
Compositional Verification and Refinement of
Concurrent Value-Dependent Noninterference

Toby Murray∗†, Robert Sison†, Edward Pierzchalski†, Christine Rizkallah†
∗University of Melbourne †Data61, NICTA & University of New South Wales

firstname.lastname@unimelb.edu.au firstname.lastname@data61.csiro.au

Abstract—Value-dependent noninterference allows the classifi-
cation of program variables to depend on the contents of other
variables, and therefore is able to express a range of data-
dependent security policies. However, so far its static enforcement
mechanisms for software have been limited either to progress-
and termination-insensitive noninterference for sequential lan-
guages, or to concurrent message-passing programs without
shared memory. Additionally, there exists no methodology for
preserving value-dependent noninterference for shared memory
programs under compositional refinement. This paper presents
a flow-sensitive dependent type system for enforcing timing-
sensitive value-dependent noninterference for shared memory
concurrent programs, comprising a collection of sequential
components, as well as a compositional refinement theory for
preserving this property under componentwise refinement. Our
results are mechanised in Isabelle/HOL.

I. INTRODUCTION

Few foundational topics of computer security have received

more study than information flow security, which deals with

the problem of preventing unwanted information leakage.

Under the traditional view of language-based noninterfer-
ence [SM03], each program variable is assigned a fixed

security classification, which identifies the kind of data it

contains. Noninterference holds when information derived

from confidential variables cannot be inferred by observing

changes to non-confidential ones. Timing-sensitive noninter-
ference requires that both how and when the contents of non-

confidential variables change is independent of the contents of

confidential variables, and so no information about confidential

variables is leaked.

Value-dependent noninterference allows the security clas-

sification of variables to depend on the contents of other

program variables. Its static enforcement has been studied

primarily in the context of dependent (security) type sys-

tems [ZM07], [SCC10], [SCF+11], [LC15], [ZWSM15], re-

lational program logics [ABB06], [MMB+12], and combina-

tions thereof [NBG11].

The aforementioned work has clearly established the utility

of value-dependent noninterference for enforcing a range

of (state-dependent) security policies, besides declassifica-

tion and erasure [SBN13]. However, all prior work on its

static enforcement for software has been limited either to

sequential programs with progress- and timing-insensitive non-

interference, or (just recently) to process-algebra style for-

malisms [LNNF16] without shared memory, where composi-

tionality is relatively straightforward. Little work has examined

the compositional verification of value-dependent noninterfer-

ence for concurrent shared-memory programs, despite it being

an active area of research for traditional (non-value-dependent)

noninterference [VS99], [SS00], [BC02], [MSS11].

In addition to verifying the security of a program against its

source level semantics, true assurance requires verifying that

a program’s implementation (e.g. after compilation) is also

secure. This is particularly challenging for timing-sensitive

noninterference, which requires an implementation’s timing

behaviour to be independent of confidential data, especially

when source language semantics typically abstract over the

execution time of program statements. This problem is even

worse for concurrent shared-memory programs, which com-

prise a set of concurrently-executing sequential components.

Here, the correct compilation of one component necessarily

depends on implicit assumptions made about the absence

of unwanted effects caused by other concurrently-running

components. There exists no theory allowing one to trans-

fer a compositional proof of timing-sensitive noninterference

for a concurrent program to its refined implementation, one

component-at-a-time.

This paper addresses these shortcomings via two main

contributions, of which Sec. II provides an overview. These

contributions are constructed on the value-dependent ex-

tension [Mur15] of the compositional theory of timing-

sensitive, concurrent noninterference of [MSS11], summarised

in Sec. III.

In Sec. IV, we present for a simple imperative language

what is, to our knowledge, the first flow-sensitive, dependent

type system for compositionally verifying value-dependent

noninterference of shared memory concurrent programs, tak-

ing into account the assumptions each component makes about

the others with which it runs concurrently.

In Sec. V, we present the first compositional refinement

theory for preserving timing-sensitive, value-dependent non-

interference. We define a suitable notion of refinement for

establishing that each component of a concurrent system has

been securely refined to its implementation so that, when

composed together, the implementations running in parallel

are guaranteed secure. This theory introduces the notion of

a concrete coupling invariant to ensure that “constant-time”

parts of the source program remain constant-time in the

concrete implementation.

Sec. VI exercises this theory to prove the intuition that

programs whose execution never branches on confidential data

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Toby Murray. Under license to IEEE. 417

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Toby Murray. Under license to IEEE.

DOI 10.1109/CSF.2016.36

417

(and so are trivially constant-time) can be securely refined by

what we call simple refinement relations, without a coupling

invariant. Such refinement relations must naturally not intro-

duce new branching on confidential data, or choose to refine

programs differently based on confidential memory contents.

We discuss related work in Sec. VII before concluding in

Sec. VIII. Our results are mechanised in Isabelle/HOL, and

were typeset here by Isabelle [NPW02] to avoid transcription

errors. The total size of our Isabelle/HOL formalisation (in-

cluding examples) is over 20,000 lines.

II. OVERVIEW

This section gives a high-level overview of the contributions

of this paper, described in detail in subsequent sections.

A. Type System

1) Language: The type system we present in Sec. IV is for

a tiny imperative language for writing sequential components

that run concurrently to one another with access to globally

shared memory. As is usual, we restrict our attention to

noninterference over the two-point lattice of classifications

{Low, High} ordered by ≤ in the natural way. Fig. 1a shows

an example component that reads from an input buffer buffer,
modelled as a single variable, and copies the contents into

one of two output buffers, high-var and low-var, depending

on whether the data held in the input buffer was classified

High or Low respectively. The classification of the input buffer

buffer is value-dependent, and depends on the contents of the

control variable control: when control is zero, buffer is Low
and otherwise it is classified High. control is itself statically

classified Low, as required for all such variables on which the

classification of other variables depend [Mur15] to prevent

information leakage from changes to variable classifications.

The variable temp is also statically classified Low.

The comments delimited by /* and */ indicate local as-
sumptions made by this fragment of code about the behaviour

of other components in the system. These assumptions are

what allow us to verify this component as being secure in

isolation from the other components in the system that it

may execute concurrently with. Specifically, given a system

comprising a set of components, to verify the entire system

as secure it suffices to (1) verify each component on its

own under its local assumptions, and (2) to prove that each

component adheres to the assumptions of all others. This result

is proved formally in [Mur15], extending [MSS11], which

we summarise later in Sec. III. Verifying each component

under its local assumptions is precisely the purpose of the

type system we present in this paper. Existing techniques

can be applied to verify that each component adheres to the

assumptions of all others [MMOPW15].

Before executing the first skip statement, the code acquires
the assumption that no other component will modify (Asm-
NoW) control and it operates under that assumption for its

entire execution because it never explicitly releases it. Before

executing the second skip statement, it acquires the assump-

tion that no other component will read or modify (AsmNoRW)

temp, a variable that temporarily holds the contents of buffer
while the code is working out what classification buffer is.

This assumption about temp is maintained up until the

final skip statement, at which it is released. The control
assumption ensures that the classification of buffer won’t

change in between this code having read its value and then

later examining control. The temp assumption ensures that,

in the event that buffer was classified High, that no other

component will inadvertently read that High data while it is

residing in temp, which would be insecure since temp is

classified Low.

2) Typing Contexts and Judgements: The judgements

of our flow-sensitive type system are of the form

� Γ,S,P {c} Γ ′,S ′,P ′ for statements c of our language. Here,

Γ, S and P record information that is true about the state from

which c executes and Γ ′, S ′ and P ′ record updated information

that is true as a result of c having executed.

The environment Γ tracks the (dependent) classification of

the data in variables throughout the program. The types in Γ
depend on memory. To ease its automation, we represent these

types by sets of predicates on memory. A type t is interpreted
as Low in memory mem when all predicates in the set t hold

for mem, and is interpreted as High in mem otherwise. With

this representation of types, we can phrase subtyping and type-

equivalence via predicate entailment, which eases automation.

After the assignment temp := buffer in the program in Fig. 1a,

Γ is updated with the mapping temp �→ {control == 0},
the predicate representation of the type (i.e. value-dependent

classification) of buffer.
To decide whether an assignment like low-var := temp is

secure, our type system maintains a set of predicates P that are

known to be true at the current point in the program. When

this assignment is encountered in the program in Fig. 1a, P
contains the predicate control == 0 because this assignment

is performed in the then-branch of the program’s single if-
statement. Proving that this assignment is secure then requires

showing that the type of temp in Γ is a subtype of the type

of low-var, under the predicates in P. By this we mean the

following. Let t be the type of temp in Γ. Then for all

memories mem satisfying P, the interpretation of t in mem is ≤
the interpretation of low-var’s type (which is statically Low).

This requirement is phrased in terms of predicate entailment:

whenever all predicates in P hold, we require that all predicates

in t also hold, implying that the data in t is Low. Since the

sole predicate in t, control == 0, is also present in P, the

assignment is straightforwardly secure.

The final component S tracked by the type system accounts

for the reality that other components in the system may modify

any variable for which the current component does not have an

AsmNoW or AsmNoRW assumption — i.e. any variable that

is assumed writable. S is simply a pair of sets (NW, NRW)
where NW and NRW record, respectively, those variables

for which the component has an AsmNoW and AsmNoRW
assumption. It is updated in the natural way when statements

like skip /* control +=m AsmNoW */ are encountered.

418418

skip /* control +=m AsmNoW */;
skip /* temp +=m AsmNoRW */;
temp := buffer;
if control == 0 then

low-var := temp
else

high-var := temp
endif;
temp := 0;
skip /* temp −=m AsmNoRW */

(a) Reading a dynamically-classified
buffer, adapted from [Mur15].

skip /* controlC +=m AsmNoW */;
skip /* tempC +=m AsmNoRW */;
tempC := bufferC ;
regC := controlC ;
if regC == 0 then

low-varC := tempC

else
high-varC := tempC

endif;
tempC := 0;
skip /* tempC −=m AsmNoRW */

(b) A trivial refinement of Fig. 1a.

Fig. 1: Value-dependent noninterference and its refinement.

3) Stability: The purpose of S is to restrict the information

that the type system records in Γ and P to being that which

pertains only to stable variables, which are those contained in

S. It is only stable variables whose values are guaranteed not to

be altered by other components, and so it makes sense to track

information only about them. Hence, every variable mentioned

in Γ must be stable, as must every variable mentioned in a

predicate in P. The type system maintains this invariant.

We make the explicit design decision that our type system

records information that pertains only to the current state of

the program; it does not attempt to record information about

the values of variables in the past, for instance. This keeps the

set of predicates P from increasing monotonically. However,

as a result, all types in Γ need to be stable in the sense that

the variables that they depend on need to be included in S.

This ensures that we can always interpret all dependent types

in Γ under the entire set of predicates in P.

4) Context Rewriting: The ability to keep the amount

of information that our type system must deal with under

control comes at the price of complicating its application in

some instances. To see why, suppose we altered Fig. 1a by

adding the line skip /* control −=m AsmNoW */ directly

preceding the assignment to low-var. Doing so releases the

assumption that control won’t be modified, making it unstable.

Thus the type of temp in Γ, which recall is {control == 0},
no longer applies. This type refers to the value of control when

buffer was read. However, its value may have since changed

because it is now unstable.

To solve this problem, the typing rules allow the typing

context Γ to be rewritten by replacing types with ones that

are equivalent under the set of predicates P. Like subtyping,

this equivalence is phrased via predicate entailment, easing its

automation. Thus, at the point where control is determined to

be zero (and thus P contains the predicate control == 0), Γ
can be rewritten to replace temp’s type with the equivalent

one under P of simply the empty set of predicates ∅, which

refers to no variables and so is trivially stable.

5) Automation: Our type system generalises over the pro-

gram’s languages of arithmetic and boolean expressions, and

reuses the program’s boolean expressions as the language of

predicates (in types and in P). Having fixed the expression

languages, however, the application of our type system is

easily automated. We have implemented a set of automated

tactics in Isabelle’s Eisbach [MWM14], [MMW16] proof

method language to automate typing proofs for programs

employing a trivial predicate language. The security proofs

of examples like Fig. 1a are entirely automated, for instance.

The tactics at present require user intervention to specify when

and how to rewrite the typing context Γ, as well as in some

instances to provide post-contexts following if-statements (as

explained later in Sec. IV). However, because type equivalence

can be deduced from predicate entailment, automating this rea-

soning should also be feasible for an appropriately expressive

predicate language.

B. Refinement

1) Component Refinement: The primary purpose of our

theory of refinement (presented in Sec. V) is to allow a

proof of security for a concurrent program, carried out one-

component-at-a-time (e.g. using our type system), to be trans-

ferred to a more concrete semantics for the program with

as little work as possible. The more concrete semantics for

the concurrent program is one arising from having refined

each individual component of the more abstract program

individually. A component might be refined by e.g. compiling

it and interpreting the object code against an assembly-level

semantics, or by manually constructing a more detailed model

of the component than that used for the security proof, etc.

Fig. 1b depicts a trivial refinement of the program in Fig. 1a.

Each variable that corresponds to a variable from Fig. 1a has

the same name as the original variable, but with the subscript

“C” (for “concrete”) appended. Notice that there is a new

variable regC that has no corresponding variable in Fig. 1a.

This is a private variable for the concrete component that is

assumed globally to be AsmNoRW — i.e. is assumed that

other components will neither read nor write it for the entire

lifetime of the program. regC is used to store the value of

the control variable controlC before testing its value with the

subsequent if-statement.

This refinement of Fig. 1a introduces both new private

state (regC) as well as changing the level of atomicity for

some actions of the original program (the single action of

the original program in which control’s value was tested

419419

has now been broken into two: one for loading controlC
into regC and a second for testing the value of regC).

Our theory of refinement supports both of these kinds of

transformations, including those in which several actions of the

abstract component are optimised into fewer concrete actions.
2) Refinement Relations: Refinement is phrased formally as

a relation between the semantic configurations of the abstract

and concrete components. Since the (value-dependent) timing-

sensitive noninterference property we consider observes the

entirety of memory (as opposed, for instance, to just the

input/output events of the program), it requires a fairly strong

refinement relation in order to transfer it from the abstract to

the concrete component. In particular, the refinement relation

must ensure that at each point in the concrete program there

exists a corresponding point in the execution of the abstract

program. By “corresponding”, we require that the values of

all variables in the abstract program match the values of their

corresponding variables in the concrete program, and that the

assumptions (and guarantees – see later in Sec. III) about each

abstract variable are identical for their corresponding variable.

This means that the concrete program is free to perform

actions not present in the abstract program (such as loading

controlC into regC), so long as those actions only modify the

newly introduced private variables of the concrete program

(here, regC). As mentioned above, this doesn’t preclude the

concrete program from implementing multiple steps of the

abstract program in a single step of the concrete program.

It does prevent the concrete program from re-ordering actions

performed by the abstract program.

These restrictions ensure that the set of reachable states

of the concrete program corresponds to that of the abstract

program, which is necessary for preserving security. To see

why, consider what would happen for instance if the following

two statements were reordered: buffer := 0; control := 0.

The first ensures that buffer contains non-confidential data,

and so is safe to classify as Low (which is the effect of the

second statement). Were they reordered, buffer may end up

being classified Low while still holding non-Low data — a

clear security violation.

3) Dealing with Concurrency from Other Components:
In order to allow each component of a concurrent system

to be refined independently, our refinement theory must take

into account potential effects caused by other concurrently-

executing components. Consider the program in Fig. 2a and

specifically the statement x := y + z therein. Suppose, as is

very common, that the source language semantics models the

evaluation of the expression y + z as occurring atomically.

Suppose, however, that this statement is implemented in the

concrete component by multiple statements, the first two of

which load y and z into separate registers respectively and

the third of which adds them together. Fig. 2b depicts an

example of this kind of refinement, expressed in the same

tiny imperative language used elsewhere in this paper. In

the concrete system, while these multiple instructions are

executing, other components may execute in between, possibly

modifying the values of (the concrete counterparts of) y and

z in memory.

These modifications are problematic for refinement. As

far as the source program is concerned, after executing the

statement x := y + z it is always true that the sum of the values

in the variables y and z is equal to the value in x. However,

because of the aforementioned concurrency, the same doesn’t

follow trivially in the concrete system.

To remedy this problem, we leverage the local assumptions

made by each component. Specifically, inspired by [LFF14],

we require the refinement relation to be preserved by changes

to all variables that the component is assuming may be

modified (i.e. all those for which it does not have AsmNoW or

AsmNoRW assumptions). In the example above, this would

allow the statement x := y + z to be refined into multiple

separate ones as described only if the source component had

AsmNoW or AsmNoRW assumptions for y and z at the

time of performing the assignment. This is the reason that

the program in Fig. 2a acquires AsmNoW for these variables;

a similar argument applies to h.

Thus our refinement theory makes explicit the otherwise

implicit assumptions made e.g. by the compiler when compil-

ing code that will run in a concurrent context. It does so that

components can be soundly refined separately while ensuring

that when composed together, the refined concurrent program

will not only be secure, but that its reachable states will be a

subset of those for the abstract concurrent program.

4) Concrete Coupling Invariants: Knowing that each con-

crete state corresponds to an abstract one is not sufficient for

preserving timing-sensitive noninterference. This is because

timing-sensitive noninterference requires the Low-observable

timing properties of a program to be independent of non-Low
data. When this holds, we term the program constant time.

Consider a component like that in Fig. 2a that contains an

if-statement whose condition examines a non-Low variable.

Timing-sensitive noninterference usually requires the then-

and else-branches to take the same number of steps (i.e. the

same amount of time, as viewed through the source program’s

small-step semantics) to execute.1 The same must be true for

the concrete component if noninterference is to be preserved;

however, simply requiring that each state of the concrete

component corresponds to an abstract state is not enough to

ensure this.

To remedy this problem, we introduce the notion of a

concrete coupling invariant. It relates different executions of

the concrete program arising from it having branched on non-

Low data, and, by proving that it is maintained, ensures that

they each take the same number of steps to execute. For

instance, to prove that the refinement in Fig. 2b is security-

preserving one uses a coupling invariant that relates the

first skip statement of the component’s then-branch to the

first statement reg1C := yC of the component’s else-branch,

relates the second skip to reg2C := zC , relates the statement

reg0C := yC to reg0C := reg1C + reg2C , and relates the

1Fig. 2a satisfies this condition (only) because the addition is evaluated
atomically in the language’s small-step semantics, as mentioned above.

420420

skip /* h +=m AsmNoW */;
skip /* y +=m AsmNoW */;
skip /* z +=m AsmNoW */;
y := 0;
z := 0;
x := y;
if h != 0 then

x := y
else

x := y + z
endif

(a) A program with a High conditional.

skip /* hC +=m AsmNoW */;
skip /* yC +=m AsmNoW */;
skip /* zC +=m AsmNoW */;
yC := 0;
zC := 0;
xC := yC ;
reg3C := hC ;
if reg3C != 0 then

skip;
skip;
reg0C := yC ;
xC := reg0C

else
reg1C := yC ;
reg2C := zC ;
reg0C := reg1C + reg2C ;
xC := reg0C

endif

(b) A refinement of Fig. 2a.

Fig. 2: Compositional refinement of timing-sensitive noninterference.

statement xC := reg0C to itself. Importantly, coupling invari-

ants need not talk about whether memory contents are secure,

but merely whether two possibly different concrete executions

are synchronised.

5) Simple Components and Simple Refinements: Compo-

nents whose execution doesn’t branch on non-Low data are

trivially constant-time, in that their execution-time (as mea-

sured through the number of evaluation steps in the source

language’s small-step semantics) depends only on Low data.

Thus they can be refined securely using only simple refinement

relations without need for concrete coupling invariants, so

long as the refinement relation itself doesn’t introduce new

branching on non-Low data, or choose to refine programs

differently based on the contents of non-Low memory. We

derive this result formally as a consequence of our refinement

theory in Sec. VI.

III. COMPOSITIONAL, VALUE-DEPENDENT

NONINTERFERENCE

Before describing our type system (Sec. IV) and refine-

ment theory (Sec. V & Sec. VI), we first briefly describe

the compositional theory of value-dependent timing-sensitive

noninterference on which they are constructed. We build on

[Mur15]’s theory, which is itself a value-dependent extension

of a subset of the theory from [MSS11].

1) Preliminaries: The concurrently-executing components

share access to a global memory, which is modelled as a

mapping from a finite set of variables to values. As mentioned

in Sec. II, we restrict our attention to a two-point lattice of

security classifications High and Low, where Low < High. Let

Lmem v give the (value-dependent) classification of variable v
when the memory is mem. Let Cvars v denote the (fixed) set

of variables that variable v’s classification depends on, such

that:

(∀ x∈Cvars y. mem1 x = mem2 x) −→ Lmem1 y = Lmem2 y

Let C ≡ ⋃
x Cvars x denote the set of control variables, i.e.

those that determine the classification of all other variables.

Then we require that these variables are always classified Low
in order to prevent changes in variable-classifications from

leaking confidential information: ∀ x∈C. Lmem x = Low ∧
Cvars x = ∅.

We assume that each component is programmed in a deter-

ministic programming language. (Our type system instantiates

this language with the tiny imperative one in which Fig. 1

and Fig. 2 are written.) Let 〈cmd, mds, mem〉 denote a local
configuration of an individual component where cmd is the

currently executing command; mds is the current modes state
for that component, which we describe shortly; and mem is the

current memory. Let � denote a transition relation on local

configurations that gives the small step operational semantics

for the language.

The mode state tracks the current assumptions of an individ-

ual component, as well as guarantees made by that component.

These guarantees are needed to satisfy the assumptions of

other components, in order for the proofs of the individ-

ual components to compose. Let AsmNoW, AsmNoRW,

GuarNoW, and GuarNoRW denote modes that a compo-

nent may dynamically associate with each variable. When a

component acquires AsmNoW on variable v, it assumes no

other component will modify v or its classification. Acquiring

AsmNoRW on v assumes additionally that no variable in

{v} ∪ Cvars v will be read. The modes GuarNoW and

GuarNoRW are the corresponding guarantees for AsmNoW
and AsmNoRW; e.g. acquiring GuarNoW on v is a guarantee

that the component will not modify v or its classification.

The mode state is a mapping from each mode to the set

of variables that currently have that mode. Thus v has e.g.

mode AsmNoW in mode state mds when v ∈ mds AsmNoW.

A global configuration models the global state of the

system that comprises a collection of concurrently running

components. It is a pair: (cms, mem) where cms is a list of

421421

command/mode state pairs (cmdi, mdsi), one for each of the

concurrently executing components, and mem is the memory

(which they all share). �- is the transition relation on global

configurations, defined inductively as:

cms[i] = (cmdi, mdsi) i < |cms|
〈cmdi, mdsi, mem〉 � 〈cmdi

′, mdsi ′, mem ′〉
(cms, mem) �i (cms[i := (cmdi

′, mdsi ′)], mem ′)

For a list cms, cms[i] denotes its ith element (indexed

from 0), and |cms| denotes its length. The expression

cms[i := (cmdi
′, mdsi ′)] updates the list cms at the ith position

with (cmdi
′, mdsi ′).

(cms, mem) �i (cms ′, mem ′) denotes that the system tran-

sitions from global configuration (cms, mem) to configura-

tion (cms ′, mem ′) by the ith component making an execu-

tion step. Such a step updates i’s command and mode state

pair (cmdi, mdsi) of cms, as well as the global memory mem,

with the respective values obtained under the transition relation

� from the local configuration 〈cmsi, mdsi, mem〉.
Concurrent execution is defined against a fixed schedule

sched, a finite list prescribing the order in which components

are to execute. Execution against sched is denoted →sched, and

defined in the natural way.

c →[] c ′ = (c = c ′)
c →n · ns c ′ = (∃ c ′′. c �n c ′′ ∧ c ′′ →ns c ′)

Here [] is the empty list and · the cons operator.

2) Security: We now define the main security properties.

There is a global system-wide security property, and a local
security property for each component. These are linked by a

central compositionality theorem which states that if the local

property holds for each component, then the global property

holds for the entire system, assuming some side conditions to

allow the local properties to compose. It is the local security

property that our type system establishes for each component.

a) Global Security: Let mem1 =
l mem2 denote when the

memories mem1 and mem2 are Low-equivalent:

mem1 =
l mem2 ≡ ∀ x. Lmem1 x = Low −→ mem1 x = mem2 x

Because all C variables are Low, it follows straightforwardly

that: mem1 =
l mem2 −→ (∀ x. Lmem1 x = Lmem2 x).

Then let sys-secure cms be the global security property

that denotes when the collection of concurrently executing

components cms is secure. cms is a list of command/initial-

mode-state pairs, one for each component.

sys-secure cms ≡
∀mem1 mem2.

mem1 =
l mem2 −→

(∀ sched cms1 ′ mem1
′.

(cms, mem1) →sched (cms1 ′, mem1
′) −→

(∃ cms2 ′ mem2
′. (cms, mem2) →sched (cms2 ′, mem2

′)) ∧
(∀ cms2 ′ mem2

′.
(cms, mem2) →sched (cms2 ′, mem2

′) −→
modes-eq cms1 ′ cms2 ′ ∧
(∀ x. x ∈ C ∨ Lmem1

′ x = Low ∧ readable cms1 ′ x −→
mem1

′ x = mem2
′ x)))

Here modes-eq cms1 ′ cms2 ′ denotes that the two lists cms1 ′

and cms2 ′ agree pointwise on their mode states, and we define

readable cms1 ′ x ≡ ∀ (cmd ′, mds ′)∈set cms1 ′. x /∈ mds ′

AsmNoRW where for a list xs, set xs denotes the set whose

elements are precisely those in xs.

sys-secure cms asserts that given two initial memories that

are Low-equivalent and executing an arbitrary schedule from

the first, this execution can always be matched by running

the same schedule from the second: in all cases, the two

resulting configurations will have the same mode states for

each component, and will agree for all control variables (which

determine the classification of all others), as well as all Low
variables that no component is assuming will not be read —

i.e. the two configurations will agree on the values of those

variables that must hold Low data.

b) Local Security: The local security property essentially

requires showing that each component preserves the following

relational property, called Low-equivalent modulo modes:

mem1 =mds
l mem2 ≡

∀ x. x ∈ C ∨ Lmem1 x = Low ∧ x /∈ mds AsmNoRW −→
mem1 x = mem2 x

It requires that each component ensures that all C-variables and

all Low variables that the component assumes may be read by

other components, always contain only Low information. Note

that: mem1 =mds
l mem2 −→ (∀ x. Lmem1 x = Lmem2 x).

To prove that each component maintains this equivalence,

the theory requires that a relation B can be found for each

component that relates pairs of executions of the component

and ensures that the Low-equivalence modulo modes is always

preserved. B is called a strong low bisimulation modulo modes
and is defined formally as follows.

B needs to be closed under globally consistent changes,

meaning that it is preserved by the actions of the other

components in the system, restricted according to the assump-

tions encoded in the current mode state mds. We denote this

condition cg-consistent B.

cg-consistent B ≡
∀ c1 mds mem1 c2 mem2.
〈c1, mds, mem1〉 B 〈c2, mds, mem2〉 −→
(∀A. (∀ x. mem1 x �= mem1 [‖1 A] x ∨

mem2 x �= mem2 [‖2 A] x −→
writable mds x) ∧

(∀ x. Lmem1 x �= Lmem1 [‖1 A] x −→ writable mds x) ∧
mem1 [‖1 A] =mds

l mem2 [‖2 A] −→
〈c1, mds, mem1 [‖1 A]〉 B 〈c2, mds, mem2 [‖2 A]〉)

cg-consistent B quantifies over the actions A of other

components in the system. An action A models the memory-

updates performed by other components and so is a partial

mapping from variables to pairs of values (one for each of the

memories in the two configurations related by B). We write

mem [‖1 A] to denote updating the memory mem with the first

set of changes in A, and mem [‖2 A] for updating mem with

the second set. A is restricted to only modify the values or

classifications of variables x that are assumed to be writable:

writable mds x ≡ x /∈ mds AsmNoW ∧ x /∈ mds AsmNoRW

422422

Naturally, A is also restricted to preserving Low-equivalence

modulo modes.

Let strong-low-bisim-mm B denote that B is a strong low

bisimulation modulo modes, defined as:

strong-low-bisim-mm B ≡
(sym B ∧ cg-consistent B) ∧
(∀ c1 mds mem1 c2 mem2.
〈c1, mds, mem1〉 B 〈c2, mds, mem2〉 −→
mem1 =mds

l mem2 ∧
(∀ c1 ′ mds ′ mem1

′.
〈c1, mds, mem1〉 � 〈c1 ′, mds ′, mem1

′〉 −→
(∃ c2 ′ mem2

′.
〈c2, mds, mem2〉 � 〈c2 ′, mds ′, mem2

′〉 ∧
〈c1 ′, mds ′, mem1

′〉 B 〈c2 ′, mds ′, mem2
′〉)))

B must be symmetric, closed under globally consistent

changes, and imply Low-equivalence modulo modes, as well

as being preserved locally by the component.

Finally let com-secure cmd be the local security property

that denotes when a single component, whose initial mode

state is mds and whose program is cmd, is secure:

com-secure (cmd, mds) ≡
∀mem1 mem2.

mem1 =mds
l mem2 −→

(∃B. strong-low-bisim-mm B ∧
〈cmd, mds, mem1〉 B 〈cmd, mds, mem2〉)

3) Compositionality: The compositionality theorem is as

follows [Mur15]:

Theorem 3.1:∀ (cmd, mds)∈set cms. com-secure (cmd, mds)
∀mem. sound-mode-use (cms, mem)

sys-secure cms

For the local security properties to compose, this theorem

requires that each component always meets the assumptions

of all others: ∀mem. sound-mode-use (cms, mem).
sound-mode-use essentially requires that each component

(1) guarantees to meet the assumptions of all others and

(2) always adheres to its own guarantees. (1) requires that

whenever a component has an AsmNoRW (respectively Asm-
NoW) assumption for a variable v, that all other components

have GuarNoRW (resp. GuarNoW) for v. (2) requires that

whenever a component has the GuarNoRW guarantee for

variable v, then its next step of execution doesn’t depend on

nor modify any variable in {v} ∪ Cvars v; and whenever it

has GuarNoW for v then it doesn’t alter v’s value nor its

classification.

Recent work has shown how to verify that these conditions

are enforced [MMOPW15], or how to enforce them using

dynamic monitoring [ACM15].

IV. FLOW-SENSITIVE DEPENDENT TYPE SYSTEM

We now present our value-dependent type system, whose

purpose is to prove components locally secure. Its soundness

proof, mechanised in Isabelle/HOL, constructs an appropriate

bisimulation B, and proves that it is a strong low bisimulation

modulo modes. Its structure is similar to the Isabelle/HOL

soundness proof of [MSS11]’s non-value-dependent type sys-

tem; however ours is considerably more involved (at almost

triple the size).

The type system is defined over the simple imper-

ative language of [MSS11], extended with the illustra-

tive synchronisation primitive await [PN02]. The statement

await e do c done blocks execution until the condition e is

satisfied, and then atomically executes the body c.

A. Deeply Embedded Types

Recall from Sec. II that value-dependent security classifi-

cations (i.e. types) in our type system are deeply embedded

as sets of predicates t. For a set of predicates P, we write

�P�mem when all predicates in P hold in memory mem. Then

let [[t]]mem denote the interpretation of type t in memory mem,

defined as:

[[t]]mem ≡ if t�mem then Low else High

Types are interpreted as Low when all of their predicates hold,

and as High otherwise.

We say that one type t is a subtype of another t ′ under

predicates P, when, in each memory that satisfies P, t’s
interpretation is always ≤ to t ′’s. We can phrase this property

conveniently in terms of entailment between sets of predicates.

Let P � P ′ denote when the set of predicates P entails the set

of predicates P ′, namely when ∀mem. �P�mem −→ �P ′�mem.

Then we write t ≤:P t ′ to denote that t is a subtype of t ′ under

predicates P:

t ≤:P t ′ ≡ (P ∪ t ′) � t

Then: t ≤:P t ′ = (∀mem. �P�mem −→ [[t]]mem ≤ [[t ′]]mem)
as required. The characterisation of subtyping in terms of

predicate entailment makes automating subtyping judgements

more straightforward, which assists the automatic application

of our typing rules for proving components secure.

Type equivalence is used when rewriting typing contexts, as

mentioned earlier in Sec. II-A. It is simply subtyping in both

directions:

t =:P t ′ ≡ t ≤:P t ′ ∧ t ′ ≤:P t

We say that a type is wellformed when its predicates refer

only to control variables (i.e. those in C — see Sec. III).

Recall that the value-dependent classification of variable v in

memory mem is given by function Lmem v. Then let Ltype v
denote a set of predicates such that Lmem x = [[Ltype x]]mem
and Cvars x = vars-of-type (Ltype x), where vars-of-type t
denotes the set of variables appearing in predicates in t. Ltype
v encodes v’s value-dependent classification as a dependent

type in our type system. All types given by Ltype are clearly

wellformed.

B. Contexts and Wellformedness

Recall that our type system tracks three contexts: (1) Γ, the

flow-sensitive typing environment; (2) S, which tracks which

variables are currently stable (i.e. the two sets of variables that

423423

have AsmNoW and AsmNoRW respectively); and (3) P, the

set of predicates known to hold currently.

P tracks only those predicates known to hold currently, in

order to keep its size under control during type checking.

However, as mentioned in Sec. II-A, this restricts the variables

and types in Γ, and the predicates in P to just those that are

stable, meaning that they refer only to stable variables (i.e.

those in S).

Our typing rules ensure that Γ tracks only stable, non-C
variables. We say that the three contexts Γ, S and P are

wellformed with respect to the mode state mds when: (1)

all types in Γ are wellformed (as defined above) and stable,

(2) Γ’s domain is all stable non-C variables, (3) S agrees

with mds, i.e. S = (mds AsmNoW, mds AsmNoRW), and

(4) all predicates in P are stable. We denote this condition

wf mds Γ S P.

We lift the notion of type equivalence under a set of

predicates P to typing contexts, overloading the notation.

Γ =:P Γ ′ ≡
dom Γ = dom Γ ′ ∧ (∀ x∈dom Γ ′. Γ x� =:P Γ ′ x�)
Here, dom Γ denotes the domain of Γ and �Γ x� denotes the

type that Γ has recorded for any x ∈ dom Γ.

Finally, we lift Γ from a partial- to a total-function on

variables x, denoted Γ〈x〉, defined as:

Γ〈x〉 ≡ if x ∈ dom Γ then Γ x� else Ltype x

C. Typing Rules

The typing rule for expressions e takes the upper bound of

the types of the e’s variables, denoted vars-of e.

Γ � e :
⋃

x∈vars-of e Γ〈x〉
The typing rules for commands are shown in Fig. 3. SEQ

and SKIP mirror standard typing rules for these constructs.

As elsewhere, WHILE requires the loop-guard e to be Low in

order to satisfy timing-sensitive noninterference. It does so by

asserting that e’s type t be Low (i.e. all predicates in t hold),

under the current predicates P: P � t. When typing the loop-

body c, the notation P +S e adds the loop condition e to P so

long as all of the variables it mentions are stable in S. This

allows reasoning under the loop guard as in Hoare logic.

The AWAIT rule naturally requires the condition e to

be Low: since the component will block until e is satisfied,

its timing behaviour necessarily depends on e’s classification.

As with the WHILE rule, when typing the body c, e is added

to the predicate set P provided it is stable in S .

The IF rule also requires the condition e to be Low. While

we could extend our type system to accommodate non-Low
conditionals for if-statements (e.g. by following the approach

of [MSS11]), doing so is largely orthogonal to the issues of

value-dependent noninterference, which is the focus of this

paper. When typing the then (c1) and else (c2) branches

respectively, the loop condition (respectively its negation) is

added to the predicate set P so long as it is stable. The IF rule

is designed to be as general as possible. Thus, when typing

the then and else branches, it allows for the fact that the post-

contexts may differ between the two branches. Specifically,

the typing context and predicate sets may differ. The mode

state must be identical to prevent trivial information leaks.

To handle this difference, the rule allows the differing post

contexts to be unified into a common typing environment Γ ′′′

and predicate set P ′′′.
If used in this most general form, the IF rule requires the

user to establish that the unified post-contexts are guaranteed

to be wellformed. However, given a particular expression

language, the process of finding the unified contexts can be

automated along with these wellformedness obligations. We

have implemented specialised forms of the IF rule in our

Isabelle/HOL formalisation that both infer the post-contexts

and safely discard the wellformedness obligations because

the inferred contexts are wellformed by construction. Fig. 4

depicts an example specialised rule for an expression language

that includes boolean implication.

Our type system includes three rules for assignments x := e,

depending on the variable x being assigned to: AS1 for non-C
variables not in Γ, AS2 for (necessarily non-C) variables in Γ,

and ASC for C-variables (necessarily not in Γ). Each of these

three rules updates the set of predicates P by making use of a

user-supplied postcondition transformer post that, given a set

of predicates P and an assignment x := e, calculates a new

set of predicates guaranteed to hold after the assignment to

x is performed, under the assumption that all predicates in P
held beforehand. The new set of predicates must be restricted

to those that are stable under S, which we denote � S. This

allows the type system to propagate information from past

assignment statements. We assume that post is always sound:

〈e,mem〉 ↓ v
�P�mem −→ �post P 〈x := e〉�mem(x := v)

Here 〈e,mem〉 ↓ v denotes that expression e evaluates to value

v in memory mem, while mem(x := v) denotes memory mem
with the value of variable x updated to v.

AS1 requires the type of the expression e to not exceed x’s

type. AS2 requires e’s type t to be stable, in that it doesn’t

mention any unstable variables. Additionally, if x is not

assumed to be not read by other components (i.e. x /∈ snd S
and so doesn’t have AsmNoRW), then t cannot exceed x’s

type after the assignment is performed. Thus this rule allows

storing High data in Low variables that are AsmNoRW.

ASC is the most interesting assignment rule, as it has to

account for potential changes in classification of other vari-

ables, caused by changing x when x ∈ C. It naturally requires

that the expression e is Low. But in addition, it requires that

Γ will not be invalidated by the assignment, by requiring that

no types in Γ mention x. As with similar restrictions, context-

rewriting can always be used to work around this one, via the

REWRITE rule that we explain shortly. To account for when x
may change another variable v’s classification, ASC requires

that any such v that is not AsmNoRW contains data at the

time of the assignment that (1) is Low (P � Γ〈v〉), and (2)

does not exceed its (new) classification after the assignment

(Γ〈v〉 ≤:P ′ Ltype v).

424424

� Γ,S,P {c1} Γ ′,S ′,P ′ � Γ ′,S ′,P ′ {c2} Γ ′′,S ′′,P ′′

� Γ,S,P {(c1 ; c2)} Γ ′′,S ′′,P ′′ SEQ
x /∈ dom Γ ∪ C Γ � e : t t ≤:P Ltype x
� Γ,S,P {x := e} Γ,S,post P 〈x := e〉 � S AS1

� Γ,S,P {skip} Γ,S,P SKIP
Γ � e : t P � t � Γ,S,P +S e {c} Γ,S,P

� Γ,S,P {while e do c done} Γ,S,P WHILE

Γ � e : t P � t � Γ,S,P +S e {c} Γ ′,S ′,P ′

� Γ,S,P {await e do c done} Γ ′,S ′,P ′ AWAIT

Γ � e : t P � t
� Γ,S,P +S e {c1} Γ ′,S ′,P ′ � Γ,S,P +S ¬ e {c2} Γ ′′,S ′,P ′′ Γ ′ =:P ′ Γ ′′′ Γ ′′ =:P ′′ Γ ′′′ P ′ � P ′′′

P ′′ � P ′′′ ∀mds. wf mds Γ ′ S ′ P ′ −→ wf mds Γ ′′′ S ′ P ′′′ ∀mds. wf mds Γ ′′ S ′ P ′′ −→ wf mds Γ ′′′ S ′ P ′′′

� Γ,S,P {if e then c1 else c2 endif} Γ ′′′,S ′,P ′′′ IF

x ∈ dom Γ Γ � e : t stable S t P ′ = post P 〈x := e〉 � S x /∈ snd S −→ t ≤:P ′ Ltype x
� Γ,S,P {x := e} Γ(x �→ t),S,P ′ AS2

x ∈ C Γ � e : t P � t ∀ v∈dom Γ. x /∈ vars-of-type �Γ v�
P ′ = post P 〈x := e〉 � S ∀ v. x ∈ Cvars v ∧ v /∈ snd S −→ P � Γ〈v〉 ∧ Γ〈v〉 ≤:P ′ Ltype v

� Γ,S,P {x := e} Γ,S,P ′ ASC

Γ ′ = Γ ⊕S upd S ′ = S ⊕ upd P ′ = P � S ′

� Γ ′,S ′,P ′ {c} Γ ′′,S ′′,P ′′ c ∀ x. Γ〈x〉 ≤:P ′ Γ ′〈x〉 anno-stable Γ S upd anno-sec Γ S P upd
� Γ,S,P {c /* upd */} Γ ′′,S ′′,P ′′ ANNO

� Γ1,S,P1 {c} Γ1
′,S ′,P1

′ Γ2 =:P2 Γ1 ∀mds. wf mds Γ2 S P2 −→ wf mds Γ1 S P1

∀mds. wf mds Γ1
′ S ′ P1

′ −→ wf mds Γ2
′ S ′ P2

′ Γ1
′ =:P1

′ Γ2
′ P2 � P1 P1

′ � P2
′

� Γ2,S,P2 {c} Γ2
′,S ′,P2

′ REWRITE

Fig. 3: Typing rules.

Γ � e : t P � t Γ,S,P +S e {c1} Γ ′,S ′,P ′ Γ,S,P +S ¬ e {c2} Γ ′,S ′,P ′′

P ′ � {e} P ′′ � {¬ e} P ′′′ = ((λx. e −→ x) ‘ P ′ ∪ (λx. ¬ e −→ x) ‘ P ′′) � S ′

Γ,S,P {if e then c1 else c2 endif} Γ ′,S ′,P ′′′

Fig. 4: A specialised version of the IF rule that automatically infers wellformed post-contexts.

The ANNO rule parallels that of [MSS11]’s non-value-

dependent type system, except that is has the side conditions

anno-stable and anno-sec described shortly. Here upd is

an annotation like v +=m AsmNoW or v −=m GuarNoRW.

The notation Γ ⊕S upd updates Γ based on the annotation upd
and S: any variable made newly stable by upd is added

to Γ (by mapping it to its Ltype); likewise any variable

made unstable by upd given S is removed from Γ. The

notation S ⊕ upd updates S based on upd in the obvious

way. anno-stable checks that releasing an assumption on

a control variable v won’t cause any types in Γ to become

unstable (i.e. no types in Γ mention v), and that acquiring an

assumption on a new non-control variable v that causes it to

be added to Γ won’t lead to Γ containing an unstable type

(i.e. all of v’s control variables are already stable). anno-sec

checks that if one releases a AsmNoRW assumption on a

variable v for which one also has the AsmNoW assumption

(making the variable readable by others), then the classification

of the variable’s data �Γ v� does not exceed its Ltype. This

condition is needed in addition to the check ∀ x. Γ〈x〉 ≤:P ′
Γ ′〈x〉 (from [MSS11]) because in our type system Γ tracks all

stable variables.

Finally, the REWRITE rule allows typing contexts and pred-

icate sets to be rewritten, by replacing types with equivalent

ones (under the appropriate predicate set), and by weakening

and strengthening the pre- and post-predicate sets respectively,

as in Hoare logic. As mentioned earlier, we include this rule

to deal with the restriction that all types and predicates must

always be stable, and the type system has been designed to

facilitate the automatic application of this rule.

425425

D. Soundness

Let Γ0 and mds0 denote the empty typing context and mode

state respectively. Then:

Theorem 4.1:� Γ0,(∅, ∅),∅ {cmd} Γ ′,S ′,P ′

com-secure (cmd, mds0)

Our Isabelle/HOL formalisation contains the (slightly more

detailed) statement for an arbitrary initial mode state.

V. COMPOSITIONAL REFINEMENT

We now present a notion of refinement for each component

of a concurrent system. If a component is com-secure, then

it will remain so when refined in this way. Additionally this

notion of refinement composes and can be used to preserve the

side conditions of Theorem 3.1. Thus, given a system proved

secure using Theorem 3.1, each of whose components has been

refined in this way, we can prove the concrete system secure

by applying Theorem 3.1 to it.

We first lay the groundwork by defining a number of

technical conditions required by our notion of refinement.

A. Memory-and-Mode-Preserving Refinements

We restrict our attention in this paper to concrete refine-

ments that may have extra variables not present in the abstract

program, but in which each abstract variable is represented by

a unique corresponding concrete variable. Thus let varCof be

an injective function from abstract to concrete variables: for an

abstract variable v, varCof v denotes its concrete counterpart.

For the example refinement of Fig. 1a into Fig. 1b, varCof
buffer = bufferC , but ∀ v. varCof v �= regC .

Recall from Sec. III that the semantics of compo-

nents is given by a small-step relation on configurations

〈cms, mds, mem〉. Formally, a refinement relation R relates

configurations 〈cmsA, mdsA, memA〉A of an abstract compo-

nent to corresponding configurations 〈cmsC , mdsC , memC〉C
of its concrete refinement. We restrict our attention here to

refinement relations R that preserve the abstract contents of

memory memA, as well as the abstract mode state mdsA
which, recall, tracks the assumptions and guarantees of the

component as it executes. This helps us transfer the abstract

component’s security proof to its concrete refinement. Thus

let preserves-modes-mem R denote when the refinement

relation R preserves modes and memory:

preserves-modes-mem R ≡
∀ cA mdsA memA cC mdsC memC .
〈cA, mdsA, memA〉A R 〈cC , mdsC , memC〉C −→
(∀ xA. memA xA = memC (varCof xA)) ∧
(∀m. varCof ‘ mdsA m = range varCof ∩ mdsC m)

Here, f ‘ A denotes the image of A under f, i.e. the set obtained

by applying the function f to every element of the set A; while

range varCof is the set of concrete variables that correspond

to abstract variables. Recall that the mode state, e.g. mdsA is

a mapping from modes m (e.g. AsmNoW etc.) to the set of

variables with that mode.

We define functions memAof and mdsAof for mapping

concrete memories memC and mode states mdsC to their

corresponding abstract counterparts.

memAof memC ≡ λxA. memC (varCof xA)

mdsAof mdsC ≡ λm. inv varCof ‘ (range varCof ∩ mdsC m)

Here, inv f denotes function f ’s inverse. Then it follows that

preserves-modes-mem R ∧
〈cA, mdsA, memA〉A R 〈cC , mdsC , memC〉C −→
memA = memAof memC ∧ mdsA = mdsAof mdsC

To ensure that corresponding variables have their classifi-

cations interpreted the same way in the abstract and concrete

programs, we assume a number of obvious compatibility con-

ditions on the value-dependent classification functions of both.

Let LmemA xA denote the classification of abstract variable xA
in abstract memory memA, and LmemC xC likewise for the

concrete refinement; CvarsA xA denote the (abstract) control

variables of abstract variable xA, and CvarsC xC likewise for

the concrete refinement; and CA and CC denote respectively

the set of abstract and concrete control variables. Then we

assume:

LmemAof memC
xA = LmemC varCof xA

varCof ‘ CvarsA xA = CvarsC (varCof xA)

CC = varCof ‘ CA
B. Concurrency-Aware Refinement

Recall from Sec. II-B that, in order to take into account the

possible effects caused by concurrently running components

while still allowing each component to be refined in isolation,

we require that each component’s refinement relation be pre-

served by any changes that can occur under the component’s

current assumptions. This idea is inspired directly by condition

(5) of the RGSim framework [LFF14] and can also be seen as

an analogue of the cg-consistent property (see Sec. III) for

the refinement relation. It is the key ingredient that makes the

refinement theory compositional.

We denote this requirement closed-others:

closed-others R ≡
∀ cA cC mdsC memC memC

′.
〈cA, mdsAof mdsC , memAof memC〉A R 〈cC , mdsC , memC〉C

∧
(∀ x. memC x �= memC

′ x −→ writable mdsC x) ∧
(∀ x. LmemC x �= LmemC

′ x −→ writable mdsC x) −→
〈cA, mdsAof mdsC , memAof memC

′〉A R 〈cC , mdsC , memC
′〉C

C. Private Variables

Our theory of refinement supports the introduction of new

variables (memory locations) in the concrete program. This

allows, for instance, refining a programming language source

semantics that doesn’t explicitly model the runtime stack in

memory, to one that does. Or to introduce a concrete heap

from which dynamic allocation is performed, and so on.

In order to ensure that security is preserved from the abstract

to the concrete system, however, we require that any new

memory that is modified, or has its classification decreased,

426426

by a component is also private to that component. We do

so by stipulating that the refinement relation R allows such

changes to occur only to variables assumed AsmNoRW, and

that once any such variable is assumed private in this way,

it stays so thereafter. We denote formally this requirement

new-vars-private R:

new-vars-private R ≡
∀ cA mdsA memA cC mdsC memC .
〈cA, mdsA, memA〉A R 〈cC , mdsC , memC〉C −→
(∀ cC ′ mdsC ′ memC

′.
〈cC , mdsC , memC〉C �C 〈cC ′, mdsC ′, memC

′〉C −→
(∀ vC . (memC

′ vC �= memC vC ∨
LmemC

′ vC < LmemC vC) ∧
vC /∈ range varCof −→
vC ∈ mdsC ′ AsmNoRW) ∧

mdsC AsmNoRW − range varCof ⊆ mdsC ′ AsmNoRW −
range varCof)

Here, �C denotes the small-step semantics of the refined

component. Note that this requirement excludes those refine-

ments that introduce new variables used for communication or

interaction between components.

D. Preserving Security

Now, finally, we present the main requirement of the re-

finement relation for preserving com-secure, over the afore-

mentioned technical ones. As mentioned earlier, it rests on

the notion of a concrete coupling invariant for transferring,

from the abstract component to its concrete refinement, the

fact that the component’s Low-observable timing properties

are independent of non-Low data. If such an invariant can be

found, it proves that the concrete component’s security can be

derived from the abstract one’s.

To transfer security from the abstract component to its con-

crete refinement, we define a function BCof for constructing a

strong low bisimulation modulo modes for the concrete com-

ponent, from the one B used to prove the abstract component’s

security. This function takes the refinement relation R and the

coupling invariant I as arguments.

BCof B R I ≡
{(〈c1C , mdsC , mem1C〉C ,
〈c2C , mdsC , mem2C〉C) | ∃ lc1A lc2A.

lc1A R 〈c1C , mdsC , mem1C〉C ∧
lc2A R 〈c2C , mdsC , mem2C〉C ∧
lc1A B lc2A ∧
mem1C =mdsC

l mem2C ∧
〈c1C , mdsC , mem1C〉C I 〈c2C , mdsC , mem2C〉C}
BCof constructs a candidate concrete bisimulation that

relates any two configurations 〈c1C , mdsC , mem1C〉C and

〈c2C , mdsC , mem2C〉C when each has a corresponding (under

R) abstract configuration lc1A and lc2A respectively, such

that the two abstract configurations are related by the abstract

bisimulation B. Additionally, the two concrete configurations

must also be related by the coupling invariant I and be

Low-equivalent modulo modes which, recall, requires that

the values of all C-variables, plus all Low-variables that are

assumed readable, must agree between the two.

To show that any such BCof B R I really is a strong

low bisimulation modulo modes, it suffices to show that the

coupling invariant I is preserved with the refinement relation.

We denote this property coupling-inv-pres B R I. Its formal

definition appears in Fig. 5a and is also depicted graphically

in Fig. 5b, to which we will refer.

Fig. 5b depicts a cube whose vertices are labelled 1C, 2C ′,
1A etc. Each corresponds to a configuration in the definition

of coupling-inv-pres whose c and mem subscripts are the

vertex’s label. Call the plane on which the vertices 1C, 1A,

1A′ and 1C ′ lie the front of the cube, and the plane on which

the other four vertices lie the cube’s back. Other sides of the

cube can be named unambiguously.

The line labelled R that connects 1A and 1C indicates that

the corresponding configurations are related by R. Notice that

this is also the first premise of coupling-inv-pres. Solid lines

indicate premises and dotted lines indicate conclusions.

Focusing just on the front side of the cube for now, this side

depicts a fairly typical definition of refinement (that preserves

abstract memory contents), although one that on its own does

not preserve timing-sensitive security. It states that each single

execution step (1C to 1C ′) of the concrete component must be

able to be matched by the abstract component, beginning in an

R-related configuration (1A), by performing some number n
of steps (1A to 1A′), so that the resulting configurations (1A′

and 1C ′) are R-related.

The remainder of the diagram accounts for the preservation

of timing-sensitive security. It asks to consider any abstract

configuration 2A that is B-related to 1A, any abstract con-

figuration 2A′ reached from 2A by performing n steps, and

any concrete configuration 2C that is R-related to 2A and I-

related to 1C. Then to preserve security, there must exist a

concrete configuration 2C ′ reached in a single step from 2C
that is R-related to 2A′, and the coupling invariant I must

relate 1C ′ and 2C ′.
Notice that the back plane of the figure inverts the ordinary

direction of refinement (from the front plane): it requires

finding concrete transitions to match abstract ones, whereas

the front plane requires finding abstract transitions to match

concrete ones. It is well known that one can reverse the

direction of refinement for deterministic programs. One way to

view the obligations imposed by the back plane of the figure

then is as a way of proving that the concrete component is

in some sense deterministic. Because it forces finding related

configurations after the same number n of steps as for the front

plane, it effectively requires proving that the Low-observable

timing behaviour of the concrete component is deterministic

for any pair of concrete Low-equivalent concrete configura-

tions. Thus, the back plane can be seen as a way to prove that

the concrete component’s Low-observable timing properties

are independent of non-Low data.

We can now prove the main theorem that justifies when

BCof B R I is a strong low bisimulation modulo modes.

We collect the conditions discussed so far into a single

definition of what it means for a refinement relation R to

preserve security, proved by an abstract bisimulation B, with

427427

coupling-inv-pres B R I ≡
∀ c1A mdsA mem1A c1C mdsC mem1C .
〈c1A, mdsA, mem1A〉A R 〈c1C , mdsC , mem1C〉C −→
(∀ c1C ′ mdsC ′ mem1C

′.
〈c1C , mdsC , mem1C〉C �C 〈c1C ′, mdsC ′, mem1C

′〉C −→
(∃ n c1A ′ mdsA ′ mem1A

′.
〈c1A, mdsA, mem1A〉A �A

n 〈c1A ′, mdsA ′, mem1A
′〉A ∧

〈c1A ′, mdsA ′, mem1A
′〉A R 〈c1C ′, mdsC ′, mem1C

′〉C ∧
(∀ c2A mem2A c2C mem2C c2A ′ mem2A

′.
〈c1A, mdsA, mem1A〉A B 〈c2A, mdsA, mem2A〉A ∧
〈c2A, mdsA, mem2A〉A R 〈c2C , mdsC , mem2C〉C ∧
〈c1C , mdsC , mem1C〉C I 〈c2C , mdsC , mem2C〉C ∧
〈c2A, mdsA, mem2A〉A �A

n 〈c2A ′, mdsA ′, mem2A
′〉A −→

(∃ c2C ′ mem2C
′.

〈c2C , mdsC , mem2C〉C �C 〈c2C ′, mdsC ′, mem2C
′〉C ∧

〈c2A ′, mdsA ′, mem2A
′〉A R 〈c2C ′, mdsC ′, mem2C

′〉C ∧
〈c1C ′, mdsC ′, mem1C

′〉C I 〈c2C ′, mdsC ′, mem2C
′〉C))))

(a) Formal definition of coupling-inv-pres B R I.

1A
n

1A′

2A
n

2A′

B B

I I

abstract
execution

concrete
execution

R
R

R
R

1C
1

1C′

2C
1

2C′

(b) Graphical depiction of coupling invariant
preservation, coupling-inv-pres B R I.

Fig. 5: Coupling invariant preservation.

the coupling invariant I, denoted secure-refinement B R I.

secure-refinement B R I ≡
preserves-modes-mem R ∧ closed-others R ∧
new-vars-private R ∧ cg-consistent I ∧ sym I ∧
coupling-inv-pres B R I
Notice the not-unexpected side-condition (cg-consistent) that

I be preserved by the possible memory-updates performed by

other components, and symmetric. Then we have that:

Theorem 5.1:
strong-low-bisim-mm B secure-refinement B R I

strong-low-bisim-mm (BCof B R I)
Proof Sketch We need to prove that BCof B R I is sym-

metric, satisfies cg-consistent, implies Low-equivalence mod-

ulo modes, and is preserved by the steps of the concrete

component. It is easily shown symmetric, since B and I
are. It being cg-consistent follows because (1) B is, (2) R
is closed-others, and (3) I is cg-consistent. Finally, it is

preserved locally by the component largely because it satisfies

coupling-inv-pres, which guarantees that for any concrete

step, there exists a matching one starting from a related state

under BCof B R I. The steps end in I-related configurations

that are R-related to B-related abstract configurations. It

remains to show that the two final concrete configurations,

labelled 1C ′ and 2C ′ in Fig. 5b, are Low-equivalent modulo

modes. Because R preserves abstract memory contents, this

equivalence is guaranteed to hold for all concrete variables

that correspond to abstract ones (i.e. those in range varCof).
For the remaining variables, new-vars-private ensures that

any changes to them or their classifications cannot violate the

equivalence, which held between the initial concrete states.

E. Discussion

Like B, I must be symmetric and cg-consistent; but this

is where the similarity to B ends. Specifically, I need not

imply that memory contents are secure. Its job is merely to

ensure that the second initial concrete configuration (labelled

2C in Fig. 5b), is synchronised with the first (1C). To see

why, consider the case where an abstract action is refined

to multiple concrete ones, as occurs for instance in the

refinement of the addition statement in Fig. 2a to Fig. 2b.

Then there will exist multiple concrete configurations each

related to the same abstract configuration under R, where

some are direct predecessors of others under the concrete

transition relation �C . The coupling invariant’s job is to

exclude configurations for 2C that do not correspond to the

same point in time as 1C. Doing so requires only talking

about the location within the component’s program to which

each configuration corresponds.

For example, let 1C be the configuration corresponding

to the execution of the second skip statement of the then-

branch of Fig. 2b, and 1A be the R-related configuration

corresponding to the execution of the statement x := y in

Fig. 2a. For illustration, let 2A be the B-related configuration

corresponding to the addition statement x := y + z in Fig. 2a.

Then there are multiple choices for 2C, that are all R-related

to this 2A: for instance both of the configurations relating

to the execution of the assignments to reg1C and reg2C .

However, of these, only the reg2C assignment statement is

synchronised with 1C, the second skip statement of the then-

branch. Recall from Sec. II-B that the coupling invariant for

this example relates the second skip statement of the then-

branch to the reg2C assignment statement of the else-branch.

Indeed, the reg2C assignment is the only one that is both

related under this coupling invariant to 1C (the second skip
statement), and related underR to 2A (the addition statement).

In this way, the coupling invariant makes sure the right choice

for 2C is made. Its preservation ensures that the concrete

program’s Low-observable timing behaviour is independent of

non-Low data, by ensuring in this case that the execution of

the two branches of the if-statement remain synchronised.

428428

Note that in the example above there are other possibilities

for 2A, namely those configurations corresponding to the

execution of x := y (which, recall, is the statement to which

1A corresponds). In this situation, our refinement theory

demands proving the triviality that a program’s execution is

synchronised with itself, and so places the trivial requirement

on coupling invariants to relate configurations whose com-

mands are identical.

F. Compositional, Whole-System Refinement

We can of course lift Theorem 5.1 to entire systems,

via Theorem 3.1, by proving that the refinement rela-

tions (when applied to their respective components) preserve

sound-mode-use, the side condition on Theorem 3.1.2 Recall

that this condition requires that: (1) all components guarantee

the assumptions of all others, and (2) all components adhere

to their own guarantees. (1) is a global property of the entire

system, while (2) is a property of each component.

In our Isabelle/HOL formalisation, we consider the case

in which the set of all new concrete variables (i.e. those

not in range varCof) is partitioned between the various

components, setting the assumptions and guarantees of each

component statically to ensure that its new concrete variables

remain private to it. In this situation, we prove that (1) is

preserved under refinement, by proving that every execution

of the concrete system has a corresponding execution in the

abstract system. This result is similar in spirit to those for other

compositional theories of refinement [LFF14]. From this we

derive that the set of reachable memories and mode states

for the concrete system corresponds to the same set for the

abstract system, from which we derive that (1) is preserved.

Proving that (2) holds for an individual refined component

can either be done using an appropriate type system (we

defined one based on [MSS11] and proved it sound in our

formalisation), or by adding an extra condition on the refine-

ment relations R. Our Isabelle/HOL formalisation defines one

such condition and proves it sufficient.

Our formalisation contains the full statement of the preser-

vation of sys-secure under refinement.

VI. SIMPLE REFINEMENT

We now exercise the theory of Sec. V by considering

the class of simple components that do not branch on non-

Low data. By this, we mean formally that their abstract

bisimulation relation B only ever relate configurations 〈c1A,
mdsA, mem1A〉A and 〈c2A, mdsA, mem2A〉A for which c1A
= c2A. We denote this property bisim-simple B and use the

term “simple” to refer interchangeably to the bisimulation B
and the abstract component it proves secure.

bisim-simple RA ≡
∀ c1A mds mem1A c2A mem2A.
(〈c1A, mds, mem1A〉A, 〈c2A, mds, mem2A〉A) ∈ RA −→
c1A = c2A

2An alternative would be to prove it directly for the refined sys-
tem [MMOPW15], or have it enforced using dynamic monitoring [ACM15].

The Low-observable timing behaviour of simple compo-

nents depends only on Low data. Recall that the purpose of

the coupling invariant I is to ensure this kind of timing-

independence. Thus one might expect that, for such com-

ponents, we can securely refine them under a much simpler

notion of refinement without need of a coupling invariant.

We prove this true. We define a much simpler notion

of secure refinement, secure-refinement-simple. Then we

define a very simple coupling invariant, Isimple, and prove

that secure-refinement-simple implies secure-refinement
with Isimple.

secure-refinement-simple has no coupling invariant and,

of the conditions depicted in Fig. 5b, requires proving just

those that correspond to the front face of the cube. How-

ever, it also places some side-conditions on the refinement

relation R that make explicit the requirement that it is not

allowed to introduce branching on non-Low data, nor have

the Low-observable timing properties of the refinement depend

on non-Low data. These side conditions are in many ways far

more intuitive than those of coupling-inv-pres from Sec. V.

To satisfy these side conditions one must supply a function

abs-steps that, given a pair of R-related abstract and concrete

configurations, returns a natural number n that is the number

of abstract execution steps that need to be performed to match

a single concrete execution step from the given respective

configurations. We use abs-steps to assert that the timing

behaviour of the refined component depends only on Low data.

We collect the side conditions in a predicate that we denote

simple-refinement-safe, parameterised by abs-steps:

simple-refinement-safe B R abs-steps ≡
∀ cA mdsA mem1A mem2A cC mdsC mem1C mem2C .
〈cA, mdsA, mem1A〉A B 〈cA, mdsA, mem2A〉A ∧
〈cA, mdsA, mem1A〉A R 〈cC , mdsC , mem1C〉C ∧
〈cA, mdsA, mem2A〉A R 〈cC , mdsC , mem2C〉C −→
stops 〈cC , mdsC , mem1C〉C = stops 〈cC , mdsC , mem2C〉C ∧
abs-steps 〈cA, mdsA, mem1A〉A 〈cC , mdsC , mem1C〉C =
abs-steps 〈cA, mdsA, mem2A〉A 〈cC , mdsC , mem2C〉C ∧
(∀mds1C ′ mds2C ′ mem1C

′ mem2C
′ c1C ′ c2C ′.

〈cC , mdsC , mem1C〉C �C 〈c1C ′, mds1C ′, mem1C
′〉C ∧

〈cC , mdsC , mem2C〉C �C 〈c2C ′, mds2C ′, mem2C
′〉C −→

c1C ′ = c2C ′ ∧ mds1C ′ = mds2C ′)

It considers two concrete configurations with identical com-

mands and mode states (but possibly differing memories), that

are R-related to a pair of B-related abstract configurations.

Thus the two concrete configurations disagree only on non-

Low memory locations. It asserts that the two configurations

must agree on (1) whether the concrete component terminates,

and (2) how long it takes to execute, and, thus, asserts

that these properties cannot depend on non-Low data. The

final outermost conjunct requires that R never introduce new

branching on non-Low data.

Our simpler notion of refinement, which corresponds to

just the front face of the cube in Fig. 5b, we denote

simple-refinement-pres. Its formal definition appears in

Fig. 6.

We can now define secure-refinement-simple.

429429

simple-refinement-pres R abs-steps ≡
∀ c1A mdsA mem1A c1C mdsC mem1C n.
〈c1A, mdsA, mem1A〉A R 〈c1C , mdsC , mem1C〉C ∧
n =
abs-steps 〈c1A, mdsA, mem1A〉A 〈c1C , mdsC , mem1C〉C −→
(∀ c1C ′ mdsC ′ mem1C

′.
〈c1C , mdsC , mem1C〉C �C 〈c1C ′, mdsC ′, mem1C

′〉C −→
(∃ c1A ′ mdsA ′ mem1A

′.
〈c1A, mdsA, mem1A〉A �A

n 〈c1A ′, mdsA ′, mem1A
′〉A ∧

〈c1A ′, mdsA ′, mem1A
′〉A R 〈c1C ′, mdsC ′, mem1C

′〉C))

Fig. 6: Simple refinement, for simple components.

secure-refinement-simple B R abs-steps ≡
preserves-modes-mem R ∧ closed-others R ∧
new-vars-private R ∧ simple-refinement-safe B R abs-steps ∧
simple-refinement-pres R abs-steps

Let Isimple be the coupling invariant that requires (only)

that the commands of the two concrete configurations agree.

Isimple ≡
{(〈c1C , mds1C , mem1C〉C , 〈c2C , mds2C , mem2C〉C) | c1C = c2C}
Note that Isimple is trivially symmetric and satisfies

cg-consistent, since it doesn’t talk at all about memory. Then:

Theorem 6.1:
bisim-simple B

secure-refinement-simple B R abs-steps
secure-refinement B R Isimple

VII. RELATED WORK

We compare our two main contributions separately to the

most closely related work.

A. Dependent Type Systems

Dependent security type systems have become increasingly

well studied of late. To our knowledge, Zheng and My-

ers [ZM04], [ZM07] proposed the first dependent security

type system for dealing with dynamic changes to runtime

security labels in the context of Jif. A number of functional

languages have been developed with dependent type systems,

used to encode value-dependent information flow properties,

e.g. Fine [SCC10] and its successor F* [SCF+11].

In the context of imperative languages, Deputy [CHA+07]

and Xanadu [Xi00] both incorporate dependent type systems.

Here the focus is on execution safety rather than enforcing

noninterference.

The only dependent security type system we are aware of

for a concurrent software language is the very recent work of

Li et al. [LNNF16], who present a dependent type system for

a form of value-dependent noninterference for a language with

concurrent components that communicate by message-passing,

similar to a process calculus. Here each component has its own

private memory, but components do not share memory.

Zhang et al. also recently developed the hardware design

language SecVerilog [ZWSM15], which incorporates depen-

dent security types for enforcing timing-sensitive information

flow security and allows describing hardware modules that

operate in parallel to each other.

In contrast, our type system is the first we are aware of

for compositionally reasoning about concurrent programs that

share memory.

B. Refinement

Refinement is relatively well studied in the context of

noninterference. Jacob first pointed out that noninterference

is not always preserved by refinement [Jac88], a result since

referred to as the refinement paradox.

Approaches to preserving noninterference under refinement

have included strengthening the noninterference property suf-

ficiently so that it is guaranteed to always be preserved by

refinement [Low07], or restricting the definition of refinement

to preserve noninterference [Man01].

In the context of preserving noninterference for concurrent

systems under compositional refinement, where each compo-

nent is refined individually, [ML09] consider this question

in the context of the process algebra CSP [Hoa85], in the

absence of shared memory. Our theory is the first we are aware

of that considers preserving timing-sensitive noninterference

for concurrent shared memory programs under compositional

refinement.

Our approach is heavily influenced by the RGSim frame-

work [LFF14], a compositional refinement framework aimed

at preserving ordinary safety properties and, in later work

liveness ones too [LFS14], but not noninterference. Our frame-

work effectively shows how to strengthen compositional re-

finement in order to preserve timing-sensitive noninterference.

VIII. CONCLUSION

We have presented the first dependent type system for

compositionally verifying timing-sensitive, value-dependent

noninterference for concurrent programs with shared-memory.

Our type system deeply embeds types as sets of predicates,

so that type comparisons are phrased in terms of predicate

entailment, to ease automation. It tracks a set of predicates

about what is known to be true at the current point in the

program, and its rules support rewriting of the typing context

to deal with the possible modifications to variables by other

threads.

We also presented the first theory of compositional re-

finement for preserving timing-sensitive noninterference for

concurrent, shared-memory programs when refining each of

the program’s threads one-at-a-time. It makes use of cou-

pling invariants to prove that the refinement relation correctly

preserves the constant-time nature of the original program.

We showed that for simple programs that do not branch on

confidential data, one can dispense with coupling invariants

by instead proving directly that the refinement relation neither

introduces publicly observable timing dependencies on confi-

dential data, nor new branching on confidential data.

Our work here rests on an underlying foundation [Mur15],

[MSS11] for reasoning about noninterference for concurrent

programs rooted in assume-guarantee style reasoning [Jon81].

430430

The connection between this style of reasoning and concurrent

separation logic (CSL) is well-known [FFS07], [VP07]. An

interesting direction for future work would be to investigate

the use of CSL for compositionally reasoning about value-

dependent noninterference in the presence of concurrency.
We hope that the results presented in this paper will

underpin the future development of verified concurrent pro-

gramming languages for enforcing expressive information flow

policies, particularly in an age when data-intensive applica-

tions, with data-dependent security policies, are becoming

increasingly popular.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful

feedback.
NICTA is funded by the Australian Government through the

Department of Communications and the Australian Research

Council through the ICT Centre of Excellence Program.

REFERENCES

[ABB06] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee.
A logic for information flow in object-oriented programs.
In Thirty-third Annual ACM Symposium on Principles of
Programming Languages (POPL), pages 91–102, 2006.

[ACM15] Aslan Askarov, Stephen Chong, and Heiko Mantel. Hybrid
monitors for concurrent noninterference. In 28th IEEE Com-
puter Security Foundations Symposium (CSF), pages 137–151,
2015.

[BC02] G. Boudol and I. Castellani. Noninterference for concurrent
programs and thread systems. Theoretical Computer Science,
281(1-2):109–130, 2002.

[CHA+07] Jeremy Condit, Matthew Harren, Zachary Anderson, David
Gay, and George C Necula. Dependent types for low-level
programming. In 16th European Symposium on Programming
Languages and Systems (ESOP), pages 520–535. 2007.

[FFS07] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the
relationship between concurrent separation logic and assume-
guarantee reasoning. In ESOP, pages 173–188, 2007.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. 1985.
[Jac88] Jeremy Jacob. Security specifications. In IEEE Symposium on

Security and Privacy, pages 14–23, 1988.
[Jon81] Cliff B. Jones. Development Methods for Computer Programs

including a Notion of Interference. D.Phil. thesis, University
of Oxford, June 1981.

[LC15] Luı́sa Lourenço and Luı́s Caires. Dependent information flow
types. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 317–328, Mumbai, India,
January 2015.

[LFF14] Hongjin Liang, Xinyu Feng, and Ming Fu. Rely-guarantee-
based simulation for compositional verification of concurrent
program transformations. ACM Transactions on Programming
Languages and Systems, 36(1):3:1–3:55, March 2014.

[LFS14] Hongjin Liang, Xinyu Feng, and Zhong Shao. Compositional
verification of termination-preserving refinement of concurrent
programs. In CSL-LICS, July 2014.

[LNNF16] Ximeng Li, Flemming Nielson, Hanne Riis Nielson, and
Xinyu Feng. Disjunctive information flow for communicating
processes. In TGC 2016, volume 9533 of Lecture Notes in
Computer Science, pages 95–111, 2016.

[Low07] Gavin Lowe. On information flow and refinement-closure. In
Proceedings of the 7th Workshop on Issues in the Theory of
Security, March 2007.

[Man01] Heiko Mantel. Preserving information flow properties under
refinement. In IEEE Symposium on Security and Privacy,
pages 78–91, 2001.

[ML09] Toby Murray and Gavin Lowe. On refinement-closed security
properties and nondeterministic compositions. In Proceedings
of the 8th International Workshop on Automated Verification
of Critical Systems, volume 250 of Electronic Notes in Theo-
retical Computer Science, pages 49–68, Glasgow, UK, 2009.

[MMB+12] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gam-
mie, and Gerwin Klein. Noninterference for operating system
kernels. In International Conference on Certified Programs
and Proofs, pages 126–142, Kyoto, Japan, December 2012.

[MMOPW15] Heiko Mantel, Markus Müller-Olm, Matthias Perner, and
Alexander Wenner. Using dynamic pushdown networks to
automate a modular information-flow analysis. In 25th Inter-
national Symposium on Logic Based Program Synthesis and
Transformation (LOPSTR), 2015.

[MMW16] Daniel Matichuk, Toby Murray, and Makarius Wenzel. Eis-
bach: A proof method language for Isabelle. Journal of
Automated Reasoning, 56(3):261–282, 2016.

[MSS11] Heiko Mantel, David Sands, and Henning Sudbrock. As-
sumptions and guarantees for compositional noninterference.
In IEEE Computer Security Foundations Symposium, pages
218–232, Cernay-la-Ville, France, June 2011.

[Mur15] Toby Murray. On high-assurance information-flow-secure
programming languages. In ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security, pages
43–48, Prague, Czech Republic, July 2015.

[MWM14] Daniel Matichuk, Makarius Wenzel, and Toby Murray. An Is-
abelle proof method language. In International Conference on
Interactive Theorem Proving, pages 390–405, Vienna, Austria,
July 2014.

[NBG11] A. Nanevski, A. Banerjee, and D. Garg. Verification of
information flow and access control policies with dependent
types. In IEEE Symposium on Security and Privacy, pages
165–179, May 2011.

[NPW02] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic,
volume 2283 of Lecture Notes in Computer Science. 2002.

[PN02] Leonor Prensa Nieto. Verification of parallel programs with
the Owicki-Gries and rely-guarantee methods in Isabelle/HOL.
PhD thesis, Technische Universität München, 2002.

[SBN13] Gordon Stewart, Anindya Banerjee, and Aleksandar Nanevski.
Dependent types for enforcement of information flow and
erasure policies in heterogeneous data structures. In Sympo-
sium on Principles and Practice of Declarative Programming
(PPDP), pages 145–156, 2013.

[SCC10] Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing
stateful authorization and information flow policies in Fine. In
European Symposium on Programming (ESOP), March 2010.

[SCF+11] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub,
Karthikeyan Bhargavan, and Jean Yang. Secure distributed
programming with value-dependent types. In 16th ACM SIG-
PLAN international conference on Functional Programming
(ICFP), pages 266–278, 2011.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based
information-flow security. IEEE Journal on Selected Areas
in Communications, 21(1):5–19, January 2003.

[SS00] Andrei Sabelfeld and David Sands. Probabilistic noninterfer-
ence for multi-threaded programs. In 13th IEEE Computer Se-
curity Foundations Workshop (CSFW), pages 200–215, 2000.

[VP07] Viktor Vafeiadis and Matthew Parkinson. A marriage of
rely/guarantee and separation logic. In CONCUR, pages
256–271, 2007.

[VS99] D. Volpano and G. Smith. Probabilistic noninterference
in a concurrent language. Journal of Computer Security,
7(2,3):231–253, 1999.

[Xi00] Hongwei Xi. Imperative programming with dependent types.
In 15th Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 375–387, 2000.

[ZM04] Lantian Zheng and Andrew C. Myers. Dynamic security labels
and noninterference. In Formal Aspects in Security and Trust
(FAST), pages 27–40, 2004.

[ZM07] Lantian Zheng and Andrew C. Myers. Dynamic security labels
and static information flow control. International Journal of
Information Security, 6(2–3), March 2007.

[ZWSM15] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C.
Myers. A hardware design language for timing-sensitive
information-flow security. In ASPLOS, 2015.

431431

