
Analysis of Key Wrapping APIs:
Generic Policies, Computational Security

Guillaume Scerri
University of Bristol

Bristol, United Kingdom
Email: guillaume.scerri@bristol.ac.uk

Ryan Stanley-Oakes
University of Bristol

Bristol, United Kingdom
Email: ryan.stanley@bristol.ac.uk

Abstract—We present an analysis of key wrapping APIs with
generic policies. We prove that certain minimal conditions on
policies are sufficient for keys to be indistinguishable from
random in any execution of an API.

Our result captures a large class of API policies, including both
the hierarchies on keys that are common in the scientific litera-
ture and the non-linear dependencies on keys used in PKCS#11.
Indeed, we use our result to propose a secure refinement of
PKCS#11, assuming that the attributes of keys are transmitted
as authenticated associated data when wrapping and that there
is an enforced separation between keys used for wrapping and
keys used for other cryptographic purposes.

We use the Computationally Complete Symbolic Attacker
developed by Bana and Comon. This model enables us to obtain
computational guarantees using a simple proof with a high degree
of modularity.

I. INTRODUCTION

A cryptographic API is an interface between a user and
some trusted hardware, such as an HSM or a cryptographic
token. These are deployed in insecure environments where the
user’s machine (or the user herself) may be compromised.
The cryptographic operations are performed inside the trusted
hardware, keeping sensitive data such as secret keys out of
reach of the host machine. One widely-used cryptographic API
is PKCS#11, which is described in a cryptographic standards
document consisting of hundreds of pages [OAS15].

Many cryptographic APIs, including PKCS#11, allow key
management commands such as key wrapping, the encryption
of one key under another to facilitate secure key transport.
Unfortunately, numerous key recovery attacks on PKCS#11
have been found, many of which exploit key wrapping com-
mands that are explicitly authorised by the policy in the stan-
dard [Clu03], [DKS08], [DKS10]. Indeed, these attacks have
been replicated on real cryptographic tokens that implement
PKCS#11 [BCFS10].

Key management APIs are widely deployed, but the attacks
on PKCS#11 demonstrate the dangers of not rigorously defin-
ing an API and its security properties. This led to the develop-
ment of a number of formal models for key management APIs
that have appeared in the scientific literature. However, these
existing models have a number of important shortcomings that
we describe below.

One weakness of the existing work is that proofs of API
security typically depend on a particular choice of API security

policy. A key management API policy specifies how keys can
be used. For example, the policy should determine which keys
may be used to wrap a particular key. Many of the attacks on
PKCS#11 exploit weaknesses in the policy. For example, the
PKCS#11 policy allows keys to be used for both wrapping
other keys and decrypting data. Therefore, an adversary can
request the decryption of a wrap and receive a sensitive key
in the clear. Nevertheless, there has so far been no generic
analysis of key management policies themselves, where one
gives conditions on the policy, rather than describing it in
full, and proves that these conditions are sufficient to prevent
attacks. Instead, previous security proofs for API designs
have specified a particular policy for their particular design
and proved some security property of the API with this
policy [CC09], [CS09], [KSW11]. There have been type-based
analyses of APIs that allow for more general statements, but
these works only prove security against key recovery (not that
keys are indistinguishable from random) and do not consider
the effect of key corruption [CFL13], [AFL13].

Not analysing generic policies is an important gap in the
literature: poor policy design results in devastating attacks that
are easy to implement, but there are no general results on
what constitutes a valid policy. Proprietary APIs are likely to
implement their own policies, not the particular ones that have
been used in API designs in the academic literature. Providing
a generic framework for evaluating policies gives the ability
to analyse both the API designs already in use and any future
designs that might appear.

A different kind of policy, not considered at all in pre-
vious analyses of key management APIs, is a high-level
key management policy, independent of the choice of key
management API, that must be enforced by any API. For
example, consider the use of cryptographic tokens in a large
enterprise, where employees have a position in a hierarchy.
Suppose the enterprise sees employees near the bottom of
the hierarchy as more likely to be compromised than those
higher up, so the high-level key management policy on keys
is simply that the compromise of keys for employees lower
down the hierarchy should not compromise keys higher up.
To enforce this, the API policy would need to prevent keys of
lower-ranked employees being used to wrap keys of higher-
ranked employees. We call the high-level key management
policy the enterprise security policy to reflect this example,

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Guillaume Scerri. Under license to IEEE. 281

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Guillaume Scerri. Under license to IEEE.

DOI 10.1109/CSF.2016.27

281

but in general an enterprise policy could be a complicated,
non-linear relationship between different components of the
organisation1. Since previous analyses in the literature make
no link between API policies and enterprise policies, it is
unclear how a security property proved for a key management
API is sufficient for the security needs of the users of the API.

Typically, analyses of key management APIs are strongly
tied to specific assumptions about cryptographic mechanisms,
and the security proofs only hold under these assumptions.
For example, while Kremer, Steel and Warinschi give an API
design with strong computational security guarantees, their
proof relies on the assumption that key wrapping is determin-
istic and that wraps are unforgeable and indistinguishable from
random strings [KSW11]. It is not clear how making different
assumptions on the wrapping mechanism would affect the
proof. The same can be said for the API design by Cachin
and Chandran, whose security definition, and hence the proof
of security, is very closely tied to the design of the API and the
specific cryptographic security notions assumed for the primi-
tives used by the API [CC09]. Kremer, Künnemann and Steel
also make restrictive assumptions about the wrapping primitive
used by their key management functionality, namely that
it is deterministic and has Key-Dependent Message (KDM)
security [KKS13]. All of these results only verify the security
of a particular key wrapping API with a particular policy and
a particular wrapping mechanism. Additionally, the proof in
the paper by Kremer, Künnemann and Steel is in the GNUC
framework. This means that the security notion used for key
management should compose naturally with the security of
other functionalities offered by a cryptographic API, but this
composability comes at the cost of having a complex model
and a proof that is hard to verify.

The Cortier-Steel and Cortier-Steel-Wiedling APIs allow
arbitrary terms to be processed by the API and only have
one type of encryption for, in particular, both keys and data
[CS09], [CSW12]. As input, their APIs can take a term
representing the encryption of a key, together with some data
encrypted under another key. This is intended for running
complex cryptographic protocols without ever having to give
the value of keys to an untrusted machine. This is a desirable
design for cryptographic APIs, however it is far from what is
implemented in practice (in particular, what is implemented in
PKCS#11).

The Cortier-Steel API uses a very rich policy that describes
relationships between agents, but this policy is expressible us-
ing our simple definition of policy. The Cortier-Steel-Wiedling
API additionally attaches timestamps to keys so that their
validity can change over time. This allows for an API that
recovers after corruption. We do not consider the issue of time
here, and leave such an extension as future work. Finally, both

1As another example, suppose an organisation has a CEO (A), a CFO (B),
an HR Manager (C) and a Product Designer (D). D is lower-ranked than
B and C, who are equally-ranked and lower-ranked than A. If C’s trusted
hardware is compromised, and hence C’s secret keys are compromised, then
one might expect the company’s employee data to be compromised, but not the
company’s financial data. Both (respectively, neither) sets of data are expected
to be compromised if A (resp., D) is compromised.

these works perform their proofs in the Dolev-Yao model. In
this respect the computational guarantees we give in this paper
are strictly stronger.

We improve on existing work in a number of ways: we
avoid specifying a particular API policy; we use an approach
that is modular with respect to cryptographic assumptions; we
prove strong, computational security guarantees with a proof
that is easy to verify and we parameterise our definition of
API security by the security needs of the users of the API.
Ultimately, our result is significantly more general, and our
proof is significantly more modular, than in previous analyses
of key management APIs. We can verify the security, with
respect to different enterprise security policies, of a wide
variety of key wrapping APIs with different policies and
different wrapping mechanisms.

In the next subsection we outline our results.

A. Our Contribution

We view a cryptographic API as the composition of a key
wrapping API that carries out key wrapping, and an external
API that carries out other cryptographic operations. All keys
stored by the API are called using a public handle, and each
handle has an associated attribute that is either internal or
external, referring to the intended use of the key pointed to
by the handle. The key wrapping API will reject calls to wrap
under keys with external attributes, and the external API will
reject calls to carry out the other cryptographic operations
using keys with internal attributes.

Our security goal for a key wrapping API is that external
keys are indistinguishable from freshly generated keys, even
after being wrapped and unwrapped using internal keys. As
we exemplify in Section VII, this notion of security for key
wrapping APIs is sufficient to preserve the security of the other
cryptographic operations carried out by the external API.

We remark that indistinguishability from random is impos-
sible to achieve for any key that can be used for wrapping2

so the key wrapping API will need to enforce the separation
between internal and external keys. While we assume the API
does not explicitly allow attributes to be changed from external
to internal, it is possible that an adversary could implicitly
change the attribute of a key by wrapping and unwrapping
it, giving it a new handle and possibly a new attribute. It is
therefore necessary to use a secure AE-AD scheme to wrap
keys, so that the wrapping mechanism binds the attributes of
the wrapped key to the ciphertext.

From now on, unless stated otherwise, we will use the
term API to refer to the key wrapping API inside a larger
cryptographic API, since this is the main focus of our analysis.

An API has a security policy, or simply policy, that de-
termines whether one key can be used to wrap another. This
policy is not simply how the API ought to behave, but rather
the actual rules for wrapping implemented in the code of the
API.

2There is a trivial distinguishing attack in this case: the distinguisher creates
a wrap under the true key, then attempts to decrypt this wrap using its
challenge key.

282282

We analyse a generic key wrapping API in which the
security policy is not fixed. That is, rather than choosing a
particular policy as is done elsewhere in the literature, we leave
it underspecified and find conditions on the policy that are
sufficient for secure key management. While previous works
conflate two roles of policies - defining the actual internal
behaviour of the API and defining what properties are expected
from the API - we clearly separate these roles into the API
security policy and the enterprise policy, respectively, and
determine when the former is sufficient to satisfy the latter.

Furthermore, our API design does not insist on a particular
wrapping mechanism. Unlike other API designs, the wrapping
mechanism can be implemented in a variety of ways without
affecting our security theorem or its proof - in particular,
both deterministic and randomised wrapping mechanisms are
supported. As with the policy, we specify conditions on
the security of the mechanism, capturing confidentiality and
integrity, that are sufficient for the security of the API.

Our approach gives strong, computational guarantees but
with a simple proof in the symbolic model that holds under a
number of different computational assumptions.

Now we detail some of the key technical aspects of our
result.

STRONG SECURITY GUARANTEES. We prove that certain
minimal conditions on the policy and the wrapping mechanism
are sufficient to guarantee the secrecy of external keys. We
prove security in a strong, cryptographic sense, namely that
external keys are indistinguishable from random keys, even in
the presence of powerful Probabilistic Polynomial-time Turing
machine (PPT) adversaries. We additionally prove that com-
posing a secure key wrapping API with a secure encryption
scheme results in a secure cryptographic API where users are
able to wrap keys and encrypt data. As an application, we
propose a secure refinement of PKCS#11, forbidding certain
attribute combinations and forcing the wrap mechanism to be
a secure AE-AD scheme that correctly transmits the attributes
of wrapped keys.3

GENERIC POLICIES. We assume the existence of an enter-
prise security policy and an API security policy but do not fix
either one. The enterprise policy is specified as relationships
between the attributes of keys. Intuitively, these relationships
determine how the compromise of keys will propagate. Then
we give conditions that say whether or not the security policy
of an API is valid with respect to the enterprise security policy;
simply separating internal and external keys is not enough for
security. For example, suppose the enterprise security policy
says that the key k1 is of a higher security level than k2. Then
a valid API security policy will not allow k1 to be wrapped
under k2 since, if k2 is compromised, a wrap of k1 under k2
is insecure, leading to the trivial compromise of k1.

MODULAR PROOF. We use the Computationally-Complete
Symbolic Attacker for equivalence properties (CCSA), de-
veloped by Bana and Comon in 2014 [BC14]. This model

3We are aware that this is likely to be far from what is currently
implemented on real-world cryptographic tokens running PKCS#11-compliant
APIs. Our result should be viewed simply as guidance for future token designs.

uses symbolic formalism to prove meaningful, computational
security statements. Proofs in this model are easy to verify, es-
pecially compared to the cryptographic proofs like those found
in [CC09], [KSW11] and [KKS13]. In CCSA one expresses
assumptions (on the policy and the wrapping mechanism) as
axioms in first-order logic and deduces the security property
from these axioms. This means that the theorem holds under
any computational assumptions such that the axioms hold,
giving a high degree of modularity.

Informally, our cryptographic axioms say that genuine
wraps of keys are indistinguishable from wraps of fresh,
random keys and that wraps are unforgeable. We prove that
our axioms are sound if the wrapping scheme is built on
an Authenticated Encryption with Associated Data (AE-AD)
encryption scheme; this is a standard requirement in modern,
symmetric cryptography. However, we also prove that the
axioms are sound when wrapping satisfies a deterministic
variant of this notion (i.e. not using random nonces). Since our
proof depends only on the axioms, not on the computational
assumptions, we can obtain results about APIs that use com-
pletely different wrapping mechanisms without any changes
to the proof. One of our conditions for an API policy to be
valid is that it forbids the creation of key cycles. However,
if we assume KDM security for the wrapping scheme as
in [KKS13], then we can relax this condition on the policy
(see Remark 5). This is in contrast to existing works, where
relaxing the assumption on key cycles or the assumption that
encryption is randomised would require substantial changes to
the security proof.

AUGMENTING THE CCSA FRAMEWORK. In previous
works, CCSA has only been applied to cryptographic pro-
tocols. Our work is outside the scope of the original paper
on CCSA since the adversary here has access to oracles
rather than messages between agents in a fixed protocol.
Furthermore, to prove our substantial result, we required novel,
computationally-sound axioms. One such new axiom captures
how a proof can be split into disjoint cases. Our new axioms
can be used in security proofs outside the key management
setting without needing to reprove their computational sound-
ness. In this respect we have augmented the CCSA model.

Another recent work has developed CCSA axioms for
various cryptographic primitives in order to tackle a larger
class of cryptographic protocols [BC16]. Their work developed
axioms and deduced numerous consequences for manipulating
branching and ‘if’ statements in the CCSA model; most of our
core axioms related to these constructions are similar to theirs.
The main difference between our core axioms and those de-
veloped in [BC16] is that our case disjunction axiom is strictly
stronger than theirs, at the cost of a more involved soundness
proof. Our stronger case disjunction axiom is required to deal
with the very rich branching that arises in the context of key-
management.

CAVEATS. We prove security when the number of API
queries made by the adversary is arbitrary but, because of
our reliance on CCSA, this number must be independent of
the security parameter used by the underlying cryptographic

283283

primitives. Nevertheless, all of the attacks found on real APIs
either use a fixed number of queries, as captured by our model,
or are attacks on weak cryptographic primitives (such as in
[BFK+12]) for which our axioms would not be sound.

We accept that our separation of external and internal keys
is difficult to enforce in practice; in particular, the attributes
of keys must be securely bound to the keys when wrapping
(such as with AE-AD) so that external and internal keys
can never be confused. However, this separation enforces a
standard industry practice, as recommended by NIST: “a single
key should be used for only one purpose (e.g., encryption,
authentication, key wrapping, random number generation, or
digital signatures)” [NIS12]. Indeed, most of the API designs
in the literature enforce this separation [CC09], [KSW11],
[CS09], [CSW12].

We remark that our composition theorem in Section VII
only applies to cryptographic APIs with wrap, unwrap, en-
crypt, decrypt and corrupt actions, rather than arbitrary cryp-
tographic primitives. However, the proof is largely independent
of the specific cryptographic game for encryption and would
therefore be easy to adapt to other primitives.

II. KEY WRAPPING APIS

In this Section we define the execution model for a key
wrapping API and the security one should expect of such an
API.

A. Execution Model

We assume the existence of the sets K of keys, H of handles
and D of attributes (data). The set D has a particular subset
E of external attributes. A wrapping mechanism wm consists
of the triple (keygen,wrap,unwrap) of algorithms. The
algorithm keygen takes a security parameter η (in unary)
as input and returns an element of K. We assume that
keygen (1η) always returns a key of length keylen (1η).
The algorithm wrap takes as input a key k ∈ K, an attribute
a ∈ D and a second key k′ ∈ K, and returns wrap (k, a, k′),
the wrap packet of the key k with attribute a under the
key k′. We do not specify how the wrap packet depends
on the attribute of the wrapped key, nor how it uses any
randomness. The algorithm unwrap takes a wrap packet
and a key as input and returns a key and an attribute. Both
wrap and unwrap can have access to the security parameter,
if necessary. We assume that all wrapping mechanisms are
correct, that is, for all keys k, k′ ∈ K and all attributes a ∈ D,
unwrap (wrap (k, a, k′) , k′) = (k, a).

A security policy P is an algorithm that takes two attributes
as input and returns a bit. We make this choice since a policy
ought not to depend on the values of the keys themselves
(otherwise it could leak unintended information about the keys
and would have to be evaluated by the secure hardware, not the
API). We remark that a more general wrapping policy could
use the value of a global clock as an additional argument (to
handle key lifecycles and key revocation, etc.), but we leave
this for future work.

Definition 1. A key wrapping API API is a program param-
eterised by the tuple (K,D, E ,H,wm,P). The API maintains,
in its state st, a map st.val : H → (K ∪ {�}) × (D ∪ {�})
that records the association between handles, which are public
names, and pairs consisting of a key and its attribute. In what
follows, we specify how an adversary interacts with an API.

An adversary, interacting with the API, can request wraps
and unwraps via the handles of keys. If st.val (h) = (�, �)
then we say h is unused in state st. There is also a function
freshhdl that takes a state st as input and returns a handle
freshhdl (st) that is unused in st.

Let st0 be an initial state of the API. Then the initial
configuration of the API is the map val encoded by st0.
An initial configuration is called honest if, for all handles h,
st0.val (h) is either not initialised or initialised with an output
of keygen(1η). Intuitively, this corresponds to a device
with honestly generated keys already present. From now on,
all key wrapping APIs are assumed to have honest initial
configurations. This assumption is reflected in the generation
of the initial state of APIs in the experiment used to define
security.

Note that we assume that each key has a single attribute.
We will also assume the API does not explicitly allow the
user to change the attribute of a key. These assumptions are
without loss of generality, since any attributes that can be
easily changed by the adversary cannot be used to preserve
meaningful security and so are omitted from this discussion.
Note that any “attributes” irrelevant to security can be encoded
in the state and we simply do not allow the policy to depend
on these. Furthermore, if a key could be generated without an
attribute, then the attribute would need to be fixed before the
key could be used and so we merely assume for convenience
that this decision takes place before the key is generated.

Intuitively, if a key’s attribute belongs to E then that key
is intended to protect data, as opposed to other keys. Our
security goal will be that external keys (keys with attributes in
E) remain indistinguishable from random after being managed
by the API and therefore are ideal for cryptographic use. Note
that this goal is impossible to achieve for any keys used for
key wrapping, since an adversary can distinguish the real key
from a random key by attempting to unwrap with its test key.

Even though separating external and wrapping keys might
seem restrictive, as soon as a wrapping key can also be used
for decryption, keys can be recovered by the adversary (as
demonstrated in [BCFS10]). Therefore such a separation must
be enforced by any secure policy. While we only consider here
the wrapping module used by cryptographic APIs, in Section
VII we give a formal argument that a secure key wrapping
API can be composed with an encryption scheme without
undermining the security of the encryption scheme, assuming
this separation of key roles.

There are three actions that a user can perform in its inter-
action with a key wrapping API: wrapping, unwrapping and
corruption. Obviously, the corruption action is not intended
to be implemented on real APIs, but is used here to reason

284284

about the security of APIs in the presence of an adversary who
can obtain the values of particular keys, for example through
side-channel attacks.

When a key is corrupted, we add its attribute to a list
of corrupted attributes. We settle for recording corrupted
attributes rather than corrupted keys as, by construction, every
key with the same attribute has the same capabilities. In
other words, if one corrupts a key with attribute a, every
key that can be wrapped by a key with attribute a will be
compromised, irrespective of exactly which key was corrupted.
It is therefore enough to log that some key with attribute a has
been corrupted. As a consequence, if one wants to distinguish
the corruption of two keys, these keys should be given different
attributes.

A fully-specified action is an action (wrap, unwrap or
corrupt), together with the handles of the keys relevant to the
action. Fully-specified actions define the execution of the API.
Formally, if A is a fully-specified action of the API, then A
is an element of one of the sets {W (h1, h2) | h1, h2 ∈ H},
{U(h) | h ∈ H} or {C(h) | h ∈ H}. Obviously the unwrap
action will require an additional argument corresponding to
the ciphertext to be unwrapped, but the value of this argument
does not determine the overall structure of the API execution
(as it could depend on some random coins) and so it is not
considered part of the fully-specified action U(h).
• If A = W (h1, h2), then the API computes (k1, a1) ←

st.val (h1) and (k2, a2)← st.val (h2). If k1, k2 6= � and
P (a1, a2) = 1, then the API returns wrap (k1, a1, k2).
Otherwise, the API returns �.

• If A = U (h1), then the API takes an additional in-
put x from the user, computes (k1, a1) ← st.val (h1)
and (k2, a2) ← unwrap (x, k1). If k2, a2 6= � and
P (a2, a1) = 1, then st.val (freshhdl(st)) ← (k2, a2).
Otherwise, st.val (freshhdl (st))← (�, bad) where bad
is a particular attribute (used to denote handles that are
not fresh, but do not point to a key). In either case,
freshhdl (st) is returned to the user.

• If A = C (h1), then the user is asking to learn the
value of the key pointed to by h1. The API computes
(k1, a1)← st.val (h), does not carry out any checks, and
returns k1. By definition, if h is unused in st then the API
returns �. For our security property, the state maintains
a list of corrupt attributes. Therefore, for this action, the
API updates its state as follows: st.cor← {a1}∪st.cor.

B. Security

We consider three objectives of an adversary in its exe-
cution of a key wrapping API. First, an adversary may try
to learn (part of) the value of an external key, in order to
compromise a cryptographic scheme using this key in the
wider cryptographic API. Second, the adversary may try to
change the attributes of a key (external or otherwise), in order
to circumvent the security policy. Third, the adversary may try
to import its own keys in order to wrap with these keys. The
second and third objectives can be combined: the adversary
succeeds in either objective if there is a handle pointing to a

key, attribute pair that was not pointed to by a handle in the
initial configuration of the API (either because the key is new,
or the attribute of an honestly generated key has changed).

We consider an API to be secure if and only if no adversary
can achieve these objectives with uncompromised handles.
That is, if a handle is uncompromised and it points to an
external key, then that key cannot be distinguished from a
random key; we call this the key secrecy property. Furthermore,
any uncompromised handle must point to a key, attribute pair
from the initial configuration of the API; we call this the
handle consistency property.

What is meant by calling a handle compromised (or uncom-
promised) is that, for example, an organisation might consider
keys assigned to lower-status employees compromised if the
keys of senior management are compromised, but not vice-
versa. This is an example of an enterprise security policy. So,
given the list of attributes of keys lost via the corrupt action,
the enterprise security policy determines which handles are
compromised according to their attributes. We formalise this
below.

In general, we model an enterprise security policy by a
sacrifice function sacr : D → P (D). Intuitively, the set
sacr(a) should be thought of as the set of attributes of keys
compromised as a result of compromising a key with attribute
a. This has nothing to do with the use of the API; it is a pre-
existing relationship between attributes that the API needs to
respect, by not allowing the compromise of keys to propagate
beyond what is specified by the sacrifice function.

We assume without loss of generality that a ∈ sacr(a) for
all a ∈ D and that sacr is transitive in the following sense:
if a ∈ sacr(b) and b ∈ sacr(c) then a ∈ sacr(c).

The sacrifice function is derived from the existing rela-
tionships between users of the API. The example enterprise
security policy given above, where compromise propagates
down the employee hierarchy (but not up), would be cap-
tured by giving an ordering < on attributes and putting
sacr(a) = {a′ ∈ D | a′ ≤ a} for all a ∈ D. A more refined
enterprise security policy would separate the organisation into
departments and say that the compromise of keys must not
propagate across different departments. In this case, one would
partition the set of attributes into classes (Di) and, for each i,
put sacr(a) = {a′ ∈ Di | a′ ≤ a} for all a ∈ Di.

There could be a very conservative enterprise security
policy, where the compromise of a key does not compromise
any other keys. In this case, each key would have a unique
attribute and sacr(a) = {a} for each attribute a. We will see
that the only APIs secure for this sacrifice function are ones
that disable key wrapping altogether.

Now we formalise the notion of compromise, which follows
easily from the sacrifice function and the list of corrupt
attributes.

Definition 2. If a ∈ st.cor then we say a is a corrupt attribute
in state st. If a is corrupt in state st and a′ ∈ sacr(a), then
we say a′ is a compromised attribute in state st.

If st.val(h) = (k, a) and a is a corrupt (respectively,

285285

compromised) attribute in state st, then we say h is a corrupt
handle (respectively, compromised handle) in state st.

We have two security experiments, capturing the secrecy of
uncompromised keys and the consistency of uncompromised
attributes.

Our security experiments take an adversary A, integers
m and n and attributes a1, . . . , an as input. The handles
h1, . . . , hn are initialised with randomly generated keys and
the attributes a1, . . . , an. The integer m is the exact number
of oracle queries that A makes in either experiment.

In both security experiments, the adversary has access to
three oracles capturing the wrap, unwrap and corrupt actions
of the API. There is also a fourth test oracle, which may only
be queried once, whose behaviour depends on a bit b. The
adversary submits a handle and, if b = 0, the oracle returns the
key pointed to by this handle. If b = 1, a new key is randomly
generated and returned to the adversary. When performing this
test query, the API checks that the attribute of the submitted
handle is external and has not been compromised. After the
test query has been made, the API checks that any corrupt
query does not compromise the tested handle.

If the tested handle is compromised at the end of the key
secrecy experiment, or its attribute is not external, then the
output of this experiment is a random bit. Otherwise, the
output of the experiment is the output of the adversary.

In the handle consistency experiment, the output of the
experiment is 1 if, once the adversary has given its output,
the state of the API contains an uncompromised handle that
points to a key, attribute pair not in the initial configuration
of the API. Otherwise, the output of the experiment is 0.

The formal description of the security experiments are given
in Figures 1 and 2.

Oracle Owrap (x1, x2):
st.C ← st.C + 1
If st.C > m Return �
(k, a)← st.val(x1)(
k′, a′

)
← st.val(x2)

If k, k′ 6= � and P
(
a, a′

)
Return wrap

(
k, a, k′

)
Return �

Oracle Ounwrap (x1, x2):
st.C ← st.C + 1
If st.C > m Return �
(k, a)← st.val(x1)(
k′, a′

)
← unwrap(x2, k)

h← freshhdl(st)
st.H ← st.H ∪ {h}
If k′ 6= � and P

(
a′, a

)
st.val(h)←

(
k′, a′

)
Else st.val(h)← (�, bad)
Return h

Oracle Ocorrupt (x1):
st.C ← st.C + 1
If st.C > m Return �
(k, a)← st.val(x1)
If st.T ∈ sacr (a)

st.V ← ⊥
st.cor← {a} ∪ st.cor
Return k

Oracle Otest
b (x1):

If st.C > m or st.T 6= ⊥ Return �
(k, a)← st.val(x1)
k′←$ keygen (1η)
If a /∈ E then st.V ← ⊥
For c ∈ st.cor

If a ∈ sacr (c) then st.V ← ⊥
st.T ← a
If b = 0 Return k
Return k′

Figure 1. Wrap, Unwrap, Corrupt and Test Oracles

Definition 3. Let API = (K,D, E ,H,wm,P). We say the API
is secure if, for all integers m and n, all ~a ∈ Dn and all
polynomial-time adversaries A, the following advantages are

Experiment ExpKEYSEC
b (A, a1, . . . , an,m):

st.C ← 0
st.T ← ⊥
st.V ← >
st.cor← []
For 1 ≤ i ≤ n
ki←$ keygen (1η)
st.val (hi)← (ki, ai)

st.H ← {h1, . . . , hn}
Ob ←

(
Owrap,Ounwrap,Ocorrupt,Otest

b

)
b′ ← AOb (1η)
If st.V = > Return b′

b′′←${0, 1}
Return b′′

Experiment ExpHDLCON (A, a1, . . . , an,m):
b← 1
st.C ← 0
st.T ← ⊥
st.V ← >
st.cor← []
st.val0 ← []
For 1 ≤ i ≤ n
ki←$ keygen (1η)
st.val (hi)← (ki, ai)
st.val0 ← st.val0 ∪ {(ki, ai)}

st.H ← {h1, . . . , hn}
Ob ←

(
Owrap,Ounwrap,Ocorrupt,Otest

b

)
x← AOb (1η)
For h ∈ st.H

(k, a)← st.val(h)
If (k, a) 6∈ st.val0

If for all ac ∈ st.cor, a /∈ sacr (ac)
Return 1

Return 0

Figure 2. Key Secrecy Experiment b and Handle Consistency Experiment

both negligible functions of η:

AdvKEYSEC
APIm (A) := Pb

[
ExpKEYSEC

b (A,~a,m) = b
]
− 1

2

AdvHDLCON
APIm (A) := P

[
ExpHDLCON (A,~a,m) = 1

]
III. STATEMENT OF THE MAIN THEOREM

In this Section we define the class of valid API security
policies, recall the definition of a secure AE-AD scheme and
state the main theorem of the paper: if a key wrapping API
uses a secure AE-AD scheme for its wrapping mechanism and
its security policy is valid, then the API is secure.

There are three conditions required of the API policy. First,
we require that if a key with attribute a can be wrapped
under a key with attribute a′, then the enterprise security
policy should say that the compromise of a key with attribute
a′ compromises keys with attribute a. This is a reasonable
assumption as any wrap under a key with attribute a′ will no
longer provide any security for the key with attribute a.

Second, we require that the policy forbids wrapping under
external keys. This enforces the separation between keys used
by the API and keys protected by the API.

Finally, we require that valid policies forbid the creation of
key cycles. This is necessary, since standard security notions
for encryption do not imply security in the presence of key
cycles (see e.g. [CGH12]).

Definition 4. Let P be an API security policy. We say P is
valid with respect to the sacrifice function sacr if:

286286

• For all a, a′ ∈ D, if P (a, a′) = 1, then a ∈ sacr (a′).
• For all a ∈ D and e ∈ E , P (a, e) = 0.
• The policy graph, i.e. the graph on D where there is an

edge a → a′ if and only if P (a′, a) = 1 (if and only if
a key with attribute a can be used to wrap a key with
attribute a′), is acyclic.

Remark 5. This definition of a valid policy is minimal since,
if any of the conditions are not met, then attacks are possible:

1) If the first condition is false, then it is possible to create
a wrap of a key k such that corrupting the wrapping
key does not compromise the handle pointing to k. So
k is an uncompromised key (according to the enterprise
policy) that is trivially distinguishable from random.

2) If the second condition is false, then there is an external
key k such that the adversary can create a wrap under k
and then try to decrypt the wrap with its challenge key.

3) The third condition is necessary since standard notions
of encryption security do not imply security in the
presence of key cycles. We could remove this condition
and show that the key wrapping APIs are still secure, if
we assume KDM security for the wrapping mechanism.
In this case, we would simply weaken the constraint on
the secrecy axiom to permit key cycles (see Section V),
prove the soundness of this axiom (by slightly modifying
the soundness proof of the original axiom) and then
the proof of the symbolic security property from the
axioms (Section VI) would need only minor changes to
accommodate the new constraint.

Even though the above definition captures a large class
of sensible security policies, it is all we need in order to
prove that a key wrapping API is a secure API, provided that
the wrapping mechanism is built using either a (randomised)
secure AE-AD scheme, as defined in [Rog02] or a Determin-
istic Authenticated Encryption scheme as in [RS06]. We refer
to these as randomised and deterministic AE-AD schemes,
respectively. We recall these security notions here:

A triple Π = (keygen,enc,dec) is called a randomised
(resp. deterministic) Secure Authenticated Encryption with
Associated Data (AE-AD) scheme if:
• Π is correct, i.e. for all messages m, data a, nonces r and

all k←$keygen (1η), dec (enc (m, a, r, k) , a, r, k) =
m (where nonces are ignored in the deterministic case),

• Π is private, i.e. no PPT adversary can distinguish
between an encryption oracle and an oracle returning
random strings of the appropriate length,

• Π is authenticated, i.e. given access to an encryption
oracle, no PPT adversary may produce triples (c, a, r)
(or pairs (c, a) in the deterministic case) that decrypt
successfully but where the c was not output by the
encryption oracle.

Full definitions are provided in the long version of the pa-
per [SSO16].

Now we state the main Theorem of this paper.

Theorem 1. Let API = (K,D, E ,H,wm,P) be a key wrap-

ping API and let Π = (keygen,enc,dec) be a secure
deterministic or randomised AE-AD scheme. Suppose wm =
(keygen,wrap,unwrap) where wrap, on input (k, a, k′)
generates a fresh nonce r and returns the wrap packet
(enc (k, a, r, k′) , a, r) and unwrap, on input (w, k), parses
w as (c, a, r) and returns dec (c, a, r, k). Then, if P is valid
with respect to sacr, the key wrapping API is secure.

Remark 6. The hypotheses of this theorem are minimal. By
Remark 5, a valid policy is necessary to prevent attacks. Fur-
thermore, without assuming AE-AD security for the wrapping
mechanism, or some other way of securely binding attributes
to keys when wrapping, the first two attacks given in Remark 5
are still possible: the adversary simply wraps a key and
unwraps it with new attributes, circumventing any restrictions
given by the policy.

In order to prove Theorem 1, we define symbolic APIs,
using the language of CCSA, in Section IV. We give axioms
in Section V and prove these axioms sound under the assump-
tions of Theorem 1. In particular we give axioms that are
sound for both secure deterministic and randomised AE-AD
schemes. Therefore, due to the computational soundness of
CCSA, if one can show that a symbolic security property is
implied by the axioms, then the corresponding computational
security property holds in any computational API where the
wrapping mechanism is as in Theorem 1.

In Section VI, we show that the axioms entail the symbolic
security properties corresponding to the security definition
given in Definition 3. This proves Theorem 1.

IV. SYMBOLIC MODEL AND SOUNDNESS

To prove Theorem 1, we cast our problem in the setting
of the computationally complete symbolic attacker model
(CCSA) from [BC14]. The CCSA allows one to abstract away
a lot of the complexity of the usual computational models, yet
it entails computational guarantees.

In CCSA, we model the capabilities of an adversary as
a list of first-order axioms that cannot be broken by any
PPT adversary with non-negligible probability. For example,
a secrecy property for encryption could be expressed as the
formula {x}k ∼ {y}k, meaning that no PPT adversary can
distinguish an encryption of x from an encryption of y. This
is in contrast to Dolev-Yao style symbolic models where one
has to fully specify the abilities of the attacker as a finite list
of inference rules.

A security property in CCSA is expressed as the indistin-
guishability of two lists of terms, which is itself written as a
formula in first-order logic. For example, if φ is the list of
terms output to the adversary by the API where h points to
(k, a) in the initial state, and φ′ is where h points to (k′, a),
then the key secrecy property could be written φ ∼ φ′4. One
then proves that the axioms entail the security property. In
other words, an adversary can perform any action that does

4In fact, our key secrecy property is more complicated than this, since we
need to specify that h is uncompromised.

287287

not contradict the axioms, but still cannot break the security
property.

Assigning a Turing Machine to each of the function symbols
used in a symbolic API is called a computational inter-
pretation of the symbolic API. For example, the function
symbol {_} could be interpreted as the encryption algorithm
enc. A computational model of the symbolic API is a
computational interpretation where certain function symbols
have fixed interpretations. For example, in a computational
model, the function symbol EQ is interpreted as the machine
that outputs 1 if its two inputs are equal (and outputs 0
otherwise). Crucially, the predicate symbol ∼ is interpreted
as computational indistinguishability of bitstrings. That is,
the formula x1, . . . , xn ∼ y1, . . . , yn is interpreted as the
statement that no polynomial-time adversary can distinguish
the interpretations of x1, . . . , xn from the interpretations of
y1, . . . , yn.

In a computational model, each axiom is interpreted as a
statement about Turing Machines. If the statement is true, then
we say the axiom is sound in this model. Let A be a set of
axioms. The computational soundness theorem for CCSA says
that if A → φ ∼ φ′ then, in any computational model where
the axioms in A are sound, the computational interpretations
of the terms φ and φ′ are indistinguishable: no polynomial-
time adversary can distinguish them. In an API, the sequences
of terms φ and φ′ output by the API will depend on the inputs
of the (active) distinguishing adversary, and these inputs are
modelled using free function symbols gi; one must prove that
φ ∼ φ′ regardless of the interpretation of the symbols gi.

The axiomatic approach of CCSA gives an inherent modu-
larity to the model. In our case, we are able to specify only
the properties of the API security policy that are necessary,
rather than describing the whole policy, since these properties
correspond to the axioms used in the proof. Thus, at no extra
cost, we prove the security of multiple instantiations of key
wrapping APIs.

A. Symbolic Execution

In CCSA, protocols5 have a fixed structure: it is known a
priori what messages are expected at what stage (and therefore
what checks to carry out before returning a message, and
so on). In our computational API, even though the number
of oracle queries is constant in the security parameter, the
adversary may query its oracles in any order. Each possible
order of queries induces a different sequence of output terms
from the symbolic API. The order does matter, since the inputs
from the adversary (in particular, the inputs to the unwrap
oracle) depend on the previous outputs seen by the adversary
so far. Therefore we have to fix a sequence of oracle queries,
obtaining a restricted computational API, and reason about
the output terms of the symbolic API corresponding to this
restricted computational API. Fixing a list of actions is not

5The authors of [BC14] use the term protocols, but we will use their
model to describe APIs. Having fixed a list of API oracle queries, we obtain
a transition system that behaves like a protocol as described in [BC14].
Therefore we use ‘protocol’ and ‘API’ interchangeably.

a significant restriction; we show in the long version of the
paper [SSO16] how the computational security definition given
in Section II reduces to the security of every possible restricted
computational API.

We now give the language needed to describe the symbolic
API.

Terms are built over the sets F of function symbols, G of
free adversarial function symbols and N of names. The set
of all terms is written T := T (F ,G,N). Syntactic equality
of the terms t and t′ is written t ≡ t′. Every term has a
sort. Within the sort message, there are subsorts key, nonce,
longnonce, handle, attribute and bool. Names have sort key,
nonce, longnonce, handle or attribute. There is a particular
name bad of sort attribute. The set F is described in Figure 3.

• Constants: true, false, fail
• Conditional branching: if _ then _ else _
• Logical operators: _ ∧ _, _ ∨ _, ¬_
• Pairing and projections: (_, _), π1 (_), π2 (_), π3 (_)
• Encryption and decryption: enc (_, _, _, _), dec (_, _, _, _)
• Equality test: wf (_), EQ (_, _)
• Random string: $ (_, _)
• Policy check: P (_, _)

Figure 3. Functions

We remark that certain function symbols above, e.g. the
boolean operators and the projections have obvious intended
meanings. We formalise these intended meanings either as
fixed computational interpretations in Section IV-C, or give
assumptions on these interpretations, which are reflected as
axioms, in Section V. This means that for functions like
encryption that have more than one natural implementation,
we permit any implementation satisfying the assumptions.

We introduce some abbreviations for ease of notation. We
will write [b]x : y for (if b then x else y) and [b]x for
(if b then x else fail). This notation is extended to lists of
terms in the natural way: if ~v ≡ v1, . . . , vn and ~w ≡
w1, . . . , wn, then [b]~v : ~w ≡ [b]v1 : w1, . . . , [b]vn : wn.

We write {m}rk,a ≡ (enc (m, a, r, k) , a, r). This is just for
convenience: when unwrapping, the adversary must submit a
ciphertext, some associated data and a nonce to the API and
we prefer to express this triple as a single term called the wrap
packet. In the case of deterministic encryption, the nonce will
simply be ignored. Furthermore, we write

triple (x) ≡ EQ (x, (π1(x), π2(x), π3(x)))

uwp (x, k) ≡ [triple (x)] dec (π1(x), π2(x), π3(x), k)

This is so, when the adversary submits a wrap packet to uwp,
one checks that this packet is a triple (x′, x′′, x′′′) and, if so, its
components are taken for the inputs to dec. We use wf(x) ≡
¬EQ (x, fail) to test whether terms (in particular, ciphertexts)
are well-formed.

The set G consists of infinitely many function symbols
gi : messagei → message for each i ≥ 0, corresponding
to the computation of the adversary on the terms it has seen
previously.

288288

Subterms are defined naturally as the internal components
of terms, and st(x) denotes the set of subterms of x. Positions
of subterms within terms are defined as usual.

Formulae may be built over terms using predicate symbols.
There is a predicate symbol ∼i for each natural number i;
each may be used between lists of i terms. We abbreviate
x1, . . . , xi ∼i y1, . . . , yi by x1, . . . , xi ∼ y1, . . . , yi. We use
the symbols ¬,∨,∧,→ to construct compound formulae as
normal, but these should not be confused with the function
symbols used to operate on terms of sort bool. For example,
b→ b′ is a term of sort bool, whereas (b ∼ b′)∧ (b′ ∼ b′′)→
(b ∼ b′′) is a (compound) formula.

We assume that each state q of a symbolic API is labelled
by the fully-specified actions used to reach it from the initial
state q0. Then, given an initial configuration valq0 : H →
(K ∪ {fail})×(D ∪ {fail}), we can recover the function valq :
H → message by modifying valq0 in the manner described
below. For convenience of notation, we write kq(h) and aq(h)
for π1 (valq(h)) and π2 (valq(h)) respectively.

We remark that valq is an inherent property of the state
q of the API and not a function symbol to be interpreted in
a model: valq(h) will always be instantiated by a particular
term of sort message, intended to be a key, attribute pair.

Finally we recall that, upon successfully unwrapping, the
adversary is given a handle that points (via val) to the result
of the unwrap. The new handle is determined by a function
freshhdl that takes a state as input and returns a handle that
is unused in state q, in the sense that valq(freshhdl(q)) ≡
(fail, fail). Again, this function depends on the internal state of
the API (in particular on valq) and not on the interpretation: in
each state q, freshhdl(q) will be instantiated by a particular
handle and the freshhdl symbol will not appear in the terms
output to the adversary.

Security properties in CCSA are expressed as the indistin-
guishability of sets of terms. We use the language introduced
above to describe the sets of terms that will correspond to our
key secrecy and handle consistency properties.

First, assume we are given a list of fully-specified actions
A1, . . . ,Am. This list induces a state transition system q0 →
q1 → · · · → qm as follows:
• The adversary’s initial knowledge, φ0, is the set of pairs
{(hj ,aq0(hj)) | 1 ≤ j ≤ m}.

• In state qi, the adversary has executed the actions
A1, . . . ,Ai−1 and received the list of terms φi. Then
φi+1 := φi; s where s is the output from the next action
Ai, described below.

If Ai = W(h1, h2), then

s ≡ [P (aqi(h1),aqi(h2))] {kqi(h1)}rkqi (h2),aqi (h1)

where r, a name of sort nonce used to indicate the (fresh)
randomness of the wrapping scheme, occurs in no other output
terms. The state qi+1 is such that valqi+1

= valqi .
If Ai = U(h), then

s ≡ [wf (u) ∧ P (π2 (gi (φi)) ,aqi(h))] freshhdl (qi)

where u ≡ uwp (gi (φi) ,kqi(h)). The state is updated as
follows: if h′ 6≡ freshhdl (qi) then valqi+1(h′) ≡ valqi(h

′)
and, with u as above,

valqi+1 (freshhdl (qi))

≡ [wf (u) ∧ P (π2 (gi (φi)) ,aqi(h))]

(u, π2 (gi (φi))) : (fail, bad) ,

where bad ∈ D is a fixed attribute such that sacr (bad) =
{bad}.

If Ai = C(h), then s ≡ kqi (h) and qi+1 is such that
valqi+1

= valqi . Note that if h does not point to a key in
state qi, then s ≡ fail.

We remark that these output terms correspond to the API
execution model in Section II.

B. Symbolic Security

In order to define the symbolic security properties, we
define the symbolic analogues to the notions of corrupt and
compromised attributes and handles introduced in Section II.
We remark that, if the function symbols EQ, ∨ and ∧ are
interpreted in the obvious way (which we will later insist
on), the following symbolic definitions are equivalent to the
computational definitions given previously.

Definition 7. Let q ∈ Q. Let C(H) be the set of handles h
such that the action C(h) occurred in the transitions q0 →
· · · → q. Then let x ∈ T . We say x is a corrupt attribute in
state q if corq (x) ∼ true, where

corq (x) ≡ EQ (x, bad) ∨
∨

h∈C(H)

EQ (x,aq (h)) .

Then for any y ∈ T \H we say y is a compromised attribute
in state q if compq(y) ∼ true, where

compq(y) ≡
∨
a∈D

∨
b∈sacr(a)

corq(a) ∧ EQ (y, b) .

Recall that a ∈ sacr(a) for any a ∈ D and, if b ∈ sacr(a)
and c ∈ sacr(b), then c ∈ sacr(a). With the axiom
EQ(x, x) ∼ true (which is obviously computationally sound
for any term x if EQ is interpreted as equality of bitstrings),
we can show that if a is a corrupt attribute in q, then a is a
compromised attribute in q and if a is compromised in q and
b ∈ sacr(a), then b is compromised in q.

Definition 8. Let q ∈ Q and h ∈ H. We say h is a
compromised handle in state q and write compq(h) if and
only if aq(h) is a compromised attribute in q.

By convention, bad is a corrupt attribute in any state. We
can now state the symbolic version of security, and hence the
symbolic version of our main Theorem. This Theorem states
that that, given a handle h∗ pointing to an external key k∗, the
output φ∗ of an API execution in which h∗ is not compromised
is indistinguishable from the output of the same execution but
in which h∗ points to a key k† not appearing in φ∗. Moreover
this is true even if the adversary is given k∗ in plaintext at

289289

the start of both executions. Additionally, we require that any
uncompromised handle points to an honestly generated key
together with the attribute that key had in the initial state.

Theorem 2. Let API = (K,D, E ,H,wm,P) be a key manage-
ment API such that P is valid with respect to sacr and the ax-
ioms of Section V are sound. Say valq∗0 (h∗) = (k∗, a∗) where
a∗ ∈ E . Let q†0 be identical to q∗0 except that valq†0

(h∗) =(
k†, a∗

)
, where k† is a key not appearing in φ∗ (in particular

k† 6= k∗). Finally, let t be a sequence of fully-specified actions
inducing the API executions (q∗0 , (k

∗, φ0)) → · · · → (q∗, φ∗)
and (q†0, (k

∗, φ0)) → · · · →
(
q†, φ†

)
. Then the following

security properties hold:
1) key secrecy:

[
¬compq∗ (h∗)

]
φ∗ ∼

[
¬compq† (h∗)

]
φ†

2) handle consistency:

φ†,¬compq†(h)→
∨
h0∈H

EQ(valq†(h),valq†0
(h0))

∼ φ†, true

In order to relate this symbolic theorem to the computational
security properties, we recall the computational interpretation
of the logic from [BC14].

C. Computational Interpretation

To express the computational semantics of functions and
predicates, we fix the computational interpretation of some
functions. For example, the function EQ is supposed to express
semantic equality, but without any restrictions it could be
interpreted by any Turing machine and it would be effectively
impossible to reason about it. Therefore we give fixed interpre-
tations for certain symbolic objects and define a computational
model to be any model satisfying our restrictions. Crucially,
there is a great deal of freedom in how a computational model
interprets the adversarial function symbols gi ∈ G, so that all
realistic attacks (i.e. those that run in polynomial-time and do
not have access to the internal randomness of the API) can be
captured by computational models. Once these interpretation
of terms are defined, the interpretation of the formula ~x ∼ ~y
is simply that no PPT adversary can distinguish between the
interpretation of ~x and the interpretation of ~y.

Intuitively, we ensure that the encryption and decryption
symbols are interpreted as (possibly deterministic) authen-
ticated encryption and decryption algorithms and we also
enforce some straightforward restrictions on pairs, projections,
equality and boolean symbols. Details can be found in the
long version of the paper [SSO16]. If the computational
interpretation of a formula holds for any interpretation (with
the aforementioned restrictions) of the function symbols, we
say that this formula is sound.

Given these restrictions on the computational interpretation,
we show that Theorem 2 entails Theorem 1. First we show that
we can reduce the security game to the case of a single list
of actions and then further reduce to when the test handle is
chosen at the start of the execution. Details are provided in
the long version of the paper [SSO16].

V. AXIOMS

As in [BC14], we define axiom schemes γ ‖ θ(~v) where
γ is a constraint and ~v is the vector of free variables in the
formula θ. This is the set of all instances θ(~v)σ where σ is an
assignment of the free variables ~v to ground terms, and is such
that σ |= γ. For example, we define a constraint fresh(r; ~w)
such that σ |= fresh(r; ~w) if and only if r does not occur in
~wσ.

In this Section we give our axioms A. We use θ(~v) as a
shorthand for true ‖ θ(~v) (i.e. axioms that are satisfied in any
assignment of the free variables in ~v).

A. Basic Properties

In Figure 4 we give basic axioms, mostly proposed
in [BC14]. These state that ∼ forms an equivalence relation on
sets of terms, together with some essential properties of equal-
ity and conditional branching. In particular, we make regular
use of the axiom ~v, [EQ(x, y)]u(x) : z ∼ ~v, [EQ(x, y)]u(y) :
z. The soundness proof of the basic axioms not already present
in [BC14] can be found in the long version of the paper
[SSO16]. We remark that Axiom 9 can be immediately derived
from axiom IFEVAL in [BC16].

z1, [true]x : y, z2 ∼ z1, x, z2 (1)

z1, [false]x : y, z2 ∼ z1, y, z2 (2)

for f : s1 × · · · × sn → s
~v1, x1, . . . , xn ∼ ~v2, y1, . . . , yn

→ ~v1, f(x1, . . . , xn) ∼ ~v2, f(y1, . . . , yn)
(3)

~x ∼ ~x (4)

~x ∼ ~y → ~y ∼ ~x (5)

~x ∼ ~y ∧ ~y ∼ ~z → ~x ∼ ~z (6)

If p projects and permutes onto a sublist,
~x ∼ ~y → p (~x) ∼ p (~y) (7)

EQ(x, x) ∼ true (8)

~v, [EQ(x, y)]u(x) : w ∼ ~v, [EQ(x, y)]u(y) : w (9)

For c ∈ {true, false, fail} ∪ D ∪H
x ∼ c↔ ~v, x ∼ ~v, c (10)

Figure 4. Basic axioms

We now state an important lemma that allow us to talk about
semantic equality of terms.

Lemma 9. (Rewriting With Equalities) EQ(x, y) ∼ true if
and only if ~v, x ∼ ~v, y for any sequence of terms ~v. That is,
EQ(x, y) ∼ true if and only if x and y are indistinguishable
in any context.

This Lemma follows from the basic axioms. The complete
proof can be found in the long version of the paper [SSO16].
We remark that this Lemma, seen here as a consequence of
the axioms, also follows immediately from axiom EQCONG
in [BC16].

Remark 10. Since EQ(x, y) ∼ true means we can replace
x by y everywhere, we use the notation x = y in this

290290

case. This considerably simplifies long formulae, but one must
note the distinction between syntactic equality x ≡ y, which
means that x and y are the same terms from T , and semantic
equality x = y, which means that x and y are (possibly)
different terms representing, up to a negligible probability,
the same underlying object. Obviously by the computational
interpretation of EQ, if x ≡ y then x = y.

Function symbols applied to terms of sort bool in the
symbolic model behave exactly as the corresponding opera-
tions on the booleans {0, 1} in the computational model. We
state the corresponding axioms in Figure 5 and prove them
sound in the long version of the paper [SSO16]. Note that
the boolean axioms described here could be easily derived
from the ones in [BC16], given a proper axiomatisation of the
logical connectives.

As a consequence of these axioms, we can manipulate terms
of sort bool within sets of terms in an intuitive way. We use
this manipulation regularly, without citing particular axioms,
in the proof of the symbolic theorem in Section VI.

b = [b]true : false (11)

x = [b]x : x (12)

[b1] ([b2]u : v) : w = [b1] ([b1 → b2]u : v) : w (13)

[b1]u : ([b2]v : w) = [b1]u : ([¬b1 → b2]v : w) (14)

• For any f : s1 × · · · × sn → s and for any ~v ≡ v1, . . . , vn and
~w ≡ w1, . . . , wn with each vi, wi ∈ si,

f ([b]~v : ~w) = [b]f(~v) : f(~w) (15)

• Let f1 (X1, . . . , Xn) , f2 (Y1, . . . , Ym) be boolean functions
(propositional terms built using the connectives {¬,∧,∨,→}
and with n and m propositional variables, respectively). If
f1(X1, . . . , Xn)⇔ f2(Y1, . . . , Ym),

f1 (b1, . . . , bn) = f2 (b1, . . . , bm) (16)

Figure 5. Boolean axioms

We state the following as an example of the kind of formal
deduction that is possible:
Example 11. The formula b1 → b2 = [b1] b2 : true is valid in
any model for the axioms previously listed.

Next we present an axiom that is non-trivial and has not
appeared in the literature before. The new axiom is used to
prove a formula ~v1, u1 ∼ ~v2, u2 by splitting it into multiple
cases. In order for this strategy to work, the cases must form,
with overwhelming probability, a perfect partition of the space
of possibilities. This is formalised in the following definition:

Definition 12. Let I be a finite indexing set such that
(
bi
)
i∈I

is a family of terms of sort bool. If the formula∨
i∈I

bi ∧
∧

i,j∈I,i6=j

¬
(
bi ∧ bj

) = true

holds, then we say
(
bi
)
i∈I is a partition.

We remark that if
(
bi
)
i∈I is a partition, then, with over-

whelming probability, there is exactly one i ∈ I such that

q
bi

yσ
η,ρ

= 1.
If
(
bi1
)
i∈I and

(
bi2
)
i∈I are partitions (with the same index-

ing set), then we define the case disjunction axiom:∧
i∈I

(
~v1, b

i
1, [b

i
1]u1 ∼ ~v2, bi2, [bi2]u2

)
→ ~v1, u1 ∼ ~v2, u2 (17)

As we prove in the long version of the paper [SSO16], this
axiom is sound in all computational models.

B. Cryptographic Axioms

The core of the proof relies on axioms representing our
cryptographic assumptions. To our knowledge, these axioms
have not appeared in this form before, but the soundness proofs
closely resemble others in the literature.

In Section V-C, we present some logical consequences of
these axioms that are what we actually use in the symbolic
proof.

The randomised version of the strong secrecy axiom states
that if an encryption key k appears in a sequence of terms in
essentially the way described in the AE-AD Privacy game -
only as an encryption key and never with the same nonce
for different plaintexts (and associated data) - then every
encryption under k can be replaced with a random string
(derived from a term of sort longnonce) while preserving in-
distinguishability. We formalise the constraint on k as follows:

Let the constraint enckey(k;~v) be true if and only if the
following conditions are satisfied:
• In ~v, the term k only appears in the position of an

encryption key with a term of sort nonce in the position
of the nonce and a term of sort attribute in associated
data position,

• If two encryptions under k appearing in ~v share the same
term in the position of the nonce, then the terms in the
plaintext and associated data positions are also identical.

Given a sequence of terms ~v, let $k (~v) be the sequence of
terms obtained by replacing every encryption enc (m, a, r, k)
under k appearing in ~v with a term $ (enc (m, a, r, k) , r′),
where r′ is a fresh term of sort longnonce that is indexed by
the encryption term. Indexing the long nonces this way means
that, if the same encryption term appears more than once in
~v, then it is replaced with the same random string in $k (~v).

When encryption is randomised, using fresh nonces in the
encryption terms ensures that ciphertexts created at different
times will not collide (up to a negligible probability). So
encryptions created at different times can be replaced by
different random strings, regardless of the underlying plaintext,
without an adversary being able to distinguish the change. We
do not have this guarantee when encryption is deterministic:
encryptions of the same message (i.e. wraps of the same
key) created at different times will give the same ciphertexts
and must be replaced by the same random string. So for the
deterministic version of our strong secrecy axiom, instead of
replacing all encryptions under k at once we only replace
the encryptions of a particular term. In addition we need to
check in the premise of the axiom that the computational

291291

interpretation of this term is different to the interpretations
of other (syntactically different) terms encrypted under k. For
example, the encryption of π1 (x, y) will need to be replaced
by the same random string as the encryption of x, even though
the plaintexts are syntactically different.

Let us define $dk(~v,m, a) as the sequence of terms obtained
by replacing every encryption enc(m, a, r, k) under k appear-
ing in ~v with a term $ (enc(m, a, r, k), r′), where r′ is a fresh
term of sort longnonce that is indexed by (m, a, k). Note that
r′ must not depend on r as, in the deterministic interpretation
of encryption, r is ignored.

• Strong Secrecy of Wrapping (randomised):

enckey(k;~v) ‖ ~v ∼ $k (~v) (18)

• Strong Secrecy of Wrapping (deterministic):

enckey(k;~v) ‖
∧

{m′}rk,a∈ st(~v)

m′ 6≡m

(
EQ(m,m′)

)
= false

→ ~v ∼ $dk(~v,m, a) (19)

• Integrity of Wrapping:

enckey(k;x) ‖

wf (uwp(x, k)) =

wf(x) ∧
∨

{m}r
k,a
∈ st(x)

EQ
(
x, {m}rk,a

) (20)

• Correctness of Wrapping:

uwp
(
{m}rk,a , k

)
= m (21)

• Correctness of Projections:

π1 (x, y, z) = x (22)
π2 (x, y, z) = y (23)
π3 (x, y, z) = z (24)

• Random String Length Consistency: If K ⊆ K

$k
(
0k,A (~v)

)
∼ $k (~v) (25)

• Failure Propagation:

{fail}zx,y = fail = uwp(fail, x) (26)

Figure 6. Cryptographic axioms

Provided that the encryption and decryption symbols are to-
gether interpreted as a secure deterministic (resp. randomised)
AE-AD scheme with some simple correctness assumptions,
the deterministic (resp. randomised) version of these axioms
are sound. We prove this in the long version of the paper
[SSO16].

C. Consequences of the Axioms
While assuming AE-AD security gives us that ciphertexts

are indistinguishable from random strings, we actually require
a significantly weaker result in order to prove the security of
key wrapping APIs: namely, that the encryptions of keys are
indistinguishable from encryptions of fresh random strings (of
the correct length). We call this the weak secrecy axiom.

For this axiom we have to introduce notation for replacing
plaintexts inside encryptions. For a vector of terms ~v, we
denote by 0k,A(~v) the result of replacing any wrap {k′}rk,a ∈
st(~v) with a ∈ A and k ∈ K, by {rk,k′}rk,a where rk,k′ denotes
a fresh key (indexed by (k, k′) in the same way as for $k

and $dk). For example, if ~v ≡ π1
(
{k′}rk,a

)
, {k′′}r

′

k,a′ , {k}
r
k′,a ,

then 0k,{a,a′} (~v) ≡ π1
(
{rk,k′}rk,a

)
, {rk,k′′}r

′

k,a′ , {k}
r
k′,a.

So that the weak secrecy axiom holds for both randomised
and deterministic encryption, we only allow this substitution
for terms where the plaintexts are in fact constants of sort
key (as opposed to more general terms whose computational
interpretations are equal to those of keys). This is the wellused
constraint, formally defined below.

We also prove that the weak secrecy axiom and the integrity
axiom, which hold when a key only occurs in the encryption
key position in a certain set of terms, also hold in a larger class
of terms where the key is usable: as well as encryption key
positions, the key might also occur in the plaintext position of
an encryption, provided that the encryption key is itself usable.
This is the case we will mostly encounter in our proofs. The
formal definition of the usablekey constraint is given below.

• Weak Secrecy of Wrapping:

enckey(k;~v),wellused(a;~v; k) ‖ ~v ∼ 0k,a (~v) (27)

• Usable Secrecy of Wrapping:

usablekey(k;~v),wellused(a;~v; k) ‖ ~v ∼ 0k,a (~v) (28)

• Usable Integrity of Wrap:

usablekey(k;x) ‖

wf (uwp(x, k)) = wf(x) ∧
∨

{m}r
k,a
∈ st(x)

EQ
(
x, {m}rk,a

)
(29)

• Key Freshness:

usablekey(k, t) ‖ EQ(k, t) = false (30)

Figure 7. Consequences of the cryptographic axioms

Definition 13. Let X be a set of terms. For all k ∈ K, we
say k is usable in X – and write usablekey (k;X) – if the
following holds:

1) Either enckey(k;X),
2) or if k appears in a plaintext position p.α in X , then

X|p ≡ {k}rk′,a such that
a) k′ ∈ K is usable in X , a is well used for k′ in X

and r is a term of sort nonce
b) if r occurs in a term {k′′}rk′,a′ ∈ st(X), then k′′ ≡

k and a′ ≡ a.

Definition 14. Let X be a set of terms. We say that
the attribute a is well-used for the key k in X (written
wellused(a;X; k)) if, for every {m}rk,a ∈ st(X), m is a
constant of sort key.

The proof that these axioms are consequences of the previ-
ous cryptographic axioms is proved in the long version of the

292292

paper [SSO16].

D. Policy Axioms

We conclude this Section by giving, in Figure 8, axioms
reflecting the validity of a policy. These axioms are sound
under the conditions of Section III.

As before, there are three criteria: the first is that the policy
respects the sacrifice function, in the sense that if the policy
accepts the pair (x, a), then x must be semantically equal to
an attribute b such that b ∈ sacr(a). The second criterion
is that the policy never allows external keys to be used for
wrapping, so the policy will never accept (x, a) if a ∈ E .
Finally, the policy must forbid the creation of key cycles by
enforcing a strict partial ordering on attributes. Additionally
we give two useful consequences of these axioms, namely
stating that compromise is monotonic in the API execution
and that the compromise function respects the policy. These
axioms are sound as soon as the function implementing the
policy is valid with respect to sacr.

Policy axioms:

for a ∈ D: P(x, a) =

P(x, a) ∧
∨

b∈sacr(a)
EQ(x, b)

 (31)

for a ∈ E : P(x, a) = false (32)

• There exists a strict partial ordering ≺ on D such that:

(P(a, b) = true)→ a ≺ b (33)

Consequences of the policy axioms and the definition of comp:
• If there is a sequence of actions inducing a transition from state q

to state q′: compq(x)→ compq′ (x) = true (34)

• For x, y ∈ T \ H:(
compq(y) ∧ P (x, y)→ compq(x)

)
= true (35)

Figure 8. Policy axioms

VI. PROOF OF THE SYMBOLIC THEOREM

A detailed proof is provided in the long version of the paper
[SSO16]. We provide here an outline of the proof.

Before tackling the main Theorem, we prove that the frames
φ∗ and φ†, which are a priori very complicated sequences of
terms, can be rewritten in a relatively simple form. Let K0 be
the set of honestly-generated keys initially stored by the API.

We start by identifying sets of terms in which keys in K0

appear only as expected:
1) If they are in a plaintext position, then they are protected

by a properly-constructed wrap or known to have a
compromised attribute.

2) If they appear in an unwrap position (which cannot be
simplified using the integrity and correctness axioms),
then they are known to have a compromised attribute.

3) If they appear in a wrapping position, then the key’s
attribute is internal and either the wrap is of a key from
K0 and its corresponding attribute, or the associated data
of the wrap is a compromised attribute.

We remark that – by the policy axioms – uncompromised keys
are usable in such sets.

We then identify a sequence (F i)i∈I of boolean terms, in
which keys in K0 appear as above, that partition the space
of possibilities and give sufficient information to determine
whether or not any given handle or attribute is compromised.
We prove a number of invariants showing that keys in K0

only appear as expected in [F i]φ and [F i]valq(h) and so
uncompromised keys are usable in these terms. Additionally,
we show that under the conditions of the (F i), the internal
state of the API is consistent with its initial configuration.

Since k∗ is uncompromised, the usable secrecy axiom
allows us to remove every instance of it from [F i]φ until we
reach a set of terms where replacing k∗ by k† has no effect.
The main theorem then follows by the case disjunction axiom
(Axiom 17) applied to the partition (F i)i∈I .

VII. COMPOSING KEY WRAPPING WITH OTHER
FUNCTIONALITIES

In this Section we demonstrate how our security property
for a key wrapping API composes with the security of other
functionalities offered by a cryptographic API, provided that
keys used by the other functionalities are external. We will use
encryption (of data, not keys) as an example, but the argument
can be easily adapted for other cryptographic primitives.

First, we define a game in which the adversary interacts
with a key wrapping API and an encryption scheme that uses
the external keys managed by the key wrapping API. For
simplicity, here the algorithms enc and dec used by the
encryption scheme (not the wrapping mechanism) take just
two arguments, the first being the key. Our game is very similar
to the one used to define API security in [KSW11].

The game is parameterised by a handle h∗ pointing to the
key k∗ with external attribute a∗. The adversary has access
to a real-or-random encryption oracle for k∗ and a (genuine)
decryption oracle for k∗. Much as in the real-or-random IND-
CCA game, the adversary tries to guess whether or not the
encryption oracle for k∗ is real, without passing any of its
outputs to the decryption oracle for k∗. But in addition, the
adversary is allowed to wrap and unwrap keys (according to
the policy from the key wrapping API), encrypt and decrypt
as normal under any external key other than k∗. Finally the
adversary may also corrupt any key, provided that they do not
compromise h∗. We formalise this below.

Definition 15. Let API = (K,D, E ,H,wm,P) be a key
wrapping API and let Π = (keygen,enc,dec) be an
encryption scheme. Then we say API′ = (API,Π) is a secure
encryption and wrapping API if, for all integers m and n, all
~a = a1, . . . , an ∈ Dn with a1 = a∗ ∈ E and all polynomial-
time adversaries A, the following advantage is a negligible
function of η:

AdvIND−CCA
API′ (A) := Pb

[
ExpCOMP

b (A,~a,m) = b
]
− 1

2

where the experiments ExpCOMP
b (A,~a,m) for b ∈ {0, 1} and

the new oracles are given in Figures 9 and 10.

293293

Experiment ExpCOMP
b (A, a1, . . . , an,m):

st.C ← 0
st.V ← >
st.cor← []
st.e← []
For 1 ≤ i ≤ n
ki←$ keygen (1η)
st.val (hi)← (ki, ai)

st.H ← {h1, . . . , hn}
(h∗, a∗, k∗)← (h1, a1, k1)
st.T ← a∗

OAPI ←
(
Owrap,Ounwrap,Ocorrupt,Oenc

b ,Odec)
b′ ← AOAPI
If st.V = > Return b′

b′′←${0, 1}
Return b′′

Figure 9. Cryptographic API Security Experiment

Oracle Oenc
b (h,m):

st.C ← st.C + 1
If st.C > m Return �
(k, a)← st.val(h)
If a 6∈ E Return �
If h = h∗

If b
c← enc(k,m)

Else
m′←${0, 1}|m|
c← enc(k,m′)

st.e← st.e ∪ {c}
Return c

Else
Return enc(k,m)

Oracle Odec (h, c):
st.C ← st.C + 1
If st.C > m Return �
If c ∈ st.e then st.V ← ⊥
(k, a)← st.val(h)
If a 6∈ E Return �
Return dec(k, c)

Figure 10. Encryption and Decryption Oracles

We obtain the following composition theorem (the proof is
in the long version of the paper [SSO16]).

Theorem 3. Let API be key wrapping API satisfying the
hypotheses of Theorem 1 and let Π be an IND-CCA secure
encryption scheme. Then API′ = (API,Π) is a secure
encryption and wrapping API.

VIII. APPLICATIONS

A. Refinement of PKCS#11

We view PKCS#11 as the composition of a key wrapping
API and an encryption scheme in the sense of Theorem 3. We
describe a refinement of Version 2.4 of the PKCS#11 standard,
such that this composition is secure in the sense of Theorem 3.
Our refinement is less restrictive and our security guarantees
are stronger than in [Kün15].

The PKCS#11 standard does not make a distinction between
the key management module of a cryptographic token and
its other functionalities [OAS15]. However, as the wrap and
decrypt attack from [BCFS10] demonstrates, not separating
keys for different functionalities can lead to attacks. Therefore
to obtain a secure refinement of PKCS#11 we first forbid the
creation of keys with attributes that can be used for multiple
roles and we do not allow attributes to be modified. We remark
that the standard explicitly supports the use of additional
restrictions on attributes such as these.

Our final additional assumption is that the wrapping mecha-
nism is a secure AE-AD encryption scheme (for example AES-
GCM, supported in PKCS#11 since version 2.4 of the stan-
dard) that binds attributes properly when wrapping. Note that
all our refinements are explicitly permitted by the PKCS#11
specification.

Then, Theorem 3 shows that an IND-CCA secure encryption
mechanism using external keys can be securely combined with
the key management functionalities of PKCS#11. More details
of this analysis can be found in the long version of the paper
[SSO16].

B. The Kremer-Steel-Warinschi API

In this Section we show how our result can be used to
encapsulate security proofs of other computational APIs that
have appeared in the literature. As an example we view the
API in [KSW11] as an instance of a generic API described
by our model and verify its security.

The authors of [KSW11] give a security definition for
APIs with wrapping and encryption mechanisms. As in our
composition result, the adversary is not supposed to distinguish
between real and fake encryptions under a particular challenge
key. The authors go on to describe an example implementation,
in which the wrapping policy is a simple hierarchy on keys
with external keys at the bottom level, and prove its security.
Clearly this is a valid policy according to our definition.
Therefore Theorem 3 subsumes the security proof given for
this particular API design in [KSW11].

IX. CONCLUSION

We give here a general definition of a key wrapping API,
parameterised by a wrapping mechanism and a wrapping
policy. We provide a set of simple conditions for a key
wrapping policy to be valid. Namely, forbidding creation
of wrapping cycles, not allowing wraps under external keys
and respecting the enterprise-level policy. We prove that if,
in addition to these policy conditions, the key wrapping
mechanism is implemented by an AE-AD encryption scheme
and attributes are properly transmitted, the external keys are
indistinguishable from random values.

Our strong secrecy notion for external keys, together with
our generic notion of valid policies, allows us to prove that a
secure key wrapping API may be securely composed with an
encryption scheme. We are then able to give a configuration
of the key wrapping functionality of PKCS#11 such that the
encryption mechanism is as secure as when fresh keys are
used.

Since our proof technique relies on the CCSA from [BC14],
our theorem is derived from a set of relatively minimal
axioms representing computational assumptions. These axioms
are generic enough to be proven sound under a number of
different cryptographic hypotheses, notably deterministic and
randomised variants of authenticated encryption.

One aspect of API policies not captured by this work is
how the roles of keys may change with time, as in [CSW12],

294294

allowing for APIs to recover from the compromise of short-
lived session keys. We believe that our proof technique could
be extended to model time and that our results will generalise
to this setting, but leave this extension as future work.

Ultimately, the hypotheses required for our security proof
- particularly the need to securely bind the attributes of keys
when wrapping - may be far from what currently happens
in practice. Nevertheless, we argue that this assumption is
essential for security, since one must enforce a separation
between keys used for wrapping and keys used for other
primitives. What we offer is a clear blueprint for building
secure key management APIs in the future:

1) Explicitly set out which keys are intended for wrapping
(internal) and which are intended for other uses (exter-
nal) and the intended security relationships between keys
(a sacrifice function).

2) Build an API that uses a secure AE-AD encryption
scheme to bind the attributes of keys to the wraps and
where, when wrapping keys, there is an explicit check
performed on attributes (an API security policy).

3) Verify that the API security policy is acyclic, respects
the sacrifice function and forbids the use of external keys
for wrapping.

In this way, one guarantees that external keys are as secure as
possible.

X. ACKNOWLEDGEMENTS

This work was supported by the European Union’s 7th
Framework Program (FP7/2007-2013) under grant agreement
n. 609611 (PRACTICE) and an EPSRC ICASE award n.
13440011.

The authors would like to thank Bogdan Warinschi, Martijn
Stam and Karthikeyan Bhargavan for their useful feedback on
the paper. The authors would also like to thank the anonymous
reviewers for their valuable comments.

REFERENCES

[AFL13] Pedro Adão, Riccardo Focardi, and Flaminia L. Luccio. Type-
based analysis of generic key management apis. In 2013 IEEE
26th Computer Security Foundations Symposium, New Orleans,
LA, USA, June 26-28, 2013, pages 97–111. IEEE, 2013.

[BC14] Gergei Bana and Hubert Comon-Lundh. A computationally
complete symbolic attacker for equivalence properties. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7,
2014, pages 609–620, 2014.

[BC16] Gergei Bana and Rohit Chadha. Verification methods for the
computationally complete symbolic attacker based on indistin-
guishability. Cryptology ePrint Archive, Report 2016/069, 2016.
http://eprint.iacr.org/.

[BCFS10] Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and
Graham Steel. Attacking and fixing PKCS#11 security tokens.
In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA,
October 4-8, 2010, pages 260–269, 2010.

[BFK+12] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo
Simionato, Graham Steel, and Joe-Kai Tsay. Efficient padding
oracle attacks on cryptographic hardware. In Advances in Cryptol-
ogy - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings, volume
7417 of Lecture Notes in Computer Science, pages 608–625.
Springer, 2012.

[CC09] Christian Cachin and Nishanth Chandran. A secure cryptographic
token interface. In Proceedings of the 22nd IEEE Computer
Security Foundations Symposium, CSF 2009, Port Jefferson, New
York, USA, July 8-10, 2009, pages 141–153, 2009.

[CFL13] Matteo Centenaro, Riccardo Focardi, and Flaminia L. Luccio.
Type-based analysis of key management in pkcs#11 cryptographic
devices. Journal of Computer Security, 21(6):971–1007, 2013.

[CGH12] David Cash, Matthew Green, and Susan Hohenberger. New
definitions and separations for circular security. In Public Key
Cryptography - PKC 2012 - 15th International Conference on
Practice and Theory in Public Key Cryptography, Darmstadt,
Germany, May 21-23, 2012. Proceedings, volume 7293 of Lecture
Notes in Computer Science, pages 540–557. Springer, 2012.

[Clu03] Jolyon Clulow. On the security of PKCS#11. In Cryptographic
Hardware and Embedded Systems - CHES 2003, 5th International
Workshop, Cologne, Germany, September 8-10, 2003, Proceed-
ings, pages 411–425, 2003.

[CS09] Véronique Cortier and Graham Steel. A generic security API for
symmetric key management on cryptographic devices. In Com-
puter Security - ESORICS 2009, 14th European Symposium on
Research in Computer Security, Saint-Malo, France, September
21-23, 2009. Proceedings, pages 605–620, 2009.

[CSW12] Véronique Cortier, Graham Steel, and Cyrille Wiedling. Revoke
and let live: a secure key revocation API for cryptographic de-
vices. In the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages
918–928, 2012.

[DKS08] Stéphanie Delaune, Steve Kremer, and Graham Steel. Formal
analysis of PKCS#11. In Proceedings of the 21st IEEE Com-
puter Security Foundations Symposium, CSF 2008, Pittsburgh,
Pennsylvania, 23-25 June 2008, pages 331–344, 2008.

[DKS10] Stéphanie Delaune, Steve Kremer, and Graham Steel. Formal
security analysis of PKCS#11 and proprietary extensions. Journal
of Computer Security, 18(6):1211–1245, 2010.

[KKS13] Steve Kremer, Robert Künnemann, and Graham Steel. Universally
composable key-management. In Computer Security - ESORICS
2013 - 18th European Symposium on Research in Computer
Security, Egham, UK, September 9-13, 2013. Proceedings, pages
327–344, 2013.

[KSW11] Steve Kremer, Graham Steel, and Bogdan Warinschi. Security
for key management interfaces. In Proceedings of the 24th IEEE
Computer Security Foundations Symposium, CSF 2011, Cernay-
la-Ville, France, 27-29 June, 2011, pages 266–280, 2011.

[Kün15] Robert Künnemann. Automated backward analysis of pkcs#11
v2.20. In Principles of Security and Trust - 4th International
Conference, POST 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015, Proceedings, volume 9036 of
Lecture Notes in Computer Science, pages 219–238. Springer,
2015.

[NIS12] NIST Special Publication 800-57: Recommendation for Key
Management - Part 1: General (Revision 3), July 2012.

[OAS15] PKCS#11 cryptographic token interface base specification ver-
sion 2.40, April 2015. Latest version: http://docs.oasis-
open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data.
In Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS 2002, Washington, DC, USA,
November 18-22, 2002, pages 98–107, 2002.

[RS06] Phillip Rogaway and Thomas Shrimpton. Deterministic authenti-
cated encryption: A provable-security treatment of the key-wrap
problem. In Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, St. Petersburg, Russia, May 28 -
June 1, 2006, Proceedings, volume 4004 of Lecture Notes in
Computer Science, pages 373–390. Springer, 2006.

[SSO16] Guillaume Scerri and Ryan Stanley-Oakes. Analysis of key wrap-
ping apis: Generic policies, computational security. Cryptology
ePrint Archive, Report 2016/433, 2016. http://eprint.iacr.org/.

295295

