
Hybrid Monitoring of Attacker Knowledge
Frédéric Besson, Nataliia Bielova and Thomas Jensen

Inria, France

Abstract—Enforcement of noninterference requires
proving that an attacker’s knowledge about the initial
state remains the same after observing a program’s
public output. We propose a hybrid monitoring mech-
anism which dynamically evaluates the knowledge that
is contained in program variables. To get a precise esti-
mate of the knowledge, the monitor statically analyses
non-executed branches. We show that our knowledge-
based monitor can be combined with existing dynamic
monitors for non-interference. A distinguishing feature
of such a combination is that the combined monitor
is provably more permissive than each mechanism
taken separately. We demonstrate this by proposing a
knowledge-enhanced version of a no-sensitive-upgrade
(NSU) monitor. The monitor and its static analysis
have been formalized and proved correct within the
Coq proof assistant.

I. Introduction

Information-flow control provides a promise of a strong
information security property [24]. Today most research
has focused on monitors for noninterference [4], [5], [18],
[25], that block executions where secret inputs flow into
public outputs. Such flow can happen due to explicit or
implicit information flow. An explicit flow occurs when
secret information is stored in a public variable visible to
an attacker. An implicit flow happens when assignments
to public variables are made under secret control (i.e.,
following a test on a secret variable), like in Program 1.1

Program 11 l = 0; if (h) then l = 1; output l

There is an implicit flow from h to l because by observing
the value of l the attacker can deduce the secret value h.

Dynamic monitors control one execution of the pro-
gram and propagate a security label to each program
variable. If the monitor suspects a possible flow (explicit
or implicit) from secret inputs to a variable labeled as
public, it blocks the execution. Such purely dynamic in-
formation flow control was first proposed by Fenton [11]
and has recently regained interest [5], [25] for (at least)
two reasons. First, some languages, such as JavaScript,
are so dynamic that a precise static analysis is practi-
cally impossible. Therefore, an attractive alternative is
to resort to dynamic monitoring, either by extending an
interpreter for the language or by inlining a monitor in
the program. Second, even if a program may have some

This research has been partially supported by the French ANR
projects AJACS ANR-14-CE28-0008 and ANR-10-LABX-07-01 Lab-
oratoire d’excellence Comin Labs.

1In all examples, variables with names starting with “h” are secret,
and all the other variables are public.

insecure executions, there may be other executions that
are perfectly secure. While a static analysis would reject
such programs, dynamic monitors can identify and allow
some secure executions of insecure programs.
However, dynamic monitors also have several limita-

tions, due to the fact that they analyse only one exe-
cution of a program. As a result, they make the worst-
case assumption about what happens later on in the
current execution, and what could happen in other execu-
tions. Dynamic information flow control first proposed by
Zdancewic [25] and later used by Austin and Flanagan [4]
is based on the no-sensitive-upgrade (NSU) principle: it
halts an execution when a public variable gets assigned
under secret control. This principle severely limits the
permissiveness of dynamic monitors in certain cases.

• They may block executions too early: if later a vari-
able is updated, then there is no information leakage.

Program 21 if (h) then l = 1;
2 l = 0;
3 output l

Program 2 is secure but its execution is blocked by
NSU when h = true.

• If the variable is assigned the same value on both
branches, there is no leakage. Program 3 is secure but
NSU blocks all its executions.

Program 31 x = 1;
2 if (h) then l = 1 else l = x;
3 output l

The first problem of blocking execution too early was
addressed by the permissive-upgrade (PU) principle [5], by
introducing a special “partially leaked” label. The second
problem requires knowledge about other executions and
has motivated a strand of research in hybrid information
flow monitors that combine static and dynamic analysis.

Hybrid monitors (e.g. [7], [17], [18], [23]) analyse the
source code of each non-executed branch under secret con-
trol to detect possible implicit flows. A dynamic monitor
can be enhanced with a variety of static analyses. Le
Guernic et al. [17]–[19] proposed the first combination
of dynamic information flow monitors with static depen-
dency analyses. Besson et al. [7] extended this work to a
more sophisticated constant propagation and dependency
analysis. Recently, Hedin et al. have shown how to improve
their dynamic information flow analysis for JavaScript [14]
with a points-to analysis [12].

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Frédéric Besson. Under license to IEEE. 225

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Frédéric Besson. Under license to IEEE. 225

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Frédéric Besson. Under license to IEEE.

DOI 10.1109/CSF.2016.23

225

(a) from Hedin et al. [12]. (b) our result

Fig. 1: Relative permissiveness revisited.

Permissiveness. All the monitors discussed above
provably enforce noninterference, however some of them
may block more program executions than others. Intu-
itively, permissiveness defines how many program execu-
tions are accepted by the monitor even if the program
may be insecure. Hedin et al. [12] have proven that purely
dynamic and hybrid monitors are incomparable in their
permissiveness. For example, a dynamic NSU monitor
allows execution of Program 1 when h = false, while the
hybrid monitor stops it. On the other hand, the dynamic
NSU monitor will stop execution of Program 2 when
h = true while the hybrid monitor will allow it. Figure 1a
graphically shows the secure programs, and programs, for
which the static, dynamic and hybrid analysis identify as
secure all its executions (from Hedin et al. [12]).
In this paper, we propose a knowledge-based hybrid

monitor that is able to reach a level of permissiveness
that was deemed impossible for standard hybrid monitors.
Figure 1b graphically shows that all the executions of
all the secure programs that are accepted by dynamic
monitors, are also accepted by an enhanced version of our
knowledge-based hybrid monitor.

Modelling attacker knowledge. Basic information
flow control detects whether or not a program execution
may leak information, but will not provide a more pre-
cise description of what information is being leaked, or
equivalently, what knowledge an attacker gains from an
observation. However, switching to such knowledge-based
analysis can provide a finer control over information flow.
Previously [7], the authors have proposed a hybrid infor-
mation flow control that combines dynamic monitoring
and static analysis. This technique computes the leakage
of a concrete program execution by labeling every program
variable with a logical formula over the secret inputs. This
formula is a logical description of the knowledge that an
attacker can deduce about the initial state of the program
when observing the value of a variable.

Program 41 x = 0; y = 0;
2 if (h1) then y = 1;
3 if (h2) then x = 1 else x = y;
4 output x

Consider Program 4 and its execution when h1 = false
and h2 = true. When Program 4 outputs 1, the attacker

learns that either h1 or h2 was true:

Attacker knowledge: h1 ∨ h2

Given the same initial memory where h1 = false and
h2 = true, the hybrid monitor of Besson et al. [7] asso-
ciates the knowledge to the variable after analysing each
test: the first test on h1 fails, thus the value of y remains
unchanged and the knowledge of y is ¬h1; upon the second
test, the monitor concludes that the value of x is 1 in the
true branch and 0 in the false branch. As the values are
not the same, the knowledge of the output x = 1 might
depend on h2 and on the knowledge of y. Therefore, the
knowledge computed by the monitor is:

Approximated knowledge: ¬h1 ∧ h2

As is readily seen, the approximated knowledge is much
less precise than the real attacker knowledge. The reason
for this gap between estimated and actual knowledge is in
the choice of the model of knowledge domain. Intuitively,
the knowledge in [7] is limited to a set of environments
that can contribute to the current value of x.

A more expressive knowledge domain. In this pa-
per, we propose a more general representation of attacker
knowledge: the knowledge associated with a variable x is
the set of environments that lead to a particular value of x
for several possible values of x. In other words, the knowl-
edge in x groups the initial environments into equivalence
classes, such that two environments are equivalent if they
lead to the same value of x. This models much more of
the input-output relation of the program.
This new knowledge domain leads to several advantages

over the existing previous work [7]. The first advantage
is that it empowers the monitor to reason about several
executions, and hence to prove noninterference in more
cases than in previous work [7]. For a concrete example, see
Example 1 in Section IV-B. With the previous knowledge
representation in [7], we would infer that z depends on x
and y; while with the new representation we prove that x
and y do not interfere with z.
The second advantage of this more expressive knowl-

edge domain is that it enables a composition with other
monitors, and we demonstrate such composition with the
no-sensitive upgrade (NSU) monitor. The new knowledge
domain allows the hybrid monitor to reason about the
other executions that would be blocked by the other
dynamic monitor for non-executed paths. This leads to
a composition of monitors that is strictly more permissive
that each monitor separately. We summarise this result
in Figure 1b, showing that the knowledge-based hybrid
monitor accepts more secure executions than any purely
dynamic monitor it is built upon2.

2Notice that the permissiveness result with respect to static anal-
ysis is achieved by transitivity of permissiveness: a knowledge-based
hybrid monitor is provably more permissive than a standard hybrid
monitor, and a standard hybrid monitor is more permissive than a
static analysis of Hunt and Sands [15] (see Thm. 3 of [23]).

226226226

The third advantage is that the proposed knowledge do-
main allows us to design a more precise static analysis. Our
knowledge domain is used for both the dynamic analysis
of the executed branch and the static analysis of non-
executed branched. This gives a pleasant uniformity to the
theory and provides a more general framework, compared
to the ad-hoc static analyses for the non-executed branches
in [7].

Contributions.
• We propose a hybrid monitor that computes the
knowledge of the attacker. Our monitor combines a
dynamic analysis with a static analysis of the non-
executed branches. The knowledge domain allows the
monitor to compute an attacker’s knowledge more
precisely than in previous works [7].

• The knowledge-based hybrid monitor is proved to
be correct (it safely over-approximates the attacker’s
knowledge) and sound (it can be used to enforce non-
interference). The proof has been formalized in the
Coq proof assistant [1].

• The proposed monitor can be combined with existing
dynamic or hybrid monitors for non-interference. A
distinguishing feature of such a combination is that
the combined monitor is provably more permissive
than the monitor it builds upon.

• We have proposed an effective and symbolic repre-
sentation of knowledge and implemented the compu-
tation of knowledge as part of our Coq formalization.
The results reported in this paper are all computed
with this implementation.

II. Attacker knowledge and non-interference

A. Attacker model
We consider a classical attacker model, following the

definition of gadget attacker [6]. An attacker provides
the program source code and this program runs in an
environment that contains secret information, producing
some outputs, observable to the attacker.

B. Attacker knowledge
Given an observation at the end of an execution, an

attacker knowledge is the set of all possible input environ-
ments that can lead to that observation. This naturally in-
duces an equivalence relation on input environments. Lan-
dauer and Redmond [16] propose a lattice of equivalence
classes of environments for representing the knowledge of
an attacker. Askarov and Sabelfeld [3] and Askarov and
Chong [2] give a characterisation of non-interference in
terms of attacker knowledge. The remainder of this section
summarizes notions and results from these papers.
We assume a security policy in the form of a lattice of

two security levels ({L, H}, �), where L � H and we use �
as the least upper bound. A labelling function Γ assigns
security levels to all program variables. We write ρL for
the L-projection of the environment ρ onto those variables
x whose level is lower than L, i.e., for which Γ(x) � L,

and in the future notations we drop an implicit labelling
function Γ. We write [ρ]L for the set of environments that
agree with ρ on low variables: [ρ]L = {ρ′ | ρL = ρ′

L}.
The program semantics is given by a relation (P, ρ) ↓ v,

where P is a program that produces output v at the end
of the execution. This output is visible to the attacker.
The knowledge is defined as the set of low-equivalent
environments that can produce the same output v.

Definition 1 (Attacker knowledge). Given a program P ,
an initial environment ρ, and a final observation v, the
attacker knowledge is the set of environments that agree
with ρ on low variables and leads to the observation of v:

K↓(P, v, ρ) = {ρ′ | ρL = ρ′
L ∧ (P, ρ′) ↓ v}.

Notice that a smaller knowledge set represents fewer
possible inputs that produce the same program output,
thus a smaller set corresponds to a bigger amount of
information. Therefore, a smaller knowledge set is a safe
approximation of the actual attacker knowledge.

C. Termination-Insensitive Noninterference
In the following, we describe the relationship between

knowledge and the standard notion of noninterference.
We shall focus on termination-insensitive noninterference
(TINI), and hence restrict attention to a termination-
insensitive version of knowledge that only considers envi-
ronments in which the program terminates and where the
program output is visible to the attacker. The knowledge
obtained just from observing termination, given an initial
observation ρL is called initial attacker knowledge.

Definition 2 (Initial attacker knowledge). Given program
P and an environment ρ, the initial attacker knowledge is:

I↓(P, ρ) = {ρ′ | ρL = ρ′
L ∧ ∃v.(P, ρ′) ↓ v]}.

Later on, we omit the superscript ↓ when it can be inferred
from the context.
The security condition states that the attacker’s knowl-

edge should not grow with the new observation produced
by the program execution.

Definition 3 (Knowledge-based security for input en-
vironment ρ). Program P is secure for an initial input
environment ρ if whenever (P, ρ) ↓ v then

K(P, v, ρ) = I(P, ρ).

Notice that if the program P does not terminate in an
environment ρ, then P is considered secure for ρ. However,
the program still might be insecure for any other low-equal
environment, in which the program terminates.
The standard notion of termination-insensitive nonin-

terference (TINI) is stated by comparing pairs of low-
equivalent initial environments.

Definition 4 (TINI). A program P is termination-
insensitively noninterferent (TINI) if whenever ρ1

L = ρ2
L,

and (P, ρ1) ↓ v1 and (P, ρ2) ↓ v2, then v1 = v2.

227227227

Askarov and Sabelfeld [3, Prop. 2] have shown that there
is an equivalence between the knowledge-based security
and TINI for a lattice with two elements.
Lemma 1. A program P satisfies TINI if and only if P
is secure for all initial environments ρ.

III. Preliminary definitions

A. Language
We use a simple untyped imperative language extended

with a specific output command output x which evaluates
the variable x and outputs its value. This output is visible
to the attacker at security level L. All the commands of the
language are standard, except perhaps for the assume(e)
operator, which evaluates e and continues or halts an
execution depending on whether its value is true or false.
The syntax of this language is as follows:
P � P ::= c; output x E � e ::= n | x | e1 ⊕ e2 | ¬e
C � c ::= skip | x:= e | c1; c2 | assume(e) |

if e then c1 else c2 | while e do c

The set of expressions contains the usual numeric and
Boolean expressions. Every expression can be interpreted
as a boolean value, and hence conditional commands take
an arbitrary expression as condition. The exact interpre-
tation of expressions as booleans is, however, not essential
to the results in this paper and will be left unspecified. We
use ⊕ to denote an arbitrary binary operator.
An environment ρ ∈ Env = Var → V maps variables

to values. The big-step program semantics is presented
in Figure 2. The semantics of commands is denoted by a
binary relation (c, ρ) ↓ ρ′ meaning that command c when
executed in environment ρ will evaluate to ρ′ and the
semantics of programs is denoted by (P, ρ) ↓ v meaning
that program P when executed in environment ρ will
produce an output v.

skip (skip, ρ) ↓ ρ
assign (x := e, ρ) ↓ ρ[x �→ �e�ρ]

seq
(c1, ρ) ↓ ρ′ (c2, ρ′) ↓ ρ′′

(c1; c2, ρ) ↓ ρ′′ assume
C�e�ρ = tt

(assume(e), ρ) ↓ ρ

if
C�e�ρ = α (cα, ρ) ↓ ρ′

(if e then ctt else cff , ρ) ↓ ρ′

while
(if e then c;while e do c else skip, ρ) ↓ ρ′

(while e do c, ρ) ↓ ρ′

output
(c, ρ) ↓ ρ′ �x�ρ′ = v

(c; output x, ρ) ↓ v

where �x�ρ = ρ(x) �n�ρ = n �e1 ⊕ e2�ρ = �e1�ρ ⊕ �e2�ρ

Fig. 2: Language semantics

Let B denote the set of boolean values. To accommodate
the fact that any expression can be used as a condition, we

assume a function C : V → B that specifies how each value
is interpreted as a boolean. C satisfies the following two
constraints which ensure that ¬e represents the negation
of the expression e and e = e′ models the fact that e and
e′ evaluates to the same value:

C(�¬e�ρ) = ¬C(�e�ρ) C(�e = e′�ρ) = (�e�ρ = �e′�ρ)

B. Notations
Given sets A and V , we write V � for V ∪ {⊥, �}. In

domains of the form V � we write �v� to assert that v is an
element that is neither ⊥ nor �. For a function f ∈ A →
V �, we write f(a) = �v� for f(a) = v ∧ v /∈ {⊥, �} and
f -1(v) = {a | f(a) = �v�} for the pre-image of v.
Given a domain V �, we get a flat lattice (V �,�, ⊥, �)

such that ⊥ � x, x � � and �x� � �x�. Given x, y, we
write x � y (resp. x � y) the the least upper bound (resp.
greatest lower bound) of x and y. The ordering, least upper
bound and greatest lower bound are lifted to functions in
the standard pointwise fashion: f � g iff ∀x, f(x) � g(x);
(f � g)(x) = f(x)� g(x); (f � g)(x) = f(x)� g(x).
Given a unary operator o : V → W , we define an

operator o� : V � → W � as follows

o�(x) = if x ∈ {⊥, �} then x else o(x).

Similarly, for a binary operator ⊕ : V → V → V we define
⊕� : V � → V � → V � as

x ⊕� y =

⎧⎨
⎩

v1 ⊕ v2 if x = �v1� ∧ y = �v2�
⊥ if x = ⊥ ∨ y = ⊥
� otherwise.

We define a binary operator assume : B
� → V � → V �

which returns its second argument if the first argument is
either true or �, and undefined otherwise.

assume(b, v) = if (b = true ∨ b = �) then v else ⊥.

Finally, we define a conditional operator if : B� → V � →
V � → V � built from assume, where ¬� is a standard
negation operator extended to the domain B

�:

if (b, v, v′) = assume(b, v)� assume(¬�b, v′).

Given c : A → V
� and f, g ∈ A → V

�, we write
Assume(c, f) and IF(c, f, g) for the assume and condi-
tional operators lifted to functions:

Assume(c, f)(a) = assume(C�(c(a)), f(a))
IF(c, f, g)(a) = if (C�(c(a)), f(a), g(a)).

where C� is the function C lifted to the domain V
� → B

�.

IV. A hybrid knowledge-based monitor

Our hybrid information flow analysis computes the
knowledge of a program’s input-output behaviour that
the attacker obtains by observing the result of a given
execution of the program. More precisely, we shall define
the domain K of knowledge to be the set of functions
K that maps environments ρ to values v, with the in-
tention that K(ρ) = v if the program when started in

228228228

initial environment ρ will either produce an output v or
not terminate. If the hybrid monitor from initial state ρ
calculates final value v and knowledge K, then K-1(v) is a
safe approximation of the set of all the environments that
produce v. This set will allow us to safely approximate the
attacker’s knowledge (see Theorem 1).

Definition 5 (Knowledge). The domain K of knowledge
is defined by:

K = Env → V
�.

Notice that the monitor may compute knowledge K ∈ K
that will map an environment to ⊥ or �. This is due to the
presence of the static analysis. If K(ρ) = ⊥ then the static
analysis has established that computation started in ρ will
not terminate. On the other hand, K(ρ) = � means that
approximations in the static analysis made it impossible
for the monitor to determine what value will result from
an execution starting in ρ. This means that ρ cannot be
added to the knowledge set K−1(v) for any possible output
v. Recall that a knowledge analysis may always safely
under-approximate the knowledge set K−1(v) of output
v, so having K(ρ) = � for some ρ makes the knowledge
analysis more conservative than an analysis that is capable
of determining the exact output for ρ.

A. Monitor semantics
We now define a hybrid knowledge monitor that com-

bines a dynamic monitor with a static analysis. The hybrid
monitor executes the program and, at the same time, com-
putes an over-approximation of the knowledge of the initial
state that can be deduced from the current state at a given
point in the execution. The semantic state of the hybrid
monitor is thus a pair (ρ, κ), where the first component is
either an environment Env containing the current values
of the variables, or an empty environment, ·, that will
be used by the static analysis. The second component
κ ∈ Var → K is an environment containing the knowledge
present in each variable. At branching points, the monitor
will execute one branch and will statically analyse the
other, non-executed branch. This static analysis will help
refining the computation of the actual knowledge stored
in variables.
Given a concrete initial environment ρ, the initial state

of the hybrid monitor init(ρ) is such that each variable x
has the knowledge of the current value of x in the initial
environment: init(ρ) = (ρ, κ0) with κ0 = λx.λρ′.ρ′(x). To
see this, suppose that the program immediately outputs
the value v of variable x i.e. v = ρ(x). The set of
environments {ρ′ | ρ′(x) = v} that produce v is modeled
exactly by κ0(x)-1(v).
From the initial state, the monitor executes according

to the rules of Figure 3. The concrete execution and the
static analysis are combined into one reduction relation
⇓. The rules skip and seq are standard. For the other
language constructs, there are two rules: a dynamic rule
describing the monitored execution of the construct, and

a static rule describing the static analysis of it. The dy-
namic rules will operate on environments with the actual
values of the variables. The static analysis, on the other
hand, is intended to provide information about all other
possible executions so it will not have information about
concrete values. In the formalization, this means that the
static rules apply only when the environment is undefined
(denoted by ·).
The two rules assignDyn and assignStat for assign-

ment use the function �_�κ to evaluate the knowledge
about the initial environment contained in the value of
the expression e. The function takes the current knowledge
environment κ as parameter. In addition, the dynamic rule
updates the value of x in the environment ρ.
The rule ifDyn describes the monitored execution of

conditional statements of form if e then ctt else cff . The
outcome of the test α is the value of the expression
e computed in the environment ρ and the appropriate
branch is executed with that environment, producing a
new environment ρ′ and a new knowledge environment
κα. The non-executed branch cᾱ is statically analysed,
using an undefined environment of values and the current
knowledge environment. The knowledge environment κᾱ

obtained from this static analysis must be combined with
the knowledge environment from the execution κα. To this
end, we construct the function IF(�e�κ, κtt , κff) that uses
a conditional operator IF(c, f, g) from Section III-B. We
later show that in programs without loops the IF operator
allows us to precisely model the attacker’s knowledge.
For the while loop, the dynamic rules whileDynTrue

and whileDynFalse are standard unfolding semantic
rules that apply when the environment is defined. The
static rule whileStat states that any s′ whose knowledge
safely approximates the knowledge before entering the
loop (condition s � s′) as well as the knowledge after
executing the body of the loop (condition s1 � s′) is a
valid result of the static analysis of the loop. The rule
leaves room for an actual implementation to compute more
or less precise approximations of the attacker knowledge
after a loop. Our implementation (Section VII) employs
an iterative fixpoint computation to this end.
We do not define a rule for analysing the output com-

mand output x, because it does not change the knowledge
of any variable. The output x command is important
because it is at this point that we must decide what to
output and, hence, what security property to enforce. In
Section V, we shall propose rules for the output command
that will enforce enforce non-interference.

B. Examples
To illustrate the expressive power of our hybrid monitor,

we provide a number of examples. They show when the
monitor computes precise knowledge but also limitations
due to the static analysis of loops. They also illustrate
the role played by the static detection of termination.

229229229

skip

(skip, s) ⇓ s
seq

(c1, s) ⇓ s′ (c2, s′) ⇓ s′′

(c1; c2, s) ⇓ s′′

assignDyn

�e�ρ = v �e�κ = e�

(x := e, (ρ, κ)) ⇓ (ρ[x �→ v], κ[x �→ e�])
assignStat

�e�κ = e�

(x := e, (·, κ)) ⇓ (·, κ[x �→ e�])

assumeDyn

C�e�ρ = tt
(assume(e), (ρ, κ)) ⇓ (ρ,A(�e�κ, κ))

assumeStat

(assume(e), (·, κ)) ⇓ (·,A(�e�κ, κ))

ifDyn

C�e�ρ = α (cα, (ρ, κ)) ⇓ (ρ′, κα) (cᾱ, (·, κ)) ⇓ (·, κᾱ)
(if e then ctt else cff , (ρ, κ)) ⇓ (ρ′, IF(�e�κ, κtt , κff))

ifStat

(ctt , (·, κ)) ⇓ (·, κtt) (cff , (·, κ)) ⇓ (·, κff)
(if e then ctt else cff , (·, κ)) ⇓ (·, IF(�e�κ, κtt , κff))

whileDynTrue

C�e�ρ = tt (if e then c;while e do c else skip, s) ⇓ s′ s = (ρ, κ)
(while e do c, s) ⇓ s′

whileDynFalse

C�e�ρ = ff (if e then while e do c else skip, s) ⇓ s′ s = (ρ, κ)
(while e do c, s) ⇓ s′

whileStat

(assume(e); c, s′) ⇓ s1 s1 � s′ s � s′ (assume(¬e), s′) ⇓ s′′ s = (·, κ)
(while e do c, s) ⇓ s′′

where �x�κ = κ(x) �n�κ = λρ.�n� �e1 ⊕ e2�κ = λρ.�e1�κ(ρ) ⊕� �e2�κ(ρ)

IF(c, κ1, κ2)(x) = IF(c, κ1(x), κ2(x)) A(c, κ)(x) = Assume(c, κ(x))

(ρ, κ) � (ρ′, κ′) iff κ � κ′ ∧ ρ = ρ′

Fig. 3: Hybrid knowledge analysis semantics.

Program 51 if h then z := x + y
2 else z := y - x;
3 output z

Example 1 (Precise knowledge computation). For
Program 5, the hybrid monitor computes κ(z) =
λρ.if (C�h�ρ, �x + y�ρ, �y − x�ρ). The program is loop-free
and therefore κ(z) is a function which encodes exactly the
function computing the final value of z from the initial
environment. Suppose that the final value of z is 1, the
knowledge of the output 1 is obtained by κ(z)-1(1) = {ρ |
if (C�h�ρ, �x + y�ρ, �y − x�ρ) = 1}.
Suppose that initially h = true, x = 0 and y = 1. As

a result, L-equivalent environments are {ρ | ρ(x) = 0 ∧
ρ(y) = 1}3. This program is indeed secure for the given
initial environment (see Definition 3) since all L-equivalent
environments output the value 1. Notice that all of them
are included in κ(z)-1(1): if x = 0 and y = 1 then the
condition if (h, x + y, y − x) = 1 always holds: if (h, 0 +
1, 1 − 0) = 1 ⇔ if (h, 1, 1) = 1 ⇔ 1 = 1.

3As z is set in both branches, its initial value is irrelevant.

Notice that both dynamic monitors and the standard
hybrid monitors block all executions of this program either
because there is a low assignment under a high security
context in both branches, or because an output variable z
explicitly depends on h. We will show in Section VI-C that
this power of proving non-interference allows our monitor
to be more permissive than other monitors.

Example 2 (Detection of loop non-termination). Inter-
estingly, our monitor may be more precise than other
monitors even in the presence of loops in a high security
context. Consider Program 6.

Program 61 l := 0;
2 if h then skip
3 else while true do l := 1;
4 output l
When h is true, the purely dynamic monitors would ac-

cept this execution, while the previous hybrid monitors [7],
[18] would block it since the hybrid monitor would detect
that a value of l might change in the non-executed branch.
However, our monitor is able to detect the nontermi-

nation of the while loop. On line 2, we apply the IfDyn

230230230

rule, and compute κ(l) = λρ.if (C�h�ρ, κ0(l), κ′′(l)), where
κ0(l) = λρ.0 and κ′′ is computed by the WhileStat

rule. The first three premises of this rule ensure that
in state s′ = (⊥, κ′), we have κ′(l) = λρ.� since l is
updated in the loop body. However, the forth premise
((assume(¬e), s′) ⇓ s′′) ensures that κ′′(l) = λρ.⊥ thus
being able to conclude that whenever h is false, the
program does not terminate.

Example 2 shows that our static analysis allows us
to detect non-termination of the loops in some cases.
Notice that this capability does not give us soundness
for termination-sensitive noninterference, but gives more
precision for termination-insensitive noninterference. In
contrast, the knowledge monitor in our previous work [7] is
not able to prove termination-insensitive noninterference
for Example 2 since its static analysis only determines that
the output l may depend on the secret h.

C. Limitations
Our hybrid monitor is not always capable of computing

the exact knowledge. A fundamental reason is that the
knowledge is computed for each variable independently.
Therefore, it cannot express a relation, e.g., the equality
of variables.

Example 3 (Imprecise knowledge computation). For Pro-
gram 7 and its execution when h = true, our static analysis
does not infer that, at the end of the loop y is equal to x.
Hence, it fails at deducing that in the other branch y is 0.

Program 71 y = 1; x = N;
2 if h then skip;
3 else while x > 0 do x = x-1; y = x;
4 output y

When h is true, we statically analyse the while-loop. The
loop invariant is s′ = (·, κ′), where κ′ defines a knowledge
for each variable. To model the fact that x is decremented
at each iteration, the static analysis computes

κ′(x) =
�

0≤n≤N

λρ.n = λρ.�.

This information is propagated towards y by the assign-
ment y = x and we get κ′(y) = λρ.�. At the end of the
loop, the test ¬x > 0 i.e., x = 0 – providing x is a natural
integer – allows to recover the fact that x is necessarily
0. However, as the equality between x and y is not
propagated, the value of y cannot be recovered. As a result,
the final knowledge in y is κ(y) = λρ.if (C�h�ρ, 1, �), while
the real attacker knowledge is λρ.if (C�h�ρ, 1, 0).

As a result of the imprecise knowledge computation,
the static analysis is not always capable to detect the
loop termination. If we have κ(x)(ρ) = ⊥, we know for
certain that the program does not terminate for initial
environment ρ. However, if κ(x)(ρ) = v for some v, there
is no certainty. The program either terminates and the
value is indeed v or the program does not terminate.

Said otherwise, any non-terminating execution from initial
environment ρ can soundly approximated by κ(x)(ρ) = v.

Example 4 (Non-detection of loop non-termination).
Consider the program obtained as the sequential com-
position of Program 7 followed by Program 8. This new
composed program is noninterferent (TINI) since it either
outputs 1 or does not terminate.

Program 81 x = 1;
2 while y = 0 do x = 1;
3 output x

After an execution of the Program 7 in the initial
environment where h = true, the computed knowledge in
variable y is κ(y) = λρ.if (C�h�ρ, 1, �).
The static analysis of the while loop detects that the

value of x in the loop body is always 1 and the knowledge
in variable x is κ(x) = λρ.1. However, since the knowl-
edge in y is not precise, the static analysis is unable to
determine the non-termination of the loop.

V. Correctness and Soundness

Given a monitor’s knowledge κ, a variable x and its
value v, we can express the set of possible environments
that can produce v as the inverse of κ: κ(x)-1(v). The
Monitor Correctness Theorem 1 states that this set of
environments intersected with the low-equivalence class
[ρi]L is a correct approximation of the attacker knowledge
for environment ρi, as defined in Definition 1.

Theorem 1 (Monitor Correctness). Let c ∈ C, ρ, ρ′ ∈
Env, κ ∈ Var → K and assume that (c, init(ρ)) ⇓ (ρ′, κ).
Then for all v ∈ V, x ∈ Var and ρi ∈ Env,

κ(x)-1(v) ∩ [ρi]L ⊆ K(c; output x, v, ρi).

Proof sketch. The Correctness Theorem is a consequence
of a more general, inductive invariant. It states that if we
are given sound knowledge κ about a program c0 executed
in environment ρ then monitoring another program c
with κ as initial knowledge will produce final knowledge
κ′ which is sound for the sequential composition c0; c
when executed in environment ρ. To state this invariant,
we define the predicate soundK which states that the
knowledge κ ∈ Var → K is sound for an execution of
program c in initial environment ρi. Formally, we write
soundK (c, ρi, κ) if for all v ∈ V, x ∈ Var and ρf ∈ Env,

ρi ∈ κ(x)-1(v)
∧

(c, ρi) ↓ ρf

⎫⎬
⎭ ⇒ ρf (x) = v.

The invariant can then be stated as follows:
(c, (ρ0, κ)) ⇓ (ρ1, κ′)

∧
soundK (c0, ρ, κ)

⎫⎬
⎭ ⇒ soundK (c0; c, ρ, κ′).

The proof of this invariant is by structural induction
over the relation ⇓ and by case analysis over the hybrid

231231231

monitoring rules of Figure 3. Instantiating this invariant
with c0 = skip and κ = κ0, we get that

(c, init(ρ)) ⇓ (ρ′, κ) ⇒ ∀ρi.soundK (c, ρi, κ).

Theorem 1 then follows from the observation that
all knowledge that is sound according to the predicate
soundK is a subset of the attacker knowledge, as defined
in Definition 1. Formally, if soundK(c, ρ, κ)) then

κ(x)-1(v) ∩ [ρ]L ⊆ K(c; output x, v, ρ). �
We complete the semantics of a hybrid monitor with an

additional rule to deal with outputs, presented below. The
output rule uses the NI (ρ, K, v) predicate that uses the
knowledge K to check whether all low-equal initial envi-
ronments would either produce the same value v or would
not terminate (indicated by a value ⊥). In Section VII-D
we describe how to efficiently implement the computation
of predicate NI . This predicate is defined by

NI (ρ, K, v) �= [ρ]L ⊆ K-1(v) ∪ K-1(⊥).
The rule for output is then given by:

outNI

(c, init(ρ)) ⇓ (ρ′, κ) ρ′(x) = v NI (ρ, κ(x), v)
(c; output x, ρ) ⇓ v

With this output rule, we have the property of a
knowledge-based hybrid monitor that the monitor either
accepts the output of a program, or blocks.

Lemma 2. If a knowledge-based hybrid monitor produces
a value v for a program P from an initial environment ρ,
then the original program P computes the same value:

(P, init(ρ)) ⇓ v ⇒ (P, ρ) ↓ v.

We can then prove (using Theorem 1) that the
knowledge-based hybrid monitor completed with an out-
put rule outNI enforces knowledge-based security.

Theorem 2 (Monitor Soundness). A program P , moni-
tored by a knowledge-based hybrid monitor with output rule
outNI, is TINI under the monitor semantics ⇓: whenever
ρ1

L = ρ2
L and (P, init(ρ1)) ⇓ v1 and (P, init(ρ2)) ⇓ v2, then

v1 = v2.

Example 5 (Permissiveness). Program 6 of Example 2
demonstrates when our analysis is able to detect non-
termination of the program. Our monitor computes the
knowledge in variable l as κ(l) = λρ.if (C�h�ρ, 0, ⊥). Then,
when a variable l is to be output, the outNI rule ensures
that on all possible low-equal environments, either the
program outputs 0 or does not terminate – the predicate
NI holds.

Given that our monitor is sometimes able to model when
the program does not terminate, it might be tempting to
enforce termination-sensitive noninterference (TSNI). To
achieve it, one could substitute the NI predicate with
a TSNI predicate requiring that in all the low-equal

memories either the program terminates producing v, or
it does not terminate:

TSNI (ρ, K, v) �= [ρ]L ⊆ K-1(v) ∨ [ρ]L ⊆ K-1(⊥).
The problem with this approach is that whenever
κ(x)(ρ) = v, there is no certainty that the program
terminates, since v approximates ⊥.
Example 6 (TSNI counterexample). The composed pro-
gram from Example 4 is TINI but not TSNI since it
terminates on h = true and does not terminate when
h = false. The hybrid monitor computes the knowledge
in x as κ(x) = λρ.1 that would satisfy TSNI predicate,
however this would not be a sound enforcement of TSNI.

VI. Combination with other monitors

We now show how an existing dynamic monitor based on
security levels can be combined with our knowledge-based
hybrid monitor. The combined monitor will admit more
executions than each of the monitors taken in separation,
and will still be secure. To compare the precision of
monitors, Hedin et al. [12] propose the notion of “per-
missiveness” that compares a set of program executions
accepted by two monitors and defines a monitor to be more
permissive if it accepts a strictly bigger set of executions.
Hedin et al. [12] observe that purely dynamic moni-

tors (e.g., NSU [4]) and simple hybrid monitors (e.g., Le
Guernic et al. [18]) are not necessarily comparable with
respect to their permissiveness. For example, the execution
of Program 1 in environment h = false is accepted by
a dynamic monitor NSU because the test is false, but it
is rejected by a hybrid monitor since the static analysis
concludes that there might be a leak on the non-executed
branch. On the other hand, NSU rejects an execution of
Program 2 when h = true (because of a sensitive upgrade
on line 1), while a hybrid monitor accepts it (because the
security level of l is downgraded to L on line 2).

A. Hybrid monitor reusing an inlined monitor
We assume that a monitor based on security levels (for

example, a purely dynamic monitor), is inlined in the
program following the inlining technique simultaneously
proposed by Chudnov and Naumann [10] and Russo and
Sabelfeld [20]. Here, a program c is transformed into a
program c̃, where each variable x has a shadow variable x̃
representing the security label of x. The monitoring is not
intrusive in the sense that the values of x are the same for
c and c̃. In other words, the computation of security levels
has no impact on the computed values. We will present
the instantiation to NSU in Section VI-B below.
Given a program P = c; output x, the monitor usually

decides to output x if the label of x is lower or equal than
the level L4. A hybrid monitor can choose to mimic the

4Usually, this condition is pc � Γ(x) � L, however the program
counter pc is at the lowest level L because our programs only produce
output outside conditionals and while-loops.

232232232

t-skip G, S � skip � skip t-seq

∀i = 1..2.G, S � ci � c̃i

G, S � c1; c2 � c̃1; c̃2

t-if

S(x) = x̃ y /∈ dom(S) ∪ rng(S) ∧ y /∈ G ∀i = 1..2.(y :: (pc :: G)), S � ci � c̃i

(pc :: G), S � if x then c1else c2 � y := x̃ � pc; if x then c̃1else c̃2

t-while

S(x) = x̃ y /∈ dom(S) ∪ rng(S) ∧ y /∈ G (y :: (pc :: G)), S � c � c̃

(pc :: G), S � while x do c � y := x̃ � pc;while x do (c̃; y := x̃ � y)

t-assign

S � e � ẽ S(x) = x̃ c̃ = if pc � x̃ then x̃ = ẽ � pc else ∀y ∈ Var .S(y) = B
pc :: G, S � x := e � c̃;x := e

Fig. 4: NSU inlining transformation

original behaviour of the inlined monitor by introducing
the following output rule outL:

outL

(c̃, init(ρ)) ⇓ (ρ′, κ) ρ′(x) = v ρ′(x̃) � L
(c̃; output x), ρ ⇓ v

This rule ensures that the inlined monitor only outputs
a value v when the security level of the variable x is below
L. We make one assumption about the inlined monitor
viz., that it correctly computes the security labels of the
variables that can be used to enforce noninterference.

Assumption 1 (Correct labels of inlined monitor). Con-
sider a program P = c̃; output x. If it outputs a value v
according to the following output rule:

outL

(c̃, ρ) ↓ ρ′ ρ′(x) = v ρ′(x̃) � L
(c̃; output x), ρ ↓ v

Then the label of variable x is computed correctly in the
final environment ρ′, meaning

K(P, v, ρ) = I(P, ρ).

As a consequence, a hybrid monitor only using the outL

output rule soundly enforces noninterference.
To gain more precision, the hybrid monitor can first use

its own knowledge about the output variable x (applying
the rule outNI), and only if it is unable to prove non-
interferfence, it can then try to apply the default output
rule outL of the inlined monitor.
We can gain even more precision by reasoning about

the knowledge contained in the shadow variables. This
will allow the monitor to output certain values, even if
neither the rule outNI nor the rule outL holds. The
idea is to provide the knowledge-based monitor with the
extra information that certain variables would never be
output because the dynamic monitor would block them.
Environments that lead to an output that is certain to be
blocked by the dynamic monitor can be disregarded when
computing the set of possible outcome of the program.
Concretely, we add a new security level B (“will be blocked

by the monitor”), such that H � B. An additional output
rule outH exploits this new label. It requires that:

• the value of x can be output (because ρ(x̃) � B), and
• all the environments that will not be blocked by a
monitor, written NotB(K̃), and low-equal to ρ would
produce the same value v.

Formally, we get the following output rule outH that
combines information computed by the hybrid monitor
and the inlined dynamic monitor.

outH

(c̃, init(ρ)) ⇓ (ρ′, κ) ρ′(x) = �v�
ρ′(x̃) �� L ρ′(x̃) � B single(ρ, κ(x), κ(x̃), v)

(c̃; output x), ρ ⇓ v

The predicate single ensures that we only produce a single
unique value. It exploits the new blocked level B and is
defined as follows.

single(ρ, K, K̃, v) �= ([ρ]L ∩ NotB(K̃)) ⊆ K-1(v)
NotB(K̃) �= (Env\K̃-1(B)).

With this rule, the combination of the hybrid monitor and
a dynamic monitor can be strictly more permissive than
either of them.

B. Application to NSU
In the No-Sensitive Upgrade monitor (NSU) [4], [25] an

assignment to a variable is allowed only if the program
counter level pc is lower than the level of the assigned
variable l. Otherwise, the execution is stopped.
Figure 4 presents an inlining transformation for NSU.

The inlining technique uses the transformation judgement
G, S � c � c̃, where S : vars(c) → Var maps each
variable of c into its shadow variable S(x) which contains
the current security level of x; and G is a finite list of
variables that store the current pc. S � e � ẽ means that
ẽ is an expression for the level join of shadow variables of
the variables in e (see [10, Fig. 9]).
NSU enforces termination-insensitive noninterfer-

ence [4], so the proposed transformation indeed satisfies
Assumption 1. The only difference in our presentation

233233233

of inlining is that we do not write an explicit divergence
operation (such as while (true) skip), but rather
assign the highest security level B to all the variables (see
t-assign rule); and still allow the computation x := e.
The following short example demonstrates in a concise

manner how the knowledge-based hybrid monitor that
reuses NSU is more permissive than NSU.

Program 91 l = 1; if h then l = 0;
2 output h

Example 7. All the executions of Program 9 are blocked
by NSU since the program tries to output a high variable
h on a low channel. However our knowledge-based hybrid
monitor combined with NSU accepts its execution when
h = false. Following the idea of NSU, the monitor trans-
forms an information channel into a termination channel.
When h = false, the hybrid monitor is able to compute
that the other initial environment ρ′, where h = true
will get a B label (κ(h̃)(ρ′) = B) and therefore will not
be output (unless the rule outNI holds). Therefore, the
output is accepted by the outH rule because the single
predicate ensures that all the executions not blocked by
the monitor (where h = false) will compute the same
value.

C. Soundness and Permissiveness

We now prove the main soundness result for the hybrid
monitor that executes a program with an inlined security
monitor. In the following, we write HM (Output) for our
hybrid monitor using a set of output rules Output ⊆
{outNI, outL, outH}.
Theorem 3. All the executions of a program P =
(c̃; output x), monitored by a knowledge-based hybrid mon-
itor HM ({outNI, outL, outH}) are secure for all envi-
ronments ρ.

Remark that a hybrid monitor using a smaller set of
output rules is also sound. This fact will be useful to prove
the relative precision of hybrid monitors.
A monitor A is more permissive than a monitor B if it

stops less monitored executions (suppresses less outputs).
Following Hedin et al. [12], a productive environment for
a monitor M and a program P , written EM (P) is a set
of environments for which the monitor does not stop, i.e.,
EM (P) = {ρ | ∃v.(P, ρ) ⇓M v}. Thus, EM is a family of
productive sets indexed by programs for the monitor M .

Definition 6. A monitor A is at least as permissive as a
monitor B if EB ⊆ EA.

Theorem 4 (Hierarchy of hybrid monitors). Consider a
program P = c; output x and a program P̃ = c̃; output x

that is instrumented by a sound dynamic monitor for non-
interference. The following precision results hold:

EHM({outNI})(P) = EHM({outNI})(P̃)
EHM({outNI})(P̃) ⊆ EHM({outNI,outL})(P̃)
EHM({outL})(P̃) ⊆ EHM({outNI,outL})(P̃)
EHM({outNI,outL})(P̃) ⊆ EHM({outNI,outL,outH})(P̃)

Theorem 4 shows that the combination of our hybrid
monitor with a dynamic monitor is more precise than each
of them taken separately. Moreover, as the output rule
outH requires a cooperation between both, our best hy-
brid monitor HM ({outNI, outL, outH}) is more precise
than a direct parallel composition of both, which can be
obtained as HM ({outNI, outL}).
Example 8. Consider again a Program 9. When h =
false, the knowledge-based hybrid monitor (EHM({outNI}))
is not able to prove noninterference and the level of h is
H, and hence the output is blocked. However, the more
precise monitor EHM({outNI, outL, outH}) ensures that h is
output since the single predicate ensures that the monitor
always produces the same output.

VII. Implementation

The knowledge-based hybrid monitor has been imple-
mented and proved correct [1] using the Coq proof as-
sistant. Here, we describe the main data structures and
algorithms used for computing knowledge.
Knowledge about initial environments is formalized us-

ing knowledge functions K ∈ K. One algorithmic chal-
lenge is to find an efficient algorithm for extracting the
knowledge from such a function K i.e. computing K-1(v)
for some v. We present a concrete representation for a
class of knowledge functions that is closed under all the
operations needed by the hybrid monitor. With this rep-
resentation, a logical formula representing the knowledge
of an output v is computed in linear time.

A. Concrete domain of knowledge functions
The domain of the monitor K = Env → V

�

is encoded with the symbolic domain K� ⊂ P(F ×
E) × F where E is the set of program expres-
sions and F is the following set of boolean formulae:
F � φ ::= φ ∧ φ | φ ∨ φ | ¬φ | e | tt | ff (here e ∈ E is
a program expression seen as a boolean, see Section III-A).
A pair (f, e) ∈ F×E denotes a knowledge which returns

the value of the expression e when the formula f holds in
the initial environment and � otherwise. The last element
φ ∈ F of K� specifies when the knowledge is ⊥. Given an
element K = (S, φ) ∈ K�, we write KS for the set of pairs
S and Kφ for the formula φ. The denotation of K ∈ K�

in the knowledge domain K is then obtained by:

{|K|} = (
�

(f,e)∈KS

f �→ e)
�

Kφ �→ ⊥

where ψ �→ e = λρ.if �ψ�ρ then �e�ρ else �

234234234

true[K] =
∨

(f,e)∈KS (f ∧ e)
false[K] =

∨
(f,e)∈KS (f ∧ ē)

top[K] = ¬(true[K] ∨ false[K] ∨ Kφ)
K@ψ = ({(ψ ∧ f, e) | (f, e) ∈ KS}, Kφ ∨ ¬ψ)
K1

�
K2 = (K= ∪ K12 ∪ K21, Kφ

1 ∧ Kφ
2), where

K= =
{
(f1 ∧ f2 ∧ e1 = e2, e1)

∣∣∣∣ (f1, e1) ∈ KS
1

(f2, e2) ∈ KS
2

}
Kij = {(fi ∧ Kφ

j , ei) | (fi, ei) ∈ KS
i }

Fig. 5: Implementation of the conditional operator.

Our domain K� also requires well-formedness conditions.
Given (S, φ) ∈ K�, we add the constraint that any two
pairs (f, e) and (f ′, e′) from S must satisfy that if both f
and f ′ hold then the expressions e and e′ evaluate to the
same value. Moreover, for any (f, e) ∈ S, the conjunction
of f and φ does not hold. All the operators needed by the
hybrid monitor preserve this property.

Example 9. We illustrate below the symbolic encoding
of basic knowledge functions.

{|(∅, ff)|} = λρ.� {|(∅, tt)|} = λρ.⊥
{|{(true, n)}, ff)|} = λρ.n

For Program 3, we get the following knowledge in l in
the end of the program:

({(h, 1); (¬h, x); (x = 1, x)}, ff)

The knowledge is well-formed since if any two formulae
among h, ¬h or x = 1 hold at the same time, the
corresponding expressions evaluate to the same value.

B. Implementation of operators
The assignment rules assinDyn and assignStat com-

pute the knowledge of an expression using a function �_�κ.
We show how to implement this function for a new domain
of knowledge K� below:

�x�κ = κ(x) �n�κ = ({(tt, n)}, ff)
�k1 ⊕ k2�κ = (S, �k1�φ

κ ∨ �k2�φ
κ) where

S =
{
(f1 ∧ f2, e1 ⊕ e2)

∣∣∣∣ (f1, e1) ∈ �k1�S
κ

(f2, e2) ∈ �k2�S
κ

}

One key operator is the conditional operator IF which
combines the knowledge from different execution paths.
The IF and assume operators can be rewritten using more
basic operators, defined in Figure 5:

Assume(c, l) = l@true[c]� l@top[c]
IF(c, l, r) = l@true[c]� r@false[c]� (l � r)@top[c]

Theorem 5. The operators over K� exactly model the
operators over K. In particular, we have

{|�e�κ|} = �e�λx.{|κ(x)|}
{|K1 � K2|} = {|K1|} � {|K2|}
{|IF(c, e1, e2)|} = IF({|c|}, {|e1|}, {|e2|})

C. Static analysis of loops
The only place where the specification of the hybrid

monitor is not directly executable is the rule WhileStat.
The implementation of this rule requires an iterative fix-
point computation in order to infer an invariant of the loop
body. The domain K� does not satisfy the finite ascending
chain condition. Therefore, a widening operator is needed
to ensure convergence and speed up computations. Our
widening limits the number of distinct expressions which
can occur in formulae. To remove an expression e from
a formula f , we compute the formula f+ ∧ f− where f+

is obtained by substituting e for tt and f− is obtained
by substituting e for ff . The obtained formula is by
construction stronger which ensures the soundness of the
transformation. Remember that (f �→ e) returns � when
f does not hold. By bounding the number of expressions
to some fixed constant k, and because formulae have a
normal, our fixpoint iteration operates over a finite domain
of boolean formulae. This ensures convergence.

D. Effective proof of non-interference
To get an effective enforcement and implement the rules

outNI and outH, we need a decision procedure for the
predicates NI and single. These predicates can be encoded
as logic formulae f ∈ F. To get a decidable enforcement,
the logic needs to be decidable. As propositional logic is
decidable, the decidability depends only on the language
of expressions E. It will hold, for instance, for decidable
fragment of arithmetic such as linear integer arithmetics
or bit-vector arithmetics.
The logic translation is syntax-directed and defined by

the function 〈·〉:
〈K-1(v)〉 =

∨
(f,e)∈KS f ∧ e = v 〈K-1(⊥)〉 = Kφ

〈[ρ]L〉 =
∧

{x|Γ(x)�L} x = ρ(x)

The inverse function K-1(v) represents the knowledge of
the output v. Given the output value v and a symbolic
knowledge K ∈ K�, 〈K-1(v)〉 builds a disjunction where
all the expressions are constrained to be equal to v. The
equivalence class [ρ]L of a initial environment ρ is obtained
by a conjunction of equality constraints stating that a low
variable x, should have the value of ρ(x). Set operations ∪,
∩ and \ have a standard encoding and set inclusion can
be done by checking entailment. Theorem 6 states that
the security predicates NI and single can be checked by
checking that their logic encoding is a tautology.

Theorem 6. The logic translation of security predicates
is sound and complete.

NI (ρ, K , v) iff 〈[ρ]L〉 ⇒ 〈K-1(v)〉 ∨ 〈K-1(⊥)〉
single(ρ, K, K̃, v) iff 〈[ρ]L〉 ∧ 〈NotB(K̃)〉 ⇒ 〈K-1(v)〉

E. Experiments
From our Coq development, we have extracted an Ocaml

proof-of-concept implementation [1]. We have extracted

235235235

five programs from this paper and used our implemen-
tation to compute the approximated knowledge. These
programs were selected to demonstrate the difference in
monitors with respect to the attacker knowledge approx-
imation and permissiveness. For these five programs, we
provide the actual knowledge gained by an attacker by
observing an output and the approximation computed by
different monitors, including the best hybrid monitor of
Besson et al. [7], called HM(Val+Comb). For enforcement
of noninterference, we compare the permissiveness of a
knowledge-based hybrid monitor HM (Section IV), the
standard NSU and their combination (Section VI).
For each program, we analyse an execution for a given

initial environment presented in column 2 of Figure 6a.
The actual knowledge of the attacker is a formula over the
high variables, that we present in column K(Pi, v, ρ). For
columns HM(Val+Comb) and HM, we highlight in light
grey the knowledge that was not computed precisely.
For the majority of programs the hybrid monitor HM is

able to compute the exact knowledge of the attacker. Only
for Program P7, our monitor approximates the knowledge
of the attacker due to the its static analysis limitation. For
Programs P4 and P5, our hybrid monitor is strictly more
precise than the hybrid monitor of Besson et al.
Figure 6b gives an insight into permissiveness of

the monitors, where HM stands for HM({outNI}),
NSU stands for HM({outL}) and HM+NSU stands for
HM({outNI, outL, outH}). Given a program execution
described in the second column of Figure 6a, we write a
� if the value is output and a � if the monitor blocks
the execution. All the presented program executions are
rejected by NSU except for P1 and P7. The execution
of P5 is proved noninterferent by the hybrid monitor
HM, while rejected by NSU. Program P9 illustrates the
case where neither HM nor NSU alone is able to ensure
termination-insensitive noninterference whereas their com-
bination HM+NSU does. As explained in Section VI-B,
the key insight is to exploit the knowledge that other
interfering executions would be blocked.

VIII. Discussion

1) Scalability: The formal development and implemen-
tation of our hybrid monitor are given for a minimalistic
imperative language. A relevant question is whether our
core monitor could be efficiently implemented for a full-
fledged language. Core dynamic monitors have already
been adapted to very dynamic languages. For instance,
the JSFlow project [13] implements a dynamic informa-
tion flow monitor for JavaScript. Hedin et al. [12] also
proposed a hybrid monitor that covers a large subset of
JavaScript. For hybrid monitors, the main challenge is
to mitigate the overhead incurred by the static analysis.
Note that it is always possible to trade precision for
efficiency – for instance by making an aggressive use of
widening operators (see Section VII-C). At the extreme,
static analysis can even be momentarily switched off if

it is deemed too costly or unfeasible. In that case, the
computed knowledge for the non-executed branch would
be λρ.� i.e. the absence of knowledge which is sound
but imprecise. Regarding functions, a reasonable trade-off
could be to limit the static analysis to the current function
boundaries i.e intra-procedural analysis. Yet, getting the
desired trade-off between precision and efficiency requires
more investigation.

2) Extension to programs with I/O and strategies: The
proposed approach can be extended to programs with
I/O and strategies [8]. We could define a special global
variable that contains all the knowledge of the previous
outputs and each new input would immediately contain
that knowledge. Like this, we could track the knowledge
that would be an upper bound for any possible strategy.
The current representation would not change in this case.

IX. Related work

Zdancewic [25] proposed the no-sensitive-upgrade prin-
ciple for dynamic information flow control that halts exe-
cution if a program assigns to low variables under secret
control. Austin and Flanagan [4], [5] extended this to per-
missive upgrade which takes the future use of the assigned
variable into account before halting the execution. Hybrid
monitors for information flow control combine static and
dynamic program analysis [17], [18], [21], [23]. One of the
first techniques was proposed by Le Guernic et al. [18]
where the static analysis only performs syntactic checks
on non-executed branches. Russo and Sabelfeld [23] intro-
duced a generic framework of hybrid monitors, where non-
executed branches are analysed syntactically and formally
proved that the permissiveness of such monitors is incom-
parable with the purely dynamic monitors. In a follow-up
work, Le Guernic [17] presented a more permissive static
analysis, that ignores possible branches that depend only
on public variables. Besson et al. [7] enhance a dynamic
monitor with static constant propagation and dependency
analysis, and show how this leads to a hierarchy of increas-
ingly more permissive hybrid monitors. Their knowledge is
represented by the domain F×V. As explained in Section I,
the present work improves permissiveness of the hybrid
monitor from [7]: 1) we have a strictly more expressive
domain: an element (f, v) ∈ F × V is exactly modelled in
our domain by the knowledge ({(f, v)}, ff); 2) we have the
advantage of capturing certain forms of non-termination.
With respect to dynamic monitors, permissiveness of the
proposed monitor is incomparable (see Fig. 6b), however
it has the power to achieve a strictly higher level of per-
missiveness by combination with the dynamic monitors.
Chudnov et al. [9] propose a hybrid monitor for rela-

tional logic. An interesting feature of the work is that the
monitor is obtained from a constructive soundness proof.
In this work, we consider a specific property (namely ter-
mination insensitive non-interference). Yet, our knowledge
analysis is not geared to noninterference and could help
discharging more general assertions of relational logic.

236236236

(Pi, ρ) ↓ v K(Pi, v, ρ) HM(Val+Comb) HM
P1 (l = 0, h = ff) ↓ 1 ¬h ¬h ¬h
P4 (h1 = ff , h2 = tt) ↓ 1 h1 ∨ h2 ¬h1 ∧ h2 h1 ∨ h2
P5 (h = tt, x = 0, y = 1) ↓ 1 tt h tt
P7 (h = tt) ↓ 1 tt h h
P9 (h = ff) ↓ ff h h h

(a) Computation of Knowledge

HM NSU HM + NSU
P1 � � �

P4 � � �

P5 � � �

P7 � � �

P9 � � �

(b) Permissiveness of Enforcement

Fig. 6: Experimental results

In a recent paper, Hedin et al. [12] extend a dynamic
information flow monitor for core JavaScript with a static
points-to analysis that can approximate the potential
write targets in regions with a high security context. The
dynamic monitor is based on NSU and prevents implicit
flows by forbidding all side effects with targets that are
below the security context. The static analysis is used
to raise the security labels of the potential write targets
to the level of the context before entering this context.
This prevents the monitor from stopping when writing to
a low target. Interestingly, the static analysis need not
be sound or complete, as the dynamic monitor ensures
that the hybrid monitor is sound. Precision only affects
the permissiveness of the monitor. Their hybrid monitor
is more precise than a static information flow analysis such
as that of Hunt and Sands [15]. However, they also make
the observation that "with the above definition of relative
permissiveness, a hybrid monitor cannot subsume a purely
dynamic monitor" [12, Thm. 3]. This is not contradictory
with our findings because they only consider a particular
static analysis. We conjecture that their “NSU + points-
to” monitor can benefit from our extension with knowledge
computation in order to obtain a monitor that subsumes
their dynamic monitor.
The notion of attacker knowledge was first proposed by

Askarov and Sabelfeld [3] and then used by Askarov and
Chong [2] to study enforcement of noninterference when
the security policy changes over time, and for different
kind of attackers. The notion of knowledge here is used to
state the security conditions but the enforcement mecha-
nism does not compute the knowledge explicitly.
In the area of purely static information flow analy-

sis, Hunt ans Sands [15] proposed a flow-sensitive type
system for non-interference that was later proven to be
less permissive than a standard hybrid monitor [23, Thm.
3]. Müller et al. [22] generalize the type system of Hunt
and Sands using the technique of self-composition. They
define an abstract weakest precondition calculus for self-
composed program that computes logical formulae de-
scribing dependencies and equalities between variables.

X. Conclusions

We propose a hybrid monitor to compute the knowledge
that an attacker obtains by observing a program output.
The monitor is hybrid since it statically analyses non-

executed branches. Our symbolic representation of at-
tacker knowledge is powerful and subsumes existing hybrid
monitoring approaches. We show that a knowledge-based
monitor can be combined with any dynamic monitor for
noninterference resulting in an enforcement mechanism
that is more permissive than each mechanism taken sep-
arately. Therefore, our monitor is able to reach a level
of permissiveness that was deemed impossible for the
previous hybrid monitors [23].
In this paper we have laid the foundations for designing

knowledge-based hybrid monitors. There are several ways
in which this work can be further expanded.
The language studied here is voluntarily kept minimal-

istic and there are interesting semantic questions linked
to how to monitor knowledge for more advanced program-
ming languages with features such as objects, arrays and
higher-order functions.
Our monitor statically analyses non-executed branches

and the theory explains how this integration is designed.
However, the current development can go much further
and integrate traditional static analyses. In particular,
more precise numeric analyses, ranging from constant
propagation to polyhedral analysis, would allow the moni-
tor to prove more equalities between variables and, hence,
improve permissiveness. Other analyses such as points-
to analysis would be required for the extension to the
language features mentioned above.

References

[1] Formalisation of the Hybrid Monitor in Coq. Supplementary
material.

[2] A. Askarov and S. Chong. Learning is change in knowledge:
Knowledge-based security for dynamic policies. In CSF’12,
pages 308–322. IEEE, 2012.

[3] A. Askarov and A. Sabelfeld. Gradual release: Unifying declas-
sification, encryption and key release policies. In S&P’07, pages
207–221. IEEE, 2007.

[4] T. H. Austin and C. Flanagan. Efficient purely-dynamic infor-
mation flow analysis. In PLAS’09, pages 113–124, 2009.

[5] T. H. Austin and C. Flanagan. Permissive dynamic information
flow analysis. In PLAS’10, pages 3:1–3:12. ACM, 2010.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame
communication in browsers. CACM, 52:83–91, 2009.

[7] F. Besson, N. Bielova, and T. Jensen. Hybrid information flow
monitoring against web tracking. In CSF’13, pages 240–254.
IEEE, 2013.

[8] S. Chong. Required information release. Journal of Computer
Security, 20(6):637–676, 2012.

237237237

[9] A. Chudnov, G. Kuan, and D. A. Naumann. Information flow
monitoring as abstract interpretation for relational logic. In
CSF’14, pages 48–62. IEEE, 2014.

[10] A. Chudnov and D. A. Naumann. Information Flow Monitor
Inlining. In CSF’10, pages 200–214. IEEE, 2010.

[11] J. S. Fenton. Memoryless subsystems. Comput. J., 17(2):143–
147, 1974.

[12] D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive Hybrid
Information Flow Control for a JavaScript-like Language. In
CSF’15. IEEE, 2015.

[13] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow:
tracking information flow in javascript and its apis. In SAC’14,
pages 1663–1671. ACM, 2014.

[14] D. Hedin and A. Sabelfeld. Information-flow security for a core
of JavaScript. In CSF’12, pages 3–18. IEEE, 2012.

[15] S. Hunt and D. Sands. On flow-sensitive security types. In
POPL’06, pages 79–90. ACM, Jan. 2006.

[16] J. Landauer and T. Redmond. A lattice of information. In
IEEE, editor, CSFW’93, pages 65–70, 1993.

[17] G. Le Guernic. Precise Dynamic Verification of Confidentiality.
In Proc. of the 5th International Verification Workshop, volume
372 of CEUR Workshop Proc., pages 82–96, 2008.

[18] G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt.
Automata-based Confidentiality Monitoring. In ASIAN’06,
volume 4435 of LNCS, pages 75–89. Springer, 2006.

[19] G. Le Guernic and T. Jensen. Monitoring Information Flow.
In A. Sabelfeld, editor, Workshop on Foundations of Computer
Security - FCS’05, Proceedings of the 2005 Workshop on Foun-
dations of Computer Security (FCS’05), pages 19–30. DePaul
University, 2005.

[20] J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining
of dynamic security monitors. In SEC’10, pages 173–186, 2010.

[21] S. Moore and S. Chong. Static analysis for efficient hybrid
information-flow control. In CSF’11, pages 146–160, 2011.

[22] C. Müller, M. Kovács, and H. Seidl. An analysis of Universal
Information Flow based on Self-composition. In CSF’15. IEEE,
2015.

[23] A. Russo and A. Sabelfeld. Dynamic vs. Static Flow-Sensitive
Security Analysis. In CSF’10, pages 186–199. IEEE, 2010.

[24] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communication,
21(1):5–19, 2003.

[25] S. A. Zdancewic. Programming languages for information
security. PhD thesis, Cornell University, 2002.

238238238

