable aliases still seems appealing.

1) Always Cacheable Guest Memory
When making all guest memory uncacheable is prohibitively

expensive, an intuitive alternative could be to just make all

guest memory cacheable. Indeed, if guests are user processes

in an operating system this can be easily implemented by

adapting the page table setup for user processes accordingly,

i.e., enforcing cacheability for all user pages. Then user

processes cannot create uncacheable aliases to measure cache

contents and start cache-based time-of-check-to-time-of-use

attacks on their host operating system.

However, for hypervisors, where guests are whole operating

systems, the approach has several drawbacks. First of all,

operating systems are usually controlling memory mapped

I/O devices which should be operated through uncacheable

memory accesses. If a hypervisor would make all memory

accesses of a guest OS cacheable, the OS will not be able to

properly control I/O devices and probably not work correctly.

Thus, making all untrusted guest memory cacheable only

works for (rather useless) operating systems that do not control

I/O devices. Furthermore, there are cases when a guest can

optimise its performance by making seldomly used pages

uncacheable [39].

2) C ⊕ U Policy
Instead of making all guest pages cacheable, a hypervisor

could make sure that at all times a given physical page

can either be accessed in cacheable or uncacheable mode

4646

TABLE I
HYPERVISOR MICRO AND APPLICATION BENCHMARKS

LMbench micro benchmark Native Hyp ACPT SelFl Flush

null syscall 0.41 1.75 1.76 1.77 1.76
read 0.84 2.19 2.20 2.20 2.38
write 0.74 2.09 2.10 2.15 2.22
stat 3.22 5.61 5.50 5.89 5.92
fstat 1.19 2.53 2.55 2.56 2.65
open/close 6.73 14.50 14.42 14.86 14.71
select(10) 1.86 3.29 3.30 3.33 3.42
sig handler install 0.85 2.87 2.89 2.92 2.95
sig handler overhead 4.43 14.45 14.48 15.11 14.91
protection fault 2.66 3.73 3.83 3.91 3.70
pipe 21.83 48.78 47.79 47.62 692.91
fork+exit 1978 5106 5126 6148 38787
fork+execve 2068 5249 5248 6285 39029
pagefaults 3.76 11.21 11.12 21.55 332.82

Application benchmark Native Hyp ACPT SelFl Flush

tar (500K) 70 70 70 70 190
tar (1M) 120 120 120 120 250
tar (2M) 230 210 200 210 370
dd (10M) 90 140 140 160 990
dd (20M) 190 260 260 570 1960
dd (40M) 330 500 450 600 3830
jpg2gif(5KB) 60 60 60 60 130
jpg2gif(250KB) 920 810 820 830 1230
jpg2gif(750KB) 930 870 870 880 1270
jpg2bmp(5KB) 40 40 40 40 110
jpg2bmp(250KB) 1350 1340 1340 1350 1720
jpg2bmp(750KB) 1440 1420 1420 1430 1790
jpegtrans(270’, 5KB) 10 10 10 10 80
jpegtrans(270’, 250KB) 220 240 240 250 880
jpegtrans(270’, 750KB) 380 400 400 420 1050
bmp2tiff(90 KB) 10 10 10 10 60
bmp2tiff(800 KB) 20 20 20 20 80
ppm2tiff(100 KB) 10 10 10 10 70
ppm2tiff(250 KB) 10 10 10 20 80
ppm2tiff(1.3 MB) 20 30 30 30 90
tif2rgb(200 KB) 10 20 20 20 120
tif2rgb(800 KB) 40 40 40 50 270
tif2rgb(1.200 MB) 130 160 160 180 730
sox(aif2wav 100KB) 20 20 20 30 140
sox(aif2wav 500KB) 40 60 60 60 180
sox(aif2wav 800KB) 60 100 100 110 220

LMbench micro benchmarks [μs] and application benchmarks [ms] for the Linux
kernel v2.6.34 running natively on BeagleBone Black, paravirtualized on the hyper-
visor without protection against the integrity threat (Hyp), with always cacheable
page tables (ACPT), with selective flushing (SelFl), and with full cache flushes on
entry (Flush).

(C ⊕ U policy). To this end it would need to monitor the

page table setup of the guests and forbid them to define

both cacheable and uncacheable aliases of the same physical

address. Then guests may set up uncacheable virtual pages

only if no cacheable alias exists for the targeted physical page.

Moreover, the hypervisor has to flush a cacheable page from

the caches when it becomes uncacheable, in order to remove

stale copies of the page that might be abused to set up an alias-

driven cache attack. In this way, the hypervisor would enforce

memory coherency for the guest memory by making sure that

no content from uncacheable guest pages is ever cached and

for cacheable pages cache entries may only differ from main

memory if they are dirty.

A Trust-zone cryptoservice that intends to prevent a mali-

cious OS to use memory incoherency to measure the Trust-

zone accesses to the cache can use TZ-RKP [5] and extend its

run-time checks to force the OS to respect the C ⊕U policy.

3) Second-Stage MMU
Still, for both the static and the dynamic case, the C ⊕ U

policy may be expensive to implement for fully virtualizing

hypervisors that rely on a second stage of address translation.

For example, the ARMv8 architecture provides a second stage

MMU that is controlled by the hypervisor, while the first

stage MMU is controlled by the guests. Intermediate physical

addresses provided by the guests are then remapped through

the second stage to the actual physical address space. The

mechanism allows also to control the cacheability of the in-

termediate addresses, but it can only enforce non-cacheability.

In order to enforce cacheability, the hypervisor would need to

enforce it on the first stage of translation by intercepting the

page table setup of its guests, which creates an undesirable

performance overhead and undermines the idea of having two

independently operated stages of address translation.

4) W ⊕X Policy
Unfortunately, enforcing cacheability of memory accesses

does not protect against the instruction-cache-based confiden-

tiality threat described earlier. In order to prevent an attacker

from storing incoherent copies for the same instruction address

in the memory system, the hypervisor would also need to

prohibit self-modifying code for the guests, i.e., ensure that all

guest pages are either writable or executable (W ⊕X policy).

Since operating systems regularly use self-modification, e.g.,

when installing kernel updates or swapping in pages, the

association of pages to the executable or writable attribute

is dynamic as well and must be monitored by the hypervisor.

It also needs to flush instruction caches when an executable

page becomes writable.

Overall, the solutions presented above seem to be more

suitable for paravirtualizing hypervisors, that are invoked by

the guests explicitly to configure their virtual memory. Adding

the required changes to the corresponding MMU virtualization

functionality seems straightforward. In fact, for the paravir-

tualizing hypervisor presented in this paper a tamper-proof

security monitor has been implemented and formally verified,

which enforces executable space protection on guest memory

and checks code signatures in order to protect the guests from

malicious code injection [12].

5) Always Cacheable Page Tables
To protect the hypervisor against the integrity threat a

lightweight specialization of the C ⊕ U policy introduced

above was implemented. It is based on the observation that

uncacheable aliases can only subvert the integrity of the

hypervisor if they are constructed for the inputs of its MMU

virtualization functions. Thus the hypervisor needs only to

enforce the C⊕U policy, and consequently memory coherency,

on its inputs. While this can be achieved by flushing the caches

appropriately (see Section V-C), a more efficient approach

is to allocate the page tables of the guests in regions that

are always cacheable. These regions of physical memory

are fixed for each guest and the hypervisor only validates

a page table for the guest if it is allocated in this area.

In all virtual addresses mapping to the area are forced to

be cacheable. Obviously, also the guest system needs to be

4747

TABLE II
AES ENCRYPTION BENCHMARKS

AES encryption
5 000 000 × 16B 10 000 × 8KB

Time Throughput Time Throughput

Original SBoxes 23s 3.317 MB/s 13s 6.010 MB/s
Compact Last SBox 24s 3.179 MB/s 16s 4.883 MB/s
Scrambled Last SBox 30s 2.543 MB/s 20s 3.901 MB/s
Uncached Last SBox 36s 2.119 MB/s 26s 3.005 MB/s
Scrambled All SBoxes 132s 0.578 MB/s 125s 0.625 MB/s
Uncached All SBoxes 152s 0.502 MB/s 145s 0.539 MB/s

AES encryption on Raspberry Pi 2 of one block (128 bits = 16 Bytes) and
512 blocks for different SBox layouts.

adapted to support the new requirement on the allocation of

page tables. However, given a guest system that was already

prepared to run on the original hypervisor, the remaining

additional changes should be straight-forward. For instance,

the adaptation of the hypervisor example required changes to

roughly 35 LoC in the paravirtualized Linux kernel and an

addition of 45 LoC to the hypervisor for the necessary checks,

The performance of the hypervisor with always cacheable

page tables (ACPT) can be observed in Table I. Compared

to the original hypervisor there are basically no performance

penalties. In some cases the new version even outperforms

the original hypervisor, due to the ensured cacheability of

page tables. It turns out that in the evaluated Linux kernel,

page tables are not always allocated in cacheable memory

areas. The correctness of the approach is discussed in detail in

Section VI. The main verification condition to be discharged

in a formal proof of integrity is that the hypervisor always

works on coherent memory, hence any correctness proof based

on a coherent model also holds in a more detailed model with

caches.

C. Repelling Alias-Driven Attacks

The countermeasures treated so far were aimed at restricting

the behaviour of the attacker to prevent him from harvesting

information from the cache channel or break memory co-

herency in an attack on integrity. A different angle to the

problem lies in focusing on the trusted victim process and

ways it can protect itself against an unrestricted attacker that

is allowed to break memory coherency of its memory and run

alias-driven cache attacks. The main idea to protect integrity

against such attacks is to (re)establish coherency for all mem-

ory touched by the trusted process. For confidentiality, the idea

is to adapt the code of the victim in a way that its execution

leaks no additional information to the attacker through the

cache channel. Interestingly, many of the techniques described

below are suitable for both purposes, neutralizing undesirable

side effects of using the caches.

1) Complete Cache Flush
One of the traditional means to tackle cache side channels

is to flush all instruction and data caches before executing

trusted code. In this way, all aliases in the cache are either

written back to memory (in case they are dirty) or simply

removed from the cache (in case they are clean). Any kind

of priming of the caches by the attacker becomes ineffective

since all his cache entries are evicted by the trusted process,

foiling any subsequent probing attempts using addresses with

mismatched cacheability. Similarly, all input data the victim

reads from the attacker’s memory are obtained from coherent

main memory due to the flush, thus thwarting alias-driven

attacks on integrity.

A possible correctness proof that flushing all caches elimi-

nates the information side channel would rely on the assertion

that, after the execution of the trusted service, an attacker will

always make the same observation using mismatched aliases,

i.e., that all incoherent lines were evicted from the cache.

Thus he cannot infer any additional knowledge from the cache

storage channel. Note, that here it suffices to flush the caches

before returning to the attacker, but to protect against the

integrity threat, data caches need to be flushed before any

input data from the attacker is read.

For performance evaluation the flushing approach was im-

plemented in the AES and hypervisor examples. At each

call of an AES encryption or hypervisor function, all data

and instruction caches are flushed completely. Naturally this

introduces an overhead for the execution of legitimate guest

code due to an increased cache miss rate after calls to trusted

processes. At the same time the trusted process gets slowed

down for the same reason, if normally some of its data and

instructions were still allocated in the caches from a previous

call. Additionally the flushing itself is often expensive, e.g.,

for ARM processors the corresponding code has to traverse

all cache lines in all ways and levels of cache to flush them

individually. That all these overheads can add up to a sizeable

delay of even one order of magnitude is clearly demonstrated

by the benchmarks given in Tables II and I.

2) Cache Normalization
Instead of flushing, the victim can eliminate the cache

information side channel by reading a sequence of memory

cells so that the cache is brought into a known state. For

instruction caches the same can be achieved by executing

a sequence of jumps that are allocated at a set of memory

locations mapping to the cache lines to be evicted. In the

context of timing channels this process is called normalization.

If subsequent memory accesses only hit the normalized cache

lines, the attacker cannot observe the memory access pattern

of the victim, because the victim always evicts the same lines.

However the correctness of this approach strongly depends

on the hardware platform used and the replacement policy

of its caches. In case several memory accesses map to the

same cache line the normalization process may in theory evict

lines that were loaded previously. Therefore, in the verification

a detailed cache model is needed to show that all memory

accesses of the trusted service hit the cache ways touched

during normalization.

3) Selective Eviction
The normalization method shows that cache side effects can

be neutralized without evicting the whole cache. In fact, it is

enough to focus on selected cache lines that are critical for

integrity or confidentiality. For example, the integrity threat

on the hypervisor can be eliminated by evicting the cache

lines corresponding to the page table provided by the attacker.

4848

The flushing or normalization establishes memory coherency

for the hypervisor’s inputs, thus making sure it validates the

right data. The method of selective flushing was implemented

for the hypervisor scenario and benchmark results in Table

I show, as one would expect, that it is more efficient than

flushing the whole cache, but still slower than our specialized

ACPT solution.

To ensure confidentiality in the AES example it suffices

to evict the cache lines occupied by the SBoxes. Since the

incoherent entries placed in the same cache lines are removed

by the victim using flushing or normalization, the attacker

subsequently cannot measure key-dependent data accesses to

these cache lines. For the modular exponentiation example

the same technique can be used, evicting only the lines in the

instruction cache where the code of the functions Mult and

ModReduce is mapped.

The correctness of selective eviction of lines for confiden-

tiality depends on the fact that accesses to other lines do not

leak secret information through the cache side channel, e.g.,

for the AES encryption algorithm lines that are not mapped

to an SBox are accessed in every computation, independent of

the value of the secret key. Clearly, this kind of trace property

needs to be added as a verification condition on the code of

the trusted service. Then the classic confidentiality property

can be established, that observations of the attacker are the

same in two computations where only the initial values of the

secret are different (non-infiltration [23]).

4) Secret-Independent Memory Accesses
The last method of eliminating the cache information side

channel is a special case of this approach. It aims to transform

the victim’s code such that it produces a memory access trace

that is completely independent of the secret, both for data

accesses and instruction fetches. Consequently, there is no

need to modify the cache state set up by the attacker, it will be

transformed in the same way even for different secret values,

given the trusted service receives the same input parameters

and all hidden states in the service or the cache model are part

of the secret information.

As an example we have implemented a modification of

AES suggested in [51], where a 1KB SBox look-up table is

scrambled in such a way that a look-up needs to touch all

cache lines occupied by the SBox. In our implementation on

Raspberry Pi 2 each L1 cache line consists of 64 Bytes, hence

a 32bit entry is spread over 16 lines where each line contains

two bits of the entry. While the decision which 2 bits from

every line are used is depending on the secret AES key, the

attacker only observes that the encryption touches the 16 cache

lines occupied by the SBox, hence the key is not leaked.

Naturally the look-up becomes more expensive now because

a high number of bitfield and shift operations is required to

reconstruct the original table entry. For a single look-up, a

single memory access is substituted by 16 memory accesses,

32 shifts, 16 additions and 32 bitfield operations. The resulting

overhead is roughly 50% if only the last box is scrambled (see

Table II). This is sufficient if all SBoxes are mapped to the

same cache lines and the attacker cannot interrupt the trusted

service, probing the intermediate cache state. Scrambling all

SBoxes seems prohibitively expensive though, slowing the

encryption down by an order of magnitude. However, since

the number of operations depends on the number of lines used

to store the SBox, if the system has bigger cache lines the

countermeasure becomes cheaper.

5) Reducing the Channel Bandwidth
Finally for the AES example there is a countermeasure

that does not completely eliminate the cache side channel,

but makes it harder for the attacker to derive the secret key.

The idea described in [51] is to use a more compact SBox

that can be allocated on less lines, undoing an optimization in

wolfSSL for the last round of AES. There the look-up only

needs to retrieve one byte instead four, still the implementation

word-aligns these bytes to avoid bit masking and shifting. By

byte-aligning the entries again, the table shrinks by a factor

of four, taking up four lines instead of 16 on Raspberry Pi

2. Since the attacker can distinguish less entries by the cache

line they are allocated on, the channel leaks less information.

This theory is confirmed in practice where retrieving the AES

key required about eight times as many encryptions compared

to the original one. At the same time, the added complexity

resulted in a performance delay of roughly 23% (see Table II).

6) Detecting memory incoherency
A reference monitor (e.g. the hypervisor) can counter the

integrity threat by preventing the invocation of the critical

functions (e.g. the MMU virtualization functions) if memory

incoherency is detected. The monitor can itself use mis-

matched cache attributes to detect incoherency as follows. For

every address that is used as the input of a critical function, the

monitor checks if reading the location using the cacheable and

non-cacheable aliases yield the same result. If the two reads

differs, then memory incoherency is detected and the monitor

rejects the request, otherwise then request is processed.

D. Hardware based countermeasures

The cache-based storage channels rely on misbehaviour

of the system due to misconfigurations. For this reason, the

hardware could directly take care of them. The vector based

on mismatched cacheability attributes can be easily made

ineffective if the processor does not ignore unexpected cache

hits. For example, if a physical address is written using a non-

cacheable alias, the processor can invalidate every line having

the corresponding tag. Virtually indexed caches are usually

equipped with similar mechanisms to guarantee that there can

not be aliases inside the cache itself.

Hardware inhibition of the vector that uses the instruction

cache can be achieved using a snooping mechanism that

invalidates instruction cache lines whenever self-modification

is detected, similar to what happens in x64 processors. In

architectures that perform weakly ordered memory accesses

and aggressive speculative execution, implementing such a

mechanism can become quite complex and make the out-

of-order execution logic more expensive. There is also a

potential slow-down due to misspeculation when instructions

are fetched before they are overwritten.

4949

Overall, the presented countermeasures show that a trusted

service can be efficiently secured against alias-driven cache

attacks if two properties are ensured: (1) for integrity, the

trusted service may only accesses coherent memory (2) for

confidentiality, the cache must be transformed in a way such

that the attacker cannot observe memory accesses depending

on secrets. In next section, a verification methodology pre-

sented that aims to prove these properties for the code of the

trusted service.

VI. VERIFICATION METHODOLOGY

The attacks presented in Section IV demonstrate that the

presence of caches can make a trustworthy, i.e. formally ver-

ified, program vulnerable to both confidentiality and security

threats. These vulnerabilities depend on the fact that for some

resources (i.e. some physical addresses of the memory) the

actual system behaves differently from what is predicted by

the formal model: we refer to this misbehaviour as “loss of

sequential consistency”.

As basis for the study we assume a low level program

(e.g. a hypervisor, a separation kernel, a security monitor, or a

TrustZone crypto-service) running on a commodity CPU such

as the ARMv7 Cortex A7 of Raspberry Pi 2. We refer to the

trusted program as “the kernel”. The kernel shares the system

with an untrusted application, henceforth “the application”.

We assume that the kernel has been subject to a pervasive

formal verification that established its functional correctness

and isolation properties using a model that reflects the ARMv7

ISA specification to some level of granularity. For instance for

both seL4 and the Prosper kernel the processor model is based

on Anthony Fox’s cacheless L3 model of ARMv7 2.

We identify two special classes of system resources (read:

Memory locations):

• Critical resources: These are the resources whose integrity

must be protected, but which the application needs access

to for its correct operation.

• Confidential resources: These are the resources that

should be read protected against the application.

There may in addition be resources that are both critical and

confidential. We call those internal resources. Examples of

critical resources are the page tables of a hypervisor, the exe-

cutable code of the untrusted software in a run-time monitor,

and in general the resources used by the invariants needed

for the verification of functional correctness. Confidential

(internal) resources can be cryptographic keys, internal kernel

data structures, or the memory of a guest colocated with the

application.

The goal is to repair the formal analysis of the kernel,

reusing as much as possible of the prior analysis. In particular,

our goals are:

1) To demonstrate that critical and internal resources cannot

be directly affected by the application and that for these

resources the actual system behaves according to the

formal specification (i.e. that sequential consistency is

2In case of Prosper, augmented with a detailed model of the MMU [33].

preserved and the integrity attacks described in Sec-

tion III-B cannot succeed).

2) To guarantee that no side channel is present due to caches,

i.e. that the real system exposes all and only the channels

that are present in the formal functional specification that

have been used to verify the kernel using the formal

model.

A. Repairing the Integrity Verification

For simplicity, we assume that the kernel accesses all re-

sources using cacheable virtual addresses. To preserve integrity

we must ensure two properties:

• That an address belonging to a critical resource cannot

be directly or indirectly modified by the application.

• Sequential consistency of the kernel.

The latter property is equivalent to guaranteeing that what is

observed in presence of caches is exactly what is predicted by

the ISA specification.

The verification depends on a system invariant that must be

preserved by all executions: For every address that belongs to

the critical and internal resources, if there is a cache hit and the

corresponding cache line differs from the main memory then

the cache line must be dirty. The mechanism used to establish

this invariant depends on the specific countermeasure used.

It is obvious that if the caches are disabled (Section V-A)

the invariant holds, since the caches are always empty. In

the case of “Always Cacheable Memory” (Section V-B) the

invariant is preserved because no non-cacheable alias is used

to access these resources: the content of the cache can differ

from the content of the memory only due to a memory update

that changed the cache, thus the corresponding cache line is

dirty. Similar arguments apply to the C ⊕ U Policy, taking

into account that the cache is cleaned whenever a resource

type switch from cacheable (C) to uncacheable (U) and vice

versa.

More complex reasoning is necessary for other counter-

measures, where the attacker can build uncacheable aliases

in its own memory. In this case we know that the system

is configured so that the application cannot write the critical

resources, since otherwise the integrity property cannot be

established for the formal model in the first place. Thus, if

the cache contains critical or internal data different from main

memory it must have been written there by the kernel that

only uses cacheable memory only, hence the line is dirty as

well.

To show that a physical address pa belonging to a critical

resource cannot not be directly or indirectly modified by the

application we proceed as follows. By the assumed formal

verification, the application has no direct writable access to

pa, otherwise the integrity property would not have been

established at the ISA level. Then, the untrusted application

can not directly update pa neither in the cache nor in the

memory. The mechanism that can be used to indirectly update

the view of the kernel of the address pa consists in evicting

a cache line that has a value for pa different from the one

5050

stored in the memory and that is not dirty. However, this case

is prevented by the new invariant.

Proving that sequential consistency of the kernel is pre-

served is trivial: The kernel always uses cacheable addresses

so it is unable to break the new invariant: a memory write

always updates the cache line if there is a cache hit.

B. Repairing the Confidentiality Verification

Section III demonstrates the capabilities of the attacker:

Additionally to the resources that can be accessed in the

formal model (registers, memory locations access to which

is granted by the MMU configuration, etc) the attacker is able

to measure which cache lines are evicted. Then the attacker

can (indirectly) observe all the resources that can affect the

eviction. Identifying this set of resources is critical to identify

the constraints that must be satisfied by the trusted kernel.

For this reason, approximating this set (e.g. by making the

entire cache observable) can strongly reduce the freedom of

the trusted code. A more refined (still conservative) analysis

considers observable by the attacker the cache line tag3 and

whether a cache line is empty (cache line emptiness). Then to

guarantee confidentiality it is necessary to ensure that, while

the application is executing, the cache line tag and emptiness

never depend on the confidential resources. We stress that

this is a sufficient condition to guarantee that no additional

information is leaked due to presence of caches with respect

to the formal model

Showing that the condition is met by execution of the

application is trivial. By the assumed formal verification we

already know that the application has no direct read access

(e.g. through a virtual memory mapping) to confidential re-

sources. On the other hand, the kernel is able to access these

resources, for example to perform encryption. The goal is to

show that the caches do not introduce any channel that has not

been taken into account at the level of the formal model. Due

to the overapproximation described above, this task is reduced

to a “cache-state non-interference property”, i.e. showing that

if an arbitrary functionality of the kernel is executed then the

cache line emptiness and the line tags in the final state do not

depend on confidential data.

The analysis of this last verification condition depends on

the countermeasure used by the kernel. If the kernel always

terminates with caches empty, then the non-interference prop-

erty trivially holds, since a constant value can not carry any

sensible information. This is the case if the kernel always

flushes the caches before exiting, never use cacheable aliases

(for both program counter and memory accesses) or the caches

are completely disabled.

In other cases (e.g. “Secret-Independent Memory Accesses”

and “Selective Eviction”) the verification condition is further

decomposed to two tasks:

3On direct mapped caches, we can disregard the line tag, because they
contain only one way for each line. In order to observe the tags of addresses
accessed by the kernel, the attacker requires at least two ways per cache line:
one that contains an address accessible by the kernel and one that the attacker
can prime in order to measure whether the first line has been accessed.

1) Showing that starting from two states that have the same

cache states, if two programs access at the same time

the same memory locations then the final states have the

same cache states.

2) Showing that the sequence of memory accesses per-

formed by the kernel only depends on values that are

not confidential.

The first property is purely architectural and thus independent

of the kernel. Hereafter we summarise the reasoning for a

system with a single level of caches, with separated instruction

and data caches and whose caches are physically indexed and

physically tagged (e.g. the L1 memory subsystem of ARMv7

CPUs). We use s1, s
′
1, s2, s

′
2 to range over machine states and

s1 → s′1 to represent the execution of a single instruction.

From an execution s1 → s2 · · · → sn we define two

projections: πI(s1 → s2 · · · → sn) is the list of encountered

program counters and πD(s1 → s2 · · · → sn) is the list of

executed memory operations (type of operation and physical

address). We define P as the biggest relation such that if

s1 P s2 then for both data and instruction cache

• a line in the cache of s1 is empty if and only if the same

line is empty in s2, and

• the caches of s1 and s2 have the same tags for every line.

The predicate P is preserved by executions s1 → . . . and

s2 → . . . if the corresponding projections are cache safe:

(i) the instruction tag and index of πI(s1 → . . .)[i] is equal

to the instruction tag and index of πI(s2 → . . .)[i] (ii) if

πD(s1 → . . .)[i] is a read (write) then πD(s2 → . . .)[i] is a

read (write) (iii) the cache line tag and index of the address

in πD(s1 → . . .)[i] is equal to the cache line tag and index

of the address in πD(s2 → . . .)[i]

Consider the example in Figure 1, where va3 and va4 are

different addresses. In our current setting this is secure only if

va3 and va4 share the same data cache index and tag (but they

could point to different positions within a line). Similarly, the

example in Figure 4 is secure only if the addresses of both

targets of the conditional branch have the same instruction

cache index and tag. Notice that these conditions are less

restrictive than the ones imposed by the program counter

security model. Moreover, these restrictions dot not forbid

completely data-dependent look-up tables. For example, the

scrambled implementation of AES presented In Section V-C

satisfies the rules that we identified even if it uses data-

dependent look-up tables.

In practice, to show that the trusted code satisfies the cache

safety policy, we rely on a relational observation equivalence

and we use existing tools for relational verification that support

trace based observations. In our experiments we adapted the

tool presented in [6]. The tool executes two analyses of the

code. The first analysis handles the instruction cache: we make

every instruction observable and we require that the matched

instructions have the same set index and tag for the program

counter. The second analysis handles the data cache: we make

every memory access an observation and we require that the

matched memory accesses use the same set index and tag

5151

(originally the tool considered observable only memory writes

and required that the matched memory writes access the same

address and store the same value). Note that the computation of

set index and tag are platform-dependent, thus when porting

the same verified code to a processor, whose caches use a

different method for indexing lines, the code might not be

cache safe anymore. To demonstrate the feasibility of our

approach we applied the tool to one functionality of the

hypervisor described in Section IV-B, which is implemented

by 60 lines of assembly and whose analysis required 183
seconds.

VII. RELATED WORK

Kocher [31] and Kelsey et al. [27] were the first to demon-

strate cache-based side-channels. They showed that these

channels contain enough information to enable an attacker

to extract the secret key of cryptographic algorithms. Later,

Page formally studied cache side-channels and showed how

one can use them to attack naı̈ve implementations of the

DES cryptosystem [36]. Among the existing cache attacks,

the trace-driven and access-driven attacks are the most closely

related to this paper since they can be reproduced using the

vectors presented in Section III.

In trace-driven attacks [36] an adversary profiles the cache

activities while the victim is executed. Acıiçmez showed a

trace-driven cache attack on the first two rounds of AES [2],

which has been later improved and extended by X. Zhao [56]

to compromise a CLEFIA block cipher. A similar result is

reported in [9]. In an access-driven, or Prime+Probe, attack the

adversary can determine the cache sets modified by the victim.

In several papers this technique is used to compromise real

cryptographic algorithms like RSA [37], [25] and AES [22],

[34], [47].

Due to the security concerns related to cache channels,

research on the security implications of shared caches has

so far been focusing on padding [54] and mitigation [3]

techniques to address timing channels. Notably, Godfrey and

Zulkernine have proposed efficient host-based solutions to

close timing channels through selective flushing and cache

partitioning [20]. In the STEALTHMEM approach [28] each

guest is given exclusive access to a small portion of the shared

cache for its security critical computations. By ensuring that

this stealth memory is always allocated in the cache, no timing

differences are observable to an attacker.

In literature, few works investigated cache based storage

channels. In fact, all implementations of the above attacks use

timing channels as the attack vector. Brumley [11] recently

conjectured the existence of a storage channel that can be

implemented using cache debug functionality on some ARM

embedded microprocessors. However, the ARM technical

specification [15] explicitly states that such debug instructions

can be executed only by privileged software in TrustZone,

making practically impossible for an attacker to access them

with the exception of a faulty hardware implementation.

The attack based on mismatched cacheability attributes

opens up for TOCTTOU like vulnerabilities. Watson [50]

demonstrated this vulnerability for Linux system call wrap-

pers. A similar approach is used in [10] to invalidate security

guarantees, attestation of a platform’s software, provided by

a Trusted Platform Module (TPM). TPM takes integrity mea-

surements only before software is loaded into the memory,

and it assumes that once the software is loaded it remains

unchanged. However, this assumption is not met if the attacker

can indirectly change the software before is used.

Cache-related architectural problems have been exploited

before to bypass memory protection. In [52], [19] the authors

use a weakness of some Intel x86 implementations to bypass

SMRAM protection and execute malicious code in System

Management Mode (SMM). The attack relies on the fact

that the SMRAM protection is implemented by the memory

controller, which is external to the CPU cache. A malicious

operating system first marks the SMRAM memory region

as cacheable and write-back, then it writes to the physical

addresses of the SMRAM. Since the cache is unaware of the

SMRAM configuration, the writes are cached and do not raise

exceptions. When the execution is transferred to SMM, the

CPU fetches the instructions from the poisoned cache. While

this work shows similarities to the integrity threat posed by

cache storage channels, the above attack is specific to certain

Intel implementations and targets only the highest security

level of x86. On ARM, the cache keeps track which lines have

been filled due to accesses performed by TrustZone SW. The

TrustZone SW can configure via its page tables the memory

regions that are considered “secure” (e.g. where its code and

internal data structure are stored). A TrustZone access to a

secure memory location can hit a cache line only if it belongs

to TrustZone.

The attack vectors for data caches presented in this paper

abuse undefined behaviour in the ISA specification (i.e., ac-

cessing the same memory address with different cacheability

types) and deterministic behaviour of the underlying hardware

(i.e., that non-cacheable accesses completely bypass the data

caches and unexpected cache hits are ignored). While we

focused on an ARMv7 processor here, there is a strong

suspicion that other architectures exhibit similar behaviour. In

fact, in experiments we succeeded to replicate the behaviour

of the memory subsystem on an ARMv8 processor (Cortex-

A53), i.e., uncacheable accesses do not hit valid entries in

the data cache. For Intel x64, the reference manual states that

memory type aliases using the page tables and page attribute

table (PAT) “may lead to undefined operations that can result

in a system failure” ([26], Vol. 3, 11.12.4). It is also explicitly

stated that the accesses using the (non-cacheable) WC memory

type may not check the caches. Hence, a similar behaviour as

on ARM processors should be expected. On the other hand,

some Intel processors provide a self-snooping mechanism

to support changing the cacheability type of pages without

requiring cache flushes. It seems to be similar in effect as the

hardware countermeasure suggested in Section V-D. In the

Power ISA manual ([38], 5.8.2), memory types are assumed

to be unique for all aliases of a given address. Nevertheless this

is a software condition that is not enforced by the architecture.

5252

When changing the storage control bits in page table entries

the programmer is required to flush the caches. This also hints

to the point that no hardware mechanisms are mandated to

handle unexpected cache hits.

Recently, several works successfully verified low level

execution platforms that provide trustworthy mechanisms to

isolate commodity software. In this context caches are mostly

excluded from the analysis. An exception is the work by

Barthe et al. [8] that provide an abstract model of cache

behaviour sufficient to replicate various timing-based exploits

and countermeasures from the literature such as STEALTH-

MEM.

The verification of seL4 assumes that caches are correctly

handled [29] and ignores timing channels. The bandwidth of

timing channels in seL4 and possible countermeasures were

examined by Cock et al [13]. While storage based channels

have not been addressed, integrity of the kernel seems in

practice to be preserved by the fact that system call arguments

are passed through registers only.

The VerisoftXT project targeted the verification of Microsoft

Hyper V and a semantic stack was devised to underpin

the code verification with the VCC tool [14]. Guests are

modelled as full x64 machines where caches cannot be made

transparent if the same address is accessed in cacheable and

uncacheable mode, however no implications on security have

been discussed. Since the hypervisor uses a shadow page

algorithm, where guest translations are concatenated with a

secure host translation, the integrity properties do not seem to

be jeopardised by any actions of the guest.

Similarly the Nova [45], [46] and CertiKOS [21] micro-

visors do not consider caches in their formal analysis, but

they use hardware which supports a second level address

translation which is controlled by the host and cannot be

affected by the guest. Nevertheless the CertiKOS system keeps

a partition management software in a separate partition that

can be contacted by other guests via IPC to request access to

resources. This IPC interface is clearly a possible target for

attacks using uncacheable aliases.

In any case all of the aforementioned systems seem to

be vulnerable to cache storage channel information leakage,

assuming they allow the guest systems to set up uncacheable

memory mappings. In order to be sound, any proof of informa-

tion flow properties then needs to take the caches into account.

In this paper we show for the first time how to conduct such

a non-interference proof that treats also possible data cache

storage channels.

VIII. CONCLUDING REMARKS

We presented novel cache based attack vectors that use

storage channels and we demonstrated their usage to threaten

integrity and confidentiality of real software. To the best of

our knowledge, it is the first time that cache-based storage

channels are demonstrated on commodity hardware.

The new attack vectors partially invalidate the results of

formal verification performed at the ISA level. In fact, us-

ing storage-channels, the adversary can extract information

without accessing variables that are external to the ISA spec-

ification. This is not the case for timing attacks and power

consumption attacks. For this reason it is important to provide

methodologies to fix the existing verification efforts. We show

that for some of the existing countermeasures this task can

be reduced to checking relational observation equivalence. To

make this analysis practical, we adapted an existing tool [6]

to check the conditions that are sufficient to prevent informa-

tion leakage due to the new cache-channels. In general, the

additional checks in the code verification need to be comple-

mented by a correctness proof of a given countermeasure on

a suitable cache model. In particular it has to be shown that

memory coherency for the verified code is preserved by the

countermeasure and that an attacker cannot observe sensitive

information even if it can create non-cacheable aliases.

The attack presented in Section III-B raises particular con-

cerns, since it poses integrity threats that cannot be carried out

using timing channels. The possible victims of such an attack

are systems where the ownership of memory is transferred

from the untrusted agent to the trusted one and where the

trusted agent checks the content of this memory before using

it as parameter of a critical function. After that the ownership

is transferred, if the cache is not clean, the trusted agent may

validate stale input while the critical function uses different

data. The practice of transferring ownership between security

domains is usually employed to reduce memory copies and

is used for example by hypervisors that use direct paging,

run-time monitors that inspect executable code to prevent

execution of malware, as well as reference monitors that

inspect the content of IP packets or validate requests for device

drivers.

There are several issues we leave out as future work. We

did not provide a mechanism to check the security of some

of the countermeasures like Cache Normalisation and we did

not apply the methodology that we described to a complete

software. Moreover, the channels that we identified probably

do not cover all the existing storage side channels. Branch

prediction, TLBs, sharebility attributes are all architectural

details that, if misconfigured, can lead to behaviours that are

inconsistent with the ISA specification. If the adversary is

capable of configuring these resources, like in virtualized en-

vironments, it is important to identify under which conditions

the trusted software preserves its security properties.

From a practical point of view, we focused our experiments

on exploiting the L1 cache. For example, to extract the secret

key of the AES service on Raspberry Pi 2 we have been

forced to flush and clean the L2 cache. The reason is that

on this platform the L2 cache is shared with the GPU and

we have little to no knowledge about the memory accesses it

performs. On the other hand, shared L2 caches open to the

experimentation with concurrent attacks, where the attacker

can use a shader executed on the GPU. Similarly, here we only

treated cache channels on a single processor core. Nevertheless

the same channels can be built in a multi-core settings using

the shared caches (e.g. L2 on Raspberry Pi 2). The new vectors

can then be used to replicate known timing attacks on shared

5353

caches (e.g. [25]).

ACKNOWLEDGMENT

The authors would like to thank Didrik Lundberg for

supporting the development of the Raspberry Pi 2 prototypes.

Work partially supported by the PROSPER framework grant

from the Swedish Foundation for Strategic Research, by by the

Swedish Governmental Agency for Innovation Systems under

grant 2014-00702, and by the CERCES project funded by the

Swedish Civil Contingencies Agency.

REFERENCES

[1] ARM TrustZone. http://www.arm.com/products/processors/
technologies/trustzone.php.

[2] O. Acıiçmez and c. K. Koç. Trace-driven cache attacks on AES
(short paper). In Proceedings of the 8th International Conference on
Information and Communications Security, ICICS’06, pages 112–121.
Springer-Verlag, 2006.

[3] J. Agat. Transforming out timing leaks. In Proceedings of the 27th
Symposium on Principles of Programming Languages, POPL ’00, pages
40–53. ACM, 2000.

[4] E. Alkassar, M. A. Hillebrand, D. Leinenbach, N. Schirmer, A. Starostin,
and A. Tsyban. Balancing the load. J. Autom. Reasoning, 42(2-4):389–
454, 2009.

[5] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen. Hypervision Across Worlds: Real-time Kernel
Protection from the ARM TrustZone Secure World. In Proceedings of
the Conference on Computer and Communications Security, CCS’14,
pages 90–102. ACM, 2014.

[6] M. Balliu, M. Dam, and R. Guanciale. Automating information flow
analysis of low level code. In Proceedings of the Conference on
Computer and Communications Security, CCS’14, pages 1080–1091.
ACM, 2014.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. ACM
Operating Systems Review, 37(5):164–177, 2003.

[8] G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna.
Formally verified implementation of an idealized model of virtualization.
In Proceedings of the 19th International Conference on Types for Proofs
and Programs, TYPES’13, pages 45–63, 2014.

[9] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo.
AES power attack based on induced cache miss and countermeasure. In
Proceedings of the International Conference on Information Technology:
Coding and Computing, ITCC’05, pages 586–591. IEEE Computer
Society, 2005.

[10] S. Bratus, N. D’Cunha, E. Sparks, and S. W. Smith. TOCTOU, traps, and
trusted computing. In Proceedings of the 1st International Conference
on Trusted Computing and Trust in Information Technologies: Trusted
Computing - Challenges and Applications, Trust’08, pages 14–32.
Springer-Verlag, 2008.

[11] B. Brumley. Cache storage attacks. In Topics in Cryptology CT-RSA,
pages 22–34. 2015.

[12] H. Chfouka, H. Nemati, R. Guanciale, M. Dam, and P. Ekdahl. Trust-
worthy prevention of code injection in linux on embedded devices. In
Proceedings of the 20th European Symposium on Research in Computer
Security, ESORICS’15, pages 90–107. Springer, 2015.

[13] D. Cock, Q. Ge, T. Murray, and G. Heiser. The Last Mile: An Empirical
Study of Timing Channels on seL4. In Proceedings of the Conference
on Computer and Communications Security, CCS’14, pages 570–581.
ACM, 2014.

[14] E. Cohen, W. Paul, and S. Schmaltz. Theory of multi core hypervisor
verification. In 39th International Conference on Current Trends in
Theory and Practice of Computer Science, SOFSEM’2013, pages 1–27.
Springer, 2013.

[15] Cortex-A7 mpcore processors. http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.subset.cortexa.cortexa7.

[16] Cortex-A8 processors. http://infocenter.arm.com/help/topic/com.arm.
doc.subset.cortexa.a8.

[17] J. Daemen and V. Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[18] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz.
Formal verification of information flow security for a simple ARM-
based separation kernel. In Proceedings of the Conference on Computer
and Communications Security, CCS’13, pages 223–234. ACM, 2013.

[19] L. Duflot, O. Levillain, B. Morin, and O. Grumelard. Getting into the
SMRAM: SMM reloaded. CanSecWest, 2009.

[20] M. M. Godfrey and M. Zulkernine. Preventing cache-based side-channel
attacks in a cloud environment. IEEE T. Cloud Computing, 2(4):395–
408, 2014.

[21] L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo. CertiKOS:
a certified kernel for secure cloud computing. In Proceedings of the
Second Asia-Pacific Workshop on Systems, APSys’11, page 3. ACM,
2011.

[22] D. Gullasch, E. Bangerter, and S. Krenn. Cache games – bringing
access-based cache attacks on AES to practice. In Proceedings of
the Symposium on Security and Privacy, SP’11, pages 490–505. IEEE
Computer Society, 2011.

[23] C. Heitmeyer, M. Archer, E. Leonard, and J. McLean. Applying formal
methods to a certifiably secure software system. IEEE Trans. Softw.
Eng., 34(1):82–98, Jan. 2008.

[24] M. A. Hillebrand, T. I. der Rieden, and W. J. Paul. Dealing with i/o
devices in the context of pervasive system verification. In Proceedings of
the International Conference on Computer Design: VLSI in Computers
and Processors, ICCD’05, pages 309–316. IEEE, 2005.

[25] M. S. Inci, B. Gülmezoglu, G. I. Apecechea, T. Eisenbarth, and B. Sunar.
Seriously, get off my cloud! cross-vm RSA key recovery in a public
cloud. IACR Cryptology ePrint Archive, 2015:898, 2015.

[26] Intel 64 and IA-32 Architectures Software Developer’s Manual. http:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf.

[27] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel crypt-
analysis of product ciphers. J. Comput. Secur., 8(2,3):141–158, Aug.
2000.

[28] T. Kim, M. Peinado, and G. Mainar-Ruiz. STEALTHMEM: System-
level protection against cache-based side channel attacks in the cloud.
In USENIX, pages 189–204, 2012.

[29] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell,
R. Kolanski, and G. Heiser. Comprehensive formal verification of an
OS microkernel. ACM Trans. Comput. Syst., 32(1):2, 2014.

[30] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal Verification of an OS Kernel.
In Proceedings of the 22nd Symposium on Operating Systems Principles,
SOSP’09, pages 207–220. ACM, 2009.

[31] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Proceedings of the 16th Annual Inter-
national Cryptology Conference on Advances in Cryptology, CRYPTO
’96, pages 104–113. Springer-Verlag, 1996.

[32] D. Leinenbach and T. Santen. Verifying the microsoft hyper-v hypervisor
with VCC. In Proceedings of the 2Nd World Congress on Formal
Methods, FM ’09, pages 806–809. Springer-Verlag, 2009.

[33] H. Nemati, R. Guanciale, and M. Dam. Trustworthy virtualization of
the armv7 memory subsystem. In Proceedings of the 41st International
Conference on Current Trends in Theory and Practice of Computer
Science, SOFSEM’15, pages 578–589. Springer, 2015.

[34] M. Neve and J.-P. Seifert. Advances on access-driven cache attacks on
AES. In Proceedings of the 13th International Conference on Selected
Areas in Cryptography, SAC’06, pages 147–162. Springer-Verlag, 2007.

[35] OpenSSL. https://www.openssl.org.

[36] D. Page. Theoretical use of cache memory as a cryptanalytic side-
channel. IACR Cryptology ePrint Archive, 2002:169, 2002.

[37] C. Percival. Cache missing for fun and profit. BSDCan, 2005.

[38] Power ISA version 2.07. https://www.power.org/wp-content/uploads/
2013/05/PowerISA V2.07 PUBLIC.pdf.

[39] N. Qu, X. Gou, and X. Cheng. Using uncacheable memory to improve
unity linux performance. In Proceedings of the 6th Annual Workshop on
the Interaction between Operating Systems and Computer Architecture,
pages 27–32, 2005.

[40] H. Raj, R. Nathuji, A. Singh, and P. England. Resource management
for isolation enhanced cloud services. In Proceedings of the Workshop
on Cloud Computing Security, CCSW ’09, pages 77–84. ACM, 2009.

[41] R. Richards. Modeling and security analysis of a commercial real-time
operating system kernel. In D. S. Hardin, editor, Design and Verification

5454

of Microprocessor Systems for High-Assurance Applications, pages 301–
322. Springer US, 2010.

[42] Raspberry Pi 2 Model B. https://www.raspberrypi.org/products/
raspberry-pi-2-model-b/.

[43] S. M. Silver. Implementation and analysis of software based fault
isolation. Technical Report PCS-TR96-287, Dartmouth College, 1996.

[44] D. Stefan, P. Buiras, E. Yang, A. Levy, D. Terei, A. Russo, and
D. Mazires. Eliminating cache-based timing attacks with instruction-
based scheduling. In Proceedings of the 18th European Symposium on
Research in Computer Security, ESORICS’13, pages 718–735. Springer,
2013.

[45] U. Steinberg and B. Kauer. NOVA: A microhypervisor-based secure vir-
tualization architecture. In Proceedings of the 5th European Conference
on Computer Systems, EuroSys ’10, pages 209–222. ACM, 2010.

[46] H. Tews, M. Völp, and T. Weber. Formal memory models for the
verification of low-level operating-system code. J. Autom. Reasoning,
42(2-4):189–227, 2009.

[47] E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache attacks on AES,
and countermeasures. J. Cryptol., 23(2):37–71, Jan. 2010.

[48] Y. Tsunoo, T. Saito, T. Suzaki, and M. Shigeri. Cryptanalysis of DES
implemented on computers with cache. In Proceedings of the Workshop
on Cryptographic Hardware and Embedded Systems, CHES’03, LNCS,
pages 62–76. Springer, 2003.

[49] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. SIGOPS Oper. Syst. Rev., 27(5):203–216,
Dec. 1993.

[50] R. N. M. Watson. Exploiting concurrency vulnerabilities in system call
wrappers. In Proceedings of the First USENIX Workshop on Offensive
Technologies, WOOT’07, pages 2:1–2:8. USENIX Association, 2007.

[51] M. Weiß, B. Heinz, and F. Stumpf. Proceedings of the 16th international
conference on financial cryptography and data security. FC’2012, pages
314–328. Springer, 2012.

[52] R. Wojtczuk and J. Rutkowska. Attacking SMM memory via intel cpu
cache poisoning. Invisible Things Lab, 2009.

[53] wolfSSL: Embedded SSL Library. https://www.wolfssl.com/wolfSSL/
Home.html.

[54] D. Zhang, A. Askarov, and A. C. Myers. Language-based control and
mitigation of timing channels. In Proceedings of the 33rd Conference on
Programming Language Design and Implementation, PLDI ’12, pages
99–110. ACM, 2012.

[55] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-vm side
channels and their use to extract private keys. In Proceedings of the
Conference on Computer and Communications Security, CCS ’12, pages
305–316. ACM, 2012.

[56] X.-J. Zhao and T. Wang. Improved cache trace attack on AES and
CLEFIA by considering cache miss and S-box misalignment. IACR
Cryptology ePrint Archive, 2010:56, 2010.

5555

