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Abstract—Authorization in workflow systems is usually built
on top of role-based access control (RBAC); security policies
on workflows are then expressed as constraints on the users
performing a set of tasks and the roles assigned to them. Unfor-
tunately, when role administration is distributed and potentially
untrusted users contribute to the role assignment process, like in
the case of Administrative RBAC (ARBAC), collusions may take
place to circumvent the intended workflow security policies. In a
collusion attack, a set of users of a workflow system collaborates
by changing the user-to-role assignment, so as to sidestep the
security policies and run up to completion a workflow they could
not complete otherwise.

In this paper, we study the problem of collusion attacks in a
formal model of workflows based on stable event structures and
we define a precise notion of security against collusion. We then
propose a static analysis technique based on a reduction to a role
reachability problem for ARBAC, which can be used to prove or
disprove security for a large class of workflow systems. We also
discuss how to aggressively optimise the obtained role reachability
problem to ensure its tractability. Finally, we implement our
analysis in a tool, WARBAC, and we experimentally show its
effectiveness on a set of publicly available examples, including a
realistic case study.

I. INTRODUCTION

A workflow is a temporally organised collection of tasks,

representing a business process specification. Workflow sys-

tems are software supporting a specific set of business pro-

cesses through the execution of computerized task definitions.

These software not only ensure that the execution of the tasks

in a workflow respects the expected temporal order, but also

that these tasks are performed by authorized users.

Authorization in workflow systems is usually built on top

of role-based access control (RBAC). RBAC is a very natural

choice for workflow systems, since roles provide a convenient

abstraction to represent a (possibly large) set of users entitled

to perform a given task [4], [7]. When role-based security

policies on task execution are not expressive enough, security

policies on workflows can also include constraints on the

identity of the users performing a set of tasks, like binding-

of-duty and separation-of-duty constraints [8], [19]. Binding-

of-duty (BoD) constraints enforce two different tasks to be

performed by the same user, e.g., to prevent an undesired dis-

closure of sensitive information or to ensure a single user takes

full responsibility for a set of related tasks. Separation-of-duty

(SoD) constraints, instead, play the dual role of ensuring that

two different tasks are performed by two different users, e.g.,

to prevent frauds or conflicts of interest.

An important observation for security is that, though both

role-based and identity-based security policies like BoD and

SoD constraints are static and declarative in nature, the set

of roles assigned to the users of a workflow system is typi-

cally not. For instance, the Administrative RBAC (ARBAC)

standard [12] allows system administrators to specify which

roles are entitled to assign other roles to users, based on the

sets of roles assigned (or not assigned) to them; similarly,

roles may be granted the ability of revoking other roles from

system users. Role administration is thus highly distributed in

ARBAC systems, which is a very desirable feature for normal

system functionality; however, it is also well-known that such

a feature poses an important security challenge, since the sets

of roles which may be dynamically assigned to users is very

hard to predict without automated tool support [17], [20].

In the case of workflow systems based on the ARBAC

model, the fact that potentially untrusted users contribute to the

role assignment process enables hard-to-spot collusions aimed

at circumventing the intended workflow security policies.

Specifically, in a collusion attack a set of users of a workflow

system collaborates by changing the user-to-role assignment,

so as to sidestep the security policies put in place by the system

administrators and run up to completion a workflow they could

not complete otherwise.

A. Motivating Example

We graphically represent workflows as directed graphs,

including one node per task, a start node · and an end node

�. We use directed arrows to represent temporal dependencies,

dashed lines labelled with # to visualize exclusive choices and

dashed lines labelled with either = and �= to represent BoD

and SoD constraints respectively. We annotate each task with

a subscript including the set of roles entitled to perform it.

For instance, Figure 1 represents a workflow with three tasks

a, b, c, which can be performed by any user who is granted

role R1,R2,R3 respectively. After the execution of task a, the
workflow offers an exclusive choice between tasks b and c
and, no matter which task is chosen, the second task must be

performed by the same user who performed a.
Consider now two users u1 and u2 who are assigned roles

R1,R2 respectively. These users cannot complete the workflow

just with their roles, since they lack the privileges needed to

perform a, b or a, c without violating the BoD constraints.

However, assume that any user who is assigned role R2 is

also allowed to assign role R3 to any user owning role R1:

this kind of policies is common in access control systems

supporting role administration, including the standard ARBAC

model [12]. Under this policy, users u1 and u2 can collude to
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Figure 1. Example of workflow

complete the workflow as follows: user u2 assigns role R3 to

user u1, who thus becomes able to perform tasks a and c on

her own. Though such a possibility may be easy to spot in this

simple example, detecting collusions is hard in general, since

they may be enabled by arbitrarily long sequences of actions

and the underlying ARBAC policy may include hundreds of

rules for role administration like the one we discussed.

B. Contributions

In this paper, we make the following contributions:

1) we propose a formal model of workflows based on

stable event structures [24], which generalizes previous

proposals based on partial orders [21], [22]. We then

integrate this model with ARBAC, by defining a small-

step operational semantics for workflow systems where

workflow actions (execution of a task) and administrative

actions (assignment or revocation of roles) are arbitrarily

interleaved;

2) we define a precise notion of security against collusion for

workflow systems, ensuring that administrative actions

cannot be abused to sidestep the workflow security policy.

The definition is adapted from previous work on the

security of delegation in access control systems [23];

3) we propose a static analysis based on a reduction to

a role reachability problem for ARBAC, which can be

used to prove or disprove security against collusion for

restricted yet useful classes of workflow systems. By

reducing security to role reachability, it is possible to

reuse available tools for role reachability analysis [13],

[9], [16] to effectively check it. We aggressively optimise

the role reachability problem to ensure its tractability;

4) we implement our static analysis in a tool, WARBAC,

and we experimentally show its effectiveness on a set

of publicly available examples, including a realistic case

study describing a first-aid procedure.

We make WARBAC, all the experimental data and an extended

version of the present paper (with proofs) available online [10].

Structure of the Paper: Section II presents the operational

model. Section III introduces the formal definition of security

and gives an example. Section IV details the reduction to

role reachability and its optimization. Section V shows a few

example reductions. Section VI presents WARBAC and reports

on the experimental results. Section VII discusses related

work. Section VIII concludes and hints at future work.

II. OPERATIONAL MODEL

Our operational model is obtained by integrating a standard

ARBAC model, as formalized, e.g., in [9], [13], with a

workflow represented as a stable event structure [24], extended

with a security policy assigning required roles to tasks and

supporting both BoD and SoD constrains.

A. ARBAC

We presuppose the existence of finite sets of users U and

roles R.

Definition 1 (ARBAC Policy). An ARBAC policy is a pair
P = 〈CA,CR〉, where CA ⊆ R×2R×2R×R is a can-assign
relation and CR ⊆ R×R is a can-revoke relation.

A can-assign rule (ra, Rp, Rn, rt) ∈ CA states that a user

with role ra can assign role rt to any user who has all the

roles in the set Rp (the positive preconditions) and none of

the roles in the set Rn (the negative preconditions). A can-

revoke rule (ra, rt) ∈ CR, instead, states that a user with role

ra can unconditionally revoke role rt from any user.

Definition 2 (ARBAC System). An ARBAC system is a pair
S = 〈P,UR〉, where P is an ARBAC policy and UR ⊆ U×R
is an initial user-to-role assignment.

For any user u, let UR(u) = {r | (u, r) ∈ UR}. The

operational semantics of an ARBAC system S = 〈P,UR〉 is

defined by the changes which can be performed to the initial

user-to-role assignment UR according to the policy P . This is

defined by the reduction relation P �UR � UR′ in Table I,

providing the formal counterpart of the intuitions above.

Table I Reduction semantics for ARBAC (P � UR � UR′)

(R-ASSIGN)

(ua, ra) ∈ UR (ra, Rp, Rn, rt) ∈ CA
Rp ⊆ UR(u) Rn ∩ UR(u) = ∅
〈CA,CR〉� UR � UR ∪ {(u, rt)}
(R-REVOKE)

(ua, ra) ∈ UR (ra, rt) ∈ CR

〈CA,CR〉� UR � UR \ {(u, rt)}

B. Workflows

We propose a general, abstract model of workflows based

on stable event structures, a true concurrency model originally

proposed by Winskel [24]. Stable event structures are very

appealing candidates to represent workflows, since they can

naturally model sequential and parallel execution of tasks, as

well as non-deterministic choices [18], [24]. Moreover, stable

event structures are more expressive than previous models of

workflows based on a partially ordered set of tasks [21], [22],

since the latter correspond to elementary event structures [25]

and hence cannot represent non-determinism, which instead is

a desirable feature for many workflows (including the one in
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Figure 1). Besides being an expressive model on their own,

stable event structures have also been proposed to define the

semantics of several formalisms commonly used to model

workflows, including CCS, CSP and Petri nets (see [24] for

CCS/CSP and [5] for Petri nets). By working with stable

event structures, we make our theory general enough to be

directly applicable to any workflow specification language

whose semantics can be defined in terms of these structures.

There are several slightly different definitions of stable

event structure in the literature, the one we use here is taken

from [18]: it is more compact than the original formulation

in [24], but semantically equivalent to it. We just omit the

labelling function from the definition, since it does not play

any role in the present paper.

Definition 3 (Stable Event Structure). A stable event structure

is a triple E = 〈E,#,
〉, where:
1) E is a denumerable set of events;
2) # ⊆ E × E is a symmetric, irreflexive conflict relation;
3) 
⊆ 2E × E is an enabling relation;
4) for all events e ∈ E and all sets of events X,Y ⊆ E such

that X �= Y , the following stability axiom is satisfied:

X 
 e ∧ Y 
 e⇒ ∃ e1, e2 ∈ X ∪ Y : (e1, e2) ∈ #.

If X 
 e for some set of events X ⊆ E, then the occurrence

of all the events in X enables the occurrence of the event e; if
(e1, e2) ∈ #, instead, then the occurrence of event e1 rules out

the occurrence of event e2 and vice-versa. The stability axiom

requires that, if there are different enablings for the same event,

they are conflicting, which ensures that each event is enabled

in an essentially unique way.

The semantics of stable event structures is defined in terms

of a set of configurations, defined as follows [24].

Definition 4 (Configuration). Given a stable event structure
E = 〈E,#,
〉, a configuration of E is a finite set of events
X ⊆ E such that:

1) ∀ e, e′ ∈ X : (e, e′) �∈ #;
2) ∀ e ∈ X. ∃ e1, . . . , en ∈ X : en = e ∧ ∀ i ≤ n. ∃Y ⊆
{e1, . . . , ei−1} : Y 
 ei.

We let F(E) be the set of all the possible configurations of E .

The first condition ensures that a configuration does not

contain conflicting events, while the second condition says

that for each event e in a configuration there exists a sequence

of events e1, . . . , en = e again in the configuration such that

each ei is enabled by a subset of {e1, . . . , ei−1}. Intuitively,
it is thus possible to build a chain of enablings that enables e
starting from the empty set and each configuration of a stable

event structure can be understood as a computation history up

to a certain state.

In our model, we represent tasks in a workflow as events

of a stable event structure and we use the terms “event” and

“task” interchangeably in the paper, picking the most natural

choice based on the context of the discussion. A workflow is a

stable event structure including a special event �, representing

completion, and extended with a set of constraints C and a

task-to-role assignment function ρ. The constraints C allow

one to specify that two tasks must be performed by the same

user (BoD) or by two different users (SoD), while the function

ρ assigns to each task a role which is needed to perform it1.

Definition 5 (Workflow). A workflow is a triple W =
〈E , C, ρ〉, where:

1) E = 〈E∪{�},#,
〉 is a stable event structure including
an event � �∈ E such that, whenever X 
 e for some X
and e, we have � �∈ X;

2) C ⊆ E×E×{=, �=} is a relation defining a set of BoD
and SoD constraints such that:

a) ∀ e ∈ E : (e, e, �=) �∈ C;
b) ∀ e1, e2 ∈ E : (e1, e2,=) ∈ C ⇒ (e2, e1,=) ∈ C;
c) ∀ e1, e2 ∈ E : (e1, e2, �=) ∈ C ⇒ (e2, e1, �=) ∈ C;
d) ∀ e1, e2, e3 ∈ E : (e1, e2,=) ∈ C ∧ (e2, e3,=) ∈ C ⇒

(e1, e3,=) ∈ C;
e) ∀ e1, e2, e3 ∈ E : (e1, e2,=) ∈ C ∧ (e2, e3, �=) ∈ C ⇒

(e1, e3, �=) ∈ C;
3) ρ : E → R is a function from events to roles.

To improve readability, in our examples we do not explicitly

close the set of constraints with respect to the rules above.

Given a workflow W = 〈〈E,#,
〉, C, ρ〉, we use a subscript

notation to extract its different components, e.g., we let 
W
stand for 
 and CW stand for C.

C. ARBAC + Workflows

Having introduced the ARBAC model and a formal defi-

nition of workflow, we now study their interplay by giving a

reduction semantics to ARBAC workflow systems.

Definition 6 (ARBAC Workflow System). An ARBAC work-

flow system is a pair A = 〈S,W〉 including an ARBAC system
S and a workflow W .

Since workflows in our model allow the specification of

BoD and SoD constraints, the reduction semantics of ARBAC

workflow systems needs to keep track of the author of the in-

dividual tasks. This is formalized by introducing the following

notion of history.

Definition 7 (History). Given a workflow W , a history H :
EW → U is a partial function from tasks to users such that
dom(H) is a configuration of EW . We let ⊥ stand for the
empty history.

Given a history H , we can readily check whether the

workflow constraints are satisfied or not. Clearly, a BoD/SoD

constraint predicating on the authors of two different tasks

can only be checked when the second one is attempted, which

leads to the following definition.

1This is expressive enough to represent tasks which require multiple roles
to be performed or any role in a given set. For instance, if both r1 and r2
are needed for a task e, one can introduce in the ARBAC policy a fresh role
r which is only granted to users who are assigned both r1 and r2. Then, it
is enough to let ρ(e) = r.
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Definition 8 (Satisfiability). Let ∼∈ {=, �=}, we say that H
satisfies the constraint (e1, e2,∼) whenever H |= (e1, e2,∼)
can be proved by the following rules:

e1 �∈ dom(H)

H |= (e1, e2,∼)
e2 �∈ dom(H)

H |= (e1, e2,∼)
H(e1) ∼ H(e2)

H |= (e1, e2,∼)
Let H |= C whenever ∀(e1, e2,∼) ∈ C : H |= (e1, e2,∼).

The operational semantics of an ARBAC workflow system

A = 〈S,W〉 is defined by means of a labelled reduction

relation on states σ = 〈UR, H〉, including a user-to-role

assignment UR and a history H (see Table II). Labels are

drawn from the set of events EW in the workflow, extended

with a distinguished event ◦ representing the occurrence of an

administrative action (assignment or revocation of roles). To

update the history upon reduction, we use the following nota-

tion: for a partial function f with x �∈ dom(f), let f [x �→ y]
be the partial function g such that dom(g) = dom(f) ∪ {x},
g(x) = y and ∀ z ∈ dom(f) : g(z) = f(z).

Table II Reduction semantics (P,W � σ
e−→ σ′)

(R-ADMIN)

P � UR � UR′

P,W � 〈UR, H〉 ◦−→ 〈UR′, H〉
(R-TASK)

ρW(e) ∈ UR(u) H[e �→ u] |= CW
∃X ⊆ dom(H) : X 
W e ∀ e′ ∈ dom(H) : (e′, e) �∈ #W

P,W � 〈UR, H〉 e−→ 〈UR, H[e �→ u]〉

Rule (R-ADMIN) is straightforward: it allows one to change

the user-to-role assignment in accordance with the underlying

ARBAC policy. Rule (R-TASK), instead, models the execution

of a task. In words, it is possible to execute a task if: (1) there

exists a user who is granted the required role for the task;

(2) the execution of the task by this user does not violate the

BoD/SoD constraints; (3) the task is enabled by the already

performed tasks; and (4) the task does not conflict with any

of the already performed tasks.

Observe that the reduction relation in Table II is well-

defined, since the premises of rule (R-TASK) ensure that only

valid histories are introduced upon reduction when starting

from the empty history ⊥.

III. SECURITY AGAINST COLLUSION

A. Formal Definition of Security

Let Uc ⊆ U be a set of colluding users. Intuitively, an

ARBAC workflow system is secure against collusion by Uc

whenever no sequence of administrative actions performed by

the users in Uc can allow them to complete a workflow which

they could not complete just with their original roles. We now

formalise this intuition, though we need a number of auxiliary

definitions first.

Given a user-to-role assignment UR and a set of colluding

users Uc, we let UR ↓Uc= {(u, r) ∈ UR |u ∈ Uc} stand for

the subset of UR including only users in Uc. We extend the

notation to ARBAC workflow systems in the expected way,

by having 〈〈P ,UR〉,W〉↓Uc
= 〈〈P ,UR ↓Uc

〉,W〉.
Given an ARBAC workflow system A = 〈〈P ,UR〉,W〉, a

trace of A is a sequence of events t = e1, . . . , en such that:

∃σ0, . . . , σn : σ0 = 〈UR,⊥〉 ∧ ∀ i ≤ n : P,W � σi−1
ei−→ σi.

A trace t is successful iff � occurs in t. We let T�(A) denote
the set of the successful traces of A. A trace t is pure iff it does

not contain any administrative action, i.e., iff ◦ does not occur

in t. We let PT�(A) stand for the set of the pure, successful

traces of A.

Definition 9 (Security Against Collusion). An ARBAC work-
flow system A is secure against collusion by Uc iff:

T
�(A↓Uc

) �= ∅ ⇒ PT
�(A↓Uc

) �= ∅.
B. Example

We now encode in our formalism the motivating example

in Section I-A (Figure 1) and we show that it is not secure

against collusion by {u1, u2}.
First, we define W = 〈〈{a, b, c,�},
,#〉, C, ρ〉, where:

1) the enabling relation is:


= {(∅, a), ({a}, b), ({a}, c), ({b},�), ({c},�)}
2) the conflict relation is # = {(b, c), (c, b)};
3) C = {(a, b,=), (a, c,=)} enforces BoD between tasks

a, b and between tasks a, c;
4) ρ(a) = R1, ρ(b) = R2, ρ(c) = R3 requires role R1 to

perform task a, role R2 to perform task b and role R3 to

perform task c.

We then build on top of this workflow the ARBAC workflow

system A = 〈〈P ,UR〉,W〉, where:

1) P = 〈{(R2, {R1}, ∅,R3)}, ∅〉 is the ARBAC policy which

allows users with role R2 to assign role R3 to any user

who is granted role R1;

2) UR = {(u1,R1), (u2,R2)} contains two users u1, u2

with roles R1,R2 respectively.

We have that A is not secure against collusion by {u1, u2}
according to Definition 9, since it is possible to put the event�
in the history by first assigning role R3 to u1 and then letting

her execute both a and c; however, without administrative

actions (the role assignment by u2) it is not possible for the

two users to complete the workflow.

C. Checking Security Against Collusion

By definition, given an ARBAC workflow system A, its

security against collusion by a set of users Uc ⊆ U can be

checked as follows:

1) check if there exists a successful trace t ∈ T
�(A↓Uc

): if
this is not the case, A is secure;

2) otherwise, A is secure if (and only if) there exists also a

pure successful trace t′ ∈ PT
�(A↓Uc

).
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Formally, point (2) amounts to checking the satisfiability (or

consistency) of a workflow, a problem which has received

considerable attention in the past [21], [22]. In particular,

Wang and Li proved that the workflow satisfiability problem

is NP-hard in presence of SoD constraints [22]. Based on this

result, it is clear that also point (1) is at least NP-hard in the

general case, since points (1) and (2) coincide on the ARBAC

workflow system implementing an empty ARBAC policy.

To the best of our knowledge, no algorithm has been

proposed so far to deal with point (1). Building all the possible

user-to-role assignments for the colluding users based on

the ARBAC policy and then checking workflow satisfiability

with respect to them is not feasible in practice, given the

exponential blow-up of the possible role combinations and the

inherent complexity of workflow satisfiability itself. In the next

section, we propose the first feasible static analysis technique

to solve point (1).

IV. STATIC ANALYSIS

A. Overview

We propose to check security against collusion in ARBAC

workflow systems through a reduction to the well-known role
reachability problem for ARBAC [17], [20].

Given an ARBAC system S = 〈P,UR〉, a role r is said

reachable in S if and only if it can be assigned to some user

of the system at some point in time. Formally, this means that

there exist a user u and a sequence of user-to-role assignments

UR0, . . . ,URn such that UR0 = UR and:

(∀ i ≤ n : P � URi−1 � URi) ∧ r ∈ URn(u).

We propose to encode the workflow as a set of can-assign

rules, which extend the original ARBAC policy P so that

a specific role (introduced by the encoding) is reachable if
and only if the workflow can be completed by the colluding

users, possibly by making use of administrative actions; this

characterization is proved correct for a restricted, yet useful,

class of worklow systems discussed below. Notably, however,

even for workflow systems which do not belong to this class,

we prove that the unreachability of the role above ensures

that the workflow cannot be completed by the colluding users,

which may be enough to prove security against collusion in

many practical cases.

By internalizing the workflow into the underlying ARBAC

policy, we can reuse efficient tools for role reachability

analysis [13], [9], [16] to prove or disprove security against

collusion in workflow systems. Moreover, having a unified

representation (in terms of ARBAC) of both the ARBAC

policy and the workflow to analyse makes it possible to devise

aggressive optimizations which exploit as much information as

possible to simplify the security problem and make it tractable.

B. Reduction to Role Reachability

Let A = 〈S,W〉, for each task e ∈ EW we introduce three

fresh roles: Allowed[e], Author[e] and Done[e]. Moreover, for

each pair of tasks e1, e2 such that (e1, e2,=) ∈ CW , we

introduce a fresh role Eq[e1, e2]. Finally, we introduce a fresh

role Super, which will always be assigned to a dummy user

introduced by the encoding. Notice that we can always ensure

that the set of roles in A does not clash with the set of roles

introduced by the encoding just by performing a preliminary

renaming of the elements of the former.
The core of the encoding is a translation from a workflow

W into a set of can-assign rules �W�. The translation requires

the generation of the set of the configurations of EW and it

assumes the following definition of precedence, which can be

used to identify the set of the predecessors of an event in a

stable event structure [18].

Definition 10 (Precedence). For a stable event structure
E = 〈E,
,#〉 and a configuration X ∈ F(E), we define the
precedence relation ≺X ⊆ X ×X by having e ≺X e′ if and
only if ∃Y ⊆ X : e ∈ Y ∧ Y 
 e′. We then let <X stand for
the transitive closure of ≺X .

We let �W� be the smallest set of can-assign rules derived

by the inference rules in Table III. The core intuitions under-

lying the translation can be summarized as follows:

• we assume the existence of a dummy user with the Super
role, which we call the super user. We use the super

user to trigger several can-assign rules generated by the

translation and to keep track in the encoding of which

tasks can be executed or have been performed so far.

This is done by assigning to the super user a specific

set of roles (again introduced by the translation) and by

ensuring that they satisfy the invariants explained below;

• rule (T-ALLOWED): to assign role Allowed[e], we must

ensure that: (1) all the predecessors of e have already been

performed; (2) none of the predecessors of e violates a

BoD constraint; and (3) no event which is conflicting with

e has been previously allowed. Notice that Allowed[e] can
only be assigned to the super user: this ensures that all

the information about the allowed events is centralized

on the super user, i.e., in the encoding we can always be

aware of all the tasks which have been allowed so far;

• rule (T-AUTHOR): once Allowed[e] has been assigned to

the super user, it is possible to attempt the assignment

of role Author[e]. This role can only be assigned to a

user who has the required role to perform e according

to the task-to-role assignment function ρ; moreover, the

user must satisfy all the BoD constraints between e and its

predecessors, as well as all the SoD constraints between

e and the other tasks of the workflow. Observe that the

super user can never be assigned Author[e], reflecting the

intuition that he is just a dummy user introduced by the

encoding and not a real user of the system;

• rule (T-DONE): once Author[e] has been assigned to

some user, it is possible to assign role Done[e] to the

super user. This role assignment tracks that it was indeed

possible to perform task e. Role Done[e] may be required

to enable the assignment of role Allowed[e′] for some

event e′ which is a successor of e;
• rule (T-EQ): if a user is assigned both Author[e1] and

Author[e2], she can also be assigned role Eq[e1, e2], thus
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Table III Translation of a workflow W into a set of can-assign rules �W�

(T-ALLOWED)

X ∈ F(EW) e ∈ X Done = {Done[e′] | e′ <X e} Eqs = {Eq[e1, e2] | e1 <X e ∧ e2 <X e ∧ (e1, e2,=) ∈ CW}
(Super,Done ∪ Eqs ∪ {Super}, {Allowed[e′] | (e, e′) ∈ #W},Allowed[e]) ∈ �W�

(T-EQ)

(e1, e2,=) ∈ CW
(Super, {Author[e1],Author[e2]}, ∅,Eq[e1, e2]) ∈ �W�

(T-PROPEQ)

(e1, e2,=) ∈ CW
(Eq[e1, e2], {Super}, ∅,Eq[e1, e2]) ∈ �W�

(T-AUTHOR)

X ∈ F(EW) e ∈ X Neqs = {Author[e′] | (e′, e, �=) ∈ CW}
Eqs = {Author[e′] | e′ <X e ∧ (e′, e,=) ∈ CW}

(Allowed[e], {ρW(e)} ∪ Eqs,Neqs ∪ {Super},Author[e]) ∈ �W�

(T-DONE)

e ∈ EW
(Author[e], {Super}, ∅,Done[e]) ∈ �W�

proving that a BoD constraint between e1 and e2 has been

satisfied. Afterwards, by rule (T-PROPEQ), role Eq[e1, e2]
can be further assigned to the super user: this may be

needed to enable the assignment of role Allowed[e] for

some event e following both e1 and e2.

Finally, the translation is extended so as to map an ARBAC

workflow system A = 〈〈〈CA,CR〉,UR〉,W〉 into a corre-

sponding ARBAC system �A� as follows:

�A� = 〈〈CA− ∪ �W�,CR〉,UR ∪ {(u0, Super)}〉,

where u0 is a fresh user extending the set of users U and CA−

is the set of the can-assign rules obtained by including Super
in the negative preconditions of all the rules in CA.

C. Formal Results

The first result we prove for the encoding we detailed is the

following soundness theorem.

Theorem 1 (Soundness). For any A such that T�(A) �= ∅,
the role Done[�] is reachable in �A�.

Proof. See the long version [10].

The soundness theorem ensures that, if role Done[�] is not

reachable in �A�, then the ARBAC workflow system A will

never reach a state where the workflow has been completed

by the system users, even by making use of administrative

actions. In terms of security this means that, given a set of

colluding users Uc, the unreachability of role Done[�] in

�A ↓Uc� ensures that the users in Uc cannot complete the

workflow, not even by changing roles, hence we get a proof

of security for A against collusion by Uc (by Definition 9).

Interestingly, we are also able to establish a completeness

theorem for the restricted case of ARBAC workflow systems

without BoD constraints.

Theorem 2 (Completeness). For any A not including BoD
constraints, if the role Done[�] is reachable in �A�, we have
that T�(A) �= ∅.
Proof. See the long version [10].

The completeness theorem is useful to confirm the presence

of a collusion attack. Let A be an ARBAC workflow system

and Uc be a set of colluding users, and assume we proved,

for instance by using the techniques in [21], [22], that A↓Uc

does not allow the users in Uc to complete the workflow just

with their original roles. By Theorem 2, if we show that role

Done[�] is reachable in �A↓Uc
� and the workflow does not

include any BoD constraint, we can confirm that the users in

Uc can complete the workflow by making use of administrative

actions, hence A is not secure against collusion by Uc (again

by Definition 9).

We conjecture that the completeness theorem can be actually

extended to arbitrary ARBAC workflow systems, but this

stronger property looks significantly harder to prove than

Theorem 2. We provide an intuition on why excluding BoD

constraints helps in the proof of Theorem 2. One of the subtlest

differences between ARBAC systems and ARBAC workflow

systems is that in the former any role, including the roles of the

form Author[e] for some task e, can be assigned to all users

satisfying the preconditions of the can-assign rules granting

that role; conversely, a task can be performed only once in

an ARBAC workflow system, so the author of each task is

uniquely determined there. Thus, in the encoding into ARBAC,

a role like Author[e] can be potentially assigned to multiple

users, though only one of these users actually performs e in

the ARBAC workflow system. To prove completeness, one

needs to show that assigning Author[e] to multiple users does

not introduce “false attacks”. Notably, if no BoD constraint

is put in place in the workflow system, roles like Author[e]
do not occur in any positive precondition of the can-assign

rules generated by the encoding into ARBAC: this means

that it is enough to have just one user who is assigned the

role, to trigger those can-assign rules where Author[e] is in

administrative position (i.e., it appears as the first element of

the rule). Without loss of generality, it is thus possible in the

proof of Theorem 2 to only focus on well-formed traces, where

each role like Author[e] is assigned at most once.

It should not be surprising that the encoding we propose
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can also be used to solve the classic workflow satisfiability

problem [21], [22] in the case of ARBAC workflow systems

without BoD constraints. Given A = 〈〈P ,UR〉,W〉, let:
�A�∗ = 〈〈�W�, ∅〉,UR ∪ {(u0, Super)}〉,

where u0 is a fresh user extending the set of users U .

Lemma 1 (Workflow Satisfiability). For any A, PT�(A) �= ∅
implies that the role Done[�] is reachable in �A�∗. Moreover,
if A does not include BoD constraints, then also the converse
holds true.

Proof. It is enough to observe that PT
�(〈〈P ,UR〉,W〉) =

T
�(〈〈P⊥,UR〉,W〉), where P⊥ = 〈∅, ∅〉 is the empty AR-

BAC policy. The result then is an immediate consequence of

the theorems above.

In terms of computational complexity, one can observe that

the workflow satisfiability problem is NP-hard in presence of

SoD constraints [22], which we consider in this work. The

encoding �·�∗ generates an ARBAC system without can-revoke

rules, so the corresponding role reachability problem is NP-

complete [17]. Hence, in the general case, both problems are

equally hard, which in principle makes our approach a viable

solution also for the classic workflow satisfiability problem.

We conclude this section by summarizing in Table IV how

Theorem 1 and Theorem 2 can be used to check the security

of an ARBAC workflow system A against collusion by Uc.

Notice that, if Done[�] is not reachable in �A ↓Uc
�, we can

immediately prove security and ignore �A↓Uc
�∗. One case is

missing from the table, since it is not possible that Done[�]
is reachable in �A↓Uc

�∗, but not in �A↓Uc
�.

Table IV Checking security of A against collusion by Uc

BoD Reach in �A↓Uc
� Reach in �A↓Uc

�∗ Secure

no no no yes

no yes no no

no yes yes yes

yes no no yes

yes yes no ?

yes yes yes ?

D. Optimizations

The encoding of ARBAC workflow systems into ARBAC

we presented enjoys important formal properties, but it may

lead to the generation of large and complex ARBAC systems,

which do not admit an efficient role reachability analysis.

Luckily, there is a well-established approach to make role

reachability tractable for ARBAC, that is the use of pruning
techniques, which perform syntactic transformations shrinking

the size of the analysed ARBAC system, without affecting the

reachability of a given role of interest [17], [15], [13].

We present here an effective pruning technique we devised

to simplify the role reachability problems generated by our

encoding: though the pruning has been designed to work at

its best in this specific context, we expect several ideas to be

general enough to be useful for the simplification of arbitrary

ARBAC systems.
1) Definitions: A role r is administrative if and only if there

exists at least one can-assign rule of the form (r,Rp, Rn, rt)
for some Rp, Rn, rt or one can-revoke rule of the form (r, r′)
for some r′. A role is positive (resp. negative) if and only if it

occurs in the positive (resp. negative) preconditions of some

can-assign rule [13]. We say that a role is purely administrative
iff it is administrative, non-positive and non-negative. Purely

administrative roles only need to be assigned to grant the

right of performing some administrative actions. As such, it is

not important to know who is granted a purely administrative

role, as long as there is one user having the role when the

administrative actions it enables are intended to be performed.

A role is positively stable if and only if it is irrevocable or

non-negative. A role is negatively stable if and only if it is not

assignable or it is both non-positive and non-administrative. If

a user is assigned a positively stable role r, we can assume

that r will be assigned to her forever, either because it cannot

be removed (if r is irrevocable) or because removing it does

not enable new administrative actions (if r is non-negative).

Dually, if a user is not assigned a negatively stable role r′, we

can assume that r′ will never be assigned to her.
2) Preprocessing: Before pruning, each rule of the form

(Super, Rp, Rn,Allowed[e]) is replaced by the set of rules:

{(Author[e′], Rp, Rn,Allowed[e]) |Done[e′] ∈ Rp}.
It can be shown that this preprocessing step does not affect the

reachability of any role, since each rule of the previous format

is enabled if and only if all the rules in the set generated from

it are enabled. The intuition behind this observation is that,

for each event e′, role Done[e′] can be assigned if and only if

role Author[e′] is first assigned.

Moreover, as part of the preprocessing step, all roles of the

form Allowed[e] are removed from the negative preconditions

of the can-assign rules generated by the encoding. Though this

may look surprising, it can be shown that it does not affect the

reachability of role Done[�], since the negative preconditions

of the previous form are just an artefact to simplify the proof of

the main formal results. To understand why the reachability of

Done[�] is not affected by this change, observe that a role like

Allowed[e] is only included in the negative preconditions of a

can-assign rule generated by the encoding in Table III if e is

conflicting with some other event. Assume then there are two

conflicting events e1, e2: according to the encoding, only one

role between Author[e1] and Author[e2] can be assigned, since

only one between Allowed[e1] and Allowed[e2] can be given

to the super user. However, assume that both Author[e1] and
Author[e2] were assigned to some user, since we removed the

negative preconditions above. This may lead to two potentially

troublesome scenarios, which would never happen if only one

of the two roles was assigned:

1) Done[e1] and Done[e2] get both assigned;

2) Eq[e1, e2] gets assigned (if Author[e1] and Author[e2] are
given to the same user).
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Both these cases do not affect the reachability of Done[�],
since e1 and e2 are conflicting and thus never included in the

same configuration of the stable event structure underlying the

workflow. By the definition of the encoding, this implies that

Done[e1] and Done[e2] never occur together in the positive

preconditions of a can-assign rule, and similarly Eq[e1, e2] is
not included in any positive precondition, so the cases above

do not enable more administrative actions.

Though the preprocessing we discussed increases the num-

ber of can-assign rules generated by the encoding, the newly

introduced rules have a format which is more amenable for

pruning and, pragmatically, eventually leads to the generation

of ARBAC systems which are smaller and easier to analyse.

Alternatively, one could skip the preprocessing and fine-tune

the pruning rules to improve their effectiveness, but this would

make the rules harder to present.

3) Pruning Rules: The pruning rules make use of a binary

relation on roles �. Intuitively, r � r′ ensures that, whenever

r′ is assigned to some user of an ARBAC system, then also

r is assigned to some user (not necessarily the same one).

Formally, � is defined as the least pre-order satisfying the

following two clauses:

1) r � r′ for all r′ if r is initially assigned and positively

stable;

2) r � r′ if r is positively stable, r′ is initially unassigned,

and for all can-assign rules of the form (ra, Rp, Rn, r
′)

we have r ∈ Rp ∪ {ra}.
We are finally ready to present the pruning rules, assuming an

initial user-to-role assignment UR:

1) Let rt be a non-negative role. If there exist a rule ca =
(r,Rp, Rn, rt) and a rule ca′ = (r′, R′p ∪ {rt}, R′n, r′t)
with Rp ⊆ R′p, Rn ⊆ R′n and there exists r′′ ∈ R′p∪{r′}
such that r � r′′, then replace ca′ with (r′, R′p, R

′
n, r

′
t);

2) Let rt be a role. If there exist a rule ca = (r,Rp, Rn, rt)
and a rule ca′ = (r′, R′p, R

′
n, rt) with Rp ⊆ R′p, Rn ⊆

R′n and there exists r′′ ∈ R′p ∪ {r′} such that r � r′′,
then remove ca′;

3) Let rt be a purely administrative role and let r � rt. If
there exist a rule ca = (r,Rp, Rn, rt) and a user u such

that Rp ⊆ UR(u) and Rn ∩UR(u) = ∅, the roles in Rp

are positively stable and the roles in Rn are negatively

stable, then remove ca and replace all the occurrences of

rt with r in the can-assign/can-revoke rules.

Rule 1 says that, if there exist a rule ca assigning a non-

negative role rt and a rule ca′ including rt in the positive

preconditions, we can drop rt from the positive preconditions

of ca′, as long as we are guaranteed that ca is always enabled

when ca′ is enabled up to the absence of rt. Rule 2 says that,

if we have two rules ca and ca′ assigning the same role rt and
ca is always enabled when ca′ is enabled, we can remove rule

ca′. These rules are reminiscent of two pruning rules originally

presented in [15], noted there as rules R2 and R5 respectively,

but they make use of the � relation to be more general and

more effective on our cases.

Rule 3 deals with the assignment of purely administrative

roles and it is trickier: it allows one to delegate the adminis-

trative rights of a purely administrative role rt to any r � rt.
Notice that this change always preserves role reachability,

since whenever rt is assigned to some user, also r must be

assigned to someone by definition of the � relation. However,

this change could alter the semantics of the ARBAC system if

r is assigned, but rt is not immediately assignable. To ensure

that this does not happen, we have to check a few additional

conditions. In particular, rule 3 checks the existence of a

can-assign rule ca = (r,Rp, Rn, rt) whose preconditions are

satisfied by some user u in the initial user-to-role assignment:

if the roles in Rp are positively stable and the roles in Rn are

negatively stable, we can assume that the preconditions of ca
will always be satisfied by u, hence ensuring that rt is always

assignable when r is assigned to someone.

The pruning algorithm just amounts to continuously apply-

ing rules 1-3 to the ARBAC system, until no more rules can

be applied. Termination is ensured by the observation that all

rules reduce the size of the ARBAC system, either in terms of

the number of can-assign/can-revoke rules or in terms of the

size of the positive preconditions of the can-assign rules.

The pruning algorithm enjoys the following property:

Theorem 3. Role Done[�] is reachable in �A� if and only if
it is reachable after pruning �A�.

Proof. See the long version [10].

V. EXAMPLES

We show the static analysis at work on some simple,

but representative examples. To improve readability, we only

present the most interesting subset of the can-assign rules

generated by the encoding into ARBAC. We do not apply

the pruning algorithm to these simple examples, but we just

present the result of the direct application of the encoding.

A. Exclusive Choice

Consider the workflow described in the motivating example

in Section I-A (Figure 1), its translation into ARBAC is given

in Table V.

Notice that roles Allowed[b] and Allowed[c] are mutually

exclusive, since events b and c are conflicting: this implies

that only one role between Author[b] and Author[c] can be

assigned. Correspondingly, there are two ways to introduce

role Allowed[�]: indeed, recall that role Done[b] / Done[c]
can only be assigned by a user with role Author[b] / Author[c].
Moreover, notice that both Author[b] and Author[c] can only

be assigned to a user who is assigned Author[a], thus ensuring
that the BoD constraints in the workflow are satisfied. Finally,

observe that the roles required to perform a, b, c according

to the task-to-role assignment function of the workflow are

included in the positive preconditions of the rules assigning

the corresponding author role.
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Table V Translation of the workflow in Figure 1

(Super, {Super}, ∅,Allowed[a])

(Super, {Done[a], Super}, {Allowed[c]},Allowed[b])

(Super, {Done[a], Super}, {Allowed[b]},Allowed[c])

(Super, {Done[a],Done[b],Eq[a, b], Super}, ∅,Allowed[�])

(Super, {Done[a],Done[c],Eq[a, c], Super}, ∅,Allowed[�])

(Super, {Author[a],Author[b]}, ∅,Eq[a, b])

(Super, {Author[a],Author[c]}, ∅,Eq[a, c])

(Eq[a, b], {Super}, ∅,Eq[a, b])

(Eq[a, c], {Super}, ∅,Eq[a, c])

(Allowed[a], {R1}, {Super},Author[a])

(Allowed[b], {R2,Author[a]}, {Super},Author[b])

(Allowed[c], {R3,Author[a]}, {Super},Author[c])

(Allowed[�], ∅, {Super},Author[�])

B. Sequential Execution

Consider the workflow in Figure 2, including three se-

quential tasks a, b, c such that a and c must be performed

by different authors. Its translation into ARBAC is given in

Table VI.

· a{R1} b∅ c{R2} �

�=

Figure 2. Sequential execution with separation-of-duty

Observe that role Author[c] can only be assigned to a user

who is not assigned Author[a] and vice-versa, thus ensuring

that the SoD constraint between a and c is satisfied.

C. Parallel Execution

Consider the workflow in Figure 3, including two parallel

tasks a, b, which must both be performed before completing

the workflow, graphically noted by joining the two edges

entering � (formally, this can be represented by the enabling

relation ∅ 
 a, ∅ 
 b and {a, b} 
 �). Moreover, assume there

exists a BoD constraint between a and b.
The translation of the workflow into ARBAC is shown in

Table VII. Since there is no temporal dependence between a
and b, it is not possible to predict which of the two tasks

Table VI Translation of the workflow in Figure 2

(Super, {Super}, ∅,Allowed[a])

(Super, {Done[a], Super}, ∅,Allowed[b])

(Super, {Done[a],Done[b], Super}, ∅,Allowed[c])

(Super, {Done[a],Done[b],Done[c], Super}, ∅,Allowed[�])

(Allowed[a], {R1}, {Author[c], Super},Author[a])

(Allowed[b], ∅, {Super},Author[b])

(Allowed[c], {R2}, {Author[a], Super},Author[c])

(Allowed[�], ∅, {Super},Author[�])

a∅

· �

b∅

=

Figure 3. Parallel execution with binding-of-duty

is executed before: hence, both Allowed[a] and Allowed[b], as
well as Author[a] and Author[b], can be liberally assigned

without checking the BoD constraint between a and b. How-

ever, Allowed[�] can only be introduced whenever Eq[a, b] is
assigned to the super user, which is only possible when there

exists a user who is assigned both Author[a] and Author[b],
i.e., when the BoD constraint between a and b is satisfied.

VI. IMPLEMENTATION

We developed WARBAC, a tool for checking the security

against collusion of ARBAC workflow systems. Given an input

file including the specification of an ARBAC workflow system

A and a set of colluding users Uc, it runs a security verification

by: (1) removing from A all the users not included in Uc;

(2) encoding the security problem for the resulting system in

terms of role reachability for ARBAC, based on the presented

theory; and (3) simplifying the role reachability problem by

running the pruning algorithm in Section IV-D. The generated

role reachability queries for role Done[�] are then discharged

by an existing state-of-the-art tool, VAC [13].

A. Implementing the Analysis

WARBAC reduces security against collusion to role reacha-

bility by implementing the checks summarised in Table IV (in

Section IV-C). Since role reachability may be costly to check,
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Table VII Translation of the workflow in Figure 3

(Super, {Super}, ∅,Allowed[a])

(Super, {Super}, ∅,Allowed[b])

(Super, {Done[a],Done[b],Eq[a, b], Super}, ∅,Allowed[�])

(Super, {Author[a],Author[b]}, ∅,Eq[a, b])

(Eq[a, b], {Super}, ∅,Eq[a, b])

(Allowed[a], ∅, {Super},Author[a])

(Allowed[b], ∅, {Super},Author[b])

(Allowed[�], {Super}, ∅,Author[�])

WARBAC exploits different analysis backends supported by

VAC to make the security analysis more efficient:

1) INTERPROC [2]: efficient, sound, but over-approximated

analysis. A negative answer by INTERPROC proves role

unreachability, but a positive answer may be incorrectly

returned as the result of an over-approximation [14];

2) CBMC [1]: efficient bounded model-checking. A positive

answer by CBMC proves role reachability, but a negative

answer may be incorrectly returned as the result of a

bound on the search space [13];

3) NuSMV [3]: computationally expensive sound and com-

plete analysis. A positive/negative answer by NuSMV

proves role reachability/unreachability [13].

When testing role reachability, WARBAC first tries to prove

unreachability by using INTERPROC; if this fails, it attempts

to prove reachability by using CBMC with a depth search

empirically set to 14; if this also fails, it resorts to running

NuSMV to get a final answer.

Moreover, WARBAC tries to simplify as much as possible

the generated role reachability problems before attempting to

solve them. In particular, it applies the following procedure:

1) run the pruning algorithm described in Section IV-D, and

2) run the pruning algorithm internally implemented in VAC,

until no further simplification is possible.

B. Experiments

We created a set of examples to test WARBAC, which

we make available online [10]. All the examples refer to a

medical setting: specifically, we extended an existing ARBAC

system (the Hospital case study in [13]) with the specification

of a number of different workflows. Most of the workflows

we developed are larger, more complicated variants of the

examples shown in Section V, implementing different patterns:

sequential execution, parallel execution and exclusive choice.

We also developed more complex workflows, representing

realistic first-aid procedures. All the experiments were per-

formed on a 64-bit Intel Xeon running at 2.4 GHz.

1) Synthetic Examples: Table VIII reports on the experi-

mental results. The table shows for each example the following

information:

1) the main pattern underlying the workflow, e.g., sequential;

2) the number of tasks in the workflow;

3) the type of enforced constraints (BoD or SoD);

4) the number of colluding users originally in input, after

the pruning implemented in VAC is enabled, and after

the full pruning is enabled;

5) the number of can-assign/can-revoke rules originally in

input, after the pruning implemented in VAC is enabled,

and after the full pruning is enabled;

6) the aggregate analysis time when only the pruning im-

plemented in VAC is enabled and when the full pruning

is enabled (the analysis never terminates within one hour

if no form of pruning is enabled, so we do not report this

information);

7) the expected analysis result (safe or unsafe) and the

answer reported by WARBAC.

The first obvious observation from the table is that enabling

the full pruning algorithm is very important for the scalability

of the analysis: in 13 out of 21 examples the improvement

in performances is dramatic, with 7 cases failing to terminate

within one hour if only the internal pruning of VAC is enabled,

but analysed in a few minutes if the full pruning is used. There

are 8 cases where activating the full pruning turns out to be

overshooting, since the pruning performed by VAC is already

very effective and the additional overhead of running the full

pruning is not justified. Still, all these cases can be solved in

seconds in both scenarios.

Most of the safe cases required WARBAC to only run

INTERPROC. As expected, the over-approximated analysis

implemented in INTERPROC is very fast, since it only takes

a few seconds in all the test cases, even the most complicated

ones. Though over-approximated, the analysis performed by

INTERPROC is useful in many practical cases, e.g., when it

finds that a role required to complete the workflow is neither

assigned initially, nor assignable to any of the colluding users.

When INTERPROC is not able to prove security, WARBAC

runs CBMC and possibly NuSMV to get a more precise

answer. Though the analysis implemented in NuSMV is poten-

tially costly, our optimization techniques proved very effective

to provide good analysis times, even for large settings.

We find it promising that realistic cases like the first-

aid procedures described in the next section are analysed

in minutes, though in some cases WARBAC is unable to

prove security, since our analysis is not proved complete for

workflows using BoD constraints.

2) Case Study: The main case study we considered in our

experiments is a workflow modelling a procedure to assist a

patient in need for a first aid treatment. The workflow includes

10 different tasks:

a) a patient comes at the hospital and gets a ticket;

467467



Table VIII Experimental results

Colluding Users Rules Aggregate Time Results
Type Tasks Cons Orig VAC FullPrune Orig VAC FullPrune VAC FullPrune Expected Answer

sequential 9 SoD 121 74 47 55 37 23 >60m 2m41s U U
sequential 9 BoD 121 76 46 57 39 22 >60m 2m31s U ?
sequential 9 SoD 121 5 3 55 2 1 6s 20s S S
sequential 12 SoD 121 86 53 64 46 26 >60m 4m36s U U
sequential 12 BoD 121 88 25 66 48 17 >60m 1m45s U ?
sequential 12 SoD 121 5 4 64 2 1 5s 56s S S
parallel 9 SoD 121 74 47 55 37 23 >60m 2m39s U U
parallel 9 BoD 121 6 3 57 3 1 4s 22s S S
parallel 9 SoD 121 5 3 55 2 1 4s 22s S S
parallel 12 SoD 121 88 28 64 46 17 >60m 4m05s S S
parallel 12 BoD 121 88 25 66 48 17 53m52s 1m46s U ?
parallel 12 BoD 121 6 3 66 3 1 5s 51s S S
choice 9 SoD 121 28 21 57 41 28 20m56s 5m55s U U
choice 9 SoD 121 64 46 57 32 19 5m1s 1m12s S S
choice 9 SoD 121 4 3 57 2 1 4s 20s S S
choice 12 SoD 121 42 33 66 52 36 >60m 17m15s U U
choice 12 SoD 121 89 50 66 48 25 42m02s 2m53s S S
choice 12 SoD 121 4 3 66 2 1 5s 40s S S
first-aid 10 SoD 121 30 20 65 49 37 35m17s 12m09s U U
first-aid 10 SoD 121 50 34 65 49 37 43m15s 15m32s S S
first-aid 10 SoD 121 5 3 65 2 1 5s 29s S S

b) a doctor makes a preliminary evaluation and sends the

patient in for a visit (f ), while she provides the relative

documentation to a receptionist (c);
c) a receptionist makes the paperwork summarizing the con-

ditions of the patient, possibly while her visits are still

ongoing;

d) when the paperworks are ready (c done) and the patient has

been dismissed (i done), a receptionist closes the patient

case suggesting additional treatment (j) or not (e);
e) the patient is fine: she shows the paperwork at the exit and

leaves the hospital (�);

f) after the preliminary evaluation, a nurse marks the case as

urgent (g) or not (h);
g) urgent case: a doctor treats the patient;

h) non-urgent case: a nurse treats the patient;

i) treatment done: a doctor dismisses the patient;

j) the patient needs additional treatment: she takes an ap-

pointment for a specialist examination and leaves (�).

The workflow enforces a SoD constraint between b and i:
the doctor who first evaluates the case must be different

from the doctor who dismisses the patient, so as to ensure

a more thorough examination of the patient’s conditions.

For readability, the workflow is graphically represented in

Figure 4, where we use the letters P,D,N to represent roles

Patient,Doctor,Nurse respectively.

VII. RELATED WORK

The paper by Wang et al. on the security of delegation

in access control systems [23] was one of the main sources

of inspiration for the present work. The paper studies how

delegation can be abused by colluding users to bypass the

intended security policies in a workflow system. Though

the security property we consider in the present paper is

an adaptation of the security property in [23] to the case

of ARBAC administrative actions, there are several notable

differences between this work and [23]. First, static analysis

is only briefly mentioned in [23] as a possible way to check

security, but no static analysis is actually proposed by the

authors: rather, the solution they develop requires an extension

of the workflow system with additional runtime checks, which

is inconvenient or even impossible in many practical scenarios.

Second, we experimentally validate the applicability of our

theory: developing a sound - yet precise - static analysis for

workflow systems built on top of realistic ARBAC policies is

hard, since intractability lurks around the corner [20]; indeed,

we observed the need to aggressively optimise our encoding

into ARBAC to obtain an efficient static analysis. Finally,

the formal model in this paper is quite different and more

general than the one in [23]: in particular, we focus on the

ARBAC standard rather than on an ad-hoc extension of RBAC

with delegation and we consider a more expressive model of

workflows based on stable event structures rather than on a

partially ordered set of tasks.

The satisfiability (or consistency) of workflows is a classic

problem in computer security [21], [22]. Roughly, a workflow

is satisfiable with respect to a given user-to-role assignment

UR if and only if the users included in UR are able to com-

plete it. Checking security against collusion (Definition 9) may

require one to check the satisfiability of a workflow. However,

as we discussed, checking security against collusion requires

one to generalize algorithms for workflow satisfiability to deal

with the presence of administrative actions changing the initial

user-to-role assignment UR. Building all the possible user-to-

role assignments and checking satisfiability with respect to
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Figure 4. Case study: a first aid procedure

them is not feasible in practice, given the exponential blow-

up of the possible role combinations assigned to the users of

the system and the fact that workflow satisfiability is NP-hard

in most practical cases [22].

Crampton and Khambhammettu proposed algorithms to

check the satisfiability of workflows supporting delegation

operations [11]. These algorithms ensure that permitting a del-

egation request does not prevent the completion of a workflow.

Their goal is then essentially dual to the static analysis in

this paper, which ensures that administrative actions cannot be

abused to complete a workflow which could not be completed

under the original user-to-role assignment. Indeed, one should

observe that there is often a trade-off between security and

business continuity: if collusions are the main concern for

system administrators, the present paper proposes a viable

solution; if instead it is better to ensure workflow termination

at the price of permitting collusion, the approach in [11] should

be considered. We argue that these considerations strongly

depend on the application scenario, the workflow semantics

and the considered set of users.

Basin et al. conducted a formal study on the tension between

security policies and business objectives in workflow systems

represented as CSP processes [6]. They formalize a notion of

obstruction, generalizing the notion of deadlock for systems

where access control policies are enforced. Roughly, an ob-

struction happens when the enforcement of an access control

policy prevents a possible execution path in a workflow.

The paper presents the design and the implementation of

an obstruction-free authorization enforcement mechanism for

workflow systems.

VIII. CONCLUSION

We studied the problem of collusion attacks in ARBAC-

based workflow systems, where malicious users may change

the user-to-role assignment in the attempt of sidestepping the

intended security policies. We formulated a formal definition

of security against collusion and we proposed a novel static

analysis technique which can be used to prove or disprove

security for a large class of ARBAC workflow systems. We

discussed how to aggressively optimise the static analysis to

ensure its efficiency in practice and we showed the feasibility

of our approach by implementing a tool, WARBAC, and by

performing an experimental evaluation on a set of publicly

available examples.

There are many avenues for future work. We would like to

extend our theory to the case of workflows including loops,

which are quite popular in practice, but were left out from the

present paper for the sake of simplicity, most notably because

the interaction between loops and BoD/SoD constraints is

quite subtle [6]. Moreover, we plan to design and implement a

translator from high-level workflow description languages like

BPMN into event structures, thus making WARBAC easier to

use. Again on the practical side, we plan to extend WARBAC

with a module which, given a role reachability trace returned

by VAC, verifies whether this trace actually corresponds to a

successful trace of the workflow system: this would be very

useful to improve the practicality of WARBAC in absence of

a stronger completeness result for our static analysis.
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