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Abstract—Many security protocols involve humans, not ma-
chines, as endpoints. The differences are critical: humans are
not only computationally weaker than machines, they are naive,
careless, and gullible. In this paper, we provide a model for
formalizing and reasoning about these inherent human limita-
tions and their consequences. Specifically, we formalize models of
fallible humans in security protocols as multiset rewrite theories.
We show how the Tamarin tool can then be used to automatically
analyze security protocols involving human errors. We provide
case studies of authentication protocols that show how different
protocol constructions and features differ in their effectiveness
with respect to different kinds of fallible humans. This provides a
starting point for a fine-grained classification of security protocols
from a usable-security perspective.

I. INTRODUCTION

Humans use and interact with security protocols in many

contexts, for example during e-banking or to cast their vote

in electronic elections. In contrast to protocols where only

machines communicate with each other and precisely follow

the protocol specification, new opportunities for attacks arise

when humans are involved. It is possible that users do not

understand what they should and should not do and even

knowledgeable users may neglect to perform some protocol

steps due to carelessness.

Attackers, of course, are well aware of human fallibility

and exploit this in their attacks. Humans are often targeted

because it is easier to get information or access to a system by

social engineering rather than by directly attacking machines

or breaking the underlying cryptography. For example, many

people are fooled by phishing attacks into simply giving

away their secret credentials. Moreover, humans are bad at

identifying phishing websites even when they are specifically

instructed to do so in controlled lab environments [4], [12].

Hence even when security is their primary concern and they

are attentive, humans are incapable of performing basic secu-

rity checks. This problem is exacerbated in everyday situations

where security is a secondary concern. Despite the severity of

this problem, human weaknesses have received little attention

in security protocol analysis. Since there are situations where

human interaction in protocols is unavoidable [10], we must

be able to analyze this interaction.

In this work, we propose a formal model of communication

protocols that includes humans and their fallibilities. We

define a human error as any deviation of a human from the

protocol specification. We identify two natural approaches to

defining fallible humans that may deviate from the protocol

specification to different extents. We then single out one of

these approaches where we consider fallible humans that can

take arbitrary steps instead of following a specification. This

models non-expert humans in everyday protocols.

To support automated reasoning, we build on an exist-

ing formalization of security protocols as multiset rewriting

theories and extend it with fallible, non-expert humans. The

resulting formalism is supported by the automatic verification

tool Tamarin [20], [25] and enables the unbounded verification

of security protocols.

We validate our formal model in two case studies. First, we

examine an authentication protocol and a proposed improved

version thereof. Second, we analyze different phone-based

authentication protocols and compare their security guarantees

with respect to different kinds of fallible humans. All these

protocols have the goal of authenticating a human agent to a

remote server and all of them succeed with infallible humans.

However Tamarin finds numerous and varied attacks on these

protocols arising from different kinds of human errors.

Contributions: We present the first formal model of human

errors in security protocols. This model makes precise the no-

tion that humans are fallible and may not behave as expected.

It thereby bridges the gap between formal models of security

protocols that fail to consider human errors and the empirical

analyses of protocols that demonstrate how these errors can

lead to attacks.

We identify different approaches to defining fallible humans

and show how one of them can be formalized and integrated

into an existing formalization of security protocols. The re-

sulting model is supported by Tamarin and allows for the

unbounded verification of security protocols involving fallible

humans. In addition to a distinguished human H for whom

security properties are analyzed, we allow for an arbitrary

number of fallible humans in the network. This allows errors

made by other humans to affect the security guarantees that

hold for H .

We present two applications of our model to automatically

finding attacks arising from human errors. First, we analyze

an authentication protocol in detail and compare it with a

modified version that uses a heuristic to avoid human errors.

Second, we compare existing phone-based authentication pro-

tocols that use different methods to authenticate a human to a

remote server. We examine different authentication properties

and consider humans with different skills. The model helps us

identify which methods provide effective protection against

which kinds of fallible humans.

Our applications show that our model provides a formal

basis to understand different security practices and their ef-

fects. For instance we identify what information is useful to a
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human to achieve a given protocol’s security goals. Moreover,

the model allows us to make fine-grained distinctions between

protocols with respect to their resilience to different kinds of

human errors. This adds a new dimension to the framework

proposed by Bonneau et al. [8], where all but one of the

protocols have previously been compared.

Organization: We present in Section II different approaches

to defining fallible humans. We give an overview of an

existing formal protocol model in Section III and enhance

it in Section IV to account for fallible humans. Afterward,

we present two applications of our model. In Section V, we

analyze one protocol in detail and in Section VI we compare

different protocols for authenticating a human to a server. We

discuss related work in Section VII and draw conclusions in

Section VIII.

II. APPROACHES TO DEFINING FALLIBLE HUMANS

We start with a simple model of human capabilities. We

assume that humans can perform simple computations but

not complex operations. That is, they are able to send and

receive messages on specified channels, concatenate (i.e., pair)

messages, and split concatenated messages. In our model,

humans cannot, unaided, encrypt or decrypt messages; they

require computers for this.

A protocol defines the behaviors of agents (computers or

humans) by specifying their role. We model human agents by

keeping track of their knowledge and allowing other agents

and the adversary to query and update the human’s knowledge.

This models that a human can store information from any

source and communicate his knowledge to others. We do not

limit the number of terms that humans can remember. We

define human error considering only a human’s behavior, but

neither his intention nor the reasons that lead to his errors.

Definition 1. A human error in a protocol execution is any
deviation of a human from his or her role specification. Such
a human is said to be fallible. A human that does not deviate
from his role specification is said to be infallible.

A fallible human gives rise to more system behaviors than

an infallible human because, in addition to following the

protocol specification, the fallible human can deviate from it.

Human agents can therefore be partially ordered by the sets

of system behaviors they allow. This leads us to propose two

natural approaches to analyzing the security of protocols in the

presence of human errors: The skilled human approach, where

we consider increasingly fallible humans by adding possibili-

ties for human error and the rule-based human approach where

we remove possibilities for human error.

The two approaches are inspired by the human performance

levels that psychologists differentiate between in the GEMS

model [23]. At the skill-based level, a human behaves accord-

ing to familiar detailed patterns that have led her to the desired

or a similar goal before, but she can err. At the rule-based

performance level, a human acts according to general rules

of the form “in situation X perform action Y ”. In contrast to

psychological models, we assume that a rule-based human will
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(b) U = Untrained Human

Fig. 1: Skilled and Rule-Based Human Approaches:

Black and gray nodes represent skilled and rule-based humans,

respectively. An arrow denotes that the human at the tail node

induces only a subset of the system behaviors that the human

at the arrow’s tip induces.

never apply a rule incorrectly; he will always follow exactly

the rules he knows. We discuss the two approaches next.

However, we focus in this work on the rule-based approach.

A. Skilled Humans

The skilled human approach starts from an infallible human

agent, depicted by the node I at the top of the hierarchy in

Figure 1a. In this approach, human errors are modeled by

weakening the infallible human agent to a skilled human agent

who can make a fixed number of mistakes. Thus while the

infallible human agent represents an expert human who never

errs, the skilled human agent represents a human that knows

the protocol’s steps, but can make a slip.

An example of a skilled human is an expert user that knows

what she must do, but skips a verification step of the protocol

due to inattentiveness. In Figure 1a, each black node in the

hierarchy represents a skilled human agent. Depending on the

specified mistakes that the human can make, more or fewer

system behaviors are possible. This approach allows us to

examine which specific errors lead to attacks on protocols.

B. Rule-Based Humans

The rule-based human approach starts from an untrained
human agent depicted by node U at the bottom of the hier-

archy in Figure 1b. The untrained human does not know the

protocol specification and may blindly follow any adversarial

instruction he is given. That is, the untrained human agent

can perform any action permitted by the execution model.

In this approach, rule-based human agents are defined by

strengthening the untrained human agent with a set of rules

that he must follow. This models a human that does not know

the protocol specification but adheres to some basic guidelines.

An example of this is a human who knows he must only

type his password into a trusted device, even if he does not

know the detailed steps of the protocol he participates in. Rule-

based human agents are shown as gray nodes in Figure 1b.

While the untrained human can behave arbitrarily, the rules

of a rule-based human restrict his possible behaviors and

thus the system behaviors. We will fix a set of guidelines in

Section IV-C, when we formally define rule-based humans.
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III. MODELING SECURITY PROTOCOLS

In this section, we summarize an existing security protocol

model that we extend, in the next section, to account for

fallible humans. The model presented here is based on the

Tamarin model [20], [25] with some minor extensions for

representing channels with security properties [5].

A. Preliminaries

The term algebra of messages is given by TΣ(X), where

Σ is a signature and X a disjoint, countably infinite set of

variables. The ground terms are TΣ. Fsym ⊂ Σ denotes a finite

set of function symbols that always contains the functions

pair(_, _), also denoted by 〈_, _〉, for pairing, π1(_) and π2(_)
for the first and second projection of a pair of terms, and h(_)
for hashing terms. Moreover, Fsym contains function symbols

for symmetric and asymmetric encryption as well as creating

and verifying digital signatures. For a message m and a key

k, the functions senc(m, k) and sdec(m, k) denote symmetric

encryption and decryption, aenc(m, k) and adec(m, k) denote

asymmetric encryption and decryption, and sign(m, k) and

verify(sign,m, k) are used for signing messages and verifying

signatures. The function pk(k) represents the public key

corresponding to the private key k. The standard equational

theory for these functions is given in [5, Appendix A].

Σ also contains the two countably infinite sets of fresh and

public constants, denoted by Cfresh and Cpub , respectively.

Fresh constants model the generation of nonces, whereas

public terms represent agent names and other publicly known

values. The sets Fsym , Cfresh and Cpub are pairwise disjoint.

We denote sequences with square brackets and use the oper-

ator · to concatenate sequences.

B. Protocol Specification

We use the extended Alice&Bob notation of [5] to specify

security protocols. A simple protocol specification, for a

fictitious protocol called SimpleProtocol, is shown in Figure 2.

The protocol specifies two roles named S and R. Initially S
knows R, while R knows S and the message m2, as indicated

with the keyword knows. In the first step, S generates a fresh

message m1, indicated with the keyword fresh, and sends it to

R over an insecure channel, denoted by ◦−→◦. Then R responds

with the message m2 over a secure channel, denoted by •−→•.
This channel notation is taken from Maurer and Schmid’s

channel calculus [19]. In addition to the two channels shown in

Figure 2, we shall use the expressions A •−→◦ B and A ◦−→• B
to denote authentic and confidential channels from A to B,

respectively. On an authentic channel, the adversary can read

the communicated message but cannot modify the message or

its sender. Conversely, the adversary cannot learn a message

sent on a confidential channel. However, he can change the

sender of a message sent on a confidential channel or send

arbitrary messages from his own knowledge on it. A secure

channel is a channel that is both authentic and confidential.

Role scripts are the projections of an extended Alice&Bob

protocol specification to individual roles. They correspond to

strands in the strand spaces model [27] and processes in the

0. S : knows(R)
0. R : knows(S,m2)
1. S ◦−→◦ R : fresh(m1).m1

2. R •−→• S : m2

Fig. 2: Protocol SimpleProtocol in Alice&Bob notation.

[Start(S,R),Fresh(S,m1),Send(S, ins, R,m1)

,Receive(S, sec, R,m2)]

Fig. 3: Role Script of role S for SimpleProtocol.

applied pi calculus [3]. Formally, a role script is a sequence

of events e ∈ TΣ∪RoleActions(X), where RoleActions =
{Send,Receive,Start,Fresh} and the top-level func-

tion symbol of e is in RoleActions . Send and receive events

are of the form Send(A, l, P,m) and Receive(A, l, P,m),
where A is the role executing the event, l ∈ LinkProp =
{ins, auth, conf , sec} indicates the type of channel over

which a message is sent, P ∈ Cpub is a role’s name, and

m ∈ TΣ(X) is a message. The channel types ins , auth ,

conf , and sec denote insecure, authentic, confidential, and

secure channels and correspond in the obvious manner to the

channel symbols in the Alice&Bob notation. In a send event,

the communication partner P is the intended recipient of the

message m. In a receive event, the communication partner

P is the apparent sender, as the adversary may have forged

the message, and m is the expected message pattern. The fresh

event Fresh(A,m) indicates that the role A generates a fresh

message m and the start event Start(A,m) indicates the

initial knowledge m of the role A. The start event is the first

event of a role script and occurs only once.

Figure 3 shows the role script of S for SimpleProtocol. The

first event of the role script is the Start(S,R) event, where

S is the name of the executing role and R is the role’s initial

knowledge. The second event Fresh(S,m1) denotes that S
generates the fresh value m1. The third and fourth events

denote that S sends m1 to R over an insecure channel and

receives m2 from R over a secure channel, respectively.

C. Execution Model

We use Tamarin’s execution model [20], [25], which is

defined by a multiset term-rewriting system. A system state

is a multiset of facts. There are two types of facts, linear facts
and persistent facts. Linear facts model exhaustible resources

and they can be added to and removed from the system state.

Persistent facts model inexhaustible resources and can only be

added to the system state. Persistent fact symbols are prefixed

with an exclamation mark. The initial system state is the empty

multiset. A trace tr is a finite sequence of multisets of actions

a and is generated by the application of labeled state transition

rules of the form prem
a−→ conc. A state transition rule is

applicable when the current state contains facts matching the

premise prem . The rule’s application removes the matching
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[ ]
Start(S,R)−−−−−−−→ [AgSt(S, 0, R)] (S0)

[AgSt(S, 0, R),Fr(m1)]
Fresh(S,m1)−−−−−−−−→

[AgSt(S, 1, 〈R,m1〉)] (S1)

[AgSt(S, 1, 〈R,m1〉)]
Send(S,ins,R,m1)−−−−−−−−−−−→

[AgSt(S, 2, 〈R,m1〉),Outins(〈S,R,m1〉)] (S2)

[AgSt(S, 2, 〈R,m1〉), Insec(〈R,S,m2〉)]
Receive(S,sec,R,m2)−−−−−−−−−−−−−→ [AgSt(S, 3, 〈R,m1,m2〉)] (S3)

Fig. 4: Agent rules for agent S of protocol SimpleProtocol.

linear facts from the state, adds instantiations of the facts in

the conclusion conc to the state, and records the instantiations

of actions in a in the trace. The set of all traces of a set of

rules R is denoted by TR(R).
We use the HISP model extension of Tamarin [5] to give a

semantics to Alice&Bob protocols. A complete protocol model

consists of the fresh rule, adversary rules, channel rules, and

agent rules. The fresh rule

[ ] −→ [Fr(x)] (F1)

produces the fact Fr(x) where x ∈ Cfresh . No two applications

of this rule pick the same element x ∈ Cfresh and this is the

only rule that can produce terms x ∈ Cfresh . We use Tamarin’s

standard Dolev-Yao adversary [13] rules and the HISP channel

rules to model the sending and receiving of messages over au-

thentic, confidential, and secure channels. Agent rules specify

the agents’ state transitions and communication.

Given a role script of a role A, the corresponding agent

rules are produced as follows. For every event e in the role

script, we obtain a transition rule prem
a−→ conc. The label

of the rule contains the event, i.e., e ∈ a. The premise prem
contains an agent state fact AgSt(A, c, kn), which keeps track

of the state of agent A, the protocol step c the agent is in,

and the agent’s knowledge kn . The conclusion conc contains

the subsequent agent state fact AgSt(A, c′, kn ′). If e is a

send event Send(A, l, P,m), then the rule’s conc additionally

contains an outgoing message fact Outl(〈A,P,m〉). If e is a

receive event Receive(A, l, P,m), then prem contains an

incoming message fact Inl(〈P,A,m〉). If e is a fresh event

Fresh(A, x), then prem contains a fresh fact Fr(x). Finally,

if e is a start event Start(A, i), then it is translated to a setup

rule where conc contains the initial agent state AgSt(A, 0, i).

Example 1. Consider the role script of S in SimpleProtocol
shown in Figure 3. Recall that S first sends a fresh message

m1 over an insecure channel to R and then receives from R a

message m2 over a secure channel. The agent rules for the

agent S are shown in Figure 4. The Setup Rule (S0) can

be applied in every system state. Therefore, its premise is

empty. The conclusion of the setup rule contains the Agent

State 0 of S, with the initial knowledge R. The first premise

of the rule (S1) is that S is in Agent State 0 where R
is in its knowledge. The second premise Fr(m1) denotes a

fresh value m1. Fr facts are produced by Rule (F1). In the

conclusion, the knowledge in the agent state of S is updated

with the fresh message m1 and S proceeds to Agent State 1.

For the send event (S2), the rule’s premise consists of the

current agent state. The effect of S sending a message to

an insecure channel is that the fact Outins is now available

in the network, expressed by the corresponding fact in the

conclusion. The second fact in the conclusion expresses that

agent S proceeds to the next agent state and keeps the same

knowledge. Rule (S3) expresses that S receives the message

m2, from R, over a secure channel, which is denoted by the

fact Insec in the premise. In the conclusion, the knowledge in

the agent state of S is updated with the received message m2

and S proceeds to the next agent state.

D. Security Properties

We instrument protocol rules with additional actions in

order to reason about the protocol’s security properties. Fol-

lowing Lowe [17], we use the actions Running(A,B,m) and

Commit(A,B,m) to define authentication properties. The

actions are added to the rules corresponding to the protocol

steps of an agent A, where A believes a given property to hold

with respect to some partner B and message m.

We consider entity and message authentication [21]. Entity
authentication states that one agent can be sure that another

agent has the identity she claims and that she actually par-

ticipated in the protocol: Whenever an agent B commits

to a protocol execution with another agent A, then A was

participating in the protocol recently. To capture recentness, we

require that there is some event of A between the start event of

B and B’s claim. A formal definition of entity authentication

is given in Definition 2 of Appendix A.

One way to authenticate humans is to ask them for some-

thing they know, like a password. If the correct password

is received as a response, we conclude that the right person

participated in the protocol. Another way is to check some-

thing the human possesses [21] such as a device D that he

carries with him and to which he has exclusive access. If

an agent B has the guarantee that a human H’s device D
recently participated in the protocol, then we say that device
authentication of H to B holds. The assumption thereby

is that D is only accessible to the human H that is being

authenticated. See Definition 3 of Appendix A.

Message authentication holds when an agent B can be sure

that a message was sent by another agent A. In contrast to

entity authentication, we do not require the recentness of the

sending event. A protocol provides message authentication of

message m from an agent A to an agent B if whenever B
believes to receive message m from A, then A previously

sent m. See Definition 4 of Appendix A.

Finally, we define secrecy in standard manner: a message

m is secret if the adversary does not learn it. See Definition 7

of Appendix A for secrecy’s formal definition.
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IV. FORMALLY MODELING FALLIBLE HUMANS

We now extend the above model to account for human er-

rors. We first introduce the untrained-human rules and describe

how infallible and untrained humans are modeled. Afterward,

we introduce predicates to model rule-based humans.

A. Untrained-Human Rules

We construct agent rules for human roles in the same

manner as for the other roles of a protocol shown in Sec-

tion III. However, we also model that a human can make

errors and deviate from the protocol specification. Therefore

we introduce the untrained human rules. These rules model

human knowledge as a database HK represented by key/value

pairs that can be updated and queried by any agent, including

the adversary. We refer to these pairs as tag/value pairs to avoid

confusion with cryptographic keys. Tags allow, for example,

differentiating between facts that represent passwords and user

names.

We assign unique tags to messages with the function

Tag : TΣ(X) → TCpub∪{pair}(X), which is a homomorphism

between TΣ(X) and TCpub∪{pair}(X) considered as semi-

groups with respect to the (associative) pairing function. An

explicit construction of the tag function is given in Ap-

pendix C. We add tags to all agent rules that contain a

send or receive event to or from a human role. The tag

assignment is based on the representation of a message in

the human’s role script. In the following, we write ‘varname’
to denote Tag(varname). To illustrate the tags, imagine that

we modify the protocol SimpleProtocol, Figure 2, such that S
communicates with a human H instead of R. For example, for

Rule (S3) in Figure 4, we introduce the tag ‘m2’ as follows:

[AgSt(S, 2, 〈H,m1〉), Insec(〈H,S, 〈‘m2’,m2〉〉)]
Receive(S,sec,H,〈‘m2’,m2〉)−−−−−−−−−−−−−−−−−−→ [AgSt(S, 3, 〈H,m1,m2〉)]

The untrained-human rules formalize arbitrary behavior of

fallible humans. They define that in every system state the

human’s current knowledge can be sent to any agent, including

the adversary, over any available channel. Similarly, a term can

be received from anyone and stored in the human’s knowledge.

To keep track of the human’s knowledge, we introduce

persistent facts for every message in the human’s knowledge.

!HK(H, 〈t, x〉) denotes that the human H knows the message

x, tagged with t. Figure 5 depicts three untrained-human rules.

At any time, a human can produce a new fresh value x and

store it in his knowledge together with a tag t. This is modeled

by Rule (HR1). The premise Fr(x) of the rule can be produced

in any system state with the fresh rule (F1). A human can

send any message from his knowledge to the network as well

as receive any new message from the network and store it in

his knowledge. Rules (HR2) and (HR3) respectively model the

sending and receiving of a message over an insecure channel.

The model contains analogous rules for the sending and updat-

ing of the human’s knowledge over authentic, confidential, and

secure channels (see Appendix B). To initialize an untrained

human H , we provide a setup rule that produces for every

[Fr(x)]
Fresh(H,〈t,x〉)−−−−−−−−−→ [!HK(H, 〈t, x〉)] (HR1)

[!HK(H, 〈t, x〉)] Send(H,ins,P,〈t,x〉)−−−−−−−−−−−−→
[Outins(〈H,P, 〈t, x〉〉)] (HR2)

[Inins(〈P,H, 〈t, x〉〉)] Receive(H,ins,P,〈t,x〉)−−−−−−−−−−−−−−→
[!HK(H, 〈t, x〉)] (HR3)

Fig. 5: Untrained-human rules for producing fresh messages,

sending messages to and receiving messages from an insecure

channel.

message x in H’s initial knowledge a fact !HK(H, 〈t, x〉) and

a corresponding action InitK(H, 〈t, x〉).
Similarly to the agent rules, every untrained-human rule is

labeled with an action Start(H, 〈t, x〉), Fresh(H, 〈t, x〉),
Send(H, l, P, 〈t, x〉), or Receive(H, l, P, 〈t, x〉). H denotes

the human agent performing the action, l the channel type, and

P the apparent communication partner. In contrast to actions

not concerning human roles, the last argument not only denotes

the message x, but also its tag t.

B. Infallible and Untrained Humans

Given the agent rules and the untrained-human rules, we

next present how we realize infallible and untrained humans.

The infallible human follows the role specification and is

therefore modeled by the agent rules. That is, except for the

fact that all messages are tagged, he is modeled in the same

manner as all non-human agents. This (unrealistically) strong

model is how human agents are generally modeled.

The untrained human has no knowledge about the protocol

and can blindly follow all instructions given to him. He can

thereby deviate arbitrarily from the protocol specification. The

untrained human agent is therefore modeled by the untrained-

human rules without further restrictions. As a result, no

protocol can ensure the secrecy of messages that the untrained

human knows because the adversary can always query the

human for these messages, e.g. using social engineering.

C. Rule-Based Humans

A rule-based human agent is defined by the guidelines he

follows. An example of such a guideline is “private keys

must be kept secret.” Guidelines are simple statements that

are expected to be remembered and followed by humans in

practice. For example, it is unrealistic for a bank to assume

that all customers know every step of an e-banking procedure.

However, many service providers require in their terms of

service that their customers do not reveal their passwords to

other parties.

Guidelines state what the human must or must not do and

therefore restrict how the human can deviate from the protocol

specification. A rule-based human is formally modeled by the

untrained-human rules together with predicates that exclude

all traces from consideration that do not satisfy the predicates.
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NoTell(H, tag) := ∀Send(H, l, P, 〈t,m〉) ∈ tr, t′,m′ :
〈t,m〉 	H 〈t′,m′〉 ⇒ t′ �= tag

NoTellExcept(H, tag, rtag) :=

∀Send(H, l, P, 〈t,m〉) ∈ tr,m′, R :

InitK(H, 〈rtag,R〉) ∈ tr ∧ 〈t,m〉 	H 〈tag,m′〉
⇒ P = R ∧ (l = sec ∨ l = conf)

NoGet(H, tag) := ∀Receive(H, l, P, 〈t,m〉) ∈ tr, t′,m′ :
〈t,m〉 	H 〈t′,m′〉 ⇒ t′ �= tag

ICompare(H, tag) :=

∀Receive(H, l, P, 〈t,m〉) ∈ tr,m′ :
〈t,m〉 	H 〈tag,m′〉 ⇒ InitK(H, 〈tag,m′〉) ∈ tr

Fig. 6: Predicates modeling guidelines of a rule-based human.

Such predicates are expressed as axioms in the Tamarin tool.

While one can envision all kinds of guidelines and formalize

the corresponding predicates, in this paper we consider only

four exemplary predicates.

The four predicates we define are relevant for several

reasons. First, they concern three capabilities that are assumed

by standard agents in communication protocols: sending,

receiving, and comparing messages. Second, the predicates

express conditions that must be satisfied in every protocol step

rather than a particular protocol step. We prefer such predicates

because they correspond to simpler guidelines.

In the following, we write 〈t,m〉 	H 〈t′,m′〉 if a hu-

man agent can select the term 〈t′,m′〉 in 〈t,m〉. Formally,

〈t,m〉 	H 〈t′,m′〉 ⇔ ∃i, k : 1 ≤ i ≤ k ∧ t = 〈t1, . . . , tk〉 ∧
m = 〈m1, . . . ,mk〉 ∧ t′ = ti ∧m′ = mi.

Our first predicate, NoTell(H, tag), specifies traces in

which the human H does not send information of type tag
to anyone. This is relevant for achieving message secrecy. For

example, the guideline that private keys must be kept secret is

expressed as NoTell(H, ‘private key’). The formal definition

of the predicate NoTell(H, tag) is shown in Figure 6. It states

that the human H does not send a message 〈t,m〉 that contains

a subterm m′ with the tag tag. Note that all the predicates in

Figure 6 have at least two arguments: the human agent H
that adheres to the corresponding guideline and the tag tag
referring to the type of message that must or must not be used

in the specified manner.

Passwords are another type of information that should not be

publicized. However, prohibiting their communication with the

NoTell predicate is inappropriate for authentication protocols

that require the human to input his password for authenti-

cation. Humans that adhere to the corresponding guideline

cannot successfully complete such protocols. We thus refine

the guideline to require that the human can only send his

password to a designated agent over a confidential or secure

channel, but not to anyone else. The corresponding predicate,

NoTellExcept(H, tag, rtag), states that if the human H as-

sociates an agent R with tag rtag in his initial knowledge,

he never sends a message containing the tag tag to anyone

except to R. Additionally, H can only send this message

on a confidential or secure channel. In the predicate’s formal

definition, shown in Figure 6, we make use of the action fact

InitK that denotes a term in the human’s initial knowledge.

The predicate NoGet(H, tag), shown in Figure 6, states that

the human H rejects any message that contains the tag tag. In

particular, if a human H rejects a message, this message can-

not update the human’s knowledge with a fact that originates

from another agent. The corresponding guideline helps protect

the integrity of some types of information. A common attack,

for instance, is to disguise malicious software as a security

update of a popular software package. A safe update method

is to use the software’s built-in update mechanism. Humans

should therefore only use the built-in mechanism and not

follow a suggested link to an updater. This can be expressed

with the predicate NoGet(H, ‘update link’).
Humans are known to skip verification steps. A human

asked to confirm a transaction is likely to proceed without

paying close attention to details. Stating a guideline that

requires the human to pay attention is not a satisfactory

solution. A simple technique to make a human pay more

attention is to ask him for input and afterward provide him

with information that must be verified along with a random

code used for confirmation. Some humans may of course still

ignore the comparison and simply enter the code, but others

will not. Our final predicate distinguishes between these two

types of humans. The ICompare(H, tag) predicate states that

whenever the human H receives a message with tag tag, he

compares it to the message associated with the same tag in his

initial knowledge. The effect of this predicate, in combination

with the untrained human rules, is that the human agent either

ignores the entire message or verifies the tagged subterm.

Summarizing, these four predicates allow us to model

human agents that never send or receive a message, or

always perform certain comparisons. Furthermore, we have

illustrated on the example of NoTell , that the correspond-

ing guidelines can be made more specific when necessary.

The NoTellExcept(H, tag, rtag) predicate describes the same

property as NoTell(H, tag) but allows us to make an ex-

ception for a trusted agent associated with the tag rtag. In

a similar manner, the other guidelines could be made more

specific. However, as we will show in the next sections,

humans who follow the rules introduced here are sufficiently

strong to avoid many attacks.

D. Errors of other Fallible Humans

We have introduced the means to formalize all roles ap-

pearing in the protocol specification. In addition, we allow for

an arbitrary number of untrained human agents. We thereby

single out a distinguished human agent for which we examine

the security properties. This distinguished human can be an
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0. H : knows(D,P, S, pw, idH, idS)
0. D : knows(H, idH, pk(skS))
0. S : knows(skS,H, idS, pw, idH)
1. H •−→• P : S
2. P ◦−→• S : ‘start’
3. S •−→• P : fresh(rS).idS, rS
4. P •−→• D : idS, rS
5. D •−→• H : idS
6. H •−→• D : pw, idH
7. D •−→• P : fresh(rD).aenc(rD, pk(skS)),

senc(〈f(rS), idH, pw〉, f(rS, rD))
8. P •−→• S : aenc(rD, pk(skS)),

senc(〈f(rS), idH, pw〉, f(rS, rD))
9. S •−→• P : senc(f(rD), f(rS, rD))

10. P •−→• D : senc(f(rD), f(rS, rD))
11. D •−→• H : ‘success’

Fig. 7: MP-Auth protocol

instantiation of any human definition. The additional human

agents that we allow for are always untrained. This models

that an adversary can trick as many humans as he wants

into blindly following his instructions when this helps him

to attack the distinguished human. Our model is thus a Dolev-

Yao model with untrained humans and a distinguished test

human that may be infallible, untrained, or guided by one or

more of the rules that we introduced.

V. CASE STUDY IN PROTOCOL ANALYSIS

To validate the utility of our approach, we illustrate how

it can be used to automatically find attacks that arise from

human errors. We first present the authentication protocol MP-
Auth [18] and then analyze whether it provides entity and

message authentication from a human to a remote server. In

the next section, we compare it to five other protocols that

have the same aim, but are based on different mechanisms.

MP-Auth authenticates a human H to a server S using the

human’s platform P and his personal device D, to which

the human has exclusive access. A simplified version of this

protocol, obtained by merging H and D into a single role, was

shown to provide mutual authentication between D and S and

to establish a secret symmetric session key between these two

parties [18].

The main idea of the protocol, shown in Figure 7, is that

a human never needs to enter his password on the platform

that may be controlled by an adversary. The device D has the

public key of the server S preinstalled. We first explain the

protocol in detail and then analyze it with respect to entity

and message authentication. Afterward, we present a version

of the protocol that incorporates a method to harden protocols

against human errors and we analyze its effectiveness.

The protocol (Figure 7) proceeds as follows: in Step 1, the

human enters the name of the server he wants to communicate

with on the platform P . P then initiates communication with

the server S (Step 2). Next, S produces a fresh value rS and

sends this, together with its identity information idS via the

platform P to device D (Steps 3 and 4). We assume that the

short-range network connection between D and P is secure.

In Step 5, D displays idS to the human, who checks if this

corresponds to the server he wants to communicate with. If

it does, he enters his password pw and identity idH on the

device. Upon receiving this message, the device produces a

fresh nonce rD and encrypts it with the public key of S.

D applies the hash function f to rS and concatenates it with

idH and pw. Then, D encrypts the concatenated message with

f(rS, rD) and the two encrypted messages are sent together

to the platform P , which relays them to the server S (Steps 7

and 8). The last three steps authenticate the server S to the

human H . They are not relevant for entity authentication from

H to S but will be relevant for message authentication in the

next section. In Steps 9 and 10, S applies f to the received rD
and sends it, encrypted with f(rS, rD), over P back to D. D
checks if rD corresponds to the nonce that it has previously

sent and indicates ‘success’ to the human if it does.
We model that D is preconfigured with the public key of S

by including this key in D’s initial knowledge. Furthermore,

we assume the existence of secure channels between H and P
as well as between H and D. The first connection from P to S
is confidential, while the following communication is secure.

This models a TLS connection between the two parties.
In the following analysis, we make the realistic assumption

that the platform P is under the adversary’s control, i.e.,

corrupt. We assume that the human only launches applications

on a malware-free device D and therefore do not consider D
to be corrupt. We model P by omitting its agent rules from the

specification. Instead, we model every message that is either

sent or received by P as being received from or sent to the

insecure network that is controlled by the adversary.

A. Analysis
We analyze the MP-Auth protocol with the Tamarin tool

with respect to both an infallible and an untrained human.

The infallible human serves as a best case scenario: If a

protocol does not satisfy a property with an infallible human,

it will also not satisfy the property with an untrained human.

Whenever a property holds for an infallible human, but not

for an untrained one, we also examine what rules must be

known by a rule-based human for the property to be satisfied.

Whenever a property is proven by Tamarin, we only state this

and refer to the Tamarin files [6] for the detailed specifications,

assumptions, and proofs.
We first analyze if entity, device, and message authenti-

cation hold in the MP-Auth protocol. Afterward, we suggest

improvements to the protocol and analyze their effectiveness.
1) Entity and Device Authentication: First, we examine if

entity authentication and device authentication hold for the

different kinds of human agents. The assumption for device

authentication is that the human always carries the device D
on him and has exclusive access to it.

Claim 1. MP-Auth provides entity authentication and device
authentication from the human H to the server S for an
infallible human but neither property for an untrained human.
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Proof. For an infallible human, the two properties are proven

by Tamarin. In contrast, for an untrained human Tamarin

finds attacks for both properties, which can be interpreted

as follows: the untrained human can enter his password on

the corrupted platform before S is active, even if this is not

foreseen in the specification. An adversary can thus learn the

password and therefore generate all messages that S expects

(Steps 2 and 8 in Figure 7). This attack is possible in a trace

where the human is only active before the first action of S
and the human’s device is not active at all. Consequently, both

entity and device authentication fail.

We therefore examine a rule-based human, who knows that

he must send passwords, i.e., messages tagged with ‘pw’, only

to the device ‘D’, to which he has a secure channel, and not

to anyone else. We use Tamarin to establish the following:

Claim 2. MP-Auth provides entity authentication, as well as
device authentication, from the human H to the server S for a
rule-based human who knows he can only enter the password
on the device to which he has a secure channel, expressed by
NoTellExcept(H, ‘pw’, ‘D’).

2) Message Authentication: [18] describes additional steps

to authenticate transactions, which are depicted as Steps 12–

19 in Figure 8. After the login phase, a human H can enter his

message m on the platform P , which relays it to the server S.

S produces a fresh nonce rS2 and encrypts it and the message

m with the key f(rS, rD). Then S sends the result over P to

the device D which can decrypt it. D displays m to H and

waits for his confirmation, OK, that this is the message that

H previously sent. Then D computes the function f over rS2

and m, encrypts it, and sends it over P back to S.

The final protocol for sending a message m authentically

from H to S consists of the Steps 1–11 in Figure 7 followed

by the Steps 12–19 in Figure 8. We examine whether the

second part of the protocol, which we call MP-Auth_MA,

satisfies the message authentication property. However, we

take into account that at the time when m is sent there has

already been a login protocol. Therefore, the communicating

agents already share some knowledge at the beginning of MP-
Auth_MA. Next, we justify why we can assume this shared

initial knowledge.

Analysis with Tamarin shows that with an infallible human,

after the first part, D and S agree on the value of H and on

the value of their shared key f(rS, rD). More specifically, S
can be sure to share these messages with another agent, but

does not necessarily know with which other agent. This is

because S never learns what device D is participating in the

same protocol. However, D can be sure with which server S it

has an agreement. We call this security property a weak data
agreement between D and S and refer to Definitions 5 and 6

of Appendix A for its formal definition. Further examination

shows that the same property also holds for a rule-based

human who knows that he can only send his password to

the device. We thus assume that the human was at least

behaving according to this rule in the first part and analyze

0. H : knows(D,P, S,m, idH, idS,OK)
0. D : knows(H, idH, pk(skS), idS, S, rS, rD)
0. S : knows(skS,H, idS, idH, rS, rD)

12. H •−→• P : m
13. P •−→• S : m
14. S •−→• P : fresh(rS2).senc(〈m, rS2〉, f(rS, rD))
15. P •−→• D : senc(〈m, rS2〉, f(rS, rD))
16. D •−→• H : m
17. H •−→• D : OK
18. D •−→• P : senc(f(m, rS2), f(rS, rD))
19. P •−→• S : senc(f(m, rS2), f(rS, rD))

Fig. 8: MP-Auth_MA protocol

MP-Auth_MA with the shared initial knowledge of D and

S as depicted in Figure 8. Consequently, we use the term

“untrained-human” here to denote a human who behaves

arbitrarily in the new part of the protocol only.

Claim 3. MP-Auth_MA provides message authentication of
m from the human H to the server S for an infallible human,
but not for an untrained one.

Proof. Message authentication for an infallible human is

proven by Tamarin. In contrast, Tamarin finds an attack with

an untrained human that can be interpreted as follows: An

adversary can send his own m′ to the server S, which will

therefore be displayed by D. However, an untrained human

presses OK without reading the display, and thereby confirms

the message m′ from the adversary.

To avoid this attack, a human must not press OK unless he

has received his message m from the device in the previous

step. However, this cannot be expressed with the set of

guidelines defined in Section IV-C and we show in the full

version of the paper [6] that the MP-Auth_MA protocol does

not provide message authentication for any combination of

these guidelines.

The above attack is possible because the human does not

read his device’s display. If he is forced to read the display

to proceed in the protocol, then he can no longer ignore it.

Next, we analyze an improved version of the protocol that

incorporates this idea.

B. MP-Auth_VC

We call the improved protocol MP-Auth_VC, which incor-

porates a verification code, and we explain it on an example.

Imagine that the human H wants his bank server S to carry out

a transaction m. We model m to be in H’s initial knowledge.

In practice, H could remember the transaction information by

writing the details down on paper.

Remark. By modeling the message m in the human’s knowl-

edge, we assume that the information noted on paper reflects

the human’s intention and that he will not misinterpret it. �
In the original protocol in Figure 8, the device displays in

Step 16 all transaction details m, and the human confirms
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them by pressing an OK button in Step 17. We suggest that

Steps 16 and 17 are replaced by the following two steps.

16. D •−→• H : fresh(vc).vc,m
17. H •−→• D : vc

Instead of displaying just the transaction details, the device

additionally displays “if this is your message, please confirm

by entering the following verification code.” The code should

be fresh and unpredictable in every protocol run. We model

this by Step 16 above, where D sends m together with a fresh

verification code vc to the human. The protocol only proceeds

if the human enters vc on the device, as in Step 17. A human

in this protocol cannot ignore what is displayed on the device

and just press OK. Instead, he is forced to read the display

to learn vc. Nevertheless, there is an attack possible with an

untrained human.

Claim 4. MP-Auth_VC provides message authentication of
m from a human H to a server S for an infallible human, but
not for an untrained one.

Proof. Tamarin proves message authentication for an infallible

human. Tamarin finds an attack for an untrained human, which

can be interpreted in the context of our transaction example

as follows: An adversary can trigger his own transaction m′.
Consequently, the corresponding transaction details are dis-

played by the device D. However, an untrained human ignores

that m′ should represent his transaction details. Therefore, he

wrongly enters vc on the device and confirms the adversary’s

transaction.

To avoid this attack, we consider a rule-based human who

checks at each step where he receives a message m with the

tag ‘m’, whether this corresponds to the message associated

with ‘m’ in his initial knowledge. This is expressed by the

guideline ICompare(H, ‘m’). In our example, this means that

whenever the human reads on the display a transaction, he

checks that the corresponding information is the transaction

information he previously noted on paper. Tamarin establishes

the following claim.

Claim 5. MP-Auth_VC provides message authentication of
m from a human H to a server S for a rule-based human
who knows that whenever he receives a message containing x
with tag ‘m’, he must check if x corresponds to the message
associated with ‘m’ in his initial knowledge, expressed by
ICompare(H, ‘m’).

The improved protocol is thus secure with respect to a rule-

based human who performs certain checks. This is because,

unlike the original version, it is not possible for the human to

ignore the displayed information altogether.

C. Conclusion from Case Study

We have demonstrated that we can use our model to auto-

matically find realistic attacks that are caused by human errors.

We considered untrained, rule-based, and infallible humans

and showed that entity and device authentication do not hold

with untrained humans but hold with rule-based ones.

When considering message authentication, we have seen

how attacks arise when humans do not perform certain checks.

We have therefore suggested an improved version of the

protocol that enforces such a check. Our analysis shows that

this improvement is only effective with a rule-based human.

Our model can thus help to find ways to avoid human errors

by improving the protocol specifications and the guidelines

that humans must follow.

The argument that one protocol improves another is de-

pendent on the set of guidelines we chose in our model. We

posit that our four rules provide a good basis for analyzing

protocols. They model general guidelines that express what a

human must or must not do in every moment. In reality it is

expected that humans behave according to such guidelines, for

example that they perform basic checks.

VI. COMPARING AUTHENTICATION PROTOCOLS

In this section, we use our model to make fine-grained

distinctions between protocols that appear equally secure in

the absence of human errors. We compare six mobile phone-

based authentication protocols that all aim to authenticate a

human to a server but use different mechanisms to achieve

this goal.

In addition to MP-Auth, we examine the protocols

Cronto [1], Google 2-Step [2], OTP over SMS, and Phool-
proof [22]. These protocols were compared by Bonneau et
al. [8] using a framework to analyze protocols designed to

replace password-based authentication. The framework com-

pares how usable, deployable, and secure the protocols are. We

also consider the recently proposed protocol Sound-Proof [16]

that is also phone-based. We analyze whether each of the

protocols provides entity, device, and message authentication

from the human H to the server S.

In each protocol, a human H wants to authenticate himself

to a server S. For this purpose, he has access to a platform P ,

through which he communicates with the server, and he also

has exclusive access to a personal device D, like a cell phone.

As in the previous section, where not stated otherwise, we

assume that the channels between H and P as well as between

H and D are secure, that the first connection from P to S is

confidential, and that the subsequent communication between

P and S is secure (modeling TLS). Also like in the previous

section, we assume that the platform is under the adversary’s

control. Again, we analyze the protocols using Tamarin and

consider an infallible and an untrained human. A rule-based

human is considered when the results for the infallible and

untrained human differ.

First, we explain why we examine both entity and message

authentication in all protocols. Afterward, we present the

protocols and our results.

A. Entity and Message Authentication

Normally it is a small step to achieve message authenti-

cation when entity authentication holds. However, when we

take human errors into consideration, this step is no longer
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straightforward. For this reason, it is necessary to also examine

message authentication.

Message authentication is often easily achieved when an

entity has already been authenticated that is associated with a

key. In a setting with two non-human entities A and B, A can

encrypt every message with the previously authenticated key

that B knows belongs to A. However, this no longer works

when a human agent H is authenticated because end-to-end

encryption is not possible. Even if a server S has correctly

authenticated H , H can leave his platform and another human

H ′ can take over and send commands to S. As the platform

P is an intermediate party between H and S, S has no means

of detecting this if additional authentication is not done. This

problem has already been considered in the context of many

password change mechanisms: When a user is already logged

in, he must reenter his password prior to setting a new one.

This prevents someone else from changing the password in

his name, for example during his absence from the platform.

Remark. The platform P could continually check if the human

is still present, for example using a camera or similar tech-

niques. However, with this approach, the hardware making this

check must be trusted and function error-free. In particular, we

consider a corrupted platform. In this case, letting the platform

check whether the user has changed does not help the server.

�
From the discussion above we see that even after a success-

ful login, the server must check if message authentication is

given after every transaction, or after a batch of transactions.

B. Protocols and Results

We start by briefly introducing the protocols. We refer to

Section V for the description of MP-Auth and to Appendix D

for more details and the specifications of the other protocols.

Cronto is a challenge-response protocol, where the server

encrypts a fresh nonce in the form of a cryptogram, a graphical

representation of a cipher text, that is displayed on the human’s

platform. The human uses his auxiliary device to scan the

cryptogram. The device then decrypts it and computes a one-

time password from the extracted information that is displayed

to the human. The human must enter the one-time password,

together with his normal password, on the platform.

The Google 2-Step protocol models Google’s two-factor au-

thentication. After the human enters his identity and password,

he receives from the server a fresh code on a second channel.

For example, he receives an SMS, i.e., a text message, that

is sent to his mobile phone. The human must then enter this

code on the platform.

Similarly, OTP over SMS is a challenge-response protocol

where the server sends a one-time password (OTP) to the

human over his device. The one-time password that the human

then enters on the platform is a single factor for authentication.

Phoolproof is the only protocol we examine that does not

start with the step where the human tells his platform to which

server he wants to connect. This avoids the human directing

his platform to connect to a corrupt server. Instead, the human

Entity Auth. Device Auth. Message Auth.
I U R-B I U R-B I U R-B

Cronto � � � �
Cronto_MA � × �(2)

Google 2-Step � � � � � × �(2)

MP-Auth � × �(1) � × �(1)

MP-Auth_MA � × ×
MP-Auth_VC � × �(2)

OTP over SMS � � � � � × �(2)

Phoolproof × × � � � �
Sound-Proof × × � � ×

(1) with rule NoTellExcept(H, ‘pw’, ‘D’)
(2) with rule ICompare(H, ‘m’)

TABLE I: Entity authentication (Entity Auth.), device authen-

tication (Device Auth.), and message authentication (Message

Auth.) of human H to server S, with an infallible (I), untrained

(U), and rule-based (R-B) human.

selects on his device the server from a list of registered servers

and the device communicates this choice to the platform. The

device and the server then authenticate each other by a signed

challenge-response mechanism. Only after this does the human

enter his password on the platform to log in.

Sound-Proof is based on the idea that something that

identifiably belongs to the human, namely his device, must

be in close proximity to the platform used by the human.

Whether the device and platform are actually near each

other is decided by measuring ambient noise. If the noise

measured by both the platform and the device are roughly the

same, then they are deemed to be at the same location. The

comparison of the two recordings is performed by the device.

Table I shows the results established with Tamarin. The

three parts indicate whether the protocols satisfy the

properties entity authentication, device authentication, and

message authentication from the human to the server, for an

infallible human (I) and for an untrained one (U). Whenever

the property holds for an infallible but not for an untrained

human, we examine if it holds for a rule-based human (R-B).

A tick � in the table means that the respective authentication

property from H to S holds, and × indicates that it fails.

The numbers following the ticks reference what rule must be

known by the rule-based human, listed at the table’s bottom.

Next, we present the most interesting results.

1) Entity and Device Authentication: We first discuss which

protocols provide entity authentication. Tamarin establishes:

Claim 6. Cronto, Google 2-Step, and OTP over SMS provide
entity authentication from a human H to a server S for an
infallible human and for an untrained human.

Entity authentication holds in these protocols because the

human must read from his device the one-time password or

fresh code from the server and enter it on the platform.

Claim 7. Sound-Proof and Phoolproof neither provide entity
authentication from a human H to a server S for an infallible
human nor for an untrained human.
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Proof. Tamarin finds attacks for both protocols with an infal-

lible as well as with an untrained human.

We present an interpretation of the attacks with infallible hu-

mans. This attack also works, of course, for untrained humans.

In Sound-Proof, even if the protocol proceeds as intended, the

human H is only active before the first event of the server S.

This participation need not, however, be recent (as defined

in Section III-D). In Phoolproof, entity authentication fails

because the adversary can learn the human’s password when

he enters it on a corrupted platform in a protocol run prior to

the moment when S starts. The password can then be replayed

by the adversary at the point of the protocol where S expects

to receive it, and thus H need not be active between the start

and end of S.

Since entity authentication fails, we also examine device

authentication (see Section III-D) for these two protocols.

For device authentication, we require that a human H has

exclusive access to his device D, which he always carries on

him. We prove with Tamarin:

Claim 8. Sound-Proof and Phoolproof provide device authen-
tication of H to S for an infallible and an untrained human.

Intuitively, Phoolproof satisfies this property because H’s

device D must participate in the protocol to send the signed

challenge back to S. Similarly, it holds in Sound-Proof be-

cause the device D communicates over a secure channel to S
that the two recordings are equal.

2) Message Authentication: A variation of the Cronto pro-

tocol can be used for transaction authentication. As it is not

clear from the protocol’s description whether this can only be

done after a login, we examine it as a separate protocol without

login. We name this variation of the protocol Cronto_MA and

examine whether it provides message authentication. In this

version of the protocol, the one-time password is based on

both a fresh nonce and the message sent by the human. Also,

no password, in addition to the one-time password, must be

entered by the human. All remaining protocols do not specify

how to authenticate a message m. Nevertheless, as message

authentication is important, we examine if the protocol steps

can be enhanced to provide this property.

For this purpose, we introduce a fresh message m that is

only known by the human H at the protocols’ start and extend

the protocols with m using the results of Basin et al. [5] on

human-interaction security protocol (HISP) topologies. HISP

topologies consist of four parties: an infallible human, his

personal device, the human’s platform, and a server. The

human can access his device and his platform, through which

he can communicate with the server. The assumption is that

the platform is always corrupt. This setup matches with all

our protocols when we consider infallible humans.

We use the results of [5] as follows. Minimal HISP topolo-

gies state necessary conditions for message authentication.

Thus, for each of the protocols, we must add the message

m to a set of communication channels that covers one of the

minimal topologies. Otherwise, we know that it is impossible

to achieve message authentication even with an infallible

human. We refer to Appendix D for the resulting protocols

in Alice&Bob specification.

Claim 9. It is impossible to use Sound-Proof for message
authentication with an infallible human and a corrupted
platform.

Proof. It is not possible to cover a minimal HISP topology

in this protocol, even if m is added to every message. By

Theorem 2 of [5], it follows that with this protocol it is

impossible to achieve message authentication with a corrupted

platform.

Claim 10. Cronto_MA, Google 2-Step, and OTP over SMS

provide message authentication of m from a human H to a
server S for an infallible human, but not for an untrained
human.

Proof. Tamarin proves message authentication for an infallible

human. Furthermore, in all three protocols, Tamarin finds

attacks for an untrained human, which can be interpreted

as follows: An adversary can send his own message m′ to

the server. Consequently, m′ will be displayed on the device

together with the one-time password in Cronto_MA and OTP
over SMS, and together with the fresh code in Google 2-Step.

An untrained human reads this challenge from his device and

enters it on the platform without checking the corresponding

message. With this, he confirms any message m′ of the

adversary. In Google 2-Step, the adversary additionally must

know the password, which he learns when the human enters

it on the corrupt platform.

We next consider these protocols with a rule-based human

who knows that every time he reads information about a

message with tag ‘m’, he must check if this message is the

one associated with ‘m’ in his initial knowledge. This means

that a human will only copy the server’s challenge from the

device to the platform if it is sent together with the transaction

that he intended to make. We establish with Tamarin:

Claim 11. Cronto_MA, Google 2-Step, and OTP over SMS

provide message authentication of m from a human H to a
server S for a rule-based human who knows that whenever he
receives a message containing x with tag ‘m’, he must check
if x corresponds to the message associated with ‘m’ in his
initial knowledge, expressed by ICompare(H, ‘m’).

We next show with Tamarin that the protocol Phoolproof
is the only protocol that achieves message authentication even

with an untrained human.

Claim 12. The Phoolproof protocol provides message authen-
tication of m from a human H to a server S for an infallible
as well as for an untrained human.

The human not only enters the name of the server S but

also the message m on the device D. D then signs S and m
before sending them over the corrupt platform P to S. The
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adversary cannot forge D’s signature and therefore cannot alter

the message m that is sent by the human.

C. Discussion

Our case studies show that we can use our model and

automated reasoning support to find realistic attacks arising

from human errors. We can also use them to compare the

resilience of protocols to such attacks, where the protocols

exploit different defense mechanisms. Table I shows that

three of the six protocols analyzed (Cronto, Google 2-Step,

and OTP over SMS) provide entity authentication even with

untrained humans. The protocols Phoolproof and Sound-Proof
provide device authentication with untrained humans. MP-
Auth provides entity and device authentication only with rule-

based humans.

Phoolproof is the only protocol that provides message

authentication with untrained humans. At the other extreme,

Sound-Proof cannot be used for message authentication at all.

All other protocols, except MP-Auth_MA, provide message

authentication for rule-based humans, but not for untrained

ones. In all of these protocols, the human must check whether a

displayed message is one that he has previously sent. We have

proposed an improved version of MP-Auth_MA that forces a

human to read the display. However, as we have observed,

untrained humans can still fail to compare the relevant parts.

The Cronto and Phoolproof protocols have been rated equal

in all security categories by Bonneau et al. [8]. By taking

human errors into account, we have further differentiated them:

While Cronto provides entity authentication, Phoolproof only

provides device authentication. However, if Phoolproof was

used for message authentication, it would be secure even with

untrained humans. In contrast, the variation Cronto_MA only

satisfies message authentication with rule-based humans.

VII. RELATED WORK

Smith [26] observed over a decade ago that although the

opinion is widely held that many security problems are caused

by the interaction of humans with computers, the analysis and

design of security protocols usually focus on just the computer

parts. Today, human-computer interaction is an active research

area, also in the domain of Information Security. We focus

here mainly on related work concerned with formal models

for Information Security that include fallible humans.

Carlos et al. [9] model the human formally as part of a

security ceremony [14] in which a protocol is analyzed. They

introduce a human agent that can store knowledge and send

and receive messages over different media corresponding to

either human-to-human or human-to-machine communication.

This is similar to the untrained human that we consider, in

that we also model the human’s knowledge and rules used

to send and receive new knowledge facts. While we use the

same channels for all communication, [9] distinguishes the

events communicated over different media. It is unclear how

their framework can be instantiated with an actual security

protocol. Moreover, although they provide a formal human

model, human errors are not explicitly covered.

Rukšėnas et al. [24] propose a formal human model that

allows for human errors. Their focus is on finding errors that

stem from the design of the interface between a standard hu-

man user and a system. They do not consider communication

protocols. Rather, they consider scenarios where the interac-

tion between one system, one human (and his interpretation

of the system), and one specific adversary is analyzed.

Beckert and Beuster [7] share a similar viewpoint to [24] in

that they also examine scenarios with human-machine inter-

faces. They give a formal semantics to a known psychological

human model, a variation of the GOMS model [15], and

also model the user’s assumptions about the application. The

resulting model of human-computer interaction consists of the

human model, the user’s assumptions, and a formal application

model. When reasoning about human errors, they use what

we called the skilled human model in Section II. That is, they

explicitly model that a user can behave incorrectly or that he

can misinterpret the system’s state.

Both Rukšėnas et al. [24] and Beckert and Beuster [7] only

consider scenarios with a fixed number of agents. In contrast,

our model allows arbitrary many instantiations of the roles and

of untrained humans and supports unbounded verification.

VIII. CONCLUSION

We have formalized security protocols with fallible humans,

mechanized their analysis within the Tamarin tool, and con-

ducted case studies on various authentication protocols. We

demonstrated that our model can be used to analyze what

guidelines must be given for humans to securely execute a

protocol. Such insights can serve as a starting point to priori-

tize the security information that must be given to non-expert

users in practice. We also showed that our model allows us to

make fine distinctions between protocols that were previously

considered equally secure. The consideration of human errors

therefore adds a new dimension to the classification of security

protocols.

There are several directions for future work and we highlight

two of them. First we have formalized guidelines for rule-

based humans that have proven useful for our case studies.

Nevertheless, other guidelines are conceivable. However, to

develop and compare guidelines, we must first find useful

evaluation criteria.

Second we have presented two approaches for human error

analysis based on skilled and rule-based humans. However,

most humans do not neatly fit into one of these types. A more

realistic human error model should consider the combination

of the skilled and rule-based approaches. However, such a

model dramatically increases the number of possible system

behaviors and we must therefore find strategies to cope with

the resulting verification complexity.
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APPENDIX

A. Formal Security Properties

We now formally define all the security properties we used.

As in Lowe [17], we use the actions Running(A,B,m) and

Commit(A,B,m) to denote that a non-human agent A has

certain beliefs about her apparent communication partner B
and about the message m.

Entity authentication of an agent H to another agent S
holds if whenever S commits to H , H has taken some action

between the start of S and the claim. This corresponds to the

recent aliveness property of Cremers and Mauw [11].

Definition 2. A protocol model R satisfies the entity authen-

tication property if

∀tr ∈ TR(R), S,H,m, tr′, tr′′ :
tr = tr′·Commit(S,H,m) · tr′′

⇒ ∃tr1, tr2, i, l, P,m2 : tr′ = tr1 · tr2 ∧Start(S, i) ∈ tr1∧
(Send(H, l, P,m2) ∈ tr2 ∨ Receive(H, l, P,m2) ∈ tr2

∨ Fresh(H,m2) ∈ tr2 ∨ Start(H,m2) ∈ tr2).

For the special case of authenticating a human H to a server

S, we define device authentication. Under the assumption that

H has exclusive access to a device D and always carries D
on him, this property holds if: whenever S commits to H ,

the device D that belongs to H has performed some action

between the start of S and the claim. To denote that the

device D belongs to the human H , we introduce the action

Device(H,D).

Definition 3. A protocol model R satisfies the device authen-

tication property if

∀tr ∈ TR(R), S,H,m, tr′, tr′′ :
tr = tr′·Commit(S,H,m) · tr′′

⇒ ∃tr1, tr2, D, i, l, P,m2 : tr′ = tr1 · tr2∧
Start(S, i) ∈ tr1 ∧ Device(H,D) ∈ tr′∧

(Send(D, l, P,m2) ∈ tr2 ∨ Receive(D, l, P,m2) ∈ tr2

∨ Fresh(D,m2) ∈ tr2 ∨ Start(D,m2) ∈ tr2).

We define message authentication from a human H to

another agent S as: whenever S commits to H and to a

message m, then H has previously sent the message m.

More specifically, H could have sent m as part of a larger,

concatenated message. To denote this, we use the function 	H
as introduced in Section IV-C.
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Definition 4. A protocol model R satisfies the message

authentication property if

∀tr ∈ TR(R), S,H,m, tr′, tr′′ :
tr = tr′·Commit(S,H,m)· tr′′

⇒ ∃l, P, t′,m′, t : Send(H, l, P, 〈t′,m′〉) ∈ tr′

∧ 〈t′,m′〉 	H 〈t,m〉.
We define a weaker form of Lowe’s [17] data agreement.

Weak data agreement between two non-human agents S and R
on a message m holds if: Whenever S commits to a message

m, there is an agent R that has previously claimed Running
with respect to the same m.

Definition 5. A protocol model R satisfies the weak data

agreement property if

∀tr ∈ TR(R), S,R′,m, tr′, tr′′ :
tr = tr′·Commit(S,R′,m)· tr′′

⇒ ∃R,S′ : Running(R,S′,m) ∈ tr′.

Note that even though S can be sure that there is an agent

R with which he agrees on the value of m, he need not know

who R is. We say agent S knows with whom he has a weak

data agreement if the same property holds and the Running
claim is performed by the agent R to which S commits.

Definition 6. A protocol model R satisfies the weak data

agreement property and agent S knows with whom he has
an agreement if

∀tr ∈ TR(R), S,R,m, tr′, tr′′ :
tr = tr′·Commit(S,R,m)· tr′′

⇒ ∃S′ : Running(R,S′,m) ∈ tr′.

Finally, for secrecy we define two new actions: The action

Secret(S,m) is a claim that denotes that the agent S
believes the message m to be secret. The action K(m) denotes

that the adversary knows the message m. Secrecy holds if

whenever an agent S believes that the message m is secret,

the adversary has not learned the message m.

Definition 7. A protocol model R satisfies the secrecy prop-
erty if

∀tr ∈ TR(R), S,m : Secret(S,m) ∈ tr ⇒ K(m) /∈ tr.

B. Remaining Untrained Human Rules

In Section IV-A, we presented the untrained-human rules

for generating fresh facts and storing them in the human’s

knowledge, as well as for sending and receiving facts over

insecure channels. We now present the remaining untrained-

human rules. Figure 9 depicts the untrained-human rules for

sending and receiving facts over channels that are secure

(Rules (HR4) and (HR5)), authentic (Rules (HR6) and (HR7)),

and confidential (Rules (HR8) and (HR9)). The only differ-

ences are the kind of In and Out facts in the premise and

conclusion, respectively. All In and Out facts have the same

[!HK(H, 〈t, x〉)] Send(H,sec,P,〈t,x〉)−−−−−−−−−−−−→
[Outsec(〈H,P, 〈t, x〉〉)] (HR4)

[Insec(〈P,H, 〈t, x〉〉)] Receive(H,sec,P,〈t,x〉)−−−−−−−−−−−−−−→
[!HK(H, 〈t, x〉)] (HR5)

[!HK(H, 〈t, x〉)] Send(H,auth,P,〈t,x〉)−−−−−−−−−−−−−→
[Outauth(〈H,P, 〈t, x〉〉)] (HR6)

[Inauth(〈P,H, 〈t, x〉〉)] Receive(H,auth,P,〈t,x〉)−−−−−−−−−−−−−−−→
[!HK(H, 〈t, x〉)] (HR7)

[!HK(H, 〈t, x〉)] Send(H,conf,P,〈t,x〉)−−−−−−−−−−−−−→
[Outconf(〈H,P, 〈t, x〉〉)] (HR8)

[Inconf(〈P,H, 〈t, x〉〉)] Receive(H,conf,P,〈t,x〉)−−−−−−−−−−−−−−−→
[!HK(H, 〈t, x〉)] (HR9)

Fig. 9: Untrained-human rules for sending messages to and

receiving messages from secure, authentic, and confidential

channels.

structure: The first argument A denotes the sender, the second

argument B the receiver, and the third one the message m
with its tag t.

C. Tags

We formally define how tags are assigned to the terms in

the protocol specification. We only need the tags to denote the

human’s interpretation of messages. A human can only con-

catenate messages and split concatenated messages. Therefore,

we define a tagging function that gives an interpretation to the

messages that are part of a larger concatenated term.

First, we define a function t(m) that assigns a tag to every

atomic message m. That is, every public and fresh constant

as well as every variable and function symbol is assigned a

unique tag. We then inductively define tags for composed mes-

sages as follows. Whenever a message consists of a function f
applied to arguments a1, ..., an, the message’s tag consists of

the tag for the function symbol f concatenated with the tags

of a1, ..., an. We then map the resulting concatenated tags to

public constants. Finally, we define the function Tag(m). If

the top level function of a message m consists of a pairing

function with arguments m1 and m2, then the final tag of m
is a pair consisting of the tags of m1 and m2. Whenever the

top level function is not a pair, the message is tagged with the

public constant as previously defined.

Formally, we first choose an injective function t(m) : Σ ∪
X → L that assigns a unique term from the countably infinite
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set of tags L to every symbol in Σ and X . Then we inductively

define the injective function T (m) : TΣ(X)→ L∗ as follows.

T (m) =

⎧⎪⎨
⎪⎩
t(m) if m ∈ Σ ∪X

t(f)·T (a1)· ...·T (an) if m = f(a1, ..., an),

f ∈ Fsym , ai ∈ TΣ(X).

This function assigns to every term m a sequence of tags.

Since L∗ and Cpub are countably infinite sets, there is an

injective function i : L∗ → Cpub . We define preTag(m) :
TΣ(X) → Cpub as a composition of the functions i and T .

Finally, we construct an injective function

Tag(m) : TΣ(X)→ TCpub∪{pair}(X)

such that Tag(m) satisfies the equation Tag(〈m1,m2〉) =
〈Tag(m1), Tag(m2)〉. The construction is given by

Tag(m) =

{
〈Tag(m1), Tag(m2)〉 if m = 〈m1,m2〉
preTag(m) otherwise.

D. Case Study Protocols

We now provide more details on the protocols used in

Section VI. As already stated, in all the protocols a human

H wants to authenticate to a server S. For this purpose he

has access to a platform P and exclusive access to a personal

device D. Moreover, idH is always the human’s identity, pw
a password, and otpw a one-time password that is freshly

generated in each run. Recall, that when not stated otherwise,

we assume the channels between H and P as well as the

channels between H and D to be secure. Further, we model a

TLS connection between P and S by assuming that the first

message from P to S is sent on a confidential channel and

the subsequent messages on a secure channel.

A variation of the protocol Cronto can be used for transac-

tion authentication. We call this version Cronto_MA because

we examine if it satisfies the message authentication property.

In all the other protocols, depicted in Figures 12–15, m
denotes the message that we have explicitly added to examine

message authentication (see Section VI-B2). This means that

in the original versions of the protocols m is empty.

All the protocols except for Phoolproof start with the human

entering his identity and the name of the server he wants to

contact on the platform P . Afterward, P relays the identity of

H to the server S.

1) Cronto: In this protocol, shown in Figure 10, the server

shares a secret key kDS with the device. After having received

the human’s identity, the server S generates a fresh nonce

r and encrypts it with kDS in the form of a cryptogram. S
then sends the cryptogram to P where it is displayed for the

human. The human uses the device D to scan the cryptogram.

We assume that the scanning of the graphic is done over a

secure channel from P to D. D decrypts the cryptogram with

the known key and computes a one-time password from the

retrieved r that it displays to the human. H then enters the

one-time password together with his password on P , which

relays it to S.

0. H : knows(D,P, S, pw, idH)
0. D : knows(H, kDS)
0. S : knows(H,D, pw, idH, kDS)
1. H •−→• P : S, idH
2. P ◦−→• S : idH
3. S •−→• P : fresh(r).senc(r, kDS)
4. P •−→• D : senc(r, kDS)
5. D •−→• H : otpw(r)
6. H •−→• P : pw, otpw(r)
7. P •−→• S : pw, otpw(r)

Fig. 10: Protocol Cronto

0. H : knows(D,P, S,m, idH)
0. D : knows(H, kDS)
0. S : knows(H,D, idH, kDS)
1. H •−→• P : idH, S,m
2. P ◦−→• S : idH,m
3. S •−→• P : fresh(r).senc(〈r,m〉, kDS)
4. P •−→• D : senc(〈r,m〉, kDS)
5. D •−→• H : m, otpw(r,m)
6. H •−→• P : otpw(r,m)
7. P •−→• S : otpw(r,m)

Fig. 11: Protocol Cronto_MA

Cronto_MA, depicted in Figure 11, denotes the version of

the protocol that can be used for transaction authentication.

The human H first enters his identity idH , the server S
he wants to contact, and a message m on the platform P .

Afterward, P relays idH and m to the server S and S
computes a fresh nonce r. In contrast to Cronto for entity

authentication, Figure 10, S computes the cryptogram over

both the nonce r and the message m. The result is again sent

to P and scanned with the device D, which decrypts it. The

one-time password that D computes next also contains the

nonce r and the message m that H sent. D displays the one-

time password together with m to H . H checks if it is the

right m and if it is he enters otpw on P which relays it to S.

2) Google 2-Step: Figure 12 depicts Google’s two-factor

authentication. Upon being contacted by the platform P of

the human H , the server S generates a fresh code c. The code

is then sent to the device D, for example by SMS, i.e., by text

0. H : knows(P,D, S, pw,m, idH)
0. D : knows(H)
0. S : knows(H, pw,D, idH)
1. H •−→• P : S, idH, pw,m
2. P ◦−→• S : idH,m
3. S ◦−→• D : fresh(c).c,m
4. D •−→• H : c,m
5. H •−→• P : S, c
6. P •−→• S : c, pw,m

Fig. 12: Protocol Google 2-Step
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0. H : knows(D,P, S,m, idH)
0. D : knows(H)
0. S : knows(H,D, idH)
1. H •−→• P : S, idH,m
2. P ◦−→• S : idH,m
3. S ◦−→• D : fresh(otpw).otpw,m
4. D •−→• H : otpw,m
5. H •−→• P : otpw
6. P •−→• S : m, otpw

Fig. 13: Protocol OTP over SMS

0. H : knows(D,P, S, pw,m, idH)
0. D : knows(H,S, skD, idH, pk(skS))
0. S : knows(H,D, idH, pw, skS, pk(skD))
1. H •−→• D : S,m
2. D •−→• P : S
3. P ◦−→◦ S : ‘hello’
4. S ◦−→◦ P : fresh(chall).chall, sign(chall, skS)
5. P •−→• D : chall, sign(chall, skS)
6. D •−→• P : idH,m, sign(〈idH, chall,m〉, skD)
7. P ◦−→• S : idH,m, sign(〈idH, chall,m〉, skD)
8. H •−→• P : pw, idH
9. P ◦−→• S : idH,m, pw

Fig. 14: Protocol Phoolproof

message. We assume a confidential SMS channel. In the final

steps, the human reads the code from the device, enters it on

P , and P sends the code and the password to the server.

3) OTP over SMS: Figure 13 models the protocol OTP
over SMS in which the server S sends a one-time password to

the human’s device D. Bonneau et al. [8] do not describe a

specific protocol that they have in mind but rather say that one-

time passwords can be used in different ways. Among others,

it is pointed out that they can be used as a second factor.

If we use a one-time password as a second factor, together

with a normal password, the protocol closely resembles the

Google 2-Step protocol. For this reason, we chose to model a

protocol that uses a one-time password as a single factor. We

model the one-time password by a random nonce otpw that

the server S freshly generates in each protocol run. otpw is

sent to the device D over an SMS channel, which we assume

to be confidential. otpw is then displayed on the device for

the human. Finally, the human enters otpw on the platform,

from where it is sent to the server.

4) Phoolproof: Figure 14 depicts Phoolproof, the only

protocol we examine that does not start with the human telling

his platform to which server he wants to connect. Instead, the

human selects on his device D the server S from a list of

registered servers. The device then communicates this choice

to the platform P , over a Bluetooth channel, which we assume

to be secure. Next, the platform P sends a ‘hello’ message to

0. H : knows(pw, P,D, S, idH)
0. D : knows(H,S, skD,OK)
0. S : knows(H,D, pk(skD), pw, idH)
1. H •−→• P : S, idH, pw
2. P ◦−→• S : idH, pw
3. S •−→• P : ‘record’, pk(skD)
4. S •−→• D : ‘record’
5. P, D : fresh(r)
6. P •−→• S : fresh(k).senc(〈S, r〉, k),

aenc(k, pk(skD))
7. S •−→• D : senc(〈S, r〉, k), aenc(k, pk(skD))
8. D •−→• S : OK

Fig. 15: Protocol Sound-Proof

the sever S. We assume that the communication between

P and S is first insecure and then, from Step 7 onwards,

confidential from P to S, which models the start of the TLS

connection. Upon receiving the initialization message from P ,

S sends a signed challenge chall over P to D. D then signs

the identity of the human idH and the challenge chall and

sends idH , together with the signature, back to S, again via

P . Finally, the human enters his password and idH on P and

P relays it to the server.

5) Sound-Proof: Recall that the idea of Sound-Proof, shown

in Figure 15, is to authenticate a human H who logs into

platform P by measuring if his device D is in the proximity

of P . The measurement of whether D and P are at the same

location is done by measuring ambient noise. In a setup phase

prior to protocol execution, the human H registers his device.

For this reason, S knows which device D belongs to H and

also knows D’s public key. In the setup phase, the application

on D is also bound to the user’s account on the server S. We

therefore assume that D and S know each other and model the

TLS connection between S and D with secure channels. After

the server S receives from P the identity and the password

from the user, S sends a ‘record’-command to both the device

and the platform. S also sends the public key of D to P . It is

assumed that no one can be in the same location as P and D.

We therefore model the ambient noise by a fresh nonce that is

only given to the platform and the device. P then encrypts the

measured information r and S with a fresh symmetric key k.

Further, P encrypts k with the public key of D. The encrypted

messages are sent, over the server S, to D. Finally, D decrypts

the measurement r and compares it to the measurement it

previously made. In the actual protocol, D accepts and sends

an OK message to the server if the measurements are roughly

the same. In our model, we require that D receives the same

nonce that it previously stored. An advantage of the protocol

is that it reduces the overhead for the human of having to

interact with the device.
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