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Abstract—An adversary who has obtained the cryptographic
hash of a user’s password can mount an offline attack to
crack the password by comparing this hash value with the
cryptographic hashes of likely password guesses. This offline
attacker is limited only by the resources he is willing to invest
to crack the password. Key-stretching techniques like hash
iteration and memory hard functions have been proposed
to mitigate the threat of offline attacks by making each
password guess more expensive for the adversary to verify.
However, these techniques also increase costs for a legitimate
authentication server. We introduce a novel Stackelberg game
model which captures the essential elements of this interaction
between a defender and an offline attacker. In the game
the defender first commits to a key-stretching mechanism,
and the offline attacker responds in a manner that optimizes
his utility (expected reward minus expected guessing costs).
We then introduce Cost Asymmetric Secure Hash (CASH),
a randomized key-stretching mechanism that minimizes the
fraction of passwords that would be cracked by a rational
offline attacker without increasing amortized authentication
costs for the legitimate authentication server. CASH is mo-
tivated by the observation that the legitimate authentication
server will typically run the authentication procedure to verify
a correct password, while an offline adversary will typically
use incorrect password guesses. By using randomization we
can ensure that the amortized cost of running CASH to verify
a correct password guess is significantly smaller than the cost
of rejecting an incorrect password. Using our Stackelberg game
framework we can quantify the quality of the underlying CASH
running time distribution in terms of the fraction of passwords
that a rational offline adversary would crack. We provide an
efficient algorithm to compute high quality CASH distributions
for the defender. Finally, we analyze CASH using empirical
data from two large scale password frequency datasets. Our
analysis shows that CASH can significantly reduce (up to
50%) the fraction of password cracked by a rational offline
adversary.

Keywords-Password Hashing; Cost Asymmetric Secure
Hash; Stackelberg Game; Pepper;

I. INTRODUCTION

In recent years the authentication servers at major com-

panies like eBay, Zappos, Sony, LinkedIn and Adobe 1 have

been breached. These breaches have resulted in the release of

1For example, see http://www.privacyrights.org/data-breach/ (Retrieved
9/1/2015).

the cryptographic hashes of millions of user passwords, each

of which has significant economic value to adversaries [1],

[2]. An adversary who has obtained the cryptographic hash

of a user’s password can mount a fully automated attack

to crack the user’s password by comparing this hash value

to the cryptographic hashes of likely password guesses [3].

This offline attacker can try as many password guesses as he

likes; he is only limited by the resources that he is willing

to invest to crack the password.

Offline attacks are becoming increasingly dangerous due

to a combination of several different factors. First, im-

provements in computing hardware make password cracking

cheaper (e.g., [2]). Second, empirical data indicates that

many users tend to select low entropy passwords [4]–[6].

Finally, offline adversaries now have a wealth of training

data available from previous password breaches [7] so the

adversary often has very accurate background knowledge

about the structure of popular passwords.

Password hash functions like PBKDF2 [8], BCRYPT [9],

Argon2 [10] and SCRYPT [11] employ key-stretching [12]

to make it more expensive for an offline adversary to crack

a hashed password. While key-stretching may reduce the

number of password guesses that the adversary is able to

try, the legitimate authentication server faces a basic trade-

off: he must also pay an increased cost every time a user

authenticates.

The basic observation behind our work is that it is possible

for the legitimate authentication server to use randomization

to gain an advantage in this cat-and-mouse game. The offline

adversary will spend most of his time guessing incorrect

passwords, while the authentication server will primarily au-

thenticate users with correct passwords. Therefore, it would

be desirable to have an authentication procedure whose cost

is asymmetric. That is the cost of rejecting an incorrect pass-

word is greater than the cost of accepting a correct password.

This same basic observation lay behind Manber’s proposal

to use secret salt values (e.g., “pepper”) [13]. For example,

the server might store the cryptographic hash H(pwd, t)
for a uniformly random value t ∈ {1, . . . ,m} called the

“pepper”. An offline adversary will need to compute the hash

function m times in total to reject an incorrect password
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pwd′, while the legitimate authentication server will only

need to compute it m+1
2 times on average to accept a correct

password.

We introduce Cost Asymmetric Secure Hash (CASH) a

mechanism for protecting passwords against offline attacks

while minimizing expected costs to the legitimate authen-

tication server. CASH may be viewed as a simple, yet

powerful, extension of [13] in which the distribution over

t is not-necessarily uniform — the “peppering” idea of

Manber [13] is a special case of our mechanism in which

the distribution over t is uniform.

In this paper we seek to address the following questions:

How can we quantify the security gains (losses) from the use

of secret salt values? What distribution over the secret salt

value (t) is optimal for the authentication server? Is there an

efficient algorithm to compute this distribution? Does CASH

perform better than “pepper” or deterministic key stretching?

Contributions: We first introduce a Stackelberg (leader-

follower) game which captures the essential aspects of our

password setting. Our Stackelberg model can provide helpful

guidance for the authentication server by predicting whether

or not (a particular level of) key-stretching will significantly

reduce the number of passwords that would be cracked by

a rational offline adversary in the event of a server breach.

In our Stackelberg game the authentication server (leader)

first commits to a password hashing strategy, and the offline

adversary (follower) gets to play his best response to the

server’s (leader’s) action. That is the adversary selects a

threshold B and begins guessing passwords until he either 1)

cracks the user’s password, or 2) gives up after expending

B units of work. The adversary will select a threshold B
that maximizes his utility.2

Next we give an efficient algorithm for computing good

strategies for the leader (authentication server) in this Stack-

elberg game. The defender wants to find a distribution

p̃1 ≥ . . . ≥ p̃m ≥ 0 over the secret running time

parameter t ∈ {1, . . . ,m}, which minimizes the number

of passwords that an offline adversary would crack. When

choosing this distribution, the defender is given a constraint

(e.g., E[t] =
∑m

t=1 t · p̃t ≤ Cmax) bounding the server’s

amortized authentication costs.

Unfortunately, there are no known polynomial time algo-

rithms to compute the Stackelberg equilibrium of our game

as this problem reduces to a non-convex optimization prob-

lem.3 However, we develop an efficient algorithm to solve

a closely related goal: find the CASH distribution which

minimizes the success rate of an adversary with a fixed

budget B per user. While this new goal is not equivalent to

2Intuitively, the adversary’s utility is his expected reward (the value of
a cracked password times the probability he cracks it) minus his expected
guessing costs (given by the expected number of times that the adversary
needs to evaluate the hash function before he succeeds or gives up).

3By contrast, fixing any CASH distribution p̃i ≥ . . . ≥ p̃m it is easy to
compute the adversary’s best response.

the Stackelberg equilibrium our experimental results indicate

that the resulting CASH distributions translate to good

strategies in the original Stackelberg game. At a technical

level we show that this new optimization problem can be

expressed as a linear program. The key technical challenge

in solving this linear program is that it has exponentially

many constraints. Fortunately, this linear program can still

be solved in polynomial time using an efficient separation

oracle that we develop. We also develop a practical algorithm

which can quickly find the (approximately) optimal CASH

distribution against a budget B adversary. The algorithm is

efficient enough to run on large real world instances (e.g., a

dataset of 70 million passwords).

Finally, we evaluated CASH using password frequency

data from the RockYou password breach and from a (per-

turbed) dataset of 70 million Yahoo! passwords [5], [14].

Our analysis shows that CASH significantly outperforms the

traditional (deterministic) key-stretching defense as well as

the “peppering” defense of [13]. In some instances, CASH

reduced the fraction of passwords cracked by a rational

adversary by about 50% in comparison to both pepper and

traditional key-stretching algorithms.

II. BACKGROUND

Before we introduce the basic CASH mechanism it is

necessary to introduce some notation (Section II-A) and

review the traditional password based authentication process

(Section II-B).

A. Notation.

We use H to denote a cryptographic hash function and

we let Cost (H) denote the cost of evaluating H one time.

To simplify the presentation we will assume that all other

costs have been scaled so that Cost (H) = 1. We use Hk

to denote a hash function that is k-times as expensive to

compute.4 We use P to denote the space of passwords that

users may select, and we use n to denote the number of

passwords in this space. We use pi to denote the probability

that a random user selects the password pwdi ∈ P . For

notational convenience, we assume that the passwords have

4In this work we will not focus on the lower level issue of which
key-stretching techniques are used. However, this is an important re-
search area [15] and we would strongly advocate for the use of modern
key-stretching techniques like memory hard functions. BCRYPT [9] and
PBKDF2 [8], use hash iteration for key-stretching. In this case the cost
parameter k specifies the number of hash iterations. For example, if k = 2
the authentication server would store the tuple

(
k = 2,H

(
H(pwd)

))
.

The disadvantage to this approach is that a hash function H might cost
orders of magnitude less to evaluate on an Application Specific Integrated
Circuit than it would cost to evaluate on a more traditional architecture.
By contrast, memory costs tend to be relatively stable across different
architectures [16], which motivates the use of memory hard functions for
password hashing [17]. Argon2 [10], winner of the recently completed
password hashing competition [15], and SCRYPT [11] use memory hard
functions to perform key-stretching. In this paper we will simply use Hk

is k-times as expensive to compute without worrying about the specific
key-stretching techniques that were employed to achieve this property.
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been sorted so that p1 ≥ ... ≥ pn. Given a set S we will

write x
$← S to denote a uniformly random sample from the

set S.

Table I contains a summary of the notation used through-

out this paper. Some of this notation will be introduced later

in the paper when it is first used.

B. Traditional Password Authentication.

We begin by giving a brief overview of the traditional

password authentication process. Suppose that a user regis-

ters for an account with username u and password pwdu ∈
P . Typically, an authentication server will store a record

like the following
(
u, su, k,H

k (pwdu, su)
)
. Here, su

$←
{0, 1}L is a random L-bit salt [18] value used to prevent

rainbow table attacks [19] and the parameter k controls

the cost of the hash function. We stress that the salt value

su and the cost parameter k are stored on the server in

the clear so an adversary who breaches the authentication

server will learn both of these values. We use the notation

su to emphasize that this salt value is different for each

user u. The parameter k is selected subject to the constraint

that k ≤ Cmax — the maximum amortized cost that the

authentication server is willing to incur for authentication.5

When the user authenticates he will type in his username

u and a password guess pwd′u ∈ P . The authentication

server first finds the record
(
u, su, k,H

k (pwdu, su)
)
.

It then computes Hk (pwd′u, su) and verifies that it

matches the stored hash value Hk (pwdu, su). Note that

authentication will always be successful when the user’s

password is correct (e.g., pwd′u = pwdu) because the hash

values Hk (pwd′u, su) and Hk (pwdu, su) must match in

this case. Similarly, if the user’s password is incorrect (e.g.,

pwdu �= pwd′u) then authentication will fail with high

probability because the cryptographic hash function H is

collision resistant.

Server Cost. Under this traditional password mechanism

the cost of verifying/rejecting a password is simply k.

The authentication server can increase guessing costs for

an offline adversary by increasing k, but in doing so the

authentication server will increase its own authentication

costs proportionally.

Authentication Time Increase. By increasing the cost

parameter k the authentication server might potentially

increase delay times for the user — especially if key-

stretching is performed on a sequential computer. Bonneau

and Schechter [20] estimated that Cost (H) ≈ $7× 10−15

for the SHA-256 hash function based on observations of

the Bitcoin network. A modern CPU can evaluate SHA-256

5In the traditional (deterministic) key-stretching setting it is clear the hash
cost parameter k = Cmax is equivalent to the maximum authentication cost
parameter Cmax. However, this equivalence will not hold one we introduce
a randomized running time parameter t. Thus, it is helpful to use separate
notation to separate these distinct parameters.

around 107 times per second so an authentication server who

uses hash iteration for key-stretching would need to select

k ≤ 107 if he wants to ensure that user delay is at most one

second. In this case we would seem to have an upperbound

Cost
(
Hk

) ≤ $7 × 10−8 on the cost of a hash function

that can be evaluated in 1 second. Fortunately, this bound

only applies to naive hash iteration6. More effective key-

stretching techniques could be used to increase Cost
(
Hk

)
by several orders of magnitude (e.g., Cost

(
Hk

) ≥ $10−5)

without imposing longer authentication delays on the user

(even if key-stretching is performed on a sequential com-

puter). For example, the SCRYPT [11] and Argon2 [10]

hash functions were intentionally designed to use a larger

amount of memory so that it is not possible to (significantly)

reduce hashing costs by developing customized hardware.

Additionally, Argon2 [10], winner of the password hashing

competition, has an optional parameter that would allow the

authentication server to exploit parallelism to further reduce

the amount of time necessary to perform key-stretching.

C. Adversary Model

We consider an untargeted offline attacker whose goal is

to break as many passwords as possible. An offline attacker

has breached the authentication server and has access to

all of the data stored on the server. In the traditional

authentication setting an offline adversary learns the tuple(
u, su, k,H

k (pwdu, su)
)

for each user u. The adversary

will also learn the hash function H since the code to compute

H is present on the authentication server. We assume that

the adversary only uses H in a blackbox manner (e.g., the

adversary can query H as a random oracle, but he cannot

invert H). In general we assume the adversary will obtain

the source code for any other procedures that are used during

the authentication process. While the authentication server

can limit the number of guesses that an online adversary can

make (e.g., by locking the adversary out after three incorrect

guesses), the authentication server cannot directly limit the

number of guesses that an offline attacker can try. An offline

attacker is limited only by the resources that s/he is willing

to invest trying to crack the user’s password.

We assume that the adversary has a value vu for cracking

user u’s password. An untargeted offline attacker has the

same value vu = v for every user u. Symantec recently

reported that passwords sell for between $4 and $30 on the

black market [1] so we might reasonably estimate that v ∈
6As we previously noted hash iteration alone is not a

particularly effective key-stretching technique. The cost of computing
SHA-256 can be reduced by a factor of about 1 million on
customize hardware — e.g., see https://bitcoinmagazine.liberty.me/
bitmain-announces-launch-of-next-generation-antminer-s7-bitcoin-miner/
(Retrieved 5/4/2016). Furthermore, we note that modern Bitcoin miners
already use Application Specific Integrated Circuits to compute SHA-256
so the upper bound from [20] implicitly incorporates this dramatic cost
reduction. By contrast, the adversary cannot (significantly) reduce the cost
of evaluating a memory hard function by developing customized hardware.
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[$4, $30].7

We also assume that the adversary knows the empiri-

cal password distribution p1 ≥ ... ≥ pn over user se-

lected passwords as well as the corresponding passwords

pwd1, . . . , pwdn. Thus, the adversary knows that a random

user will select pwd1 with probability p1, but the adversary

does not know which users selected pwd1.

The adversary will select a threshold B and check (up

to) B passwords. In this case the fraction of passwords

that the offline adversary will break is at most
∑B

i=1 pi.
Equality holds when the offline adversary adopts his optimal

guessing strategy and checks the B most likely passwords

pwd1, . . . , pwdB . In this case the adversary’s utility would

be

Udet
ADV (B, v, k)

.
= v

B∑
i=1

pi−
(
k

B∑
i=1

i · pi +
n∑

i=B+1

B · pi
)

.

The first term is the adversary’s expected reward. The last

term is the adversary’s expected guessing cost.8 Let B∗ =
Bdet,∗

v = argmaxB Udet
ADV (B, v, k) denote the adversary’s

utility optimizing strategy. Then the fraction of passwords

cracked by a rational adversary will be

Pdet
ADV,v,k

.
=

B∗∑
i=1

pi . (1)

III. CASH MECHANISM

In this section we introduce the basic CASH mechanism,

while deferring until later the question of how to optimize

the parameters of the mechanism.

A. CASH Authentication.

Observe that in traditional password authentication the

costs of verifying and rejecting a password guess are sym-

metric. The goal of CASH is to redesign the authentica-

tion mechanism so that these costs are not symmetric. In

particular, we want to ensure that the cost of rejecting an

incorrect password is greater than the cost of accepting a

correct password. This is a desirable property because most

of the adversary’s password guesses during an offline attack

will be incorrect. By contrast, the authentication server will

spend most of its effort authenticating legitimate users.

7However, this estimate of the adversary’s value could be too high
because it does not account for the inherent risk of getting caught when
selling/using the password

8Note that for i ≤ B the adversary finishes early after only i guesses if
and only if the user selected password pwdi (probability pi). If the user
selected password pwdi with i > B then the adversary will quit after B
guesses.

Table I
NOTATION

Term Explanation
P space of passwords

n number of passwords in P
pwdi the i’th most likely password in P
pi probability that a random user selects pwdi

m the number of evaluations of Hk necessary to reject
an incorrect password using CASH

t ∈ {1, . . . ,m} hidden running time parameter which specifies the
running time of CASH when verifying an correct
password. t is randomly selected during account
creation.

p̃ a distribution over the hidden running time param-
eter t

p̃j the probability that the running time parameter is
t = j

πi the probability of the i’th most likely tuple (pwd, t)

α probability of seeing a correct password in a ran-
dom authentication session

H a cryptographic hash function with Cost (H) = 1

Hk a cryptographic hash function with Cost
(
Hk

)
=

k

CSRV,α mk(1− α) + αk
∑m

t=1 t · p̃t, the amortized cost
of a random authentication session.

Cmax the maximum (amortized) cost that the authentica-
tion server is willing to incur per authentication

v adversary’s true value for a cracked password

v̂ the authentication server’s estimate for v

PCASH
ADV,v,v̂,C

the fraction of passwords cracked by a rational
value v adversary, when the authentication server
optimizes the CASH distribution p̃ under the belief
v̂ subject to the cost constraint CSRV,α ≤ Cmax.

Ppepper
ADV,v,C

the fraction of passwords cracked by a rational
value v adversary, when the authentication server
uses the uniform distribution p̃i = 1/m. The hash
cost parameter k is now tuned subject to the cost
constraint CSRV,α ≤ C.

Pdet
ADV,v,C

the fraction of passwords cracked by a rational
value v adversary when the authentication server
uses deterministic key-stretching techniques. The
hash cost parameter is set to k = C so that the
servers cost is C for each authentication session.

1) Creating an Account: Suppose that a user u registers

for an account with the password pwdu ∈ P . In CASH

authentication the authentication server stores the value(
u, su, k,H

k (pwdu, su, tu)
)
. As before su is a random salt

value and k is the number of hash iterations. The key

difference is that we select a random value tu from the range

{1, . . . ,m}. We stress that the value tu is not stored on the

authentication server (unlike the salt value su). Thus, the

value tu will not be available to an adversary who breaches

the server. We use the notation tu here to emphasize that this

value is chosen independently for each user u. Intuitively,

the parameter tu specifies the number of times that the

authentication server needs to compute Hk when verifying

374374



a correct password guess using CASH.

2) Authentication: When the user u tries to authenticate

using the password guess pwd′u the authentication server

first locates the record
(
u, su, k,H

k (pwdu, su, tu)
)
. The

authentication server then computes Hk (pwd′u, su, t) for

each value t ∈ {1, . . . ,m}. Authentication is successful

if the hashes match for any value t ∈ {1, . . . ,m}. This

is guaranteed to happen after tu steps whenever the user’s

password is correct (pwd′u = pwdu), and this is highly

unlikely whenever the user’s password is incorrect. A more

formal presentation of the authentication process can be

found in the full version [21] of this paper.

3) CASH Notation: We use p̃i to denote the probability

that we set tu = i during the account creation process. For

notational convenience we will assume that these values are

sorted so that p̃1 ≥ . . . ≥ p̃m. We will use t← p̃ to denote a

random sample from {1, . . . ,m} in which Prt←p̃ [t = i] =
p̃i. For now we assume that the CASH distribution p̃ is given

to us. In later sections we will discuss how to select a good

distribution p̃.

B. Cost to Server

The cost of rejecting an incorrect password guess is

m · k because the server must evaluate Hk (pwdu, su, tu)
for all m possible values of tu ∈ {1, . . . ,m}. However,

whenever a password guess is correct the authentication

server can halt computation as soon as it finds a match,

which will happen after tu iterations. Here, we assume that

the authentication server will minimize its amortized cost by

trying the most likely values of tu first. If we let α denote

the probability that the user enters his password correctly

during a random authentication session then the amortized

cost of the authentication server is

CSRV,α
.
= (1− α) k ·m+ α · k

m∑
i=1

i · p̃i .

In general, we will assume that the server has a maxi-

mum amortized cost Cmax that it is willing to incur for

authentication.9 Thus, the authentication server must pick the

distribution p̃ subject to the cost constraint CSRV,α ≤ Cmax.

C. Adversary Response

Fixing the CASH distribution p̃ induces a distribution over

pairs (pwd, t) ∈ P×{1, . . . ,m}, namely Pr[(pwd, t)] = pi ·
p̃t. Once the adversary selects a threshold B the adversary’s

optimal strategy is to try the B most likely pairs. In this

case the adversary’s utility will be

UCASH
ADV (B, v) = v

B∑
i=1

πi−k
B∑
i=1

i·πi−k
mn∑

i=B+1

B·πi , (2)

9For example, Cmax might be (approximately) given by the maximum
computational load that the authentication server(s) can handle divided by
the maximum (anticipated) number of users authenticating at any given
point in time.

where the terms π1 ≥ . . . ≥ πmn denote the probabilities

of each pair (pwd, t) ∈ P × {1, . . . ,m} (in sorted order).

In general, the distribution p̃ that the authentication server

selects may depend on the maximum (amortized) server

cost Cmax as well as our belief v̂ about the adversary’s

value for a cracked password. Once v̂ and Cmax (and thus

p̃1, . . . , p̃m, k and π1, . . . , πmn) have been fixed we can

let B∗ = BCASH,∗
v = argmaxB UCASH

ADV (B, v) denote the

adversary’s utility optimizing response. Then the fraction of

passwords cracked by a rational adversary will be

PCASH
ADV,v,v̂,Cmax

.
=

B∗∑
i=1

πi . (3)

Similarly, we will use Ppepper
ADV,v,Cmax

to denote the fraction

of passwords cracked by a rational adversary when p̃ is the

uniform distribution.10 In this case the hash cost parameter

k is tuned to to ensure that CSRV,α ≤ Cmax — this can be

achieved when

k =
Cmax

(1− α)m+ α
(
m+1
2

) . (4)

1) Example Distribution: One simple, yet elegant, way

to achieve the goal of cost asymmetry is to set p̃j = 1
m

for each j ∈ {1, . . . ,m} [13]. We will sometimes call

this solution uniform-CASH in this paper because it is a

special case of the CASH mechanism. The amortized cost

of verifying a correct password guess with uniform-CASH

is CSRV,1 = k
(
m+1
2

)
. By contrast, the cost of rejecting an

incorrect password guess is k · m — approximately twice

the cost of verifying a correct password guess.

Examples with Analysis: The above mechanism can

already be used to significantly reduce the fraction of user

passwords that would be cracked in an offline attack. We

demonstrate the potential power of CASH with two (simplis-

tic) examples. To keep the examples simple we will assume

that that users never forget or mistype their passwords (i.e.,

α = 1). In the first example, every user selects one of two

passwords (e.g., pwd1 =“123456” and pwd2=“iloveyou”)

with probability p1 = 2/3 and p2 = 1/3 respectively, and

the untargeted adversary has a value of v = 4
3Cmax+ ε, just

slightly more than Cmax — the amortized cost incurred by

the authentication server during an authentication session.

• (Deterministic Key-Stretching) The defender sets the

hash cost parameter k = Cmax and stores the deter-

ministic hash value Hk. It is easy to check that the

adversary’s optimal response is to choose the maximum

threshold B∗ = 2. In this case the adversary cracks the

password with probability Pdet
ADV,v,Cmax

= 1.

• (Uniform CASH) The defender sets p̃i =
1
m for each

i and he selects cost parameter k = 2 · Cmax/(m +

10Note that Ppepper
ADV,v,Cmax

does not depend on v̂, our belief about the

adversary’s value, because the choice of p̃ (and k) is independent of this
belief.
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1) to ensure that CSRV,1 ≤ Cmax — see eq 4 . It

is not too difficult to see that the adversary’s optimal

response is to choose the threshold B∗ = 0 (i.e., give

up without guessing).11 Thus, Ppepper
ADV,v,Cmax

= 0 < 1 =

Pdet
ADV,v,Cmax

.

This first example illustrates the potential advantage of

randomization. The next example illustrates the potential

advantage of non-uniform distributions. Example 2 is the

same as example 1 except that we increase the adversary’s

value to v = 5
3Cmax.

• (Deterministic Key-Stretching) Increasing v can only

increase Pdet
ADV,v,Cmax

. Thus, Pdet
ADV,v,Cmax

= 1.

• (Uniform CASH) Now the adversary’s optimal strategy

is to choose the maximum threshold B∗ = 2m (i.e.,

keep guessing until he finds the password). Thus,

Ppepper
ADV,v,Cmax

= 1.

• (non-uniform CASH) Suppose that the authentication

server, knowing that v̂ = v = 5·Cmax

2 , sets m = 5, k =
Cmax/2 and sets p̃1 = 9/16, p̃2 = p̃3 = p̃4 = 1/8 and

p̃5 = 1/16.12 In this case it is possible to verify that the

adversary’s optimal response is to set B∗ = 2 meaning

that the adversary will try guessing the two most likely

pairs (pwd1, t = 1) and (pwd2, t = 1) before giving

up. Thus, PCASH
ADV,v,v̂,Cmax

=
(
p1 + p2

)
p̃1 = 9

16 < 1.

Admittedly these example are both overly simplistic.

However, we will later consider several empirical password

distributions and demonstrate that non-uniform CASH dis-

tributions are often significantly better than both uniform

CASH and deterministic key-stretching.

IV. STACKELBERG MODEL

In the last section we observed that uniform CASH can

reduce the adversary’s success rate compared to determin-

istic key-stretching techniques with comparable costs. We

also saw that sometimes it is possible to do even better than

uniform CASH by selecting a non-uniform distribution over

t.13 This observation leads us to ask the following question:

What distribution over t leads to the optimal security results?

In this section we first formalize the problem of finding

the optimal CASH distribution parameters p̃1 ≥ . . . ≥ p̃m ≥
0. Intuitively, we can view this problem as the problem

of computing the Stackelberg equilibria of a certain game

between the authentication server and an untargeted offline

adversary. Stackelberg games and their applications have

been an active area of research in the last decade (e.g.,

[22]–[25]). For now we will simply focus on formulating

this goal as an optimization problem. In later sections we

11In particular, if the adversary instead sets B∗ = 2m (i.e., keep
guessing until he succeeds) then his expected guessing costs will be
p1k

(
m+1

2

)
+ (1 − p1)k

(
m+ m+1

2

)
= (1 − p1)km + m+1

2
k =

Cmax + 1
3

(
2mCmax

m+1

)
= 5Cmax

3
− 2Cmax

m+1
> v.

12It is easy to verify that CSRV,α = 2k = Cmax.
13Of course in some cases the uniform distribution might still be optimal.

will present a polynomial time algorithm to good solutions

to this optimization problem (Sections V and V-B) and we

will evaluate this algorithm on empirical password datasets

(Section VI).

Before the Stackelberg game begins the adversary is given

a value v for cracked passwords and the authentication server

is given an honest estimate v̂ = v of the adversary’s value.14

The authentication server is also given a bound Cmax on the

expected cost of an authentication round.

Defender Action: The authentication server (leader)

moves first in our Stackelberg game. The authentication

server must commit to a CASH distribution p̃ and a hash

cost parameter k. The values must be selected subject

to a constraint on the maximum amortized cost for the

authentication server

CSRV,α = (1− α)m · k + α · k
m∑
i=1

(i · p̃i) ≤ Cmax .

Intuitively, we can view the value α as being given by

nature and the parameter Cmax is given by the computational

resources of the authentication server.

Offline Adversary: After the authentication server com-

mits to p̃ and k the offline adversary is given access to all

of the hashed passwords stored on the authentication server.

The adversary can try guesses of the form (pwdi, j). This

particular guess is correct if and only if the user u selected

password pwdu = pwdi and we selected the secret salt

value tu = j. For an untargeted attacker the probability that

this guess is correct is pi · p̃j . We can describe the action

of a rational adversary using a threshold B which denotes

the maximum number of pairs (pwd, t) that he will check

(equivalently the maximum number of times he will compute

Hk). Intuitively, we don’t need to specify which pairs the

adversary guesses because a rational adversary will always

check the B most likely pairs.

We remark that we assume that an offline attacker will

be able to obtain the CASH parameters p̃1, . . . , p̃m and k
that we select.15 The adversary also knows the empirical

password distribution p1 ≥ . . . ≥ pn and the associated

passwords pwd1, . . . , pwdn.

Optimization Goal: Informally, the defender’s goal

is to minimize the probability that the rational adversary

succeeds in cracking each user’s password. The distribution

that achieves this goal is the Stackelberg equilibrium of

our game. Formally, our optimization goal is presented as

Optimization Goal 1. We are given as input the empirical

password distribution p1, . . . , pn as well as the value v̂ for

the adversary, a maximum cost Cmax for the authentication

14In the game the authentication server will assume that v̂ is indeed
the correct value when he computes the distribution p̃. Of course, in our
empirical analysis we will also be interested in exploring how CASH
performs when this estimate is incorrect v̂ �= v.

15An offline adversary has already breached authentication server which
will contain code to sample tu whenever a new user u creates an account.
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server, the CASH parameter m and the fraction α of au-

thentication sessions in which enter their correct password.

We want to find values p̃1, . . . , p̃m and k that minimize the

fraction of cracked passwords PCASH
ADV,v,v̂,Cmax

subject to sev-

eral constraints. Constraints 1 and 2 ensure that p̃1, . . . , p̃m
form a valid probability distribution, and constraint 3 ensures

that the amortized cost of authentication is at most Cmax.

Constraint 4 simply defines the variables π1, . . . , πmn where

πi is the probability of the i’th most likely tuple (pwd, t).
Constraints 5 implies that B∗ is the adversary’s optimal

response (e.g., UCASH
ADV (B∗, v) ≥ UCASH

ADV (B, v) for any

other threshold B that the adversary might choose). Finally,∑B∗

i=1 πi, our minimization goal, is the fraction of passwords

cracked under the adversary’s utility optimizing response

B∗.

Optimization Goal 1. Minimize Adversary Success Rate

Input Parameters: p1, . . . , pn, v̂, Cmax, m and α.

Variables: p̃1, . . . , p̃m, π1, . . . , πnm, k
minimize

∑B∗

i=1 πi subject to

(1) 1 ≥ p̃1 ≥ . . . ≥ p̃m ≥ 0,

(2)
∑m

i=1 p̃i = 1,

(3) (1− α)mk + αk
∑m

i=1 (i · p̃i) ≤ Cmax,

(4) π1, . . . , πmn = Sort (p1 · p̃1, . . . , pn · p̃m), and

(5) ∀B ∈ {0, 1, . . . ,mn} we have

UCASH
ADV (B∗, v) ≥ UCASH

ADV (B, v) .

Unfortunately, Optimization Goal 1 is inherently non-

convex due to the combination of constraints 4 and 5.16

Thus, it is not clear whether or not there is a polynomial time

algorithm to compute the Stackelberg equilibria. However,

as we will see in the next section, there is a polynomial time

algorithm to solve a very closely related goal. Minimize the

number of passwords that a threshold B adversary can crack

(Goal 2).

V. ALGORITHMS

In this section we show how the goal of minimizing the

success rate of a threshold B adversary can be formulated

as a linear program with exponentially many constraints

(Optimization Goal 2). We also show that this linear pro-

gram can be solved in polynomial time by developing an

efficient separation oracle. Unfortunately, this polynomial

time algorithm is not efficient enough to solve the large

real-world instances we consider in our experiments in

Section VI. However, building on ideas from Section V, we

develop a more efficient (in practice) algorithm in Section

V-B. This new algorithm always finds an approximately

optimal solution to Optimization Goal 2. While we do not

16Substituting in the formula for UCASH
ADV (B, v) constraint 5 becomes

v
∑B

i=1 πi−k
∑B

i=1 i·πi−k
∑mn

i=B+1 B ·πi ≤ v
∑B

i=1 πi−k
∑B∗

i=1 i·
πi − k

∑mn
i=B∗+1 B

∗ · πi, where πi depends on the Sort operation.

have any theoretical guarantees about its running time, we

found that it converged quickly on every instance we tried.

Furthermore, as we will see in our experimental evaluation,

the algorithm results in significantly improved Stackelberg

strategies.

We remark that our experimental results in Section VI

can be understood without reading this section. In particular,

it is possible to view the algorithms in Sections V and

V-B, as a blackbox heuristic algorithm that finds reasonably

good solutions to Optimization Goal 1. A more empirically

inclined reader may wish to skip to our experimental results

in Section VI after skimming through this section.

A. LP Formulation

We first show how to state our goal, minimize the

number of passwords that a threshold B adversary will

crack, as a linear program. Our LP uses the following vari-

ables PAdv,B , p̃1, . . . , p̃m. Intuitively, the variable PAdv,B

represents the fraction of passwords that a threshold B
adversary can crack. At a high level our Linear Program

can be understood as follows: minimize PAdv,B subject to

the requirement that no feasible strategy for the threshold

B adversary achieves a success rate greater than PAdv,B .

This requirement can be expressed as a combination of

exponentially many linear constraints. Formally, our LP is

presented as Optimization Goal 2.

Optimization Goal 2. Minimize Threshold B Adversary Success Rate

Input Parameters: p1, . . . , pn, B, Cmax, m, k, α
Variables: p̃1, . . . , p̃m,PAdv,B

minimize PAdv,B subject to

(1) 1 ≥ p̃1 ≥ . . . ≥ p̃m ≥ 0,

(2)
∑m

i=1 p̃i = 1,

(3) (1− α)mk + αk
∑m

i=1 (i · p̃i) ≤ Cmax,

(4) 0 ≤ PAdv,B ≤ 1, and

(5) ∀S ⊂ P × {1, . . . ,m} s.t |S| = B we have

PAdv,B ≥
∑

(i,j)∈S
pi · p̃j .

The key intuition is that all of the (5) constraints ensure

that PAdv,B is at least at big as the best success rate for

a threshold B adversary. This is true because the optimal

guessing strategy for a threshold B adversary is to guess

the B most likely tuples (pwd, t). Let S′ denote these B
most-likely tuples then one of the type (5) constraints says

that PAdv,B ≥
∑

(i,j)∈S′ pi · p̃j . Thus, type (5) constraints

guarantee we cannot ‘cheat’ by pretending like the adversary

will follow a suboptimal strategy (e.g., spending his guess-

ing budget on the least likely passwords) when we solve

Optimization Goal 2.

The key challenge in solving Optimization Goal 2 is

that there are exponentially many type (5) constraints. Our
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main result in this section states that we can still solve this

problem in polynomial time.

Theorem 1. We can find the solutions to Optimization Goal
2 in polynomial time in m, n and L, where L is the bit
precision of our inputs.

The proof of Theorem 1 can be found in the full version

of this paper [21]. We briefly overview the proof strategy

here. The key idea is to build a polynomial time separation

oracle for Optimization Goal 2. Given a candidate solution

p̃ the separation oracle should either tell us that the solution

is feasible (satisfies all type (5) constraints) or it should

find an unsatisfied constraint. We can then use the ellipsoid

method [26] with our separation oracle to solve to solve

the linear program in polynomial time. Intuitively, the

separation oracle simply sorts the tuples P × {1, . . . ,m}
using the associated probabilities Pr[(pwdi, t)] = pi · p̃t.
Then we can find the set S′ of the B most likely tuples and

check to see if the constraint PAdv,B ≥
∑

(i,j)∈S′ pi · p̃j is

satisfied.

Once we have a polynomial time algorithm to solve

Optimization Goal 2 for a fixed value of k we could adopt

the multiple LP framework of Conitzer and Sandholm [22]

to include k as an optimization parameter. The idea is

simple. Because the range of possible values of k is small

(k ≤ Cmax) we can simply solve Optimization Goal 2

separately for each value of k and take the best solution

— the one with the smallest value of PAdv,B .

B. Practical CASH Optimization

Theorem 1 states that Optimization Goal 2 can be solved

in polynomial time using the ellipsoid algorithm [26]. While

this is nice in theory the ellipsoid algorithm is rarely

deployed in practice because the running time tends to be

very large. In this section we develop a heuristic algorithm

(Algorithm 1) to solve Goal 2 using our separation oracle.

While algorithm 1 is guaranteed to always find the (approx-

imately) optimal solution to Optimization Goal 2, we do

not have any theoretical proof that it will converge to find

the optimal solution in polynomial time. However, in all

of our experiments we found that Algorithm 1 converged

reasonably quickly.

The basic idea behind our heuristic algorithm is to start

by ignoring all of the type (5) constraints from Goal 2. We

then run a standard LP solver to find the optimal solution

to the resulting LP. Finally, we run our separation oracle to

determine if this solution violates any type (5) constraints.

If it does not then we are done. If the separation oracle does

find a violated type (5) constraint then we add this constraint

to our LP and solve again. We repeat this process until we

have a solution that satisfies all type (5) constraints. Observe

that this process must terminate because we will eventually

run out of type (5) constraints to add. The hope is that our

algorithm will converge much more quickly. In practice, we

find that it does (e.g., at most 25 iterations).
Further Optimizations: Our separation oracle runs in

time O (mn logmn) because we sort a list of mn tuples

(pwd, t). In practice, the number of passwords n might be

very large (e.g., the RockYou dataset contains n ≈ 14.3 ×
106 unique passwords). Fortunately, it is often possible to

drastically reduce the time and space requirements of our

separation oracle by grouping passwords into equivalence

classes. In particular, we group two passwords pwdi and

pwdj into an equivalence class if and only if pi = pj . This

approach reduces running time of our separation oracle to

O (mn′ logmn′), where n′ is the number of equivalence

classes17. For example, the RockYou database contains over

107 unique passwords, but we only get n′ = 2040 equiva-

lence classes.
We can represent our empirical distribution over pass-

words as a sequence of n′ pairs (p1, n1) , . . . , (pn′ , nn′).
Here, pi denotes the probability of a password in equiv-

alence class i and ni ∈ N denotes the total number of

passwords in equivalence class i. We have
∑n′

i=1 ni = n

and
∑n′

i=1 ni · pi = 1. As before we assume that pi ≥ pi+1.

In most password datasets nn′ is the number of passwords

that were selected by only one user (e.g., for the RockYou

dataset nn′ ≈ 11.9× 106).
We now argue that this change in view does not funda-

mentally alter our linear program (Optimization Goal 2) or

our separation oracle. Constraints (1)–(4) in our LP remain

unchanged. We need to make a few notational changes to

type (5) constraints to ensure that PAdv,B is at least as large

at the success rate of the optimal adversary. We use

FB =

⎧⎨
⎩(b1, . . . , bn′) ∈ N

n′
n′∑
i=1

bi ≤ B ∧ ∀i.bi ≤ m · ni

⎫⎬
⎭ ,

to describe the space of feasible guessing strategies for an

adversary with a threshold B. Here, bi denotes the total

number of times the adversary evaluates Hk while attacking

passwords in equivalence class i ≤ n′. Thus, the range of

bi is 0 ≤ bi ≤ m · ni because there are ni passwords in the

equivalence class to attack and he can choose to evaluate

Hk up to m times for each password.
Given values p̃1, . . . , p̃m and a feasible allocation

b1, . . . , bn′ ∈ FB the probability that adversary will crack

the password is at most

n′∑
i=1

pi

⎛
⎜⎝(bi mod ni) p̃⌈ bi

ni

⌉ +

⌊
bi
ni

⌋∑
j=1

nip̃j

⎞
⎟⎠ .

Intuitively, the optimal adversary will spend equal effort

(bi/ni) cracking each password in an equivalence class

17To save computation one could also group passwords into equivalence
classes with approximately equal probabilities, but this representation loses
some accuracy and was unnecessary in all of our experiments.
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because they all have the same probability. The (bi mod ni)
and �bi/ni� terms handle the technicality that bi may not be

divisible by ni. Thus, we can replace our type (5) constraints

with the constraint

PAdv,B ≥
n′∑
i=1

pi

⎛
⎜⎝(bi mod ni) p̃⌈ bi

ni

⌉ +

⌊
bi
ni

⌋∑
j=1

nip̃j

⎞
⎟⎠ ,

for every (b1, . . . , bn′) ∈ FB .

Algorithm 1 Optimize (p, n,B,Cmax, α, ε,m, S)
Input: p1, . . . , pn′ , n1, . . . , nn′ , B, Cmax, α, ε, m, S =
{k0, k1, . . . , , kτ},

1: bestSolution← ∅, bestK ← k0
2: bestSuccessRate← 1.0, slack ← ε
3: for j = 0, . . . , τ do
4: k ← kj
5: C ← InitialConstraints(Cmax, α, k)

{Initially, C only includes constraints (1)–(4)

in goal 2}
6: Goal← {minPAdv,B}
7: V rbls← {PAdv,B , p̃1, . . . , p̃m}
8: P ′Adv,B , p̃

′
1, . . . , p̃

′
m ← LPSolve (Goal, V rbls, C)

9: p̃′ ← (p̃′1, . . . , p̃
′
m)

10: �p← (p1, . . . , pn′)
11: �n← (n1, . . . , nn′)

12: Sepin ←
(
�p, �n, p̃′, B, k, CSRV,α,P ′Adv,B

)
13: C ′ ← SeparationOracle (Sepin)

14: while
∣∣∣Slack(

C ′, p̃,P ′Adv,B

)∣∣∣ > ε ∧ (C ′ �= “Ok”)

do
15: C ← C

⋃{C ′}
16: P ′Adv,B , p̃

′ ← LPSolve (Goal, V rbls, C)
17: {p̃′ = (p̃′1, . . . , p̃

′
m)}

18: Sepin ←
(
�p, �n, p̃′, B, k, CSRV,α,P ′Adv,B

)
19: C ′ ← SeparationOracle (Sepin)
20: end while
21: if bestSuccessRate ≥ P ′Adv,B then
22: bestSolution← p̃1, . . . , p̃m
23: bestSuccessRate← P ′Adv,B

24: (bestM, bestK)← (mi, ki)

25: slack ← Slack
(
C ′, p̃,P ′Adv,B

)
26: end if
27: end for
28: return p̃1, . . . , p̃m, bestK

Our modified separation oracle works in essentially the

same way. We sort the tuples (i, j) using the values p′i,j =
pi · p̃j and select the B largest tuples. The only difference is

that the adversary is now allowed to select the tuple (i, j) up

to ni times. In this section we will use SeparationOracle
to refer to the modified separation oracle, which runs in time

O (mn′ logmn′) using our compact representation of the

empirical password distribution.

Our heuristic algorithm (Algorithm 1) takes as input an

approximation parameter ε. It is allowed to output a solution

p̃1, . . . , p̃m,PAdv,B as long as the solution is within ε of op-

timal — for any other feasible solution p̃′1, . . . , p̃
′
m,P ′Adv,B

we have PAdv,B ≤ P ′Adv,B + ε. We use Slack to denote a

function that computes how badly a linear inequality C is vi-

olated. For example, if C denotes the inequality x+y ≥ 2.5
and we have set x′ = y′ = 1 then Slack (C, x′, y′) = 0.5
(e.g., if we introduced a slack variable z then we would

need to select z′ such that |z′| = 0.5 to satisfy the inequality

x′ + y′ + z′ ≥ 2.5).

C. Choosing a CASH Distribution

While Algorithm 1 efficiently solves optimization Goal

2, it may not yield the optimal distribution for our original

Stackelberg game. In particular, while Algorithm 1 gives

the optimal distribution against a threshold-B adversary, the

rational adversary might choose to use a different threshold

B∗ �= B.

Algorithm 2 FindCASHDistribution
Input: p1, . . . , pn′ , n1, . . . , nn′ , v̂, Cmax, α, ε, m, S =
{k0, k1, . . . , kτ}, B = {B0, B1, . . . , B�}

1: p̃1, . . . , p̃m ← 1/m
2:

k ← Cmax

(1− α)m+ α
(
m+1
2

)
3: advSuccess← Ppepper

ADV,v̂,Cmax

4: for x = 0, . . . , � do
5: B ← Bx

6: p̃x, kx ← Optimize (p, n,B,Cmax, α, ε,m, S)
7: CS ← RationalAdvSuccess (p, n, v̂, p̃x, kx)
8: if CS ≤ advSuccess then
9: p̃← p̃x

10: k ← kx
11: advSuccess← CS
12: end if
13: end for
14: return p̃, k

We introduce a heuristic algorithm to find good Stack-

elberg strategies (CASH distributions) for the defender.

Algorithm 2 uses Algorithm 1 as a subroutine to search

for good CASH distributions. Algorithm 2 takes as input

an (estimate) v̂ of the adversary’s value and a set B of

potential adversary thresholds B and runs Algorithm 1 to

compute the optimal distribution for each threshold. We then

compute the rational value v̂ adversary’s best response to

each of distributions and find the best distribution for the

authentication server — the one which results in the low-

est fraction of cracked passwords under the corresponding

best adversary response. Algorithm 2 assumes a subroutine
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RationalAdvSuccess (p, n, v̂, p̃, k), which computes the

fraction of cracked passwords under a value v̂ adverary’s

best response to the CASH distribution p̃ with empirical

password distribution defined by the pair (p, n) and a hash

cost parameter k.

We remark that the subroutine RationalAdvSuccess
can be computed in time O

(
n′m logmn′

)
— the most

expensive step is sorting the mn′ pairs (pi, p̃j) based on the

value pi · p̃j . Once we have these pairs in sorted order there

is a simple formula for computing the marginal benefit/costs

of a larger threshold B. See the full version [21] of the paper

for more details.

We remark that Algorithm 2 is not guaranteed to always

find the optimal solution to optimization goal 1. It may

be viewed as a heuristic algorithm that generates many

promising candidate CASH distributions and then selects the

best distribution among them.

VI. EXPERIMENTAL RESULTS

In this section we empirically demonstrate that our CASH

mechanism can be used to significantly reduce the fraction

of accounts that an offline adversary could compromise. We

implemented Algorithm 2 in C# using Gurobi as our LP

solver, and analyzed CASH using two real-world password

distributions p1, . . . , pn. The first distribution is based on

data from the RockYou password breach (32+ million pass-

words) and the second is based on password frequency data

from Yahoo! users (representing ≈ 70 million passwords).

The later dataset was not the result of a security breach.

Instead, Yahoo! gave Bonneau [5] permission to collect and

analyze password frequency data in a carefully controlled

environment. Yahoo! recently allowed Blocki et al. [14] to

use a differentially private [27] algorithm to publish this

data. Thus, the password frequency data in this data set

has been perturbed slightly. Blocki et al. [14] also showed

that with high probability the L1 error introduced by their

algorithm would be minimal.

In each of our experiments we fix the password correct-

ness rate α ∈ {1, 0.95, 0.9} and the maximum amortized

server cost Cmax before using Algorithm 2 to find a CASH

parameters p̃1, . . . , p̃m and k subject to the appropriate

constraints on the amortized server costs.

We compare the % of cracked passwords under three

different scenarios:

• (Deterministic Key-Stretching) The authentication

server selects a hash function Hk with cost parameter

k = Cmax (achieved through traditional determin-

istic key-stretching techniques). The rational value v
adversary will crack each password with probability

Pdet
ADV,v,k (eq 1).

• (Uniform-CASH) The authentication server uses CASH

with the uniform distribution. He sets k according to eq

4 to ensure that his amortized costs are at most Cmax.

A rational value v adversary will crack each password

with probability Ppepper
ADV,v,Cmax

.

• (CASH) Given an estimate v̂ of the adversary’s budget

we used Algorithm 2 to optimize the CASH parameters

k and p̃1, . . . , p̃m subject to the constraint that the

amortized server cost is at most Cmax when users

enter the wrong password with probability 1 − α. We

fixed the parameters m = 50, ε = 0.02, and we set

B = {5 · Cmax × 104, Cmax × 106, Cmax × 107,

1.5 ·Cmax × 107, 2.0 ·Cmax × 107, 2.5 ·Cmax × 107,

2.65 ·Cmax× 107, 2.8 ·Cmax× 107, 3.0 ·Cmax× 107,

5.0 · Cmax × 107, Cmax × 108}. Thus, Algorithm 2

computes the optimal distribution against a threshold

B adversary for each B ∈ B, and selects the best dis-

tribution p̃ against a value v̂ adversary. PCASH
ADV,v̂,v̂,Cmax

will denote the fraction of cracked passwords when the

true value is v = v̂. When the adversary’s true value

is v �= v̂, PCASH
ADV,v,v̂,Cmax

will denote the fraction of

cracked passwords.

Our results indicate that an authentication server could

significantly reduce the fraction of compromised passwords

in an offline attack by adopting our optimal CASH mech-

anism instead of deterministic key-stretching or uniform-

CASH. These results held robustly for both the RockYou

and Yahoo! password distributions.

1) Password Datasets: We use two password frequency

datasets, RockYou and Yahoo!, to analyze our CASH mech-

anism. The RockYou dataset contains passwords from N ≈
32.6 million RockYou users, and the Yahoo! dataset contains

data from N ≈ 70 million Yahoo! users. We used frequency

data from each of these datasets to obtain an empirical

password distribution p1 ≥ p2 ≥ p3 . . . ≥ pn over P .

The RockYou dataset is based on actual user passwords

which were leaked during the infamous RockYou security

breach (RockYou had been storing these passwords in the

clear). The total number of unique passwords in the dataset

was n ≈ 14.3 million. Approximately, 11.9 million of these

passwords were unique to one RockYou user. The other

≈ 2.5 million passwords were used by multiple users. The

most popular password (pwd1 = ‘123456’) was shared by

≈ 0.3 million RockYou users (p1 ≈ 0.01). RockYou did

not impose strict password restrictions on its users (e.g.

users were allowed to select passwords consisting of only

lowercase letters or only numbers).

We also used (perturbed) password frequency data from

a dataset of N ≈ 70 million Yahoo! passwords. See [5] for

more details about how this data was collected and see [14]

for more details about how the frequency data was perturbed

to satisfy the rigorous notion of differentially privacy [27].

Blocki et al. [14] proved that with high probability the

L1 distortion of the perturbed frequency data is bounded

by O
(√

N/ε
)

, where the privacy parameter was set to

ε = 0.25 when the Yahoo! dataset was published. Thus,
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the perturbed dataset will also still give us a good estimate

of the empirical password distribution.

A. Results

Our first set of experimental results are shown in Figures 1

and 2. These plots were computed under the assumption that

α = 1 (users always enter their passwords correctly), and

that v̂ = v (the defender knows the exact adversary value).

The results show that for some (higher) adversary values our

non-uniform CASH distributions improves significantly on

the cost-equivalent versions of uniform CASH (50% reduc-

tion in cracked passwords) and deterministic key-stretching

(56% reduction in cracked passwords).18 Figures 4a and 4b

(resp. Figures 3a and 3d) show the same results under the

assumptions that α = 0.9 (resp. α = 0.95).

Figures 3b and 3c (resp. Figures 3f and 3e) explore the

effect of a wrong estimate v̂ �= v of the adversary’s value for

both the RockYou and Yahoo! datasets. Despite receiving the

wrong estimate v̂ our algorithm returns a distribution that is

(almost always) slightly better than the corresponding uni-

form CASH distribution. Both distributions still significantly

outperform the cost equivalent deterministic key-stretching

solution.

The full version [21] of this paper contains additional plots

exploring what happens when the defender uses the wrong

empirical password distribution when searching for a good

CASH distribution p̃ (e.g., if the defender optimizes p̃ under

the assumption that the empirical password distribution is

given by the Yahoo! dataset when the actual distribution

is given by the RockYou dataset). Briefly, these plots

show that non-uniform CASH significantly outperforms de-

terministic key-stretching even when non-uniform CASH

is optimized under the wrong distribution and non-uniform

CASH slightly outperforms uniform CASH on most, but not

all, of the curve.

B. Discussion

In our experiments we varied the password correctness

rate α ∈ {0.9, 0.95, 1}. Intuitively, we expect for CASH

to have a greater advantage over traditional key-stretching

techniques when α is larger, but when α → 0 we should

not expect for CASH or uniform-CASH to outperform

deterministic key-stretching techniques because there is no

advantage in making authentication costs asymmetric. It

is easier for users to remember passwords that they use

frequently [20], [28], [29] so we would expect for α to be

larger for services that are used frequently (e.g., e-mail). This

suggests that larger values of α (e.g., α = 0.9 or α = 0.95)

would be appropriate for many services because the users

who authenticate most frequently would be the least likely

to enter incorrect passwords. While different authentication

18We note that we would expect to see relatively high adversary values
v/Cmax in the offline setting because Cmax will typically be quite small
(e.g., $10−6).
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Figure 2. RockYou Dataset: α = 1.

servers might experience different failed login rates 1−α, we

remark that it is reasonable to assume that the authentication

server knows the value of α because it can monitor login

attempts.

Estimating v: While our results suggest that CASH

continues to perform well even if our estimate v̂ of the

adversary’s value v for cracked passwords is wrong, we

would still recommend that an authentication server perform

a careful economic analysis to obtain the estimate v̂ before

running Algorithm 2 to compute the CASH distribution p̃.

The organization should take into account empirical data

on the cost Cost (H) of computing the underlying hash
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Figure 3. α = 0.95

function as well as the market value of a cracked password.

If possible, we recommend that the organization consider

data from black market sales of passwords for similar types

of accounts (e.g., an adversary would likely value a cracked

Bank of America password more than a cracked Twitter

password). Symantec reports that cracked passwords are sold

on the black market for $4–$30 [1]. Thus, $30/Cost (H)
might be a reasonable upper bound on the adversary’s value

for a cracked password (measured in # of computations of

Hk). We would also strongly advocate for the use of memory

hard functions instead of hash iteration to increase Cost (H)
effectively (see discussion in Section II-B).

Obtaining an Empirical Password Distribution: We

remark that the specific CASH distributions we computed

for the RockYou and Yahoo! datasets might not be optimal in

other application settings because the underlying password

distribution may vary across different contexts. For example,

users might be more motivated to pick strong passwords for

higher value accounts (e.g., bank accounts). Similarly, some

organizations choose to restrict the passwords that a user

may select (e.g., requiring upper and lower case letters).

While these restrictions do not always result in stronger

passwords [30], they can alter the underlying password

distribution [31]. While the underlying distribution may vary

from context to context, we note that an authentication server

could always follow the framework of Bonneau [5] and

Blocki et al. [14] to securely approximate the password

distribution p1, . . . , pn of its own users.

If an organization remains highly uncertain about value

v of a cracked password or about the empirical password

distribution p1, . . . , pn then it may be prudent to adopt

the uniform-CASH mechanism (e.g., [13]), which always
performs at least as well as the traditional key-stretching

approach.

1) Experimental Limitations: We remark that values of

PCASH
ADV,v,v̂,C that we compute in our experiments may be less

realistic for larger values of v
CSRV,α

(e.g., 108). The reason is

that pi, our empirical estimate of the probability of password
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Figure 4. α = 0.9.

pwdi, will be too high for many of our unique passwords

in the dataset. For example, consider a dedicated user who

memorizes a truly random 20 character string of upper and

lower case letters. The true probability that any individual

password guess matches the user’s password would be at

most 1/5220 ≈ 1/
(
2.09× 1034

)
. However, if that password

occurred in the RockYou dataset then our empirical estimate

of this probability would be at least 1/
(
3.26× 107

)
. Devel-

oping improved techniques for estimating the true likelihood

of unique password in a password frequency dataset is an

important research direction.

VII. RELATED WORK

Breaches. Recent breaches [32]–[38] highlight the impor-

tance of proper password storage. In one of these in-

stances [38] passwords were stored on the authentication

server in cleartext and in other instances the passwords were

not salted [36]. Salting is a simple, yet effective, way to

defend against rainbow table attacks [18], which can be used

to dramatically reduce the cost of an offline attack against

unsalted passwords [19]. Bonneau and Preibusch [39] found

that implementation errors like these are unfortunately com-

monplace.

Key Stretching. The practice of key stretching was proposed

as early as 1979 by Morris and Thompson [12]. The goal

is to make the hash function more expensive to evaluate so

that an offline attack is more expensive for the adversary.

PBKDF2 [8], BCRYPT [9] use hash iteration to accomplish

this goal. The recent Ashley Madison breach highlights the

benefits of key-stretching in practice. Through an implemen-

tation mistake half of the Ashley Madison passwords were

protected with the MD5 hash function instead of the much

stronger BCRYPT hash function allowing offline password

crackers to quickly recover these passwords19.

More modern password hash functions like SCRYPT [11]

use memory hard functions for key-stretching. Recently,

the Password Hashing Competition [15] was developed to

encourage the development of alternative password hashing

schemes (e.g., [40], [41]). Argon2 [10], the winner, has a

parameters which control memory usage and parallelism.

Deterministic key-stretching methods result in proportion-

ally increased costs for the legitimate server as well as

the adversary. Manber [13] proposed the use of hidden

salt values (e.g., ‘pepper’) to make it more expensive to

reject incorrect passwords. CASH may be viewed as a

generalization of this idea. Boyen [42] proposed using

halting puzzles to introduce an extreme asymmetry — the

password verification algorithm never halts when we try an

incorrect password. However, in practice an authentication

server will need to upper bound the maximum running

time for authentication because even legitimate users may

occasionally enter the wrong password.

Other Defenses Against Offline Attacks. If an organization

has multiple servers for authentication then it is possible to

distribute storage of the passwords across multiple servers

to keep them safe from an adversary who only breaches

one server (e.g., see [43] or [44]). Juels and Rivest [45]

proposed storing the hashes of fake passwords (honeywords)

and using a second auxiliary server to detect an offline

19See, http://arstechnica.com/security/2015/09/
once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
(retrieved 5/4/2016)
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attack (authentication attempt with honeywords). Another

line of research has sought to include the solution(s) to

hard artificial intelligence problems in the password hash

so that an offline attacker needs human assistance [46]–

[48]. By contrast, CASH does not require an organization to

purchase and maintain multiple (distributed) authentication

servers and it could be adopted without altering the user’s

authentication experience (e.g., by requiring the user to solve

CAPTCHAs).

Measuring Password Strength. Guessing-entropy [49],

[50],
∑n

i=1 i× pi, measures the average number of guesses

needed to crack a single password. We use a similar formula

to compute how much work a threshold-B adversary would

do in expectation. Guessing-entropy and Shannon-entropy

are known to be poor metrics for measuring password

strength20 While minimum entropy, H∞ = − log p1, can

be used to estimate the fraction of passwords that could be

cracked in an online attack [31], it can provide an overly

pessimistic security measurement in general.

Boztas [51] proposed a metric called β-guesswork, which

measured the success rate for an adversary with β guesses

per account
∑β

i=1 pi. We use a similar formula for com-

puting the success rate of a threshold-B adversary against

our CASH mechanism — the key difference is that the

adversary must guess the random value tu as well as the

user’s password pwdu. Pliam’s proposed a similar metric

called α-guesswork [52], which measures the number of

password guesses the adversary would need (per user) to

achieve success rate α.

Encouraging Users to Memorize Stronger Passwords. A

separate line of research has focused on helping users memo-

rize stronger passwords using various mnemonic techniques

and/or rehearsal techniques (e.g., [20], [53]–[55]).

Password managers seek to minimize user burden by

using a single password to generate multiple passwords [56].

These password managers often use client-side key stretch-

ing to derive each password. While CASH is a useful tool

for server-side key stretching, our current version of CASH

is not appropriate for client-side key stretching because the

authentication procedure is not deterministic. In subsequent

work, Blocki and Sridhar [57] developed Client-CASH an

extension of CASH suitable for client-side key stretching.

Password Alternatives. Another line of research has fo-

cused on developing alternatives to text passwords like

graphical passwords [58]–[60]. Herley and van Oorschoot

argued that text passwords will remain the dominant means

of authentication despite attempts to replace them [61]. We

note that CASH could be used to protect graphical passwords

as well as text passwords.

20Guessing-entropy could be high even if half of our users choose the
same password (p1 = 0.5) as long as the other half of our users choose a

password uniformly at random from P
(
p2 = . . . = pn = 2

n−1

)
.

VIII. CONCLUSIONS

We presented a novel Stackelberg game model which

captures the essential elements of the interaction between

an authentication server (leader) and an offline password

cracker (follower). Our Stackelberg model can provide guid-

ance for the authentication server by providing an estimate

of how significantly key-stretching reduces the number of

passwords that would be cracked by a rational offline

adversary in the event of a server breach. We also introduced,

CASH, a randomized secure hashing algorithm that signifi-

cantly outperforms traditional key-stretching defenses in our

Stackelberg game. While the problem of computing an exact

Stackelberg equlibria is non-convex, we were able to find

an efficient heuristic algorithm to compute good strategies

for the authentication server. Our heuristic algorithm is

based on a highly related problem that we are able to

show is tractable. Finally, we analyzed the performance

of our CASH mechanism using empirical password data

from two large scale password frequency datasets: Yahoo!

and RockYou. Our empirical analysis demonstrates that the

CASH mechanism can significantly (e.g., 50%) reduce the

fraction of passwords that would be cracked in an offline

attack by a rational adversary. Thus, our CASH mechanism

can be used to mitigate the threat of offline attacks without

increasing computation costs for a legitimate authentication

server.
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