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Abstract—Memory corruption vulnerabilities are the root
cause of many modern attacks. Existing defense mechanisms
are inadequate; in general, the software-based approaches are
not efficient and the hardware-based approaches are not flexible.
In this paper, we present hardware-assisted data-flow isolation,
or, HDFI, a new fine-grained data isolation mechanism that is
broadly applicable and very efficient. HDFI enforces isolation
at the machine word granularity by virtually extending each
memory unit with an additional tag that is defined by data-
flow. This capability allows HDFI to enforce a variety of security
models such as the Biba Integrity Model and the Bell–LaPadula
Model. We implemented HDFI by extending the RISC-V instruc-
tion set architecture (ISA) and instantiating it on the Xilinx Zynq
ZC706 evaluation board. We ran several benchmarks including
the SPEC CINT 2000 benchmark suite. Evaluation results show
that the performance overhead caused by our modification to the
hardware is low (< 2%). We also developed or ported several
security mechanisms to leverage HDFI, including stack protection,
standard library enhancement, virtual function table protection,
code pointer protection, kernel data protection, and information
leak prevention. Our results show that HDFI is easy to use,
imposes low performance overhead, and allows us to create more
elegant and more secure solutions.

I. INTRODUCTION

Memory corruption vulnerabilities are the root cause of many

modern attacks. To defeat such attacks, many security features

have been commoditized, including NX-bit (No-eXecute),

Supervisor Mode Execution Protection (SMEP), Supervisor

Mode Access Prevention (SMAP), Memory Protection Exten-

sion (MPX), which have provided a strong foundation for

security in today’s computer systems. However, while these

hardware-based security features are very efficient, they do not

provide adequate protection against modern, complex memory-

corruption-based attacks. For example, NX-bit can eliminate

simple forms of code injection attacks, but cannot stop code-

reuse attacks such as return-to-libc attack [26], return-oriented

programming (ROP) [65], COOP [62], and non-control data

attacks [14, 35, 66].

To defeat these new attacks, researchers continue to develop

new hardware-based mechanisms. For example, hardware-based

shadow stacks have been proposed to protect return addresses

from tampering by adversaries [46, 59, 81]. Hardware-based

control-flow integrity (CFI) has also been proposed to prevent

code-reuse attacks, with various trade-offs [18, 23, 24, 41].

Furthermore, a number of other approaches have been proposed

to eliminate the root cause of these memory corruption

vulnerabilities [27, 51, 52, 77].

Our work also aims to prevent memory corruption based

exploits. Towards this end, we take the direction of developing

a new hardware feature that provides both flexibility (i.e.,

applicable to broad use cases) and performance (i.e., very

efficient when activated and otherwise near-zero performance

overhead on common execution paths). Our key observation is

that even with hardware support, enforcing memory safety for

the whole application is still too expensive for practical use, e.g.,

WatchDogLite [52] imposes 29% slowdown on SPEC CINT

2006 benchmarks. To further reduce performance overhead,

one promising direction is to divide the memory into different

regions—one for sensitive data (e.g., function pointers) and

the other for the rest (e.g., application data). Then, we enforce

memory safety only over the sensitive region [43, 63, 66]. There

are two major advantages of this approach. First, sensitive

data is usually a smaller set than normal data, and less data

implies fewer checks and less performance overhead. Second,

the safety of memory operations over sensitive data is easier for

static verification. For example, because pushing/popping data

onto/from stack is always safe, once we isolate the stack slots

used to store return addresses, we can guarantee memory safety

for return addresses without any runtime check. With these

two advantages, we can significantly reduce the number of

runtime checks, thereby making memory safety more affordable.

However, implementing this strategy on commodity hardware

is non-trivial due to the lack of an efficient, fine-grained
mechanism for data isolation.

Table I compares existing software-based (top half) and

hardware-based (bottom half) isolation mechanisms on com-
modity hardware. The most apparent problem is that the two

most efficient hardware-based mechanisms—segment in x86

and access domain in ARM processors, are absent on 64-bit

mode. As a result, security solutions in modern processors must

make a trade-off between security and performance—solutions

that opt for performance, e.g., by using randomization based

protection, are usually subject to information disclosure or

brute-force based attacks [16, 32], while solutions that opt for

security, e.g., by leveraging context switch or masking, usually

yield poorer performance [19, 63, 66].

However, even if we managed to bring back the segment

and access domain, these mechanisms are still inadequate.

Specifically, because they are all coarse-grained, if we want to

isolate data at a smaller granularity (e.g., function pointers) and

preserve a program’s original memory layout, then we must

perform data shadowing. Unfortunately, data shadowing breaks
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Mechanism
(1) (2) (3) (4) (5) (6) (7)

Data Context Liveness Availability Self Vulnerable to Performance
shadowing switch tracking on 64-bit protection info leak overhead

Software-based
Randomization [43, 63] Y N N Y Y Y low
Masking [19, 43, 63] Y N N Y Y N moderate
Access control list [11, 30] N N Y Y Y N high

Hardware-based

x86 memory segment [43, 83] Y N N N Y N low
ARM access domain [87] Y Y N N Y N moderate
Virtual address space [66] Y Y Y Y Y N high
Privilege level Y Y Y Y N N moderate
Virtualization [64] Y Y Y Y N N high
TrustZone [4] Y Y Y Y N N very high
ADI [57] N N Y Y Y N low1

HDFI N N N Y Y N low

TABLE I: Comparison between HDFI and other isolation mechanisms, based on (1) whether data shadowing is required, (2) whether context
switch is required for data access, (3) whether liveness tracking is required, (4) is available on 64-bit mode, (5) whether they can be used for
self-protection, (6) is vulnerable to information leak, and (7) performance overhead. Self-protection means whether the mechanism can be
used to prevent attacks from the same privilege-level. Performance overhead is measured by comparing one instrumented read/write operation
against a normal memory read/write operation. 1There is no public benchmark result for ADI, so this conclusion is purely based on their
presentation [57].

data locality and requires extra steps to retrieve the shadow

data.This introduces additional performance overhead [21].

Furthermore, data shadowing also introduces unavoidable

memory overhead.

To overcome these limitations, we propose hardware-assisted
data-flow isolation (HDFI), a new fine-grained data isolation

mechanism. To eliminate data shadowing, HDFI enforces

isolation at machine word granularity by virtually extending

each memory unit with an additional tag. We choose to enforce

isolation at this granularity because it balances the memory

overhead (finer granularity requires more spaces for tags) and

application requirements—a majority of sensitive data like

pointers are at this granularity, and the rest can be easily aligned

through software approaches. Please also note that HDFI’s

tags are associated with memory units’ physical addresses, so
attackers cannot tamper or bypass the protection by mapping

the same physical page to different virtual addresses. Moreover,

instead of using static partition, the tag is defined by data-flow.

Inspired by the idea of data-flow integrity [10], HDFI defines

the tag of a memory unit by the last instruction that writes to

this memory location; then at memory read, it allows a program

to check if the tag matches what is expected. This capability

allows developers to enforce different security models. For

example, to protect the integrity of sensitive data, we can

enforce the Biba Integrity Model [6]. In particular, we can use

the tag to indicate integrity level (IL) of the corresponding data:

sensitive data has IL1 and normal data has IL0. Next, we assign

IL to write operations based on the data-flow. That is, we use

static analysis to identify write operations that can manipulate

sensitive data, and allow them to set the memory tag to IL1;

all other write operations will assign to the tag to IL0. Finally,

when loading sensitive data from memory, we check if the tag

is IL1 (see §III for a concrete example). HDFI can also be used

to enforce confidentiality, i.e., the Bell–LaPadula Model [5].

For instance, to protect sensitive data like encryption keys, we

can set their tag to SL1 (secret level 1), and enforce that all

untrusted read operations (e.g., when copy data to an output

buffer) can only read data with tag SL0.

We implemented a prototype of HDFI by extending the

RISC-V instruction set architecture (ISA) [72], an open-source,

license-free ISA that is designed with direct hardware imple-

mentation and practical applications in mind. Our prototype

implementation was designed to support one-bit tag for two

reasons: (1) it limits the amount of required resources; and (2)

as discussed above, in most security applications, one-bit tags

are sufficient.

To evaluate the performance of HDFI, we instantiated it on

the Xilinx Zynq ZC706 evaluation board [80] and ran several

benchmarks including the SPEC CINT 2000 [68] benchmark

suite. Evaluation results show that the performance overhead

caused by our modification to the hardware is low (< 2%).

In order to demonstrate the benefit of HDFI to security

solutions, we developed and ported six representative security

mechanisms to leverage HDFI, including stack protection,

standard library enhancement (protection for setjmp/longjmp,

heap metadata, GOT, and the exit handler), virtual function

table protection, code pointer separation, kernel data protection,

and information leak prevention. Our development experience

shows that HDFI is easy to use and usually allows us to create

more elegant solutions. We also evaluated the security and

performance benefits of HDFI. The results show that HDFI

can help improve the security guarantees. At the same time,

by eliminating data shadowing and context switching, HDFI

can also help reduce the performance overhead for security

mechanisms like CPS [43] and Kenali [66].

To summarize, this paper makes the following contributions:

• Design: We present a new hardware security mechanism,

which is general, efficient, backwards compatible, and only

requires small hardware modification. We also present

optimization techniques to minimize HDFI’s performance

impact on normal operations (§IV).

• Applications: To demonstrate the benefits of HDFI, we

developed/ported six security mechanisms that utilize HDFI

and analyzed how HDFI can enhance their security and

performance (§V).
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• Implementation: We implemented the proposed hardware

with realization on FGPA board. We also implemented all

six security applications (§VI).

• Evaluation: We quantitatively evaluated: (1) the perfor-

mance impact of HDFI and the effectiveness of our op-

timization techniques and (2) the performance improvement

delivered to the security mechanisms we implemented (§VII).

The rest of this paper is organized as follows. §II defines

the threat model and the problem scope. §III uses a concrete

example to explain how HDFI works, and discusses the differ-

ences between HDFI and similar work. §IV presents the the

design of HDFI. §V describes the security applications we have

developed. §VI provides some implementation details. §VII

describes the evaluation of HDFI and its security applications.

§VIII analyzes the security guarantee provided by HDFI, its

attack surface, and discusses best practices. §IX discusses the

limitations of our current design and future work. §X concludes

the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption

based attacks; therefore we follow the typical threat model

of most related work. That is, we assume that software may

contain one or more memory vulnerabilities that, once triggered

would allow attackers to perform arbitrary memory reads and

writes. We do not limit what attackers would do with this

capability, as there are many different attack vectors given

this capability. As a hardware-based solution, we also do not

limit where the vulnerabilities are: they can be in user-mode

applications, OS kernel, hypervisor, etc. However, we assume

all hardware components are trusted and bug free, so attacks

that exploit hardware vulnerabilities, such as the row hammer

attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications

to obtain its benefits. This can be done in many ways:

manual modification, compiler-based modification, static binary

rewriting, dynamic binary rewriting, etc. For the example

applications we demonstrated in this paper, we either manually

modified the source or leveraged compiler-based approaches.

However, we must emphasize that this is not a limitation of

HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares

HDFI with related work.

A. Data-flow Integrity

The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.

To achieve this goal, we leverage data-flow integrity (DFI) [10].

DFI ensures that the runtime data-flow cannot deviate from the

data-flow graph generated from static analysis. In particular,

DFI assigns an identifier to each write instruction and records

the ID of the last instruction that writes to a memory position;

then at each read instruction, DFI checks whether the ID of

the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow

vulnerability at line 6, which allows attackers to use strcpy()

to overwrite the return address saved at line 3 and launch

control-flow hijacking attacks. Such attacks can be prevented

by checking if the return address read at line 8 is defined by

the store instruction at line 3.

1 main:
2 add sp,sp,-32
3 �sdset1 ra,24(sp)
4 ld a1,8(a1) ; argv[1]
5 mv a0,sp ; char buff[16]
6 call strcpy ; strcpy(buff, argv[1])
7 li a0,0
8 �ldchk1 ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks

with hardware. Specifically, we leverage memory tagging to

record the last writer of a memory word and provide new

instructions to set and check the tag. However, instead of

trying to fully replicate DFI, which would require supporting

arbitrary tag size, we focus on providing isolation, i.e., using a

one-bit tag to indicate the trustworthiness of the writer. Using

the same example, HDFI can be utilized to prevent the attack

by (1) using a new instruction sdset1 (store and set tag) to

set the tag of memory used to store return address to 1 (line

3); and (2) when loading the return address from memory for

function return, using another instruction ldchk1 (load and

check tag) to check if the memory tag is still 1. Since normal

store instructions (e.g., sd) would set the tag to 0, if attackers

try to overwrite the return address, the ldchk1 instruction would

fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been

explored in many previous works. For example, lowRISC [8]

uses a 2-bit tag to specify if a memory address is readable and

writable. Loki [84] also allows developers to specify permission

with a memory address, but is more flexible, as the permission is

related to the current protection domain. The problem with these

approaches (including the Mondriaan protection model [79]) is

that, although the objects (memory addresses) are fine-grained,

the subjects are still coarse-grained—the access permissions are

applied to the whole program or the whole protection domain.

However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission

with pointers instead of memory locations. For example,

Watchdog [51] and the application data integrity (ADI) [57]

mechanism on SPARC M7 processors allow a program to

associate memory addresses and pointers with versions (tags)

and require that when accessing the memory the version of

the pointer must match the version of the memory. The tricky
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part of this approach is how to maintain the tag of a pointer,

because every pointer should have two tags: one indicating the

tag of the target memory, and the other indicating the tag of

the memory where the pointer is stored. Without this, attackers

can still tamper with the pointers. Watchdog handles this by

using shadow memory to maintain the first type of tags, but it

is unclear whether or how ADI handles this issue.

Write integrity test [2] is another tag-based memory safety

enforcement mechanism. It enforces that each write operation

(instead of pointer) can only write to objects that are allowed

by the static data-flow graph. However, since the integrity test

is only enforced on write operations, WIT can only enforce

data integrity, but not data confidentiality.

A common issue with all the aforementioned approaches

is that they must track the liveness of memory objects,

which makes the protection more complicated. For instance,

in Example 1, to protect the return address, all aforementioned

systems must tag the memory used for return address at

prologue. Here we must pay special attention to the order

of tagging and store: if store happens before tagging, the

system would be vulnerable to time-of-check-to-time-of-use

(TOCTTOU) attack, because the address might be modified

unless the two operations are guaranteed to be atomic. Then,

after the function finishes execution and returns, the current

stack frame is freed, so the old memory position used to store

the return address must be unprotected for future re-use. Here is

another tricky part—if the capability system is location-based,

or does not assign a new version for every memory allocation

(which is very challenging for fixed tag size), then it would

be subject to use-after-free (UAF) based attacks. Moreover,

for software that heavily utilizes custom memory allocators,

such as browsers and OS kernels, tracking object allocation is

non-trivial. Fortunately, HDFI does not need to track liveness

of memory objects.

Among existing hardware features, Minos [18] and

CHERI [77] are the closest to HDFI. Specifically, Minos uses

one-bit tags to indicate the integrity of code pointers and

updates the tag based on the Biba model [6]. CHERI [77] also

uses one-bit tags to indicate whether a memory address stores a

valid capability (fat pointer). This bit can only be set when the

memory content is written by a capability-related instructions

and is cleared when written by normal store instructions.

Comparing to them, the advantage of HDFI is flexibility—

as will be shown in §V, besides pointers, HDFI can also be

used to protect generic data like uid; and along with the Biba

model, HDFI can also be used to enforce the Bell–LaPadula

model [5].

C. Tag-based Hardware

Because memory tagging is widely used for dynamic

information flow tracking (DIFT), which can be very expensive

when purely done in software [56]. For this reason, numerous

hardware solutions have been proposed, including pure DIFT-

oriented [18, 20, 40, 69], and more general, programmable

metadata processing [13, 25, 28, 75]. The most significant

difference of HDFI from these solutions is our emphasis on

minimizing hardware changes so as to make HDFI more likely

to be adopted in practice. In particular, HDFI does not require

modifying register files, ALU, main memory, or the bandwidth

between cache and main memory. More importantly, instead of

requiring half of all physical memory dedicated to store tags

(i.e., an overhead of 100%), HDFI only impose 1.56% memory

overhead.

D. Memory Safety

Since memory safety issues are the root cause of many

attacks [70], researchers have proposed many solutions to

address this problem, including automated code transforma-

tion [55], instrumentation-based [2, 10, 53, 54], and hardware-

based [27, 36, 51, 52, 77]. The biggest hurdle for adopting these

solutions is their performance overhead—even with hardware

assistance, the average overhead is still 29% on benchmark

workloads [52]. To help further reduce the overhead, HDFI

is designed to enable another optimization direction—using

isolation to limit the protection scope and only enforcing mem-

ory safety over the isolated data. Such data could be security

sensitive, e.g., code pointers [43], generic pointers [17, 77], or

important kernel data [66]. It could also be data that can be

statically proved to be memory safe, e.g., safe stack [43]. We

believe such a combination would allow us to build powerful

yet efficient solutions to eliminate all memory corruption based

attacks.

IV. HDFI ARCHITECTURE

In this section, we present the design of HDFI, which includes

two major components: the ISA extension and the memory

tagger. Our current design tags memory at machine-word

granularity because most sensitive data we want to protect

are of this size (e.g., pointers). For data not of this size,

we can manually extend the size, or leverage compilers. To

prevent attackers from creating inconsistent views of data and

its corresponding tag and launching TOCTTOU attacks in a

multi-core/-processor system, we require all HDFI instructions

to be atomic (i.e., data and tag must always be loaded and stored

together) and comply with the same cache consistency model

as other memory accessing instructions. To avoid changing

the main memory system and the data link between main

memory and the processor, our current design stores all the

tag information at a dedicated area called tag table. In our

current design, tag table is allocated and initialized by the

OS kernel during boot, similar to how Intel SGX reserves

the secure pages (i.e., EPC pages) for enclaves [36]. Once

allocated, the memory region for the tag table will be protected

from malicious modification (§IV-D).

A. ISA Extension

To enforce DFI, the authors added two high-level instructions:

SETDEF and CHECKDEF [10]. Since HDFI only supports one-bit

tags, in order to allow programs to use DFI-style checks to

enforce the integrity/confidentiality level of memory contents,

we introduce three new instructions:

• sdset1 rs,imm(rb): store word and set tag to 1.
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• ldchk0 rd,imm(rb): load word and check if tag equals 0.

• ldchk1 rd,imm(rb): load word and check if tag equals 1.

Note that we do not have an instruction that explicitly

sets the tag to 0. Instead, HDFI implicitly sets the tag of

the destination memory to 0 when written by regular store

instructions. However, HDFI preserves the semantics of regular

load instructions, i.e., tag is not checked on regular load

operations. To check the tag bit of the target memory region,

HDFI provides ldchk0 and ldchk1. To enable the OS kernel

to capture tag mismatch, we also introduced a new memory

exception, which is similar to other memory faults except for

the error code.

HDFI also provides a special instruction alias mvwtag 1 for

copying the memory from a source to a destination along with

the corresponding tag bits. This special operation is necessary

to achieve optimal performance in modern system software.

Specifically, modern OS kernels like Linux use copy-on-write

(CoW) to share memory between the parent process and its

child processes. However, if we use normal sd operations to

perform the copy, it could break HDFI-protected applications

because the tag information is lost; on the other hand, we

also cannot use sdset1 because it allows attackers to abuse

this feature to tag arbitrary data. To solve this problem, we

introduced the mvwtag instruction to allow OS kernels to copy

data while preserving the tag. Please also note that because

memcpy can cause memory corruption, we do not recommend

using mvwtag to implement memcpy unless the developer can

guarantee memory safety for all the invocations of memcpy.

B. Memory Tagger

Our hardware extension is similar to lowRISC [8]. Specifi-

cally, to simplify the implementation of the new instructions

and support atomicity in a multi-core/-processor system, we

modified the interface between the processor core and the cache

system (including the coherence interconnect) to associate each

data with its tag. In particular, when the processor core executes

a memory related instruction such as sd, sdset1 or ld, it sends

a request to the data cache(s). This request includes a data

field and a command field. HDFI adds one tag bit to the data

field, so for every memory write request, data is always stored

with the tag; and for memory load requests, tags can be (not

always, see §IV-C for detail) loaded with data.

To facilitate this, we augmented the caches to hold the tags

for the cached memory units, as shown in Figure 1. To hold the

tag bits for the cached memory units, the caches have a one-bit

register for each machine word to store the corresponding tag.

When the processor core sends a store request, the L1 cache

can simply update the data and tag value with the incoming

value from the core; and when the core sends a read request,

the L1 data cache provides the core with the tag bit, with

which the core can check whether the tag matches expected

value or not.

1Since we do not extend general register files with tag, this operation is an
alias for two instructions: load data and tag from source into a special register
then store them to the destination.

L1 Cache
Tilelink

Core

L2 Cache

L1 Cache

Tilelink

Interconnect

Physical memory
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L1 Cache

cacheline
cacheline
cacheline
cachelinetag

tag
tag
tag

Physical 
memoryDFITagger

Tag Table
New HW

component

Additional 
HW resources

Core

Fig. 1: Design of HDFI. The processor core and caches are augmented
and the DFITAGGER is added.

While the L2 cache can also be augmented similarly to hold

the tags for each memory unit, we believe it is not feasible to

add the tag bits physically to the external main memory. For

this reason, we added an additional module DFITAGGER in

between the L2 cache and the main memory, which decomposes

memory accesses from the L2 cache to separate data accesses

and tag accesses. Data accesses are handled as usual and tag

accesses are handled as follows. HDFI preserves a memory

chunk to be used as tag table (Figure 1), which acts as a huge

bit vector to store tag bits. When the L2 cache issues a memory

access, DFITAGGER maps the physical address to a table entry

of the tag table and generates a tag access.

C. Optimizations

Unfortunately, the additional memory accesses to the tag

table introduce non-negligible performance overhead. More

specifically, without any optimization, HDFI will double the

memory accesses because for every cache miss, DFITAGGER

needs to issue one data access and another tag access. To

minimize this impact, we developed several optimization

techniques.

1) Tag Cache: The most straightforward way of reducing

the overhead is caching, so we introduced a tag cache within

the DFITAGGER to exploit the locality of memory accesses.

Moreover, tag cache also allows DFITAGGER to fetch a set

of tags from the main memory in the cache line granularity

to reuse the existing memory interface. For example, a cache

line in the Rocket Core is 64 bytes. To handle one cache miss,

DFITAGGER only needs 8 tag bits (one bit per eight bytes),

but for the fixed size of memory interface, it has to fetch 64

bytes from the tag table. In fact, this 64-byte unit, which we

call one tag table entry, naturally stores the tags for a 4 KB

memory block; so tag cache allows us to generate only one

memory access per 4 KB data access.

2) Tag Valid Bits: The second optimization technique takes

advantage of the fact that most of the memory loads are not
checked, so there is no need to always refill the cache line

with corresponding tag bits. Leveraging this observation, we

add a Tag Valid Bit (TVB) to each memory unit in the caches

to further reduce unnecessary accesses to the tag table. TVB is

updated as follows. When the cache has to refill a line but the

request from the inner cache or the processor core does not

explicitly asks for tag bits, the cache generates a refill request

to the outer cache or DFITAGGER, and clears the TVB for the

memory units in the line. Later, if an incoming load (with tag)
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request hits in the cache, but the TVB for the corresponding

memory unit is not set, the cache will refill the line again with

the valid tags. Note that any write hit will set the TVB because

store operations always update the tag bit. Finally, when a

cache line is evicted and written back to main memory, the

cache forwards TVB to DFITAGGER, so the later can update

the tag cache accordingly.

3) Meta Tag Table: The third technique leverages the fact

that most of the memory units are tagged with 0 and only

a few ones will be tagged with 1. This means that most tag

table entries would be filled with 0. To take advantage of this

observation, DFITAGGER maintains a Meta Tag Table (MTT) in

the main memory and a Meta Tag Directory (MTD) as a register.

Each bit of the MTT entries is set to 1 if the corresponding tag

table entry contains 1, and each bit of MTD is set to 1 if the

corresponding MTT entry has 1. Utilizing them, DFITAGGER

can avoid fetching tag table entries from the main memory if

they are filled with 0. It also enables DFITAGGER to avoid (1)

updating the tag table entry for a given write miss if that entry

is filled with 0; and (2) write back to main memory if both the

evicted tag cache and the main memory copy are filled with 0.

D. Protecting the Tag Tables

The design of HDFI requires that the tag table and the meta

tag table in the main memory are protected from the malicious

modifications. To do so, we leverage the fact that DFITAGGER

is sitting between the cache and the main memory, hence we

can use it to mediate all modifications to the main memory. That

is, once the memory chunk used for tag tables are assigned

to DFITAGGER, it drops any access to this memory chunk.

Because tag is always provided by DFITAGGER, this effectively

prevents any malicious modifications to the tag tables. Note

that our current design cannot prevent DMA-based attacks; we

will discuss this issue in §IX.

V. SECURITY APPLICATIONS

In this section, we demonstrate how HDFI can be utilized

to build security solutions with simplified designs, improved

performance, and better security. We want to use these examples

to highlight the generality of HDFI (i.e., the ability to support

different security applications), as well as its ease of adoption.

Regarding backward compatibility, it completely depends on

the security solution. Some security mechanisms like shadow

stack could allow mixing protected and unprotected code, but

other solutions like VTable protection will not allow such

mixing.

In each application example, we focus on protecting one

type of security critical data, such as return addresses, function

pointers, etc. However, as there is no overlapping between the

protected data (i.e., the meaning of the tag bit is not ambiguous),

we can integrate all mechanisms together to maximize the

defense against memory corruption based attacks.

To implement these examples, we either directly modified

the source code or augmented compilers to emit HDFI’s new

instructions. However, we want to emphasize again that this is

not a limitation of HDFI—as long as a security solution can

make the target program use HDFI’s new instructions, it will

be able to leverage the isolation provided by HDFI.

A. Shadow Stack

In Example 1, we have demonstrated how to use HDFI to

implement a virtual shadow stack for protecting the return

addresses. To implement this scheme, we just need to change

6 lines in GCC (Example 2). Implementation in the LLVM

toolchain is similarly simple, with only 4 lines of changes—in

function storeRegToStackSlot/loadRegFromStackSlot, which

are invoked at function prologues/epilogues, we use

sdset1/ldchk1 instead of normal store/load. Because these

functions are also used to handle register spills/restores, our

(LLVM-based) shadow stack also protects spilled registers,

which can also be an attack vector [16].

1 char *riscv_output_move (rtx dest, rtx src) {
2 // if dest == REG && src == MEM
3 if (flag_safe_stack && (REGNO (dest) == RETURN_ADDR_REGNUM))
4 return "ldchk1\t%0,%1";
5 else
6 return "ld\t%0,%1";
7 // if dest == MEM && src == REG
8 if (flag_safe_stack && (REGNO (src) == RETURN_ADDR_REGNUM))
9 return "sdset1\t%z1,%0";

10 else
11 return "sd\t%z1,%0";
12 }

Example 2: How to use HDFI to implement shadow stack in GCC,
with only 6 lines of changes.

Supporting context saving and restoring like setjmp/longjmp

has always been a challenge for hardware-based shadow

stacks [46, 59, 81]. However, for a HDFI-based shadow stack,

supporting this feature is straightforward—just like saving

registers to the stack, when saving current context to jmp_buf,

we set the tag of the corresponding memory to 1. Then, when

restoring the context, we check if the memory tag is still

1. If attackers try to overwrite jmp_buf, the load check will

fail. Furthermore, because HDFI-based shadow stack is still

memory-based, it naturally supports deep recursion. It can even

support modifying return addresses as long as they are always

stored using sdset1 and loaded with ldchk1. Finally, unlike

SmashGuard [59], because HDFI is orthogonal to the execution

privilege level, HDFI-based shadow stack does not need any

support from the OS kernel and can also be used to protect

kernel stacks.

B. Standard Library Enhancement

Runtime libraries like the dynamic linker (ld.so) and the

standard C library are important parts of every program’s

runtime security. Unfortunately, many compiler-based security

solutions neglected them, thus leave holes for attacks [9, 39, 60].

In this subsection, we describe enhancements made to the

libraries to prevent attacks.

1) Heap Metadata Protection: Many standard C libraries

like glibc (GNU C Library) uses a variant of Doug Lea’s

Malloc [45] that supports multi-threading, called (ptmalloc).

ptmalloc uses double-linked lists to manage freed memory

chunks. When removing a memory chunk from this list, it
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performs a general unlinking process. If there exist a heap buffer

overflow vulnerability, attackers can exploit this vulnerability

to tamper with these metadata (pointers), which will allow

attackers to overwrite an arbitrary address with arbitrary

data [39]. Moreover, despite that many integrity checks have

been applied to the heap implementation to stop heap-based

attacks, attackers still find their ways to bypass them [31, 33].

To prevent such attacks, we can leverage HDFI to protect the

integrity of these metadata—similar to return addresses, when

linking a freed chunk, we set the tags of forward and backward

pointers to 1; then when unlinking a chunk, we check if the

tag is still 1. By doing so, if attackers overwrite these pointers

(with normal writes), the tag will be set to 0, which will be

captured by the load check.

2) Global Offset Table Protection: Global Offset Table

(GOT) is a data structure for dynamic linking. Since GOT

is modifiable by default and affects the program’s control flow,

GOT overwriting [60] has been used for changing control

flow with memory corruption based attacks. To protect the

GOT, we enforce that whenever a dynamic linked function

is invoked, the target address is loaded by ldchk1. To tag

the initial pointer (i.e., the call to the resolver), we leveraged

the fact that for position-independent executables (PIE), GOT

table entries need to be patched due to address space layout

randomization (ASLR); so we modified the relocation routine

to tag the initial GOT values with 1. Then during runtime,

after resolving a real function address, we make the loader use

sdset1 to update the GOT value.

3) Exit Handler Protection: Another attack surface is the

exit handler [9]. To prevent attackers from manipulating the exit

handler, pointer encryption [29] is applied in glibc. However,

because performance was top priority when designing this

scheme, the encryption is implemented in an ad hoc manner and

can be easily bypassed with information leakage. To protect the

exit handler, we use HDFI to enforce that it is always registered

with sdset1 and loaded with ldchk1. Since attackers cannot

tag an exit handler with 1, they cannot abuse it to execute

arbitrary code.

C. VTable Pointer Protection

As virtual function calls comprise a large portion of indirect

control transfer in large C++ programs like browsers [71],

virtual function table pointers (a.k.a., vfptr) have become a

popular attack target [86]. In these attacks, attackers try to

exploit memory corruption vulnerabilities to control the vfptr

so as to invoke arbitrary code, which has been demonstrated

to be very powerful [62]. For this reason, many systems have

been proposed to defeat such attacks [7, 38, 71, 85, 86].

Leveraging HDFI, we also implemented a protection mech-

anism based on one security invariant: only a constructor
function can initialize a vfptr. This invariant can be enforced

in two simple steps: (1) when initializing a C++ object, we

use sdset1 to initialize its vfptr; and (2) when performing a

virtual call, we always use ldchk1 to load the vfptr.

Compared with existing protection mechanisms, our imple-

mentation is much simpler in that it requires no sophisticated

static analysis and/or runtime instrumentation. At the same

time, it is also very effective. More specifically, there are

two typical attacks against VTable: injection attacks and reuse

attacks. In VTable injection attacks, attackers try to forge a

vfptr pointing to a crafted VTable. With our protection, this

is no longer feasible because the values assigned to vfptr are

always static/constant. In VTable reuse attacks, attackers try

to make the vfptr point to an existing VTable, but usually

at a wrong offset [62]. Although our mechanism cannot fully

prevent all VTable reuse attacks, it significantly increases the

difficulty of attacks, because (1) making the vfptr point to a

wrong offset is no longer feasible, because constructors always

assign the correct value; and more importantly, (2) crafting

a counterfeit object is also much more difficult, i.e., once

combined with techniques that can prevent illegal jumping to

the middle of a function (e.g., shadow stack and CPS), the

only way to modify the vfptr is to invoke a constructor, who

will initialize a legitimate object and overwrites the crafted

data from attackers.

D. Code Pointer Separation

Control flow hijacking is one of the most popular and

powerful attacks. In all control flow hijacking attacks, attackers

seize control by corrupting one or more code pointers. Based

on this observation, researchers have proposed code pointer

separation (CPS) [43], a technique that isolates code pointers

into a safe region to prevent attackers from tampering with

them. In their original implementation, the isolation is enforced

using segment on 32-bit x86 processors or randomization (or

masking) on 64-bit x86 processors and ARM processors. As

discussed in §I, these approaches introduce (1) additional

memory overhead for data shadowing, and (2) additional

performance overhead for shadow data lookup, which is very

problematic on benchmarks where code pointer dereference is

more frequent, such as C++ programs and language interpreters.

Moreover, their randomization-based approach is subject to

brute-force attacks [32], and their masking-based approach

introduces an additional 5% performance overhead [43].

By utilizing HDFI, we can eliminate all these drawbacks.

Specifically, using the same static analysis from CPS, we can

identify all code pointers that need to be protected. With this

information, instead of instrumenting the target program to

load/store code pointers from the safe region with an additional

runtime library, we instrument the program to (1) always use

sdset1 instructions to store code pointers, and (2) always use

ldchk1 instructions to load code pointers. Because no other

instructions can store code pointers, our approach has the

same effectiveness as segments and masking based approaches.

However, because there is no additional lookup step(s), the

performance of our approach is better when there are many

indirect calls.

One drawback of our solution is that we need to add one

additional step to tag static code pointers that are initialized by

the OS kernel or the dynamic loader, e.g., virtual function

pointers in the VTables. For PIE code, we can reuse our

modification to the relocation procedure to perform this task.
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E. Kernel Protection

Although control flow hijacking attacks are the most popular

attack type, non-control data attacks are also feasible [14],

especially for kernel attacks [66]. More importantly, existing

kernel-wide protection mechanisms all imposes very high

performance overhead; regardless of whether it is masking-

based [19] or context-switch-based [66]. As a generic data

isolation mechanism, HDFI can also be used to replace those

expensive isolation mechanisms thus reduce the performance

overhead of these solutions.

Similar to CPS, porting Kenali [66] to utilize HDFI is

straightforward. Specifically, we replace: (1) its randomization-

based stack protection with the shadow stack described in §V-A;

(2) the expensive, context switch-based update operations with

sdset1; (3) all read to sensitive data with ldchk1; (4) global

object shadowing with tagging (i.e., similar to function pointers

in the VTable, we wrote a small early initialization routine to

tag sensitive global object); and (5) we eliminate its complicated

object shadowing mechanism.

F. Information Leak

In all of the above applications, we try to prevent attackers

from injecting data into the trusted region, but HDFI can also be

used to prevent attackers from reading sensitive data from the

trusted region. For example, in the Heartbleed attack [15],

attackers exploited a buffer overread vulnerability in the

OpenSSL library to steal the private key associated with the

website’s certificate. To prevent such attacks, we can (1) tag

the memory used to store the private key as 1, (2) replace

all legitimate read access to the key with ldchk1, and (3)

implement a simple sanitation routine that uses ldchk0 to

check if the buffer to be written to network contains any data

with tag 1.

VI. IMPLEMENTATION

Components Language Lines of Code
Modified Added Total

Architecture Scala (Chisel) 395 1,803 2,198
Assembler C - 16 16
Linux Kernel C 8 52 60

Total 403 1,871 2,274

TABLE II: Components of HDFI and their complexities in terms of
their lines of code.

In this section, we provide the implementation detail of

HDFI. Table II shows the lines of code used to implement

HDFI, excluding empty lines and comments.

A. Hardware

We implemented a prototype of HDFI by modifying the

Rocket Chip Generator [73]. The generated system includes

a Rocket Core [74] as its main processor, which has 16KB

of L1 instruction and data caches. Modifying the generator

itself instead of a generated instance allows us to generate

and evaluate multiple versions of HDFI with various features
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MTTWriter
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Fig. 2: A simplified diagram of DFITAGGER on a Rocket Chip.

and parameters, e.g., different optimization techniques and

configuration parameters.
1) ISA Extensions: Following the design pattern of RISC-V,

we assign a new opcode to our new instructions that is similar

to the RV64I load/store instructions [76].

sdset1: We extend the memory request unit’s data field by

one-bit to include the tag. To determine whether the tag should

be 0 or 1, we introduce a new configuration to the set of control

signals for memory command type that is unique to sdset1.

ldchkx: We add a new, one-bit field to the memory response

unit for the tag bit loaded with the machine word. To determine

whether the tag bit should be loaded, we assigned a new

memory command to these two instructions. Upon a valid

response from cache, HDFI compares the tag to the expected

value. This expected value is extracted from bit 12 of the

ldchkx instruction. A tag mismatch generates a new memory

exception; otherwise, the pipeline continues normally.

mvwtag: At the execution stage, HDFI first calculates the

source address from the second register’s value and the

immediate offset using the ALU, and sends out a memory

read request to load the data and tag. The result is stored in a

new internal register that is capable of storing both data and

tag. Simultaneously, HDFI calculates the destination address

from the destination register’s value and the same offset using

a separate adder. Finally, we issue a memory store request

to store the internal register’s data and tag to the destination

address.
2) DFITAGGER: To avoid adding the tag bits physically

to the main memory, which is usually a set of DRAMs, we

implemented DFITAGGER to translate memory accesses with

tags from inner caches into data accesses and tag accesses.

Figure 2 shows the DFITAGGER we implemented for the Rocket

Chip. The DFITAGGER is designed to handle the memory

accesses that comply with the TileLink protocol which the

rocket chip uses to implement the cache coherence interconnect.

Among the five channels that the protocol defines, DFITAGGER

handles two of them because they are used to connect the L2

caches and the outer memory system.

To initiate a memory access, the inner cache generates one or

more beats of transaction through the Acquire channel, and the

DFITAGGER selectively intercepts the beats using the Acquire
Distributor. When the option tagger is enabled, the Acquire

Distributor bypasses the device accesses, drops the access

to the tag table or meta tag table (for protection purpose),

and forwards all the transactions heading to the memory
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to the Acquire Queue, which simply forwards the incoming

transactions to memory. The Acquire Arbiter1 drops all the tag

bits in the transactions; the resulting memory accesses only

contain the data part of the incoming accesses.

In the mean time, the Tracker duplicates the required field

of incoming transactions, including the tag bits, the transaction

id, the type of the transaction, and the address. When the

incoming transaction writes to memory, the Tracker updates

the corresponding tag bits in the tag table with the tag bits

in the transaction. To do this, the Tracker first check the Tag
Cache, and uses the Fetcher and the Writer modules to fetch

and evict tag table entries.

Handling memory read accesses is similar, but the Tracker

need to intervene in the Grant channel as well. In the Rocket

Chip, the memory interface (which is a protocol converter)

uses the Grant channel to provide the caches with the read data.

To attach the tag bits to the Grant transactions, the Acquire

Queue changes the transaction id of read accesses so that the

corresponding Grant transactions are forwarded to the Grant
Queue. In the mean time, the Tracker accesses the Tag Cache

and uses other modules to prepare the corresponding tag bits.

Once the tag bits become available, the Grant Queue forwards

the transaction from the memory interface, after changing the

transaction id back to the original one and attaching the correct

tag bits for each machine word.

3) Tag Valid Bits: To reduce the number of tag table accesses,

HDFI adds a TVB for each machine word in the caches. Using

TVB, the cache can avoid fetching the tag bits when it refills

a cache line. To take advantage of this, the cache uses the

union field of an Acquire transaction to mark if the response to

the transaction should have valid tag bits or not. The Acquire

Distributor then uses this field to decide whether a transaction

could be directly forwarded to the Acquire Arbiter2 and bypass

the Acquire Queue.

The location of TVBs is also important. A simple solution is

to put the TVBs in the metadata array, where the cache holds

the cache tags and the coherence information. However, this

approach would increase the latency of write hits because the

cache has to update the metadata for every write operation. To

address this issue, we choose to put a tag fetched bit in the

metadata array for each cache line and extend the size of the

data array to store the TVBs for each word. The tag fetched

bit is set/cleared by the miss handler, which is called MSHR in

the Rocket Chip. When the handler fetches the cache line with

tags, it sets the bit; otherwise the bit is cleared. Since every

write operation should update the tag, the cache also sets the

TVB whenever a machine word is written.

Adding TVBs also requires the DFITAGGER to consider a

memory write access whose tag bits are partially valid. To

handle this, the cache attaches the TVBs for each machine

word to the Acquire transactions for memory writes. With the

TVBs, the DFITAGGER can selectively update the tag bits in

the corresponding tag table entry.

An important drawback of this implementation is that the

cache refills a cache line to handle an incoming load with tag

access even when the TVB of the requested machine word is

set, but if the Tag Fetched Bit is not set. We believe that we

can avoid these cache refills by augmenting the miss handler,

by letting it to consider the TVBs before evicting and refilling

the cache, but the current implementation does not include

such feature.

4) Meta Tag Table: Enabling the Meta Tag Table adds the

shaded components and resource in Figure 2 to the DFITAGGER.

When handling an incoming tag table read access, the Tracker

checks whether the MTT cache and the tag cache has a

matching entry. If the Tracker fails to find a matching tag table

entry, it checks the MTD and the matching MTT entry (loaded

into MTT cache if does not exist) to see if the corresponding tag

table entry is all zero. If so, the Tracker handle the incoming

tag table access without really fetching the entry from the

memory. To minimize the miss penalty, the MTTFetcher and

the MTTWriter handles the access to the MTT in the memory

in parallel with the existing Writer and Fetcher.

After updating the tag table entry and the MTT entry, the

Tracker checks if it can clear the corresponding MTT entry bit

and MTD bit. In particular, the Tracker clears the corresponding

bit in MTT entry if the updated tag table entry is filled with

zeros, and clears the MTD bit if the MTT entry is filled with

zeros.

B. Software Support

To utilize HDFI, we made the following changes to the

software.

1) Assembler: We modified the GNU assembler (gas) so that

it recognizes the new instruction extension and can generate

the correct binary.

2) Kernel Support: Our modifications to the OS kernel

include three parts. First, we modified its exception handler

to recognize the new tag mismatch exception. To handle this

exception, we reused the same logic as normal load/store

faults, i.e., generate a segment fault (SIGSEGV) for user mode

applications, and panic if the exception happens in kernel

space. Second, as mentioned in §IV, we implemented a special

memory copy routine with the new mvwtag instruction and

modified the CoW handler to invoke this routine to copy page

content, so that the tag information are preserved. Last, we

added routines to allocate the tag table and meta tag table,

and initialize the DFITAGGER with the base addresses of the

tables.

C. Security Applications

Most security applications mentioned in §V were imple-

mented based on the llvm-riscv toolchain [61] (RISCV branch).

Table III summarizes the effort of implementation/porting.

1) LLVM Shadow Stack: LLVM-based shadow stack is

implemented as part of the frame lowering process. Specifically,

we modified the getLoadStoreOpcodes function to return the

opcode of sdset1 for the storeRegToStackSlot function; and

return the opcode of ldchk1 for the loadRegFromStackSlot

function.

99



Solutions Language LoC

Shadow Stack C++ (LLVM 3.3) 4
VTable Protection C++ (LLVM 3.3) 40
CPS C++ (LLVM 3.3) 41
Kernel Protection C (Linux 3.14.41) 70
Library Protection C (glibc 2.22) 10
Heartbleed Prevention C (OpenSSL 1.0.1a) 2

TABLE III: Required efforts in implementing or porting security
schemes in terms of lines of code. Given a software-based solution,
HDFI is easy to adopt or extend in practice.

2) VTable Pointer Protection: VTable pointer protection

is implemented in two steps. First, during compilation, we

enable the TBAA (type-based alias analysis) option so Clang

will annotate VTable load/store operations with corresponding

TBAA metadata (“vtable pointer”). This metadata will be

propagated to machine instruction, so in the second step, we

leveraged the DAG to DAG transformation pass to replace

sd instructions with sdset1 instructions, and to replace ld

instructions with ldchk1 instructions, if the machine instruction

has the corresponding TBAA of VTables.

3) Code Pointer Separation: To port CPS [44] to our

architecture, we performed the following modifications. (1)

Because code pointers are now protected by HDFI, we removed

the runtime library required by its original implementation. (2)

We modified the instrumentation, so when a code pointer is

stored to or loaded from memory, we annotate the correspond-

ing operations with a special TBAA metadata and removes

the original invocation to the runtime library. (3) Using the

same DAG to DAG transforming function, we replace the

sd and ld instructions with sdset1 and ldchk1, respectively.

Unfortunately, lacking link time optimization support in the

llvm-riscv toolchain, we cannot port the original CPS and CPI

implementations.

4) Kernel Protection: Due to the limitation of llvm-riscv

toolchain, even though we were able to generate LLVM

bitcode for the target kernel and apply the static analysis

of Kenali [66], we cannot use Clang to compile the kernel

into executable binary. As a result, we cannot perform

automated instrumentation to protect all the discover data. For

proof-of-concept, we utilize the analysis results to manually

instrumented the kernel to protect the uid fields in the cred

structure, which are the most popular target for kernel exploits.

Since we have implemented the shadow stack in GCC, we

were able to replace Kenali’s randomization-based stack

protection with our stack shadow.

The rest of the protection mechanisms are implemented

through manual modification.

5) Standard libraries: To protect the integrity of saved

context of setjmp/longjmp, we modified setjmp.S and

__longjmp.S so general registers are saved with sdset1, and

restored with ldchk1 to enforce its integrity. To protect

the integrity of heap metadata, we manually modified the

linking and unlinking routine to use sdset1 for assigning

pointers and ldchk1 for loading pointers. To set the tag of

static code pointers to 1, we modified the dynamic loader

(elf_machine_rela) so that during the relation process, it

stores the patched code pointer with tag 1. And to protect

code pointers in GOT table and the exit handler, we modified

the dynamic loader to use sdset1 to set these pointers, and

ldchk1 to load these pointers.

6) Heartbleed: To protect sensitive data from Heartbleed

attacks, we modified OpenSSL so that (1) the private key

is stored with sdset1; and (2) when building the response

buffer, ldchk0 is used to make sure that all content copied to

this buffer has tag 0. To implement this protection, we used

background knowledge about Heartbleed to decide where to

put the checking routine (i.e., when constructing the response

buffer). For a prototype implementation, we believe this is

a reasonable limitation. To thoroughly protect the sensitive

data, one could use data flow analysis or taint analysis [82]

to determine where to tag sensitive data, and where to put the

check.

D. Synthesized Attacks

To evaluate the effectiveness of the security applications we

implemented/ported, we developed/ported several synthesized

attacks against different targets.

1) RIPE Benchmark: RIPE [78] is an open sourced intrusion

prevention benchmark. It provides five testbed dimensions:

location of the buffer overflow, target code pointers, overflow

technique, attack payload and abused function. Since RIPE

was developed for the x86 platform, we need to modify it

to make it work on the RISC-V architecture. However, due

to time limitations, we could not port all the features of

RIPE. Specifically, our ported RIPE benchmarks support all

locations of buffer overflow, all target code pointers except the

frame pointer, both overflow techniques (direct and indirect),

one attack payload (return-to-libc), and one abused function

(memcpy).

2) Heap Exploit: To evaluate heap metadata protection, we

ported the example exploit from [39] to overwrite the return

address of a function.

3) VTable Hijacking: Due to the limitations of the FPGA,

we could not use real-world cases like browser attacks to

evaluate our VTable pointer protection mechanism. Instead, we

developed a simple attack that overwrites the VTable pointer

with a fake one, so the next invocation of the virtual function

will invoke the attacker controlled function.

4) Format String Exploit: Because the RIPE benchmark

does not cover attack targets used in recent attacks, we

implemented a simple program with format string vulnerability

to evaluate the ported CPS mechanism. We chose a format

string vulnerability because it is one of the most powerful

vulnerabilities that can be used as local stack read (%x), arbitrary

memory read (%s), and arbitrary memory write (%n). For attack

targets, we implemented two new attacks: GOT overwriting

and atexit handler overwriting.

5) Kernel Exploit: In the kernel, overwriting non-control

data is sufficient to obtain root permissions without hijack-

ing control flow. To test the feasibility of using HDFI to

defend against data-only attacks in the kernel, we back
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ported CVE-2013-6282 [1], an arbitrary memory read and write

vulnerability to our target kernel. Leveraging this vulnerability,

an attackers can modify the uid of a process and escalate their

privilege.

6) Heartbleed: Heartbleed (CVE-2014-0160) [15] is a heap

out-of-bounds read vulnerability in OpenSSL caused by missing

input validation when parsing malicious TLS heartbeat request.

This bug was marked as extremely critical, because researchers

have proved that it can be exploited to reveal private keys [34].

To reliably2 simulate such attacks, we modified vulnerable

OpenSSL (1.0.1a) to insert special characters as a decoy

private key. Since the decoy data is inserted in the affected

range of Heartbleed, it can always be leaked in default settings

through a Heartbleed attack.

VII. EVALUATION

In this section, we evaluate our prototype of HDFI by

answering the following questions:

• Correctness. Does our prototype comply with the RISC-V

standard (i.e., no backward compatibility issue)? (§VII-A)

• Efficiency. How much performance overhead does HDFI

introduce compared to the unmodified hardware? (§VII-B)

• Effectiveness. Can HDFI-powered security mechanisms

accurately prevent attacks? (§VII-C)

• Benefits. Compared to their original implementation, does

HDFI-powered implementation perform better and/or is it

more secure? (§VII-D)

Experimental setup. All evaluations were done on the Xilinx

Zynq ZC706 evaluation board [80]. The OS kernel is Linux

3.14.41 with support for the RISC-V architecture [58]. Unless

otherwise stated, all programs (including the kernel) were

compiled with GCC 5.2.0 (-O2) and binutils 2.25, with a set

of patches to support RISC-V (commit 572033b) and default

kernel configuration of RISC-V. While the board is equipped

with 1GB of memory, the Rocket Chip can only use 512MB

because the co-equipped ARM system requires 256MB. At

boot time, the kernel reserves 8MB for tag tables and 128KB

for the meta tag table, respectively. Following the environment

that the RISC-V community built, we use the Frontend Server
that runs on the ARM system and the Berkeley Boot Loader
that runs on the Rocket Chip to boot vmlinux. The Rocket Chip

accesses an ext2 file system in an SD card via the Front-end

Server.

Although the tape-out Rocket Core chip can operate on

1GHz or higher, the synthesized FPGA on the ZC706 board can

only operate at the maximum frequency of 50MHz. In addition,

because the L2 cache is not mature enough for memory-mapped

IO [47], we only evaluated with the L1 caches. In place of the

L2 cache, we used the L2BroadcastHub that interconnects the

L1 caches and the outer memory system. Due to the above

limitation and the memory limitation of the evaluation board,

2Attacking a OpenSSL-powered HTTPS server cannot always reveal the
private key because the buffer used to store the privately may at a lower
address, so it cannot be read by a buffer over read.

we were not able to run most SPEC CINT 2006 benchmarks,

so we used the much lighter SPEC CINT 2000 [68]. For SPEC

CINT 2000, some benchmarks (gzip and bzip) cannot run

successfully with the reference inputs. For these benchmarks,

we adjusted the parameters of the reference inputs to reduce

the size of the buffer they use to 3MB. We have annotated the

results to clarify this.

We used pseudo-LRU (Least Recently Used) as the replace-

ment policy for both tag and meta tag caches, and set the size

of each cache to 1KB, allowing up to 16 entries of 512-bit

cachelines.

A. Verification

HDFI passes the RISC-V verification suite provided by the

RISC-V teams, which means our modifications to the RISC-V

complies with the RISC-V standard so unmodified programs

can still run correctly on our modified hardware.

B. Performance Overhead

In this subsection, we evaluate the performance impact of

our hardware extension, as well as the effectiveness of our

optimization techniques. This evaluation includes two part:

the impact of new instructions on the processor core and the

impact on memory access. Since HDFI did not introduce many

changes to the pipeline of the processor core, the focus will

be on memory access.

1) Pipeline: The sdset1 and two ldchk instructions are

treated identically to their normal store and load counterparts

in the pipeline, with the exception of ldchk doing a comparison

at the end of the memory stage. These three instructions can

stall the pipeline in the same manner as their counterparts.

However, the special register dedicated to mvwtag for preserving

tags introduces a structural hazard to the pipeline. Because

there is only one special register available, a series of mvwtag

instructions have to wait for the previous mvwtag to finish,

stalling the pipeline. Other memory instructions do not have

to wait on previous ones to issue memory requests.

2) Memory Access: While the ISA extension does not

affect the performance of the processor core, HDFI inevitably

introduces additional memory accesses to fetch/update the tag

table.

Micro benchmark. To measure the performance impact of

these additional memory accesses and the logics to deal with

them, we used lat_mem_rd from LMBench [49] to measure

memory access latency and STREAMBench [48] to measure

memory bandwidth. Table IV shows the result of the five

configurations. The first row shows that HDFI does not affect

the cache access latency. As the system operates at 50MHz,

the 40ns latency means that it takes two clock cycles to read

from the L1 cache. The second column shows that HDFI does

increase the memory access latency. When TVB is enabled,

DFITAGGER simply bypasses the incoming memory read access

unless it explicitly requests the tag bits. However, the access

should be examined by the Acquire Distributor and the Grant

Distributor (Figure 2), which adds 2 clock cycles latency. For
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Benchmark Baseline Tagger TVB MTT TVB+MTT

L1 hit 40ns 40ns (0%) 40ns (0%) 40ns (0%) 40ns (0%)
L1 miss 760ns 870ns (14.47%) 800ns (5.26%) 870ns (14.47%) 800ns (5.26%)

Copy 1081MB/s 939MB/s (13.14%) 1033MB/s (4.44%) 953MB/s (11.84%) 1035MB/s (4.26%)
Scale 857MB/s 766MB/s (10.62%) 816MB/s (4.79%) 776MB/s (9.45%) 817MB/s (4.67%)
Add 1671MB/s 1598MB/s (4.37%) 1650MB/s (1.26%) 1602MB/s (4.13%) 1651MB/s (1.2%)
Triad 818MB/s 739MB/s (9.66%) 802MB/s (1.96%) 764MB/s (8.8%) 803MB/s (1.83%)

TABLE IV: Impact on memory bandwidth and read latency, with different optimization techniques. The load does not include tag check and
store does not include tag set.

Benchmark Baseline Tagger TVB MTT TVB+MTT

164.gzip 963s 1118s (16.09%) 984s (2.18%) 1029s (6.85%) 981s (1.87%)
175.vpr 14404s 18649s (29.51%) 14869s (3.26%) 15513s (7.71%) 14610s (1.43%)
181.mcf 8397s 11495s (36.89%) 8656s (3.08%) 9544s (13.66%) 8388s (−0.11%)
197.parser 21537s 25005s (16.11%) 22025s (2.27%) 23177s (7.61%) 21866s (1.53%)
254.gap 4224s 4739s (12.19%) 4268s (1.04%) 4500s (6.53%) 4254s (0.71%)
256.bzip2 716s 820s (14.52%) 735s (2.65%) 742s (3.63%) 722s (0.84%)
300.twolf 22240s 28177s (26.71%) 22896s (2.97%) 23883s (7.37%) 22323s (0.36%)

TABLE V: Performance overhead of a subset of SPEC CINT 2000 benchmarks. Due to the limited computing power of the Rocket Chip on
FPGA, we chose relatively lighter benchmark. In addition, to be fair, we included relatively memory bound benchmarks. According to a
paper [37], 181.mcf, 175.vpr and 300.twolf are memory bound and showing higher overhead. We used reduced version of reference input to
run 164.gzip and 256.bzip2.

memory bandwidth, our results also show that the optimizations

we implemented can effectively reduce overhead.

SPEC CINT 2000. In addition to the micro benchmarks,

we also ran a subset of SPEC CINT 2000 benchmarks

on the five configurations of HDFI, without any security

applications (i.e., no load check and no sdset1). Table V

shows that even though the unoptimized version of HDFI

causes non-negligible performance overhead, our optimizations

successfully eliminated a large portion of overhead. Specifically,

since there is no load check, TVB eliminated all read access

requests to the tag table; and since there is no sdset1, MTT

eliminated all the write access to the tag table. Table VI shows

the number of memory accesses reduced by TVB and MTT.

Please note that the 0.11% performance gain on mcf is due to

fluctuations.

C. Security Experiments

In this subsection, we evaluate the effectiveness of HDFI-

powered protection mechanisms. We evaluated all the security

applications described in §V, with synthesized attacks described

in §VI-D. The evaluation result is shown in Table VII, all HDFI-

powered protection mechanisms can successfully mitigate the

corresponding attack(s).

RIPE benchmark. With our ported RIPE benchmark, there

are 112 possible combinations, with 54 that could proceed and

58 are not possible. Please note that although we did not port

all combinations, all attack targets are supported except the

frame pointer, which behaves quite differently on RISC-V. The

supported targets are: return address, stack function pointer,

heap function pointer, .bss section function pointer, .data

section function pointer, jmp_buf on stack, jmp_buf as stack

parameter, jmp_buf in heap, jmp_buf in .bss section, jmp_buf

in .data section, function pointer in a structure on stack, in

heap, in .bss section and in .data section. With our ported

CPS, we can prevent all 54 attacks.

Heap exploit. Without protection, our basic version of heap

attack targeting newlibc (a lightweight libc) was able to

overwrite the return address to launch a return-to-libc attack

to invoke the “evil” function. With our enhanced library, we

were able to stop the attack.

VTable hijacking. Without protection, our simple VTable

hijacking attack was able to invoke the “evil” function. With

our VTable protection mechanism, we were able to prevent

the loading of attacker-crafted vfptr.

Format string exploit. Without protection, our format string

exploit can overwrite the GOT table entry and the exit handler

to invoke the “evil” function. With our enhanced library, both

attacks were stopped.

Kernel exploit. Without protection, the exploit can change

the uid of the attack process to a arbitrary number. With our

protection, the attack causes a kernel panic when trying to

access the uid.

Heartbleed. : without protection, we can leak the decoy secret

by exploiting the Heartbleed vulnerability. With our protection,

the attack was stopped when constructing the response buffer.

D. Impact on Existing Security Solutions

As a fine-grained hardware-based isolation mechanism, we

expect HDFI to provide the following benefits:

I Security: HDFI should provide non-bypassable protection

for the isolated data;

II Efficiency: HDFI should provide the protection with low

performance overhead;

III Elegance: HDFI should enable the building of elegant secu-

rity solutions, e.g., no data shadowing, which as discussed

in the introduction, has many drawbacks;
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Benchmark Type Baseline Tagger TVB MTT TVB+MTT

164.gzip
Read 590M 799M (35.25%) 606M (2.71%) 589M (−0.17%) 588M (−0.34%)
Write 380M 1,217M (220.26%) 453M (19.21%) 1,017M (167.63%) 378M (−0.53%)

175.vpr
Read 9,816M 17,200M (75.15%) 10,930M (11.35%) 9,760M (−0.57%) 9,792M (−0.25%)
Write 7,908M 37,480M (373.83%) 12,420M (57.06%) 31,890M (303.16%) 7905M (0%)

181.mcf
Read 9,778M 14,310M (46.35%) 10,503M (7.41%) 9,778M (0%) 9,778M (0%)
Write 5,588M 23,720M (324.33%) 8,490M (1.11%) 20,300M (263.15%) 5,588M (0%)

197.parser
Read 12,770M 17,610M (37.9%) 13,220M (3.52%) 12,850M (0.63%) 12777M (0.01%)
Write 8,290M 27,490M (231.6%) 9,640M (16.28%) 24,440M (194.81%) 8299M (0.11%)

254.gap
Read 2,233M 2,872M (28.61%) 2,239M (0.27%) 2,225M (0%) 2,206M (−1.21%)
Write 1,594M 4,237M (165.81%) 1,701M (6.71%) 3,926M (146.3%) 1,592M (−0.13%)

256.bzip2
Read 228M 390M (71.05%) 268M (17.54%) 229M (0.44%) 229M (0.44%)
Write 249M 896M (259.84%) 407M (63.45%) 730M (193.17%) 249M (0%)

300.twolf
Read 13,600M 22,350M (64.34%) 15,820M (16.32%) 13,600M (0%) 13,610M (0%)
Write 13,680M 48,650M (255.63%) 22,510M (64.55%) 38,090M (178.43%) 13,610M (−0.51%)

TABLE VI: The number of total memory read/write access from both the processor and DFITAGGER.

Mechanism Attacks Result

Shadow stack RIPE �
Heap metadata protection Heap exploit �
VTable protection VTable hijacking �
Code pointer separation (CPS) RIPE �
Code pointer separation (CPS) Format string exploit �
Kernel protection Privilege escalation �
Private key leak prevention Heartbleed �

TABLE VII: Security applications utilizing HDFI can effectively
prevent various attacks including Heartbleed (CVE-2014-0160).

IV Usability: HDFI should be flexible, capable of supporting

different security solutions; it should also be easy to use, so

as to increase the chance of real-world adoption.

In this subsection, we evaluate whether HDFI achieves these

design goals or not. As described in §V, none of the HDFI-

powered security applications requires data shadowing, includ-

ing three solutions (stack protection, CPS and Kenali) whose

previous implementations rely heavily on data shadowing. For

this reason, we consider HDFI to have achieved goal III. And

as shown in Table III, implementing/porting security solutions

with HDFI is very easy, so we consider goal IV to be achieved

as well. Next, we analyze the security and efficiency benefit.

1) Security Improvement: Compare with software-based

shadow stacks [21], our stack protection provides better security

than platforms that do not have efficient isolation mechanisms,

such as x86_64 and ARM64. Compared with existing hardware-

based shadow stacks [46, 59, 81], our solution provides the

same security guarantee but is more flexible and supports kernel

stack. Compared to active callsite based solutions [23, 24], our

stack protection provide better security. For standard libraries,

existing heap metadata integrity checks can be bypassed under

certain conditions. For example, Google project zero team

has successfully compromised ptmalloc with NULL off-by-

one [31]; and existing encryption-based exit handler protection

is vulnerable to information leak based attacks. However, Our

HDFI-based library enhancement cannot be bypassed because

attackers cannot control the hardware-managed tags. Compared

with existing VTable protection mechanisms [7, 38, 71, 85, 86],

our HDFI-based solution has both advantages and limitations.

On the positive side, our approach makes it much harder to

overwrite the vfptr; while in all other solutions, attackers can

easily tamper with vfptr. However, because our approach does

not involve any class hierarchy analysis, we cannot guarantee

type safety (i.e., semantic correctness). Compared to the original

CPS implementation, our ported version provides the same

security guarantee as segment-based isolation but is stronger

than its randomization-based isolation, which has been proven

to be vulnerable [32]. Compared to the original implementation

of Kenali [66], our ported version provides stronger guarantees

than its randomization-based stack. Based on the above analysis,

we also consider HDFI to achieve goal I.

2) Performance Improvement: Because we can neither fully

port the original implementation of CPS and Kenali to our

testbed due to problems with the official llvm-riscv toolchain

nor run the C++ benchmarks of SPEC CINT 2000, we

designed the following benchmarks to evaluate the performance

improvement of HDFI-based security solutions.

Micro benchmarks. Compared with the original implementa-

tion of CPS, our ported version would be more efficient because

it does not need to access the shadow data. To demonstrate this

benefit, we implemented a micro benchmark that measures the

overhead for performing an indirect call for 1,000 times. To

simulate CPS, we used their own hash table implementation

and performed the same look up before the indirect call. For

our implementation, we just replaced the load instruction with

a checked load. Note, although our implementation sounds

simpler, it provides the same level of security guarantee as

the original segment-based CPS implementation. The result

showed that our protection only incurs 1.6% overhead, whereas

the hash table lookup incurred 971.8% overhead. Note, this

micro benchmark only shows the worst case performance of

both approaches. Depending on the running application, the

real end-user performance impacts could be much less than

this.

Because we cannot perform automated instrumentation to

fully replicate Kenali, here we only measured the performance

overhead of kernel stack protection. The result is shown

in Table VIII. Although our prototype implementation has

higher a performance overhead, it is also more secure than

the randomization-based stack protection used in the original

implementation.

1313



Benchmark Baseline Kernel Stack Protection

null syscall 8.91μs 8.934μs (0.27%)
open/close 160.6μs 168.7μs (5.04%)
select 285.6μs 287.5μs (0.67%)
signal install 19.3μs 21.5μs (11.4%)
signal catch 99.8μs 105.6μs (5.81%)
pipe 273.6μs 306.6μs (12.06%)
fork+exit 5892μs 6308μs (7.06%)
fork+execv 6510μs 6972μs (7.1%)
page fault 50.0μs 52.6μs (5.2%)
mmap 800μs 880μs (10%)

TABLE VIII: LMBench results of baseline system and HDFI with
kernel stack protection.

Benchmark GCC Shadow Stack Clang1 CPS+SS1

164.gzip 981s 992s (1.12%) 1734s 1776s (2.42%)
181.mcf 8388s 8536s (1.76%) 11014s 11403s (3.54%)
254.gap 4254s 4396s (3.34%) 20783s 23526s (13.23%)
256.bzip2 722s 744s (3.05%) 1454s 1521s (4.61%)

TABLE IX: Performance overhead of HDFI-based shadow stack CPS.
1Please note that because Clang cannot compile the benchmark with
-O2, they were compiled with -O0.

SPEC CINT 2000. To measure the performance overhead of

HDFI under the existence of load check and store set, we ran

four benchmarks from SPEC CINT 2000 with two security

protections: GCC-based shadow stack and CPS plus LLVM-

based shadow stack. The result is shown in Table IX. As we

can see, the performance overhead is also low. Please note that

because Clang cannot compile the benchmarks with -O2, they

are compiled with -O0. As a result, the performance is much

worse than GCC. More importantly, because Clang did not

optimize redundant stack access with -O0, it caused trouble

for our current implementation of TVB (§VI-A); this is the

reason why the gap benchmark behaved so badly on CPS.

VIII. SECURITY ANALYSIS

Being an isolation mechanism, HDFI cannot guarantee

memory safety by itself, so it cannot prevent all memory

corruption-based attacks. In this section, we analyze the security

guarantee provided by HDFI and provide our recommendations

on how to utilize HDFI properly in security solutions.

A. Attack Surface

The security guarantee of HDFI is in data-flow isolation, i.e.,

preventing data flowing from one region to another. This is

enforced by (1) partitioning write operations into two groups:

those who can set the memory tag to 1, and those who set

the memory tag to 0; and (2) when loading, checking if the

tag matches the expected value. In this regard, HDFI has the

following attack surfaces:

1) Inaccuracy of Data-flow Analysis: The first challenge

for utilizing HDFI is how to correctly perform partitioning

and checking. To do so, we rely on data-flow analysis. For

some security-critical data, such as return addresses and VTable

pointers, their data-flow is quite simple, so the accuracy can be

easily guaranteed even without any program analysis. For data

like code pointers, because their data-flow is more complicated,

it would require thorough static analysis to guarantee the

accuracy. Fortunately, because these data are usually self-

contained, i.e., not provided by external input, the accuracy,

to some extent, can still be guaranteed. However, for data

that exhibits complicated data-flow, it may not always be

possible to guarantee the accuracy of static analysis. In this case,

the common strategy is to avoid false positives by allowing

false negatives, i.e., allowing some attacker controllable write

operations to set the memory tags. As a result, HDFI itself is

not sufficient to guarantee data integrity, so one must employ

other runtime protection techniques to compensate for such

inaccuracies.

2) Deputy Attacks: After partitioning, the next challenge is

how to guarantee the trustworthiness of each write operation.

More specifically, a write operation takes two parameters, a

value and an address. The integrity of a write operation thus

relies on the integrity of both the value and the address. If either

of them can be controlled by attackers or the instruction gets

executed under wrong context (e.g., via control flow hijacking),

then they can launch deputy attacks. Please note that the control

here means both direct and indirect control. For example, if

attackers can control the object pointer used to invoke a C++

constructor, then even though our VTable pointer protection

can prevent them from directly overwriting the VTable pointer,

they can still leverage this constructor to overwrite the VTable

pointer of an existing C++ object. Similarly, if a piece of

sensitive data may propagate from one memory location to

another, and one forgets to check the tag of the source before

setting the tag of the destination to 1, then an attack can leverage

this bug to overwrite sensitive data with a value controlled by

the attacker.

B. Best Practices

To mitigate the aforementioned attacks, we recommend

utilizing HDFI in the following ways:

1) To prevent write operations from executing under the

wrong context, it is important to enforce the integrity of the

control flow, which is also required by other systems that

enforces write capability [2, 10]. With HDFI, this can be easily

achieved through protecting all the control data (e.g., CPS +

shadow stack).

2) To prevent attackers from controlling the address parame-

ter of write operations, it is important to recursively protect all

pointers that are part of the dereference chain [43, 66]. It is

worth noting that because HDFI is designed to be fine-grained

and its protection is enforced efficiently by hardware, including

more pointers would not be a big performance issue.

3) To prevent attackers from controlling the value parameter

of write operations, one must ensure that the value is trusted.

A value is trusted if any of these conditions hold: (1) it is

a constant; (2) it is from a trusted register (e.g., the link

register); (3) it is loaded from a memory location with the

expected tag; or (4) the semantic of the current program context

guarantees the trustworthiness of the value (e.g., during early

kernel initialization or when the program is being initialized

by the dynamic loader). Moreover, if the value may have both

tags (e.g., unions in C), one should use the special memory
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copy instruction to propagate data with the tag when the data

is not modified or leverage a exception handler when the data

needs to be modified between load and store.

4) To compensate the potential inaccuracy of data-flow

analysis, we recommend combining HDFI with a runtime

memory safety enforcement mechanism like [36, 52]. By

doing so, even if we allow attackers to control some write

operations, the memory safety protection mechanism would

prevent attackers from abusing those write operations to launch

attacks.

IX. LIMITATIONS AND FUTURE WORK

Direct Memory Access (DMA). Since our current prototype

of HDFI only handles memory accesses from the processor

core, it is vulnerable to DMA-based attacks. Attackers can

leverage DMA to (1) corrupt the data without changing the tag

and (2) directly attack the tag table. To mitigate this threat, we

could leverage features like IOMMU to confine the memory

that can be accessed through DMA [64]. Alternatively, we

can choose to add our own hardware module in between the

interconnect and the memory controller such that all memory

accesses would pass through the hardware module. By doing

so, our hardware module would be able to determine whether

or not the access is from DFITAGGER, thus prevents malicious

access to the tag table. It is worth noting that similar hardware

modules have already been introduced [50] and deployed in

commodity hardware [3, 36].

Configurable Tag Table. Our current implementation com-

pletely blocks accesses to the tag table. Although this provides a

stronger security guarantee, it also comes with some drawbacks.

The first problem is that we cannot save the page to disk

because the tag information will lost. To support these features,

we must allow the kernel to access the tag table. However,

to protect the tag table from tampering, we must implement

some protection techniques like [22] or integrity measurements

like [36]. Another drawback of our current design is that we

must allocate the whole tag table in advance. In the future, we

could provide other options for the OS kernel or the hypervisor

to manage the tag table depending on the security requirement

by users. On such a model, we can implement an on-demand

allocation mechanism to reduce the memory overheads, i.e.,

we allocate the tag memory only when DFITAGGER modifies

a tag entry.

Opportunities for Further Optimizations. Although the

Rocket Chip Generator is a great tool for prototype verification,

the Rocket Core is a very limited processor compared to

x86 processors. With a more powerful processor core like

the Berkeley out-of-order machine (BOOM) [12] and a more

sophisticated cache, we could further reduce the memory access

overhead using the following techniques.

Tag prefetch: Just like prefetching data that is likely to

be used in the future due to program locality, we could

also prefetch the tag. We could both prefetch the tag from

DFITAGGER to avoid possible read miss hit due to TVB and

prefetch the tag entries from the main memory when the bus

is free.

Delayed check: Just like speculating a branch, as most tag

checks should not triggering the exception, with an out-of-order

machine we could speculate the execution even when the tag

is not ready (i.e., TVB miss hit). By doing so, we could avoid

stalling the pipeline and further reduce the overhead of HDFI.

Better cache design: In our prototype implementation, we

did not extend our modification to the L2 cache. At the same

time, as mentioned in §VI-A, out current design of TVB is not

ideal, which may cause some obvious performance overhead

for unoptimized programs (§VII-D). For future work, we plan

to extend our modification to the L2 cache with better TVB

implementation.

Dynamic Code Generation. Dynamic code generation is an

important technique that has been widely utilized in browsers

and OS kernels to improve performance. However, because this

technique requires memory to be both writable and executable,

it may be vulnerable to code injection attacks [67]; and unlike

static code, it is not always possible to detect malicious

modification to the generated code. In the future, we can

perform tag checking for instruction fetching, i.e., provide

a configuration flag that once enabled, only allows tagged

memory to be fetched as code.

X. CONCLUSION

In this paper, we have presented HDFI, a new fine-grained

data isolation mechanism. HDFI uses new machine instructions

and hardware features to enforce isolation at the machine word

granularity, by virtually extending each memory unit with

an additional tag that is defined by data-flow. To implement

HDFI, we extended the RISC-V instruction set architecture

and instantiated it on the Xilinx Zynq ZC706 evaluation

board. Our evaluation using benchmarks including SPEC

CINT 2000 showed that the performance overhead due to our

hardware modification is low (< 2%). We also implemented

security mechanisms including stack protection, standard

library enhancement, virtual function table protection, code

pointer protection, kernel data protection, and information leak

prevention on HDFI. Our results show that HDFI is easy to use,

imposes low performance overhead, and improves security.
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in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2002.

[80] Xilinx, “ZC706 evaluation board for the Zynq-7000 XC7Z045
all programmable SoC user guide,” http://www.xilinx.com/support/
documentation/boards_and_kits/zc706/ug954-zc706-eval-board-
xc7z045-ap-soc.pdf, 2015.

[81] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer, “Architecture support for
defending against buffer overflow attacks,” in Workshop on Evaluating
and Architecting Systems for Dependability, 2002.

[82] Z. Yang and M. Yang, “Leakminer: Detect information leakage on android
with static taint analysis,” in International Workshop on Computer Science
and Engineering(WCSE), 2012.

[83] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native client: A sandbox for portable,
untrusted x86 native code,” in IEEE Symposium on Security and Privacy
(Oakland), 2009.

[84] N. Zeldovich, H. Kannan, M. Dalton, , and C. Kozyrakis, “Hardware
enforcement of application security policies using tagged memory,” in
Symposium on Operating Systems Design and Implementation (OSDI),
2008.

[85] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song,
“VTrust: Regaining trust on virtual calls,” in Annual Network and
Distributed System Security Symposium (NDSS), 2016.

[86] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “VTint: Protecting
virtual function tables’ integrity,” in Annual Network and Distributed
System Security Symposium (NDSS), 2015.

[87] Y. Zhou, X. Wang, Y. Chen, and Z. Wang, “ARMlock: Hardware-
based fault isolation for ARM,” in ACM Conference on Computer and
Communications Security (CCS), 2014.

1717


