
Runtime Verification of k-Safety Hyperproperties in

HyperLTL

Shreya Agrawal

School of Computer Science

University of Waterloo, Canada

Email: s8agrawa@uwaterloo.ca

Borzoo Bonakdarpour

Department of Computing and Software

McMaster University, Canada

Email: borzoo@mcmaster.ca

Abstract—This paper introduces a novel runtime verification
technique for a rich sub-class of Clarkson and Schneider’s
hyperproperties. The primary application of such properties is in
expressing security policies (e.g., information flow) that cannot be
expressed in trace-based specification languages (e.g., LTL). First,
to incorporate syntactic means, we draw connections between
safety and co-safety hyperproperties and the temporal logic
HYPERLTL, which allows explicit quantification over multiple
executions. We also define the notion of monitorability in HYPER-

LTL and identify classes of monitorable HYPERLTL formulas.
Then, we introduce an algorithm for monitoring k-safety and co-
k-safety hyperproperties expressed in HYPERLTL. Our technique
is based on runtime formula progression as well as on-the-fly
monitor synthesis across multiple executions. We analyze different
performance aspects of our technique by conducting thorough
experiments on monitoring security policies for information flow
and observational determinism on a real-world location-based
service dataset as well as synthetic trace sets.

I. INTRODUCTION

Cybersecurity is an area of information technology where
dependability plays a crucial role. This is because even a
short transient violation of security policies may result in
leaking private or highly sensitive information, compromising
safety, or lead to the interruption of vital public or social
services. In order to ensure that computing systems rigorously
respect their security policies, numerous formal methods have
been developed, most notably, different inference frameworks
(e.g., [1]), as well as model checking [2], [3], [4], [5] and
theorem proving techniques [6].

While exhaustive verification methods are extremely valu-
able, they often require developing an abstract model of the
system and may suffer from the infamous state-explosion
problem. Runtime verification (RV) refers to a technique where
a monitor checks at run time whether or not the execution of a
system under inspection satisfies a given correctness property.
RV complements exhaustive verification techniques as well as
under-approximating techniques such as testing and tracing.
In the context of cybersecurity, RV is expected to be even
more effective as it allows us to detect policy violations due to
unanticipated threats that may exploit existing vulnerabilities.

A. Motivating Example

To demonstrate the subtleties of reasoning about secu-
rity policies especially at run time, consider the anonymized
screenshot of one of the second author’s EDAS Conference
Management1 web interface in Figure 1. The color-coded table
shows the status of submitted papers by the user: accepted
(green), rejected (orange), withdrawn (grey), and pending (yel-
low). This web interface exhibits the following blunt violation
of the well-known Goguen and Meseguer’s non-interference
(GMNI) security policy [7], where a low user should not be
able to acquire any information about the activities (if any)
of the high user. The first two rows show the status of two
papers submitted to a conference after their notification: the
first paper is accepted while the second is rejected. The last
two rows show two other papers submitted to a different
conference whose status is pending at the time the screenshot
is taken. Although the authors (i.e., low users) should not
be able to infer the internal decision making activities of the
chairs (i.e., high users) before the notification, this table leaks
these activities as follows. When a paper is accepted, it is
supposed to be assigned to a session in the technical program,
while a rejected paper does not need to be assigned to a
session. Now, by comparing the first and the fourth rows,
one can observe that their ‘Session’ column have the same
value (i.e., ‘not yet assigned’). Likewise, the second and the
last rows have an empty ‘Session’ column. This simply means
that the table reveals the internal status of the fourth and last
papers as accepted and rejected, respectively, although their
external status are pending. This is clearly a violation of non-
interference through four independent executions to generate
four HTML table rows.

In general, security policies that deal with information flow
across multiple executions (e.g., GMNI) cannot be expressed
and their evaluation cannot be achieved using a trace-base lan-
guage such as the linear-time temporal logic (LTL). Although
this observation was made in [8] more than a decade ago,
little work has been done on the systematic verification of
such policies, especially in the area of RV2. Monitoring such
a policy in EDAS is especially challenging, as the monitor has

1http://www.edas.info
2We note that we have already contacted EDAS. They acknowledged and

subsequently fixed the bug.

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Shreya Agrawal. Under license to IEEE. 239

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Shreya Agrawal. Under license to IEEE. 239

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Shreya Agrawal. Under license to IEEE.

DOI 10.1109/CSF.2016.24

239

Fig. 1. EDAS conference management website’s security violation.

to reason about its observations across independent executions
of the procedure that generates each row of the HTML table.

B. Contributions

Clarkson and Schneider [9] proposed the notion of hyper-
properties as a means to express security policies that cannot
be expressed by traditional properties [10]. A hyperproperty
is a set of sets of execution traces. Thus, a hyperproperty
essentially defines a set of systems that respect a policy.
Similar to the traditional concepts of safety and liveness, there
are notions of hypersafety and hyperliveness properties. A
hypersafety property can be characterized by a bad set of finite
sets of finite traces. When the size of each finite set is at
most k, it results in a k-safety hyperproperty. For example,
GMNI is a 2-safety hyperproperty, as the bad thing can be
characterized by pairs of bad executions. One of the very first
model checking approaches for a subset of hyperproperties is
the work by Terauchi et al. [11], but to our knowledge, there
is no work on RV for hyperproperties.

Our focus in this paper is on monitoring k-safety hyper-
properties, which represent a rich class of security policies.
RV of hyperproperties is especially challenging because the
monitor has to reason about the policy across different execu-
tions. For example, in Fig. 1 (and in fact in any HTML table
generation of this sort) the rows of the table are generated
by independent executions of a procedure. Thus, a monitor
evaluating a hyperproperty has to (1) deal with the fact that it
only observes a finite execution at run time, and (2) implement
a mechanism to memorize and reason about its observations

across multiple finite executions that occurred in the past and
will happen in the future.

In this paper, we introduce the first RV technique for
monitoring k-safety hyperproperties with no assistance from
a static analyzer. We make the following contributions:

• First, we present a mapping from a subset of k-safety
hyperproperties to HYPERLTL—a temporal logic that
allows quantification over execution traces [4]. We
show that a subset of k-safety (respectively, co-k-
safety) hyperproperties can be syntactically expressed
as a disjunctive (respectively, conjunctive) HYPER-
LTL formula with at most k universal quantifiers.

• Following [12], we define the notion of monitorability
for HYPERLTL and identify k-safety and co-k-safety
hyperproperties that are monitorable based on their
syntactic representation. We also identify other classes
of HYPERLTL formulas that are monitorable but are
neither k-safety nor co-k-safety.

• We generalize the 3-valued semantics of LTL (LTL3)
[13] to k-safety HYPERLTL formulas. We subse-
quently propose a monitoring algorithm for k-safety
and co-k-safety HYPERLTL formulas. Our algorithm
employs three techniques: (1) a runtime progression
logic (which enables us to reason about trace inter-
dependencies), (2) on-the-fly LTL3 monitor genera-
tion, and (3) a procedure that aggregates the pro-
gressed formulas and computes runtime verdicts using
the generated LTL3 monitors. The algorithm is appli-

240240240

ble to disjunctive (conjunctive) k-hypersafety (respec-
tively, co-k-hypersafety) HYPERLTL formulas.

• We present rigorous experimental results on monitor-
ing three different security policies on a location-based
service dataset from Microsoft Research [14] as well
as sets of synthetically generated traces. We analyze
different metrics such as the length of progressed
formulas and the number of generated LTL3 monitors.

Organization: The rest of the paper is organized as
follows. Section II presents the preliminary concepts on hy-
perproperties and HYPERLTL. In Section III, we establish the
connection between k-safety hyperproperties and HYPERLTL.
The notion of monitorability is introduced in Section IV. We
introduce our RV algorithm and the experimental results in
Sections V and VI, respectively. Related work is discussed in
Section VII. Finally, we make concluding remarks and discuss
future work in Section VIII. All proofs appear in the appendix.

II. BACKGROUND

Let AP be a finite set of atomic propositions and Σ = 2AP

be the finite alphabet. We call each element of Σ a letter (or an
event). Throughout the paper, Σω denotes the set of all infinite
sequences (called traces) over Σ, and Σ∗ denotes the set of all
finite traces over Σ. For a trace t ∈ Σω , t[i] denotes the ith

element of t, where i ∈ Z≥0. Also, t[0, i] denotes the prefix
of t up to and including i, and t[i,∞] is written to denote the
infinite suffix of t beginning with element i.

Now, let u be a finite trace and v be a finite or infinite
trace. We denote the concatenation of u and v by σ = uv.
Also, u ≤ σ denotes the fact that u is a prefix of σ. Finally,
if U is a set of finite traces and V is a finite or infinite set of
traces, then the prefix relation ≤ on sets of traces is defined
as:

U ≤ V ≡ ∀u ∈ U. (∃v ∈ V. u ≤ v)

Note that V may contain traces that have no prefix in U .

A. Trace Properties

A trace property is a set of infinite traces (i.e., a subset of
Σω). The set of all trace properties is P(Σω), where P denotes
the powerset. By P∗(X), we mean the set of all finite subsets
of X . We assume that for a system p, ψ(p) is the set of all
execution traces of p; i.e., ψ(p) ⊆ Σω . We say that a system
p satisfies a property S (denoted p |= S) iff ψ(p) ⊆ S.

B. Hyperproperties

It is well known that a large number of interesting security
policies, such as non-interference and observational determin-
ism, cannot be expressed by trace properties [8]. To overcome
this shortcoming, Clarkson and Schneider [9] introduced the
notion of hyperproperties to incorporate an additional level of
sets to the notion of trace properties [9].

Definition 1 (hyperproperty). A hyperproperty is a set of sets
of infinite traces, or equivalently a set of trace properties. �

The set of all hyperproperties is P(P(Σω)). The inter-
pretation of a hyperproperty as a security policy is that the
hyperproperty is the set of systems allowed by that policy.
That is, each trace property in a hyperproperty is an allowed
system, specifying exactly which executions must be possible
for that system. Thus, unlike trace properties, where the notion
of satisfaction is based on language inclusion, the definition of
satisfaction for hyperproperties is based on language equality.

Definition 2. A system p satisfies a hyperproperty H (denoted,
p |= H) iff ψ(p) ∈H . �

That is, a program satisfies a security policy if and only if
its set of traces adheres with one of the entire sets (and not
just a subset) of traces of the prescribed policy.

1) Safety Hyperproperties: Safety hyperproperty (or hy-
persafety) is a generalization of safety [10], where the bad
thing occurs in a finite set of finite traces. The definition of
hypersafety is essentially the same as the definition of safety,
except for an additional level of sets.

Definition 3 (k-safety hyperproperty). A hyperproperty Sk is
a k-safety hyperproperty (is k-hypersafety) iff

∀T ∈ P(Σω).(T 	∈ Sk) ⇒ ∃M ∈ P∗(Σ∗).(M ≤ T) ∧
(|M | ≤ k) ∧ (∀T ′ ∈ P(Σω).(M ≤ T ′) ⇒ (T ′ 	∈ Sk)) �

In Definition 3, set M represents a bad thing that should
never happen. If there is no bound on the cardinality of
M , then Sk becomes a safety hyperproperty. Notice that a
traditional safety property [10] is synonymous to a 1-safety
hyperproperty [9].

Examples:

• A policy that requires ‘whenever there is a fail event,
then there must not be a login event for at least four
time units’ is a 1-safety hyperproperty. If one models
the passage of every time unit by the event tick, then
the bad thing here is a finite trace that contains a fail
followed by three or fewer tick events before a login
event.

• Goguen and Meseguer’s non-interference (GMNI) [7],
where inputs issued by users holding high variables
should be removable without affecting observations of
users holding low variables, is a 2-safety hyperprop-
erty.

• The information leakage policy is an example of a
safety hyperproperty. The bad thing is some series of
experiments, where the information leaked is more
than x bits. Notice that in this example there is no
bound on |M |.

2) Co-safety Hyperproperties: Intuitively, a co-safety hy-
perproperty (or co-hypersafety) stipulates a policy which de-
scribes the occurrence of a good thing and is a generalization
of traditional co-safety [15].

241241241

Definition 4 (co-k-safety hyperproperty). A hyperproperty C
is a co-k-safety hyperproperty (or co-k-hypersafety) iff

∀T ∈ P(Σω).(T ∈ C)⇒ ∃M ∈ P∗(Σ∗).(M ≤ T) ∧
(|M | ≤ k) ∧ (∀T ′ ∈ P(Σω).(M ≤ T ′)⇒ (T ′ ∈ C)) �

In Definition 4, set M represents a good thing in C.
Notice that a co-safety property is synonymous to a co-1-safety
hyperproperty [9].

Example: The hyperproperty ‘for every initial state,
there is some terminating trace, but not all traces must ter-
minate’ is a co-safety hyperproperty. The good thing here is
a set of traces such that for all initial states, a trace in this
set terminates. If the number of initial states is restricted to k,
then this is a co-k-safety hyperproperty.

C. HyperLTL

HYPERLTL is a logic for syntactic representation of hy-
perproperties. It generalizes LTL by allowing explicit quantifi-
cation over multiple execution traces simultaneously [4].

1) Syntax:

Definition 5. The set of HYPERLTL formulas is inductively
defined by the grammar as follows:

ϕ ::= ∃π.ϕ | ∀π.ϕ | φ
φ ::= a(π) | ¬φ | φ ∨ φ | φUφ | Xφ

where a ∈ AP and π is a trace variable from an infinite supply
of variables Γ. �

Similar to LTL, U and X are the ‘until’ and ‘next’
operators, respectively. Other standard temporal connectives
are defined as syntactic sugar as follows: ϕ1 ⇒ ϕ2 = ¬ϕ1∨ϕ2,
ϕ1∧ϕ2 = ¬(¬ϕ1∨¬ϕ2), true = aπ∨¬aπ , false = ¬true,
Fφ = trueUφ, and Gφ = ¬F¬φ. Quantified formulas ∃π
and ∀π are read as ‘along some trace π’ and ‘along all traces
π’, respectively.

2) Semantics: A formula ϕ in HYPERLTL satisfied by a
set of traces T is written as Π |=T ϕ, where trace assignment
Π : Γ → Σω is a partial function mapping trace variables to
traces. Π[π → t] denotes the same function as Π, except that
π is mapped to trace t.

Definition 6. The validity judgment for HYPERLTL is defined
as follows:

Π |=T ∃π.ϕ iff ∃t ∈ T.Π[π → t] |=T ϕ
Π |=T ∀π.ϕ iff ∀t ∈ T.Π[π → t] |=T ϕ
Π |=T a(π) iff a ∈ Π(π)[0]
Π |=T ¬φ iff Π 	|=T φ
Π |=T φ1 ∨ φ2 iff (Π |=T φ1) ∨ (Π |=T φ2)
Π |=T Xφ iff Π[1,∞] |=T φ
Π |=T φ1 Uφ2 iff ∃i ≥ 0. (Π[i,∞] |=T φ2 ∧

∀j ∈ [0, i).Π[j,∞] |=T φ1)

where the trace assignment suffix Π[i,∞] denotes the trace
assignment Π′ = Π(π)[i,∞] for all π. If Π |=T φ holds for
the empty assignment Π, then T satisfies φ. �

Observe that when there is exactly one universal trace
quantifier, then LTL and HYPERLTL coincide.

Notation: By φ(π1, . . . , πk), we mean the formula
φ(π1) ∨ · · · ∨ φ(πk), where φ(πi) is a syntactic sugar to
represent the formula where trace variable πi is applied
to every proposition of φ. For example (aU b)(πi) means
a(πi)U b(πi). Obviously, formula a(π)U b(π′) is a well-
formed formula in HYPERLTL, but not in our notation.
Also, let LTLS , and LTLC be the set of safety and co-safety
LTL formulas, respectively. For example, Gp ∈ LTLS and
Fp ∈ LTLC .

D. Specifying Trace Relations

Clarkson et al. [4] introduce the trace relation =P to ease
the representation of equivalence between traces. Let π and
π′ be two trace variables. For a set P ⊆ AP of atomic
propositions, π[0] =P π′[0] denotes that the first letter in both
π and π′ agree on all propositions in P . Further, π =P π′

means that all the positions in π and π′ agree on P :

π =P π′ ≡ G(π[0] =P π′[0])

Example:

• An example of GMNI can be specified as a HYPER-
LTL formula as follows:

∀π.∀π′. (GλH(π′) ∧ π 	=H π′) ⇒ π =L π′

where GλH(π′) denotes that all high variables in π′

hold the value λ for all letters, and H and L are the
‘high’ and ‘low’ atomic propositions, respectively.

• Observational Determinism (OD) requires a system to
appear deterministic to a low user (users who only
have access to low variables). It is specified as follows:

∀π.∀π′. (π[0] =L,in π′[0]) ⇒ (π =L,out π
′)

where =L,in checks for agreement on propositions in
L with input values issued by the low user.

Addressing Limitations: While the operator =P for
trace relations allows one to specify properties over a pair
of traces that check for equivalence letter by letter, it does
not capture comparison of some letter in one trace with one
or more letters in another trace, or comparison of letters over
temporal formulas specified over P .

To address this limitation, we define a function

f : 2AP → LTL

and extend the trace relation to π ∼f,P π′, for two trace
variables π and π′, and a set P of atomic propositions. We
require that

∀i.(π′[i..∞] |= f(π[i] ∩ P) ∧ π[i..∞] |= f(π′[i] ∩ P))

That is, each event maps to some LTL formula and the trace
relation between two traces requires that the trace starting
from the corresponding event in the other trace should satisfy

242242242

this LTL formula. Obviously, when function f is the identity
function π =P π′ ≡ π ∼f,P π′. For example, a variation of
GMNI requires that if two traces do not agree on high values
and the initial states agree on the low values, then at some
point in the future, they should always agree on a subset of
low values:

∀π. ∀π′. ((GλH(π) ∧ π 	=H π′ ∧ π[0] =L π′[0])
⇒ π ∼f,L π′)

where f(x) = Fx for x ⊆ L.

III. k-SAFETY/CO-k-SAFETY HYPERPROPERTIES IN

HYPERLTL

In this section, we establish the connection between the
set representation of k-safety and co-k-safety hyperproperties
with HYPERLTL. First, we present a lemma that shows that the
complement of a safety (respectively, co-safety) hyperproperty
S, denoted as S̄, is a co-safety (respectively, safety) hyper-
property.

Lemma 1. The complement of a safety hyperproperty is a co-
safety hyperproperty and vice versa. Also, the complement of
a k-safety hyperproperty is a co-k-safety hyperproperty and
vice versa.

Clarkson et al. [4] identified HYPERLTLn as the class of
HYPERLTL formulas in which the sequence of quantifiers
at the beginning of the formula involves at most n − 1
alternations. We now show that a subset of k-safety and co-
k-safety hyperproperties can be expressed as a HYPERLTL1

formula.

Lemma 2. Consider a HYPERLTL1 formula of the following
form:

ϕCk = ∃π1 · · · ∃πk. (φ1(π1, . . . , πk) ∧ · · · ∧ φk(π1, . . . , πk))

where φ1, . . . , φk ∈ LTLC . Such a formula represents a co-k-
safety hyperproperty.

An immediate corollary of Lemma 2 states that a class
of k-safety hyperproperties can be expressed in HYPERLTL1

formula.

Corollary 1. Consider a HYPERLTL1 formula of the follow-
ing form:

ϕSk = ∀π1 · · · ∀πk. (φ1(π1, . . . , πk) ∨ · · · ∨ φk(π1, . . . , πk))

where φ1, . . . , φk ∈ LTLS . Such a formula represents a k-
safety hyperproperty.

Theorem 1. Conjunction (respectively, disjunction) of
HYPERLTL1 formulas, with at most k quantifiers, given by
ϕSk in Corollary 1 (respectively, ϕCk in Lemma 2), is a k-
hypersafety property (respectively, co-k-hypersafety property).

IV. RV SEMANTIC AND MONITORABILITY IN HYPERLTL

First, we introduce RV semantics and the notion of mon-
itorability for HYPERLTL in Subsections IV-A and IV-B,
respectively. Then, in Subsection IV-C, we present classes of
monitorable HYPERLTL1 formulas.

A. RV Semantics

Inspired by the 3-valued semantics of LTL [13], we now
define RV semantics for HYPERLTL (denoted HYPERLTL-
3). The semantics utilize three truth values B3 = {�,⊥, ?},
where ‘?’ means that given a formula ϕ and the current set
M of executions at run time, it is not possible to tell whether
M satisfies or violates ϕ; i.e., both cases are possible in this
or future executions.

Definition 7 (HYPERLTL-3 semantics). Let M ∈ P∗(Σ∗) be
a finite set of finite traces. The truth value of a HYPERLTL
closed formula ϕ with respect to M , denoted by [M |= ϕ],
is an element of the set B3 = {�,⊥, ?}, and is defined as
follows:

[M |= ϕ] =

⎧⎪⎨
⎪⎩
� if ∀T ∈ P(Σω). (M ≤ T).Π |=T ϕ

⊥ if ∀T ∈ P(Σω). (M ≤ T).Π 	|=T ϕ

? otherwise

�

B. Monitorability

Pnueli and Zaks [12] characterize an LTL formula ϕ as
monitorable for a finite trace u, if u can be extended to one that
can be evaluated with respect to ϕ at run time. For example,
LTL formula GFp is not monitorable, since there is no way to
tell at run time, whether or not in the future, p will be visited
infinitely often. On the contrary, formulas in LTLS (e.g., Gp)
and in LTLC (e.g., Fp) are monitorable.

We now generalize the same idea to the context of HYPER-
LTL. First, we argue that HYPERLTLn formulas, where n ≥
2, (e.g., ∀∃ψ) are not monitorable, as evaluating such formulas
requires one to have all traces of the system. However, safety
and co-safety HyperLTL formulas have a different nature.
For instance, consider the following secret sharing scheme
(denoted SSS):

A system stores a secret by splitting it into k shares.

A policy that prevents revealing all the k shares can be
expressed by the following HYPERLTL1 formula:

ϕSSk = ∀π1 · · · ∀πk. (G¬a1(π1, . . . , πk) ∨
. . . ∨ G¬ak(π1, . . . , πk))

This formula is monitorable because, if propositions a1 · · · ak
become true in at most any k traces, where ai holds iff share
i of the secret has been revealed, then ϕSSk can be declared
as violated permanently (i.e., ⊥) for all future executions.

Definition 8 (monitorability). A HYPERLTL formula ϕ is
monitorable iff

∀M ∈ P∗(Σ∗).∃M ′ ∈ P∗(Σ∗). [MM ′ |= ϕ] ∈ {⊥,�}
�

243243243

Formula Property of φ � ⊥ Runtime evidence (proof)
∀π. φ φ ∈ LTLS � � ∃M. ∃u ∈M. [u |= φ] = ⊥
∀π. φ φ ∈ LTLC − LTLS � � �M.∃u ∈M. [u |= φ] = ⊥
∀π1 . . . ∀πk. (φ1(π1)∨· · ·∨φk(πk)) φ1, . . . , φk ∈ LTLS � � ∃M. ∃u1 . . . uk ∈M. [u1 |= φ1] = ⊥ ∧ · · · ∧ [uk |= φk] = ⊥
∀π1 . . . ∀πk. (φ1(π1)∧· · ·∧φk(πk)) ∃i(1 ≤ i ≤ k). φi ∈ LTLS � � ∃M. ∃ui ∈M. [ui |= φi] = ⊥
∀π1 . . . ∀πk. (φ1(π1)∨· · ·∨φk(πk)) ∃i(1 ≤ i ≤ k). φi
∈ LTLS � � �M.∃ui ∈M. [ui |= φi] = ⊥
∀π1.∀π2.(φ1(π1)Uφ2(π2)) φ1, φ2 ∈ LTLS � � ∃M. ∃u1, u2 ∈M. [u1, u2 |= φ1(u1)Uφ2(u2)] = ⊥

TABLE I. MONITORABILITY OF UNIVERSALLY QUANTIFIED HYPERLTL1 FORMULAS.

Formula Property of φ � Runtime evidence (proof) ⊥
∃π. φ φ ∈ LTLC � ∃M. ∃u ∈M. [u |= φ] = � �

∃π. φ φ ∈ LTLS − LTLC � �M. ∃u ∈M. [u |= φ] = � �

∃π1 . . . ∃πk. (φ1(π1)∧· · ·∧φk(πk)) φ1, . . . , φk ∈ LTLC � ∃M. ∃u1 . . . uk ∈M. [u1 |= φ1] = � ∧ · · · ∧ [uk |= φk] = � �

∃π1 . . . ∃πk. (φ1(π1)∨· · ·∨φk(πk)) ∃i(1 ≤ i ≤ k). φi ∈ LTLC � ∃M. ∃ui ∈M. [ui |= φi] = � �

∃π1 . . . ∃πk. (φ1(π1)∧· · ·∧φk(πk)) ∃i(1 ≤ i ≤ k). φi
∈ LTLC � �M. ∃ui ∈M. [ui |= φi] = � �

∃π1.∃π2.(φ1(π1)Uφ2(π2)) φ1, φ2 ∈ LTLC � ∃M. ∃u1, u2 ∈M. [u1, u2 |= φ1(u1)Uφ2(u2)] = � �

TABLE II. MONITORABILITY OF EXISTENTIALLY QUANTIFIED HYPERLTL1 FORMULAS.

C. Monitorables Classes in HYPERLTL1

Table I (respectively, Table II) refers to universally (re-
spectively, existentially) quantified HYPERLTL1 formulas and
summarizes their monitorability. The tables also provide the
evidence that can show whether a formula can be truthified or
falsified at run time, based on Definition 8. Observe that this
evidence is, in fact, the proof of monitorability of the formula
as well. For example:

• For the formula ϕ = ∀π. φ, where φ ∈ LTLS (first
row of Table I), is monitorable, as any finite trace can
be extended to one that falsifies φ. For instance, if
φ = Gp, every finite trace can be extended to one that
looks like u = p∗¬p, which violates φ and, hence, ϕ.
Such a formula, however, cannot be declared satisfied
at run time since that would require monitoring every
infinite trace in the infinite domain of π.

• For the third formula in Table I, the runtime evidence
that violates the formula is a finite set of finite traces
where every formula φ1, . . . , φk is violated by a finite
trace in the set. The SSS policy corresponds to this
formula which is violated if a finite set of finite traces
reveal each of the k shares. Also, GMNI and OD fall
in this category of formulas.

Observe that the highlighted formulas in Tables I and II
are not monitorable. The third row formulas, correspond to
monitorable k-safety and co-k-safety hyperproperties, respec-
tively. The fourth formula, in Table I (respectively, Table II)
is an example of a monitorable formula that is neither a k-
hypersafety nor a co-k-hypersafety property if ∃i, j. φi ∈ LTLS

and φj 	∈ LTLS (respectively, ∃i, j. φi ∈ LTLC and φj 	∈
LTLC). Note that, these tables do not capture all formulas in
HYPERLTL1, and only shows some relevant ones pertaining
to monitorability of k-safety hyperproperties. However, the

Formula Property of φ � ⊥
∀π1. φ1 ∨ ∃π2. φ2 φ1 ∈ LTLS , φ2 ∈ LTLC � �

∀π1. φ1 ∧ ∃π2. φ2 φ1 ∈ LTLS , φ2 ∈ LTLC � �

∀π1. φ1 ∨ ∃π2. φ2 φ1 ∈ LTLS , φ2
∈ LTLC � �

∀π1. φ1 ∧ ∃π2. φ2 φ1
∈ LTLS , φ2 ∈ LTLC � �

TABLE III. MONITORABILITY OF HYPERLTL FORMULAS WITH

CONJUNCTION OR DISJUNCTION OF FORMULAS FROM TABLES I AND II.

monitorability of all other formulas can be derived from
Definition 8 and the given tables.

In Table III, we take disjunctions and conjunctions of
formulas from Tables I and II. The runtime evidence for
whether a formula of the given syntactic form can be declared
satisfied or violated at run time follows trivially.

Theorem 2. Every k-safety hyperproperty and every co-k-
safety hyperproperty that satisfies Theorem 1 is monitorable.

By exploring the monitorability of various formulas in
HYPERLTL1, we see that the set of monitorable formu-
las in HYPERLTL1 includes properties outside of k-safety
and co-k-safety hyperproperties. For example, the formula
∀π1. ∀π2. (Gp(π1) ∧Fq(π2)) is neither a safety hyperproperty
nor a co-safety hyperproperty. However, it is monitorable
and can be declared violated at run time. We note that
the above classification also includes HYPERLTL1 formulas
that are monitorable, but are neither k-hypersafety nor co-k-
hypersafety.

Theorem 3. The set of all monitorable HYPERLTL1 formulas
includes properties that are neither k-hypersafety nor co-k-
hypersafety properties.

244244244

q⊥

q0

q�

a ∧ ¬b

¬a ∧ ¬b b

true true

Fig. 2. LTL3 monitor for formula aU b.

V. MONITORING ALGORITHM

In this section, we present our algorithm for monitoring
k-safety and co-k-safety hyperproperties given by Theorem 1.

A. Algorithm Sketch

Consider formula

ϕSk = ∀π1 · · · ∀πk. (φ1(π1, . . . , πk) ∨ · · · ∨ φk(π1, . . . , πk)).

Our algorithm has three key elements:

• In order to monitor such a formula, due to the exis-
tence of trace quantifiers, each sub-formula φi, where
1 ≤ i ≤ k, needs to be monitored independently,
possibly across different executions. For example, in
OD, if the initial state of any two pairs of executions
correspond to a low input, then the monitor must
be able to identify the initial states, so that it can
analyze the rest of both executions to ensure that only
low outputs are produced. Thus, we assume that our
monitoring algorithm is notified when an execution
terminates and when a new execution commences.

• In order for the monitor to memorize and combine
the independent evaluation of each sub-formula across
different executions at run time, we utilize a Petri net
(see Fig. 3). That is, on-the-fly evaluation of each
φi is achieved by a net whose verdict contribute to
determining the verdict of ϕSk .

• If there exists a trace relation ∼f,p in the formula, then
monitoring an execution may depend on evaluation of
past and future executions. To tackle this problem, we
propose a formula progression technique, which con-
structs a formula to be further progressed or monitored
in the future executions. In such cases, the monitor
structure evolves over time (see Fig. 4).

In the remainder of this section, we first describe our pro-
gression technique in Section V-B1. Section V-B2 introduces
our monitoring algorithm. We generalize our technique for
formulas of Tables I-III that are neither k-safety nor co-k-
safety hyperproperties, in Subsection V-C.

B. Algorithm Details

We now describe different aspects of the algorithm in
detail.

q0
‘?’

q1
‘⊥’

a1

¬a1 q0
‘?’

q1
‘⊥’

a2

¬a2 q0
‘?’

q1
‘⊥’

a3

¬a3

q⊥

true

Fig. 3. Monitor for SSS.

1) Progression for Trace Relations: Recall that in Sec-
tion II-D, we introduced relation ∼f,P to express inter-trace
relations. Unlike existing techniques for formula rewriting [16]
and progression [17], which split a formula into goals for
the current state and future goals, our formula progression
method constructs a formula for execution traces based on
the goals satisfied by the currently seen executions. Formally,
let U = {u1, u2, . . . , um} be a finite set of finite traces
(representing a set of program executions at run time) and

π1 ∼f,P π2 ∼f,P · · · ∼f,P πn

be a trace relation in some HYPERLTL1 formula ϕ to be
monitored. We define the progression function

Pg : 2P × Z× Z→ LTL

inductively in Equation 1. On observing an event of any trace,
the progression function is applied according to one of the
three cases:

• The first case handles the very first event in the very
first trace at run time.

• The second case handles progression within a trace,
adding i+ 1 number of next operators applied on f .

• The third case shows how progression is transferred
from one execution to the next (up to n times for
each trace). Thus, the progression of every new trace
depends upon the progression of all the previously
observed traces.

For example, for a policy that requires no two traces reach
the same state (i.e., f(x) = ¬x), if a trace ‘abc’ is observed
then Pg(a, 1, 0) results in ¬a, Pg(b, 1, 1) = ¬a ∧ X¬b,
and Pg(c, 1, 2) = ¬a ∧ X¬b ∧ XX¬c. Every other trace is
checked against the progressed formula ¬a ∧ X¬b ∧ XX¬c.

Essentially, since the trace relation involves a set of n trace
variables in ϕ, the progression function is applied to every
subset of size n of the set of program executions. For instance,
for monitoring a 2-safety hyperproperty over m execution
traces, Pg needs to be applied for each pair of traces in U ;
i.e.,

(
m
2

)
times.

245245245

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pg(u1[0], 1, 0) = f(u1[0] ∩ P)

Pg(uj [i+ 1], j, i+ 1) = Pg(uj [i], j, i) ∧ Xi+1f(uj [i+ 1] ∩ P) if (1 ≤ i) ∧ (1 ≤ j ≤ n− 1)

Pg(uj+1[0], j + 1, 0) = Pg(uj [|uj |], j, |uj |) ∧ f(uj+1[0] ∩ P) if (1 < j < n− 1)

(1)

q0
‘?’

q1
‘⊥’

¬t

t
q0
‘?’

q1
‘?’

qμ

‘⊥’

i2

XX . . . o2

o2

q0
‘?’

q1
‘?’

i1

XX . . . o1

o1

q0
‘?’

q1
‘?’

in

XX . . . on

on

q⊥

true

Fig. 4. Petri net for property termination-sensitive

2) LTL3 Monitors: Let ϕ = ∀π1 · · · ∀πk. φ1 ∨ · · · ∨ φk be
the HYPERLTL1 formula to be monitored. We first categorize
formulas that require the progression logic and those that do
not, as they will be handled differently. A sub-formula φi,
1 ≤ i ≤ k, is called observation independent if it does
not contain the ∼f,P relation. Otherwise, the sub-formula is
called observation dependent. For example, all sub-formulas
in SSS are observation independent. And, formulas OD and
GMNI have observation dependent sub-formulas. An observa-
tion independent formula is monitored by an LTL3 monitor.
We denote the set of observation independent and observation
dependent sub-formulas of ϕ by α and β, respectively.

Definition 9 (LTL3 Monitor [13]). Let φ be an LTL formula
over alphabet Σ. The monitor Mφ of φ is the deterministic
finite-state automaton (Σ, Q, q0, δ, λ), where Q is a set of
states, q0 is the initial state, δ ⊆ Q × Σ ×Q is the transition
relation, and λ is the function λ : Q → B3, such that for any
u ∈ Σ∗:

[u |= φ] = λ(δ(q0, u)) �

Bauer et al. [13] propose an automated technique to con-
struct such a monitor for a given LTL formula. For example,
Fig. 2 shows the LTL3 monitor for formula aU b. As men-
tioned in the algorithm sketch, we use a Petri net to build a

network of LTL3 monitors.

Definition 10. A (1-Safe) Petri net is defined by a triple S =
(L,Σ, δ), where L is a set of places, Σ is the alphabet, and
δ ⊆ 2L × Σ × 2L is a set of transitions. A transition τ is a
triple (•τ, σ, τ•), where •τ is the set of input places of τ and
τ• is the set of output places of τ . �

3) Step-by-step Description: We utilize the ‘termination-
sensitive’ policy as a running example to demonstrate the steps
of Algorithm 1:

‘If any execution of a machine reaches a terminating
state, then no two other executions starting from the
same initial state should reach differing accepting
state.’

This policy is the following 3-safety hyperproperty:

ϕ = ∀π1∀π2∀π3 . Gt(π1) ∨ (π2[0] =P π3[0]⇒ π2 ∼f,P π3)

where t is a proposition for ‘not in terminating state’ and
function f is such that f(o) = o, where o is a proposition
indicating an accepting state, captures the latter part of our
policy. In this formula, the set of observation independent sub-
formulas is α = {Gt} and the set of observation dependent
sub-formulas is β = {π2 ∼f,P π3}. Fig. 4 shows the Petri net
that would be created on observing n independent executions.
Also, Fig. 3 shows the monitor for SSS, for which the
corresponding HYPERLTL1 formula only includes observation
independent sub-formulas.

We now describe the algorithm in detail which leads to the
final construction of Fig. 4. For intuition, one can think of the
places in the Petri net as the states a monitor goes through. The
nets are simply the collection of LTL3 monitors constructed
during the process and the value λ of the monitor indicates
whether the formula is satisfied, violated or still unknown.

1) (Line 4) Initially, the set of places in the Petri net
(which will be constructed on the fly) contains a final
place q⊥ denoting the violation of ϕ (recall that a
hypersafety formula cannot be declared satisfied at
run time) and the final output of our algorithm (λ) is
unknown (‘?’).

2) (Lines 5-9) For every observation independent sub-
formula, an LTL3 monitor is constructed using
construct net which becomes a net of the Petri
net. For example, the leftmost net in Fig. 4 (for
Gt) and all the nets in Fig. 3 (for each G¬ai) are
constructed in this step. Then, for every observation

246246246

Algorithm 1: k-safety monitoring algorithm

Input: ϕ = ∀π1 · · · ∀πk. φ1 ∨ · · · ∨ φk, α, β
Output: λ ∈ {?,⊥}

1 L := {q⊥};
2 T := {(q⊥, true, q⊥)};
3 λ :=?;
4 nets := {};
5 foreach φ ∈ α do
6 construct net(φ, true);

7 foreach μ ∈ β do
8 L := L ∪ {qμ} ;
9 T := T ∪ {(qμ, true, q⊥)} ;

10 while true do
11 get input(eij , new trace);
12 if new trace = true then
13 reset (nets);
14 β′ := β;

15 foreach Mφ ∈ nets do
16 q := evaluate(Mφ, eij) ;

17 if λφ(q) = ⊥ then
18 if ∃μ ∈ β . q = qμ then
19 nets := nets− {Mμ};

20 else
21 nets := nets− {Mφ};

22 foreach μ′ ∈ β′ and μ ∈ β do
23 μ′ := Pg(eij , j, i);
24 if progression complete(μ′, μ) then
25 construct net(μ′, μ);

26 if (•τ, true, {q⊥}•) is enabled then
27 λ := ⊥; return λ ;

28 construct net(Formula φ, Formula μ) {
29 Mφ := (Σ, Qφ, qφ0 , δ

φ, λφ) (see Definition 9);

30 L := L ∪ Qφ;

31 T := T ∪ δφ;

32 Let q ∈ Qφ, where λφ(q) = ⊥ (only one such state
exists is in Q);

33 if μ 	= true then
34 merge(q, qμ);
35 T := T − {(qμ, qμ)};

36 else
37 T := T ∪ (q, true, q⊥) ;
38 T := T − {(q, q)};

39 nets := nets ∪ {Mφ};
40 }

dependent sub-formula μ, a new state qμ is added
to the Petri net, which is also an input place for a
transition to the output place q⊥. For example, this
results in place qμ for sub-formula μ = π2 ∼f,P π3

in Fig. 4.
3) (Lines 28–39) The procedure construct net cre-

ates nets of the Petri net (Lines 30-31). Each net is
essentially an LTL3 monitor. When an LTL3 monitor
is created, if the second argument μ is true, then
the state q of this monitor, where λ(q) = ⊥ becomes
an input place for a transition whose output place is
q⊥ (e.g., in the net that corresponds to Gt in Fig. 4)
(Lines 36-38). Otherwise, q is merged with the exist-
ing qμ state (if there is one), making any incoming
(respectively, outgoing) transitions to (respectively,
from) q now point to (respectively, leave) qμ. The
state q is then removed (Lines 33-35). Finally, the
created net is added to nets. In our example, after
this step nets contains only MGt (Line 39).

4) (Lines 11-14) The monitor continuously gets an event
e for evaluation (using get input) from the system
under inspection. If the current event marks the
beginning of a new trace, then function reset re-
initializes every LTL3 monitor in the set nets by
moving the token to their initial state. We note that in
Lines 19 and 21, nets whose current state evaluates
to ⊥’ are removed from nets. This is so that they
are not re-initialized again. Next, a new set β′ is
initialized to β (the set of observation dependent
formulas) to perform progression on formulas in β′

without modifying the original formulas.
5) (Lines 15-21) On getting our first event (and there-

after on every event), the function evaluate per-
forms transitions on every net in nets and moves
the token to a new place q. If λ(q) = ⊥, then we
check for whether q is one of the qμ states. If this is
the case, we remove from nets any net whose ‘⊥’
state is reached. In our example, since we currently
have only monitor MGt in nets, if our event was
indeed ¬t, then we remove this net from nets.

6) (Lines 22-23) Next, we iterate over all observation
dependent sub-formulas in β′ and β, such that μ′ ∈
β′ is the corresponding formula for μ ∈ β. Formula
μ′ is progressed over e (and stored within β′ itself)
by applying the progression function Pg on μ′. By
doing this, we are able to capture according to our
running example, the initial state (proposition ij) and
subsequently the accepting state (proposition oj) for
an execution.

7) (Lines 24-25) Next, progression complete()
function returns whether or not the trace relation
involving μ′ has progressed for all the trace variables
it was defined over. If so, an LTL3 monitor is con-
structed for the progressed formula and added to the
Petri net. In the example, when progression completes
for the second trace (similarly for subsequent traces),
then a new LTL3 monitor net is created for the
formula i2 ∧ XX . . . o2, whose state q, where
λ(q) = ⊥, is merged with qμ, where μ = π2 ∼f,P π3

(recall that this state was introduced initially, for
every μ ∈ β).

8) (Lines 26-27) If all the input places of the transition to
the output place q⊥ contain a token which means that
all sub-formuals were violated, the transition executes

247247247

and the monitor returns with the final evaluation ⊥,
meaning that the formula has been falsified.

Observe that, monitoring a co-k-hypersafety follows an
identical algorithm except that (1) the state q⊥ is replaced by
q�, denoting satisfaction, (2) all ⊥’s become �’s, and (2) the
token is placed in the final state of a net if it evaluates to �.

Theorem 4. Let ϕ be a k-safety HYPERLTL1 formula. Al-
gorithm 1 returns ⊥ for an input set M ∈ P∗(Σ∗) iff
[M |= ϕ] = ⊥.

Observation 1. The complexity of Algorithm 1 to monitor a
k-safety HYPERLTL1 formula ϕ is

O

((
n

k

)
+

∑
φ∈ϕ

xφ

)

where n is the number of finite executions and xφ is the
complexity of synthesizing a monitor for LTL sub-formula φ
in ϕ. �

Note that in Observation 1, the sub-formula φ can be an
observation independant or observation dependant formula. In
case it is the latter, the size of φ becomes directly dependent on
the observed traces and function f in the trace relation. Thus,
in some cases the size of φ can increase with an increasing
length of the observed trace and with that there is an increase
in the memory required for storing the net in the monitor for
such a formula.

C. Monitoring beyond k-hypersafety

Monitoring of other monitorable HYPERLTL1 formulas,
such as the ones described in Table III, is straightforward using
Algorithm 1:

• Formulas that are conjunctions or disjunctions of a
safety hyperproperty with a co-safety hyperproperty,
should be first reduced to monitoring of the moni-
torable part of the formula. For example, the formula
∀π1. φ1 ∨ ∃π2. φ2, where φ2 is a co-safety property,
can be reduced to monitoring of only ∃π2. φ2. This
is because a formula with a ∀ quantifier can never be
declared satisfied and due to the disjunction it reduces
to checking for satisfaction of φ2 by some trace.
Hence, Algorithm 1 will monitor the reduced part
only. Similarly, for the second row of Table III, since
φ1 is a safety property, its violation by a trace can
be detected, which is sufficient to falsify the complete
formula.

• Notice that, conjunctions or disjunctions of moni-
torable k-safety HYPERLTL1 formulas can be moni-
tored by enabling the transition to the final state of the
Petri net either when all of the input places contain
a token or at least one input place contains a token,
respectively. Examples of such formulas are in row 4
of Tables I and II.

VI. IMPLEMENTATION AND RESULTS

A. Experimental Settings

Data sets: We use a dataset collected for a study at
Microsoft Research [14]. The dataset involves GPS location
data of 21 users taken over a period of eight weeks in the
region of Seattle, USA. We also create synthetically generated
datasets using Poisson, normal, and uniform distributions to
ensure the robustness of our experiments. Each trace, in all of
these datasets, corresponds to the continuous movement of a
single user on a single day. The rationale behind using such
traces is that a server might log locations of a user from the
time a user opens an application until the time the user closes
it. The traces are anonymized, that is, the trace itself does
not reveal the identity of the user it belongs to. Each dataset
consists of up to 200 finite traces with different lengths.

Security policies: We experiment with is three k-
safety hyperproperties that specify the security, privacy, and
anonymity of a user’s GPS location data:

• Anonymity (GMNI) - If the initial location for a set
of anonymized traces is the same, all traces must
eventually reach the final location reported by any
trace:

∀π1. ∀π2. ((GλH(π1)∧π1 	=H π2 ∧π1[0] =L π2[0])

⇒ π1 ∼f,L π2)

where f maps x, the final location in a trace, to LTL

formula Fx.

• Privacy (OD) - Assuming the traces are
deanonymized, the locations visited by a user
must be the same in all the traces of the same user.

∀π1. ∀π2. (π1 ∼f,L π2)

where function f maps every location x to Fx.

• Security - Suppose that visiting a set of k locations,
uniquely identifies some secure information about a
user. Then, over all traces the user must not report
having visited all of these k locations.

∀π1 · · · ∀πk. (¬Fl1(π1) ∧ · · · ∧ ¬Flk(πk))
where li(πj) means that location li is revealed in trace
πj .

Metrics: The metrics used for evaluation are (1) the
total number of generated LTL3 monitor nets, and (2) the
length of the progressed formulas. While both metrics directly
represent memory overhead, they also indirectly characterize
time time overhead as well.

B. Results and Analysis

For each of the distributions, we generate 100 synthetic
datasets for evaluation. The plotted values are the means of
the results obtained from all the datasets, for each distribution
along with their error bars.

248248248

 0

 5

 10

 15

 20

 25

GM
NI

OD

Number of Petri net components before first violation

Microsoft Data
Normal

Uniform
Poisson

Fig. 5. Number of monitor nets generated before detection of first violation

Number of monitor nets: Fig. 5 shows that the number
of nets generated for GMNI before the first violation is detected
is greater than OD. This is because GMNI is less strict than
OD since the dependency is only on the first and last observed
locations, whereas OD requires every location visited by a user
in one trace to be visited in every other trace. This results
in the property OD being violated in fewer observed traces.
For the security property which consists of only observation-
independent sub-formulas, the number of components remains
a fixed number k for any number of traces and violations.
Normal distribution shows lower number of nets generated in
GMNI due to reduced probability of seeing the last location of
a trace in another trace. For the OD property, the probability
of seeing all the locations of one trace in another trace is
reduced further for both normal and Poisson distributions.
Hence, we see that a violation is detected sooner, resulting
in fewer number of components being created.

We also let the algorithm report all the violations instead
of terminating at the first violation. We evaluated the violation
of property GMNI. Figure 6(a) shows that the number of
violations reported were close to twice the number of nets
created—which was less than 50% of the traces evaluated.
Here we see that for the normal distribution the number
of components created is much greater than the uniform
distribution, as the probability of the same locations being
visited among traces is higher for the uniform distribution due
to which the number of unique progressed formulas are fewer.
The total number of violations and components for evaluation
of OD was significantly greater due to the property being more
strict as explained earlier.

Length of progressed formulas: On comparing the
length of formulas for each of the properties, OD formula
is much longer as compared to both GMNI and security (see
Table IV), as it captures every event observed by a trace. GMNI

TABLE IV. TRACE LENGTH OF MONITORED FORMULAS BEFORE FIRST

VIOLATION

GMNI OD security
8 238 12

 0

 50

 100

 150

 200

 250

M
icrosoftData

Norm
al

Uniform

Poisson

Number of components
Number of Violations

(a) Total number of nets vs. total number of violations

 0

 200

 400

 600

 800

 1000

 1200

20-25
25-30

30-35
35-40

40-45
45-50

Le
ng

th
 o

f F
or

m
ul

a
Trace Length

GMNI
OD
Security

(b) Length of formulas vs. trace length

Fig. 6. Memory consumption analysis.

has a fixed, much smaller length since the formula is dependent
only on the first and last observation. Thus, the length of the
progressed formula remains the same for all trace lengths.
Observation-independent sub-formulas result in a fixed length
for security. We analyze the dependency of the length of the
formula to be monitored on the length of traces for property
OD. As the length of each trace increases the length of the
formula increases (see Fig. 6(b)); i.e., a longer trace implies
tracking of user location more frequently which results in an
increasing length of the formula.

VII. RELATED WORK

In this section, we discuss the current state-of-the-art work
and techniques used in the past for runtime monitoring for
security policies. We illustrate how our contributions improve
upon or are different from any other related work.

A. Offline Verification

Basin et al. [2] develop a model checker for security pro-
tocols. Since traditional tools and verification methodologies
are not equipped to deal with sets of traces, several results
introduce new logics or operators to express hyperproperties.
SecLTL extends LTL by using an additional hide modality [3].
It allows expression of non-interference as well as the instance
until a high level data should remain independent of inter-
ference from low level data. The modal μ-calculus does not

249249249

suffice to express some information flow properties. Epistemic
logic has been used to implicitly quantify over traces [18].
However, HYPERLTL and HYPERCTL∗ [4] subsume epis-
temic logic and quantified propositional temporal logic [19].
In [5], the authors introduce a model checking algorithm for
verifying HYPERLTL formulas.

B. Static Analysis

Sabelfeld et al. [20] survey the literature focusing on
static program analysis for enforcement of security policies.
In some cases, with compilers using Just-in-time compilation
techniques and dynamic inclusion of code at run time in web
browsers, static analysis does not guarantee secure execution
at run time. Type systems, frameworks for JavaScript [21] and
ML [22] are some approaches to monitor information flow.
Several tools [23], [24], [25] add extensions such as statically
checked information flow annotations to Java language. Clark
et al. [26] present verification of information flow for determin-
istic interactive programs. Our approach, on the other hand, is
capable of monitoring a rich subset of k-safety hyperproperties
and not just information flow without assistance from static
analyzers.

C. Dynamic analysis

Russo et al. [27] concentrate on permissive techniques for
the enforcement of information flow under flow-sensitivity. It
has been shown that in the flow-insensitive case, a sound purely
dynamic monitor is more permissive than static analysis. How-
ever, they show the impossibility of such a monitor in the flow-
sensitive case. A framework for inlining dynamic information
flow monitors has been presented by Magazinius et al. [28].
The approach by Chudnov et al. [29] uses hybrid analysis
instead and argues that due to JIT compilation processes, it is
no longer possible to mediate every data and control flow event
of the native code. They leverage the results of Russo et al. [27]
by inlining the security monitors. Chudnov et al. [30] again use
hybrid analysis of 2-safety hyperproperties in relational logic.
They check for violation on observing a single run that they
call a ‘major’ trace, which is monitored with alternate ‘minor’
traces. Hybrid analysis uses the goodness of static analysis
and combines it with dynamic analysis. However, dynamic
languages like JavaScript make such approaches impractical.

Austin et al. [31] implement a purely dynamic monitor,
however, restrictions such as “no-sensitive upgrade” were
placed. Some techniques deploy taint tracking and labelling of
data variables dynamically [32], [33]. Zdancewic et al. [34]
verify information flow for concurrent programs. Decker et
al. [35] provide verification techniques for first-order theories
for reasoning about data that can be applied to check for secure
execution of multi-threaded, object oriented systems. Most of
the techniques cited above aim to monitor security policies
that are 2-safety hyperproperties, on observing a single run,
whereas, our work is for any k-safety hyperproperty, when
multiple runs are observed.

D. SME

Secure multi-execution [36] is a technique to enforce
non-interference. In SME, one executes a program multiple
times, once for each security level, using special rules for I/O
operations. Outputs are only produced in the execution linked
to their security level. Inputs are replaced by default inputs
except in executions linked to their security level or higher.
Input side effects are supported by making higher-security-
level executions reuse inputs obtained in lower-security-level
threads. This approach is sound in a deterministic language.

While there are small similarities between SME and our
work, there are fundamental differences. Firstly, SME only
focuses on non-interference, while k-safety hyperproperties
cover a significantly richer class of security policies. Secondly,
SME aims at enforcing non-interference while our method
monitors k-safety hyperproperties; i.e., there is no enforce-
ment. So, SME enforces a security policy at the cost of
restricting what it can enforce, whereas our technique monitors
a much larger set of policies.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we focused on runtime verification of a
rich class of security policies. Our specification language is
a subset of k-safety/co-safety hyperproperties which allows
expressing policies that are not trace-based (e.g., information
flow). First, in order to have syntactic means, we characterized
k-(co)safety hyperproperties in HYPERLTL, a temporal logic
that allows explicit quantification over execution traces. Then,
we generalized LTL3 [13] (a logic designed for runtime ver-
ification of LTL) to the context of HYPERLTL and defined
its notion of monitorability and identified different classes
of monitorable HYPERLTL formulas by syntactic means.
Finally, we introduced a runtime verification algorithm for
monitoring k-safety/co-k-safety hyperproperties and studied its
performance with respect to different metrics.

There are numerous interesting research avenues to extend
this work. Generalizing this work to a distributed moni-
toring framework (e.g., [37]) to monitor hyperproperties in
a distributed setting is a highly challenging task. Another
open problem is to design a technique to monitor general
(unbounded) hypersafety as well as hyperliveness properties.
Finally, one can monitor hyperproperties by analyzing execu-
tion as well as an abstract model of the system at run time. The
latter idea is especially beneficial for monitoring hyperliveness
properties. Runtime enforcement of hyperproperties is another
interesting open problem.

IX. ACKNOWLEDGMENT

This work was partially sponsored by Canada NSERC
Discovery Grant 418396-2012 and NSERC Strategic Grants
430575-2012 and 463324-2014.

REFERENCES

[1] M. Burrows, M. Abadi, and R. M. Needham, “A logic of authentication,”

ACM Transactions on Computer Systems, vol. 8, no. 1, pp. 18–36, 1990.

250250250

[2] D. A. Basin, S. Mödersheim, and L. Viganò, “Ofmc: A symbolic model

checker for security protocols,” International Journal of Information
Security, vol. 4, no. 3, pp. 181–208, 2005.

[3] R. Dimitrova, B. Finkbeiner, M. Kovács, M. N. Rabe, and H. Seidl,

“Model checking information flow in reactive systems,” in Proceedings
of Verification, Model Checking, and Abstract Interpretation (VMCAI),
2012, pp. 169–185.

[4] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,

and C. Sánchez, “Temporal logics for hyperproperties,” in Principles
of Security and Trust - Third International Conference, POST 2014,
Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings, 2014, pp. 265–284.

[5] B. Finkbeiner, M. N. Rabe, and C. Sanchez, “Algorithms for model

checking HyperLTL and HyperCTL*,” in Proceedings of the 27th
International Conference on Computer-Aided Verification (CAV), 2015,

to appear.

[6] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean, “Applying

formal methods to a certifiably secure software system,” IEEE Trans-
actions on Software Engineering, vol. 34, no. 1, pp. 82–98, 2008.

[7] J. A. Goguen and J. Meseguer, “Security policies and security models,”

in IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[8] F. B. Schneider, “Enforceable security policies,” ACM Transactions on
Information and System Security (TISSEC), vol. 3, pp. 30–50, February

2000.

[9] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[10] B. Alpern and F. B. Schneider, “Defining liveness,” Inf. Process. Lett.,
vol. 21, no. 4, pp. 181–185, 1985.

[11] T. Terauchi and A. Aiken, “Secure information flow as a safety

problem,” in SAS, 2005, pp. 352–367.

[12] A. Pnueli and A. Zaks, “PSL model checking and run-time verification

via testers,” in Proceedings of the 14th International Symposium on
Formal Methods (FM), 2006, pp. 573–586.

[13] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for LTL

and TLTL,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4, p. 14,

2011.

[14] J. Krumm and A. Brush, “MSR GPS privacy dataset 2009,”

2009. [Online]. Available: Retrievedfromhttp://research.microsoft.com/
∼jckrumm/GPSData2009

[15] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”

Formal Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[16] K. Havelund and G. Rosu, “Monitoring Programs Using Rewriting,” in

Automated Software Engineering (ASE), 2001, pp. 135–143.

[17] F. Bacchus and F. Kabanza, “Planning for temporally extended goals,”

Ann. Math. Artif. Intell., vol. 22, no. 1-2, pp. 5–27, 1998.

[18] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, “Reasoning about

knowledge: A response by the authors,” Minds and Machines, vol. 7,

no. 1, p. 113, 1997.

[19] A. P. Sistla, M. Y. Vardi, and P. Wolper, “The complementation problem

for büchi automata with appplications to temporal logic,” Theoretical
Computer Science, vol. 49, pp. 217–237, 1987.

[20] A. Sabelfeld and A. C. Myers, “Language-based information-flow

security,” IEEE Journal on Selected Areas in Communications, vol. 21,

no. 1, pp. 5–19, 2003.

[21] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged information

flow for javascript,” in Proceedings of PLDI, 2009, pp. 50–62.

[22] F. Pottier and V. Simonet, “Information flow inference for ml,” in

Proceedings of Conference Record of the Annual ACM Symposium on
Principles of Programming Languages, 2002, pp. 319–330.

[23] A. C. Myers, “Jflow: Practical mostly-static information flow control,”

in Proceedings of Conference Record of the Annual ACM Symposium
on Principles of Programming Languages, 1999, pp. 228–241.

[24] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, P. L. Cox,

J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-

flow tracking system for realtime privacy monitoring on smartphones,”

ACM Trans. Comput. Syst.

[25] A. C. Myers and B. Liskov, “Complete, safe information flow with

decentralized labels,” 1998.

[26] D. Clark and S. Hunt, “Non-interference for deterministic interactive

programs,” in Proceedings of Formal Aspects in Security and Trust,
2008, pp. 50–66.

[27] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive security

analysis,” in Proceedings of the XXrd IEEE Computer Security Foun-
dations Symposium (CSF), 2010, pp. 186–199.

[28] J. Magazinius, A. Russo, and A. Sabelfeld, “On-the-fly inlining of

dynamic security monitors,” Computers & Security, vol. 31, no. 7, pp.

827–843, 2012.

[29] A. Chudnov and D. A. Naumann, “Information flow monitor inlining,”

in Proceedings of CSF, 2010, pp. 200–214.

[30] A. Chudnov, G. Kuan, and D. A. Naumann, “Information flow mon-

itoring as abstract interpretation for relational logic,” in IEEE 27th
Computer Security Foundations Symposium, CSF 2014, Vienna, Austria,
19-22 July, 2014, 2014, pp. 48–62.

[31] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information

flow analysis,” in ACM Transactions on Programming Languages and
Systems, 2009, pp. 113–124.

[32] Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Privacy scope: A

precise information flow tracking system for finding application leaks,”

EECS Department, University of California, Berkeley, Tech. Rep., Oct

2009.

[33] S. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum, “A virtual

machine based information flow control system for policy enforcement,”

vol. 197, no. 1, pp. 3–16, 2008.

[34] S. Zdancewic and A. C. Myers, “Observational determinism for con-

current program security,” in Computer Security Foundations Workshop,

2003, pp. 29–.

[35] N. Decker, M. Leucker, and D. Thoma, “Monitoring modulo theories,”

in Proceedings of the 20th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
2014, pp. 341–356.

[36] D. Devriese and F. Piessens, “Noninterference through secure multi-

execution,” in 31st IEEE Symposium on Security and Privacy, S&P,

2010, pp. 109–124.

[37] M. Mostafa and B. Bonakdarpour, “Decentralized runtime verification

of LTL specifications in distributed systems,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2015, pp.

494–503.

APPENDIX

Lemma 1. The complement of a safety hyperproperty is a
co-safety hyperproperty and vice versa. Also, the complement
of a k-safety hyperproperty is a co-k-safety hyperproperty and
vice versa.

Proof: Let S be a safety hyperproperty and S̄ be its
complement set. Let Mh be the bad set of finite sets of finite
traces, such that for each M ∈ Mh and any T ∈ P(Σω),
where M ≤ T , we have T 	∈ S. This means that T ∈ S̄ and,
hence, every infinite extension of M is in S̄. Since any T ∈ S̄
can be associated with such an M , hyperproperty S̄ is indeed
a co-safety hyperproperty. In fact, the bad thing in S (i.e., set
M) becomes the good thing in S̄. Finally, if S is a k-safety
hyperproperty, since |M | ≤ k, then S̄ trivially becomes a co-k-
safety hyperproperty. The other direction from co-hypersafety
to hypersafety trivially follows similar proof structure.

251251251

Lemma 2. Consider a HYPERLTL1 formula of the following
form:

ϕCk = ∃π1 · · · ∃πk. (φ1(π1, . . . , πk) ∧ · · · ∧ φk(π1, . . . , πk))

where φ1, . . . , φk ∈ LTLC . Such a formula represents a co-k-
safety hyperproperty.

Proof: Let Ck be the hyperproperty (i.e., the set of sets
of traces) that represents ϕCk . We will show that Ck is a co-
k-safety hyperproperty. We need to show that for any T ∈ Ck,
there is a finite set of finite traces M , such that any infinite
continuation of M is in Ck. From the semantics of HYPER-
LTL, we know that ∀T ∈ Ck, there is a Π such that Π |=T

ϕCk . Therefore, there exist infinite traces t1, . . . , tk ∈ T that
satisfy φ1, . . . , φk. Since, φ1, . . . , φk are co-safety properties,
there exists an mi (1 ≤ i ≤ k) for each ti |= φi, such that

∀t ∈ Σω. (mi ≤ t ⇒ t |= φi)

Now observe that for the set M of all such mi, any infinite
continuation T ′ of M will satisfy ϕCk and hence T ′ ∈ Ck.
Hence, Ck is a co-safety hyperproperty. Finally, since ϕCk

involves only k trace variables, Ck is a co-k-safety hyper-
property.

Corollary 1. Consider a HYPERLTL1 formula of the
following form:

ϕSk = ∀π1 · · · ∀πk. (φ1(π1, . . . , πk) ∨ · · · ∨ φk(π1, . . . , πk))

where φ1, . . . , φk ∈ LTLS . Such a formula represents a k-
safety hyperproperty.

Proof: First, notice that ¬ϕCk in Lemma 2 will exactly
have the syntax of ϕSk , where each ¬φi is a safety property.
Now, observe that in Lemma 2, ϕCk gives the syntactic
representation of the co-k-safety hyperproperty Ck. It follows
that ¬ϕCk will be the syntactic representation of a k-safety
hyperproperty Sk (from Lemma 1).

Theorem 1. Conjunction (respectively, disjunction) of
HYPERLTL1 formulas, with at most k quantifiers, given by
ϕSk in Corollary 1 (respectively, ϕCk in Lemma 2), is a k-
hypersafety property (respectively, co-k-hypersafety property).

Proof: Let’s consider a disjunction of HYPERLTL1 for-
mulas

ϕC = ϕ1 ∨ . . . ∨ ϕn

where ϕi (1 ≤ i ≤ n) is a closed HYPERLTL1 formula repre-
senting a co-k-hypersafety property Ci as given by Lemma 2.
The union of a set of co-safety hyperproperties remains a co-
safety hyperproperty, which translates to taking disjunction of
the HYPERLTL1 representations of these properties. Hence,
ϕC is a co-k-hypersafety.

Similarly, for k-hypersafety consider a conjunction of
HYPERLTL1 formulas

ϕS = ϕ1 ∧ . . . ∧ ϕn

where ϕi (1 ≤ i ≤ n) is a closed HYPERLTL1 formula repre-
senting a k-hypersafety property Si as given by Corollary 1.
The intersection of a set of safety hyperproperties remains a

safety hyperproperty, which translates to taking conjunction of
the HYPERLTL1 representations of these properties. Hence,
ϕS is a k-hypersafety.

Theorem 2. Every k-safety hyperproperty and every co-k-
safety hyperproperty that satisfies Theorem 1 is monitorable.

Proof: The proof follows from whether ∃M ∈ P∗(Σ∗)
satisfies Definition 8 for a k-safety or co-k-safety hyper-
property, that is syntactically represented in HYPERLTL1 by
formulas given in Theorem 1. The runtime evidence for these
hyperproperties in Tables I and II shows that such an M indeed
exists for every k-safety and co-k-safety hyperproperty.

Theorem 4. Let ϕ be a k-safety HYPERLTL1 formula.
Algorithm 1 returns ⊥ for an input set M ∈ P∗(Σ∗) iff
[M |= ϕ] = ⊥.

Proof: Let ϕ = ∀π1 . . . ∀πk. φ1(π1) ∨ · · · ∨ φk(πk).

• (⇒) For an input set M ∈ P∗(Σ∗), where [M |= ϕ] =
⊥, by contradiction, let us assume that Algorithm 1
returns ‘?’. The antecedent implies that for all φi
where (1 ≤ i ≤ k), there exists m ∈M such that any
extension of m violates φi. If the algorithm has not yet
returned ⊥, then there exists at least one component
Mφ of the Petri net that has not yet reached state q
such that λφ(q) = ⊥. From Definition 9, we know that
the component Mφ in the Petri net reports violation
if [m |= φi] = ⊥ contradicting that even though m
is observed, component Mφ does not report violation.
Therefore, if [M |= ϕ] = ⊥, then Algorithm 1 returns
⊥.

• (⇐) If Algorithm 1 returns ⊥, by contradiction, let us
assume that [M |= ϕ] 	= ⊥. The antecedent implies
that all input places qφ that have a transition to q⊥,
i.e., (q, true, q⊥), contain a token. By construction of
component Mφ (Definition 9), on running m over Mφ

state qφ, such that (qφ, true, q⊥), is reached iff [m |=
φ] = ⊥. Therefore, for each φi, where (1 ≤ i ≤
k), there exists mi ∈ M , such that [m |= φi] = ⊥.
Therefore, for a trace assignment Π and ∀T ∈ P(Σω)
such that πi → mit for some t ∈ Σω , we have mit ∈
T , and for all 1 ≤ i ≤ k, we have Π 	|=T ϕ. This
contradicts the assumption that [M |= ϕ] 	= ⊥ from
Definition 7. Hence, if Algorithm 1 returns ⊥ then
[M |= ϕ] = ⊥.

252252252

