
A Calculus for Flow-Limited Authorization

Owen Arden

Department of Computer Science

Cornell University

owen@cs.cornell.edu

Andrew C. Myers

Department of Computer Science

Cornell University

andru@cs.cornell.edu

Abstract—Real-world applications routinely make authoriza-
tion decisions based on dynamic computation. Reasoning about
dynamically computed authority is challenging. Integrity of
the system might be compromised if attackers can improperly
influence the authorizing computation. Confidentiality can also
be compromised by authorization, since authorization decisions
are often based on sensitive data such as membership lists and
passwords. Previous formal models for authorization do not fully
address the security implications of permitting trust relationships
to change, which limits their ability to reason about authority
that derives from dynamic computation. Our goal is a way to
construct dynamic authorization mechanisms that do not violate
confidentiality or integrity.

We introduce the Flow-Limited Authorization Calculus
(FLAC), which is both a simple, expressive model for reasoning
about dynamic authorization and also an information flow
control language for securely implementing various authoriza-
tion mechanisms. FLAC combines the insights of two previous
models: it extends the Dependency Core Calculus with features
made possible by the Flow-Limited Authorization Model. FLAC
provides strong end-to-end information security guarantees even
for programs that incorporate and implement rich dynamic
authorization mechanisms. These guarantees include noninter-
ference and robust declassification, which prevent attackers from
influencing information disclosures in unauthorized ways. We
prove these security properties formally for all FLAC programs
and explore the expressiveness of FLAC with several examples.

I. INTRODUCTION

Authorization mechanisms are critical components in all

distributed systems. The policies enforced by these mecha-

nisms constrain what computation may be safely executed,

and therefore an expressive policy language is important.

Expressive mechanisms for authorization have been an active

research area. A variety of approaches have been developed,

including authorization logics [1], [2], [3], often implemented

with cryptographic mechanisms [4], [5]; role-based access

control (RBAC) [6]; and trust management [7], [8], [9].
However, the security guarantees of authorization mecha-

nisms are usually analyzed using formal models that abstract

away the computation and communication performed by the

system. Developers must take great care to faithfully preserve

the (often implicit) assumptions of the model, not only when

implementing authorization mechanisms, but also when em-

ploying them. Simplifying abstractions can help extract formal

security guarantees, but abstractions can also obscure the

challenges of implementing and using an abstraction securely.

This disconnect between abstraction and implementation can

lead to vulnerabilities and covert channels that allow attackers

to leak or corrupt information.

A common blind spot in many authorization models is confi-

dentiality. Most models cannot express authorization policies

that are confidential or are based on confidential data. Real

systems, however, use confidential data for authorization all

the time: users on social networks receive access to photos

based on friend lists, frequent fliers receive tickets based on

credit card purchase histories, and doctors exchange patient

data while keeping doctor–patient relationships confidential.

While many models can ensure, for instance, that only friends

are permitted to access a photo, few can say anything about the

secondary goal of preserving the confidentiality of the friend

list. Such authorization schemes may fundamentally require

some information to be disclosed, but failing to detect these

disclosures can lead to unintentional leaks.

Authorization without integrity is meaningless, so formal

models are typically better at enforcing integrity. However,

many formal models make unreasonable or unintuitive as-

sumptions about integrity. For instance, in many models (e.g.,

[1], [2], [7]) authorization policies either do not change or

change only when modified by a trusted administrator. This is

a reasonable assumption in centralized systems where such an

administrator will always exist, but in decentralized systems,

there may be no single entity that is trusted by all other entities.

Even in centralized systems, administrators must be careful

when performing updates based on partially trusted informa-

tion, since malicious users may try to use the administrator

to carry out an attack on their behalf. Unfortunately, existing

models offer little help to administrators that need to reason

about how attackers may have influenced security-critical

update operations.

Developers need a better programming model for imple-

menting expressive dynamic authorization mechanisms. Errors

that undermine the security of these mechanisms are com-

mon [10], so we want to be able to verify their security. We

argue that information flow control is a lightweight, useful tool

for building secure authorization mechanisms. Using informa-

tion flow control is attractive since it offers compositional, end-

to-end security guarantees. However, applying information

flow control to these mechanisms in a meaningful way requires

building on a theory that integrates authority and information

security. In this work, we show how to embed such a theory

into a programming model, so that dynamic authorization

mechanisms—as well as the programs that employ them—can

be statically verified.

Approaching the verification of dynamic authorization

mechanisms from this perspective is attractive for two reasons.

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Owen Arden. Under license to IEEE. 135

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Owen Arden. Under license to IEEE. 135

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Owen Arden. Under license to IEEE.

DOI 10.1109/CSF.2016.17

135

First, it gives a model for building secure authorization mecha-

nisms by construction rather than verifying them after the fact.

This model offers programmers insight into the sometimes

subtle interaction between information flow and authorization,

and helps programmers address problems early, during the

design process. Second, it addresses a core weakness lurking at

the heart of existing language-based security schemes: that the

underlying policies may change in a way that breaks security.

By statically verifying the information security of dynamic

authorization mechanisms, we expand the real-world scenarios

in which language-based information flow control is useful and

strengthen its security guarantees.

We demonstrate that such an embedding is possible by

presenting a core language for authorization and information

flow control, called the Flow-Limited Authorization Calculus

(FLAC). FLAC is a functional language for designing and ver-

ifying decentralized authorization protocols. FLAC is inspired

by the Polymorphic Dependency Core Calculus [2] (DCC).1

Abadi develops DCC as an authorization logic, but DCC is

limited to static trust relationships defined externally to DCC

programs by a lattice of principals. FLAC supports dynamic

authorization by building on the Flow-Limited Authorization

Model (FLAM) [12], which unifies reasoning about authority,

confidentiality, and integrity. Furthermore, FLAC is a language

for information flow control. It uses FLAM’s principal model

and FLAM’s logical reasoning rules to define an operational

model and type system for authorization computations that

preserve information security.

The types in a FLAC program can be considered propo-

sitions [13] in an authorization logic, and the programs can

be considered proofs that the proposition holds. Well-typed

FLAC programs are not only proofs of authorization, but also

proofs of secure information flow, ensuring the confidentiality

and integrity of authorization policies and of the data those

policies depend upon.

FLAC is useful from a logical perspective, but also serves as

a core programming model for real language implementations.

Since FLAC programs can dynamically authorize computation

and flows of information, FLAC applies to more realistic

settings than previous authorization logics. Thus FLAC offers

more than a type system for proving propositions—FLAC

programs do useful computation.

This paper makes the following contributions.

• We define FLAC, a language, type system, and seman-

tics for dynamic authorization mechanisms with strong

information security:

– Programs in low-integrity contexts exhibit noninterfer-
ence, ensuring attackers cannot leak or corrupt infor-

mation, and cannot subvert authorization mechanisms.

– Programs in higher-integrity contexts exhibit robust
declassification, ensuring attackers cannot influence

authorized disclosures of information.

1DCC was first presented in [11]. We use the abbreviation DCC to refer to
the extension to polymorphic types in [2].

• We present two authorization mechanisms implemented

in FLAC, commitment schemes and bearer credentials,

and demonstrate that FLAC ensures the programs that

use these mechanisms preserve the desired confidentiality

and integrity properties.

We have organized our discussion of FLAC as follows.

Section II introduces commitment schemes and bearer cre-

dentials, two examples of dynamic authorization mechanisms

we use to explore the features of FLAC. Section III reviews

the FLAM principal lattice [12], and Section IV defines the

FLAC language and type system. FLAC implementations of

the dynamic authorization examples are presented in Sec-

tion V, and their properties are examined. Section VI explores

aspects of FLAC’s proof theory, and Section VII discusses

semantic security guarantees of FLAC programs, including

noninterference and robust declassification. We explore related

work in Section VIII and conclude in Section IX.

II. DYNAMIC AUTHORIZATION MECHANISMS

Dynamic authorization is challenging to implement cor-

rectly since authority, confidentiality, and integrity interact in

subtle ways. FLAC helps programmers securely implement

both authorization mechanisms and code that uses them. FLAC

types support the definition of compositional security abstrac-

tions, and vulnerabilities in the implementations of these ab-

stractions are caught statically. Further, the guarantees offered

by FLAC simplify reasoning about the security properties of

these abstractions.

We illustrate the usefulness and expressive power of

FLAC using two important security mechanisms: commitment

schemes and bearer credentials. We show in Section V that

these mechanisms can be implemented using FLAC, and that

their security goals are easily verified in the context of FLAC.

A. Commitment schemes

A commitment scheme [14] allows one party to give another

party a “commitment” to a secret value without revealing the

value. The committing party may later reveal the secret in a

way that convinces the receiver that the revealed value is the

value originally committed.

Commitment schemes provide three essential operations:

commit, receive, and open. Suppose p wants to commit to

a value to principal q. First, p applies commit to the value

and provides the result to q. Next, q applies receive to the

committed value. Finally, when p wishes to reveal the value,

p applies the open operation to the received value, permitting

q to learn it.

A commitment scheme must have several properties in order

to be secure. First, q should not be able to receive a value

that hasn’t been committed by p, since this could allow q to

manipulate p to open a value it had not committed to. Second,

q should not learn any secret of p that has not been opened by

p. Third, p should not be able to open a different value than

the one received by q.

One might wonder why a programmer would bother to

create high-level implementations of operations like commit,

136136136

receive, and open. Why not simply treat these as primitive

operations and give them type signatures so that programs us-

ing them can be type-checked with respect to those signatures?

The answer is that an error in a type signature could lead to a

serious vulnerability. Therefore, we want more assurance that

the type signatures are correct. Implementing such operations

in FLAC is often easy and ensures that the type signature

is consistent with a set of assumptions about existing trust

relationships and the information flow context the operations

are used within. These FLAC-based implementations serve as

language-based models of the security properties achieved by

implementations that use cryptography or trusted third parties.

B. Bearer credentials with caveats

A bearer credential is a capability that grants authority to

any entity that possesses it. Many authorization mechanisms

used in distributed systems employ bearer credentials in some

form. Browser cookies that store session tokens are one

example: after a website authenticates a user’s identity, it gives

the user a token to use in subsequent interactions. Since it is

infeasible for attackers to guess the token, the website grants

the authority of the user to any requests that include the token.

Bearer credentials create an information security conundrum

for authorization mechanisms. Though they efficiently control

access to restricted resources, they create vulnerabilities and

introduce covert channels when used incorrectly. For example,

suppose Alice shares a remotely-hosted photo with her friends

by giving them a credential to access the photo. Giving a

friend such a credential doesn’t disclose their friendship, but

each friend that accesses the photo implicitly discloses the

friendship to the hosting service. Such covert channels are

pervasive, both in classic distributed authorization mechanisms

like SPKI/SDSI [4], as well as in more recent ones like

Macaroons [5].

Bearer credentials can also lead to vulnerabilities if they

are leaked. If an attacker obtains a credential, it can exploit

the authority of the credential. Thus, to limit the authority of a

credential, approaches like SPKI/SDSI and Macaroons provide

constrained delegation in which a newly issued credential

attenuates the authority of an existing one by adding caveats.

Caveats require additional properties to hold for the bearer to

be granted authority. Session tokens, for example, might have

a caveat that restricts the source IP address or encodes an

expiration time. As pointed out by Birgisson et al. [5], caveats

themselves can introduce covert channels if the properties

reveal sensitive information.

FLAC is an effective framework for reasoning about bearer

credentials with caveats since it captures the flow of credentials

in programs as well as the sensitivity of the information the

credentials and caveats derive from. We can reason about

credentials and the programs that use them in FLAC with

an approach similar to that used for commitment schemes.

That we can do so in a straightforward way is somewhat

remarkable: prior formalizations of credential mechanisms

(e.g., [5], [15], [16]) usually do not consider confidentiality nor

provide end-to-end guarantees about credential propagation.

III. THE FLAM PRINCIPAL LATTICE

Like many models, FLAM uses principals to represent the

authority of all entities relevant to a system. However, FLAM’s

principals and their algebraic properties are richer than in most

models, so we briefly review the FLAM principal model and

notation. Further details are found in the earlier paper [12].

Primitive principals such as Alice, Bob, etc., are repre-

sented as elements n of a (potentially infinite) set of names

N .2 In addition, FLAM uses � to represent a universally

trusted principal and ⊥ to represent a universally untrusted

principal. The combined authority of two principals, p and q,

is represented by the conjunction p∧ q, whereas the authority

of either p or q is the disjunction p ∨ q.

Unlike principals in other models, FLAM principals also

represent information flow policies. The confidentiality of

principal p is represented by the principal p→, called p’s

confidentiality projection. It denotes the authority necessary

to learn anything p can learn. The integrity of principal

p is represented by p←, called p’s integrity projection. It

denotes the authority to influence anything p can influence.

All authority may be represented as some combination of

confidentiality and integrity. For instance, principal p is equiv-

alent to the conjunction p→ ∧ p←, and in fact any FLAM

principal can be written p→ ∧ q← for some p and q. The

closure of the set of names N plus � and ⊥ under the

operators3 ∧,∨,←,→ forms a lattice L ordered by an acts-
for relation �, defined by the inference rules in Figure 1. We

write operators ←,→ with higher precedence than ∧,∨; for

instance, p∧q← is equal to p→∧(p∧q)←. Projections distribute

over ∧ and ∨ so, for example, (p ∧ q)← = (p← ∧ q←). The

confidentiality and integrity authority of principals are disjoint,

so the confidentiality projection of an integrity projection is

⊥ and vice-versa: (p←)→ = ⊥ = (p→)←.

An advantage of this model is that secure information flow

can be defined in terms of authority. An information flow

policy q is at least as restrictive as a policy p if q has at least

the confidentiality authority p→ and p has at least the integrity

authority q←. This relationship between the confidentiality

and integrity of p and q reflects the usual duality seen in

information flow control [17]. As in [12], we use the following

shorthand for relating principals by policy restrictiveness:

p � q � (p← ∧ q→) � (q← ∧ p→)
p 	 q � (p ∧ q)→ ∧ (p ∨ q)←
p
 q � (p ∨ q)→ ∧ (p ∧ q)←

Thus, p � q indicates the direction of secure information

flow: from p to q. The information flow join p 	 q is the

2Using N as the set of all names is convenient in our formal calculus,
but a general-purpose language based on FLAC may wish to dynamically
allocate names at runtime. Since knowing or using a principal’s name holds
no special privilege in FLAC, this presents no fundamental difficulties.
To use dynamically allocated principals in type signatures, however, the
language’s type system should support types in which principal names may
be existentially quantified.

3FLAM defines an additional set of operators called ownership projections,
which we omit here to simplify our presentation.

137137137

L � p � q

[BOT] L � p � ⊥ [TOP] L � � � p [REFL] L � p � p

[PROJ]
L � p � q

L � pπ � qπ
[PROJR] L � p � pπ

[CONJL]

L � pk � p
k ∈ {1, 2}

L � p1 ∧ p2 � p
[CONJR]

L � p � p1
L � p � p2

L � p � p1 ∧ p2

[DISJL]

L � p1 � p
L � p2 � p

L � p1 ∨ p2 � p
[DISJR]

L � p � pk
k ∈ {1, 2}

L � p � p1 ∨ p2

[TRANS]
L �p�q L �q�r

L �p�r

Fig. 1: Static principal lattice rules, adapted from FLAM [12]. The
projection π may be either confidentiality (→) or integrity (←).

least restrictive principal that both p and q flow to, and the

information flow meet p
 q is the most restrictive principal

that flows to both p and q.

Finally, in FLAM, the ability to “speak for” another prin-

cipal is an integrity relationship between principals. This

makes sense intuitively, because speaking for another principal

influences that principal’s trust relationships and information

flow policies. FLAM defines the voice of a principal p, written

∇(p), as the integrity necessary to speak for that principal.

Given a principal expressed in normal form4 as q→ ∧ r←, the

voice of that principal is

∇(q→ ∧ r←) � q← ∧ r←

For example, the voice of Alice, ∇(Alice), is Alice←. The

voice of Alice’s confidentiality ∇(Alice→) is also Alice←.

IV. FLOW-LIMITED AUTHORIZATION CALCULUS

FLAC uses information flow to reason about the security

implications of dynamically computed authority. Like previous

information-flow type systems [18], FLAC incorporates types

for reasoning about information flow, but FLAC’s type system

goes further by using Flow-Limited Authorization [12] to

ensure that principals cannot use FLAC programs to exceed

their authority, or to leak or corrupt information. FLAC is

based on DCC [2], but unlike DCC, FLAC supports reasoning

about authority deriving from the evaluation of FLAC terms.

In contrast, all authority in DCC derives from trust relation-

ships defined by a fixed, external lattice of principals. Thus,

using an approach based on DCC in systems where trust rela-

tionships change dynamically could introduce vulnerabilities

like delegation loopholes, probing and poaching attacks, and

authorization side channels [12].

4In normal form, a principal is the conjunction of a confidentiality principal
and an integrity principal. See [12] for details.

n ∈ N (primitive principals)
x ∈ V (variable names)

p, �, pc ::= n
∣
∣ � ∣

∣ ⊥ ∣
∣ p→

∣
∣ p←

∣
∣ p ∧ p

∣
∣ p ∨ p

s ::= (p � p)
∣
∣ unit

∣
∣ (s+ s)

∣
∣ (s× s)

∣
∣ s

pc−→ s
∣
∣ � says s

∣
∣ X

∣
∣ ∀X. s

v ::= ()
∣
∣ 〈v, v〉 ∣

∣ 〈p � p〉 ∣
∣ (η� v)

∣
∣ inji v

∣
∣ λ(x :s)[pc]. e

∣
∣ ΛX. e

∣
∣ v where v

e ::= x
∣
∣ v

∣
∣ e e

∣
∣ 〈e, e〉 ∣

∣ (η� e)
∣
∣ es

∣
∣ proji e

∣
∣ inji e∣

∣ case v of inj1(x). e | inj2(x). e∣
∣ bind x = e in e

∣
∣ assume e in e

Fig. 2: FLAC syntax. Terms using where are syntactically prohibited
in the source language and are produced only during evaluation.

E ::= [·] ∣∣ E e
∣
∣ v E

∣
∣ 〈E, e〉 ∣

∣ 〈v,E〉 ∣
∣ proji E

∣
∣ inji E∣

∣ (η� E)
∣
∣ bind x = E in e

∣
∣ bind x = v in E

∣
∣ Es

∣
∣ assume E in e

∣
∣ E where v

∣
∣ case E of inj1(x). e | inj2(x). e

Fig. 3: FLAC evaluation contexts

Figure 2 defines the FLAC syntax; evaluation contexts [19]

are defined in Figure 3. The operational semantics in Figure 4

is mostly standard except for assume terms, discussed below.

The core FLAC type system is presented in Figure 5.

FLAC typing judgments have the form Π;Γ; pc � e : s. The

delegation context, Π, contains a set of labeled dynamic trust

relationships 〈p � q | �〉 where p � q (read as “p acts for

q”) is a delegation from q to p , and � is the confidentiality

and integrity of that information. The typing context, Γ, is a

map from variables to types, and pc is the program counter
label, a FLAM principal representing the confidentiality and

integrity of control flow. The type system makes frequent

use of judgments adapted from FLAM’s inference rules [12].

These rules, adapted to FLAC, are presented in Figure 6.5

Since FLAC is a pure functional language, it might seem

odd for FLAC to have a label for the program counter;

such labels are usually used to control implicit flows through

assignments (e.g., in [20], [21]). The purpose of FLAC’s pc
label is to control a different kind of side effect: changes to the

delegation context, Π.6 In order to control what information

can influence whether a new trust relationship is added to the

delegation context, the type system tracks the confidentiality

5In addition to the derivation label, the rules in [12] also include a query
label that represents the confidentiality and integrity of a FLAM query context.
The query label is unnecessary in FLAC, and hence omitted here, because we
use FLAM judgments only in the type system—these “queries” only occur at
compile time and do not create information flows.

6The same pc label could also be used to control implicit flows through
assignments if FLAC were extended to support mutable references.

138138138

e −→ e′

[E-APP] (λ(x :s)[pc]. e) v −→ e[x �→ v]

[E-TAPP] (ΛX. e) s −→ e[X �→ s]

[E-CASE1] (case (inj1 v) of inj1(x). e1 | inj2(x). e2) −→ e1[x �→ v]

[E-CASE2] (case (inj2 v) of inj1(x). e1 | inj2(x). e2) −→ e2[x �→ v]

[E-BINDM] bind x = (η� v) in e −→ e[x �→ v]

[E-ASSUME] assume v in e −→ e where v

[E-EVAL]
e −→ e′

E[e] −→ E[e′]

Fig. 4: FLAC operational semantics

and security of control flow. Viewed as an authorization logic,

FLAC’s type system has the unique feature that it expresses

deduction constrained by an information flow context. For

instance, if we have ϕ
p←−−→ ψ and ϕ, then (via APP) we may

derive ψ in a context with integrity p←, but not in contexts

that don’t flow to p←. This feature offers needed control over

how principals may apply existing facts to derive new facts.

Many FLAC terms are standard, such as pairs 〈e1, e2〉,
projections proji e, variants inji e, polymorphic type abstrac-

tion, ΛX. e, and case expressions. Function abstraction, λ(x :
s)[pc]. e, includes a pc label that constrains the information

flow context in which the function may be applied. The rule

APP ensures that function application respects these policies,

requiring that the robust FLAM judgment Π; pc � pc � pc′

holds. This judgment ensures that the current program counter

label, pc, flows to the function label, pc′.
Branching occurs in case expressions, which conditionally

evaluate one of two expressions. The rule CASE ensures

that both expressions have the same type and thus the same

protection level. The premise Π; pc � pc ≤ s ensures that this

type protects the current pc label.7

Like DCC, FLAC uses monadic operators to track depen-

dencies. The monadic unit term (η� v) (UNITM) says that a

value v of type s is protected at level �. This protected value

has the type � says s, meaning that it has the confidentiality

and integrity of principal �. Computation on protected values

must occur in a protected context (“in the monad”), expressed

using a monadic bind term. The typing rule BINDM ensures

that the result of the computation protects the confidentiality

and integrity of protected values. For instance, the expression

bind x = (η� v) in (η�′ x) is only well-typed if �′ protects

values with confidentiality and integrity �. Since case expres-

sions may use the variable x for branching, BINDM raises

the pc label to pc	 � to conservatively reflect the control-flow

dependency.

7This premise simplifies our proofs, but does not appear to be strictly
necessary; BINDM ensures the same property.

Π;Γ; pc 	 e : s

[VAR] Π; Γ, x : s,Γ′; pc 	 x : s [UNIT] Π; Γ; pc 	 () : unit

[DEL] Π; Γ; pc 	 〈p � q〉 : (p � q)

[LAM]
Π; Γ, x :s1; pc′ 	 e : s2

Π;Γ; pc 	 λ(x :s1)[pc′]. e : (s1
pc′−−→ s2)

[APP]

Π; Γ; pc 	 e : (s1
pc′−−→ s2)

Π; Γ; pc 	 e′ : s1 Π; pc � pc � pc′

Π;Γ; pc 	 (e e′) : s2

[TLAM]
Π; Γ, X; pc′ 	 e : s

Π;Γ; pc 	 ΛX. e : ∀X. s

[TAPP]

Π; Γ; pc 	 e : ∀X. s
Π; pc � pc � pc′

Π;Γ; pc 	 (es′) : s[X �→ s′]
s′ well-formed in Γ

[PAIR]
Π; Γ; pc 	 e1 : s1 Π;Γ; pc 	 e2 : s2

Π;Γ; pc 	 〈e1, e2〉 : (s1 × s2)

[UNPAIR]
Π; Γ; pc 	 e : (s1 × s2)

Π; Γ; pc 	 (proji e) : si

[INJ]
Π; Γ; pc 	 e : si

Π;Γ; pc 	 (inji e) : (s1 + s2)

[CASE]

Π; Γ; pc 	 e : (s1 + s2) Π; pc 	 pc ≤ s
Π;Γ, x : s1; pc 	 e1 : s Π;Γ, x : s2; pc 	 e2 : s

Π;Γ; pc 	 case e of inj1(x). e1 | inj2(x). e2 : s

[UNITM]
Π; Γ; pc 	 e : s

Π;Γ; pc 	 (η� e) : � says s

[BINDM]

Π; Γ; pc 	 e : � says s′ Π;Γ, x : s′; pc � � 	 e′ : s
Π; pc 	 � ≤ s

Π;Γ; pc 	 bind x = e in e′ : s

[ASSUME]

Π; Γ; pc 	 e : (p � q)
Π; pc � pc � ∇(q) Π; pc � ∇(p→) � ∇(q→)

Π, 〈p � q | pc〉; Γ; pc 	 e′ : s
Π;Γ; pc 	 assume e in e′ : s

[WHERE]

Π; Γ; pc 	 v : (p � q) Π; pc′ � pc′ � pc
Π; pc′ � pc′ � ∇(q) Π; pc′ � ∇(p→) � ∇(q→)

Π, 〈p � q | pc′〉; Γ; pc′ 	 e : s

Π;Γ; pc 	 (e where v) : s

Fig. 5: FLAC type system.

Protection levels are defined by the set of inference rules

in Figure 7, adapted from [22]. Expressions with unit type

(P-UNIT) do not propagate any information, so they protect

information at any �. Product types protect information at � if

both components do (P-PAIR). Function types protect infor-

mation at � if the return type does (P-FUN), and polymorphic

types protect information at whatever level the abstracted type

does (P-TFUN). If a type s already protects information at �,
then �′ says s still does (P-LBL1). Finally, if � flows to �′,

139139139

Π; � � p � q

[R-STATIC]
L � p � q

Π; � � p � q
[R-ASSUME]

〈p � q | �〉 ∈ Π
Π; � � p � q

[R-CONJR]

Π; � � p � p1
Π; � � p � p2

Π; � � p � p1 ∧ p2
[R-DISJL]

Π; � � p1 � p
Π; � � p2 � p

Π; � � p1 ∨ p2 � p

[R-TRANS]

Π; � � p � q Π; � � q � r
Π; � � pc � ∇(r→)

Π; � � p � r

[R-WEAKEN]
Π; �′ � p � q Π; � � �′ � �

Π ∪Π′; � � p � q

Fig. 6: Inference rules for robust assumption, adapted from
FLAM [12].

then �′ says s protects information at � (P-LBL2).

Most of the novelty of FLAC lies in its delegation values and

assume terms. These terms enable expressive reasoning about

authority and information flow control. A delegation value

serves as evidence of trust. For instance, the term 〈p � q〉,
read “p acts for q”, is evidence that q trusts p. Delegation

values have acts-for types; 〈p � q〉 has type (p � q). The

assume term enables programs to use evidence securely to

create new flows between protection levels. In the typing

context ∅;x :p← says s; q← (i.e., Π = ∅, Γ = x :p← says s,
and pc = q←), the following expression is not well typed:

bind x′ = x in (ηq← x′)

since p← does not flow to q←, as required by the premise

Π; pc � � ≤ s in rule BINDM. Specifically, we cannot derive

Π; pc � p← ≤ q← says s since P-LBL2 requires the FLAM

judgment Π; q← � p→ � q← to hold.

However, the following expression is well typed:

assume 〈p← � q←〉 in bind x′ = x in (ηq← x′)

The difference is that the assume term adds a trust relation-

ship, represented by an expression with an acts-for type, to the

delegation context. In this case, the expression 〈p← � q←〉
adds a trust relationship that allows p← to flow to q←.

This is secure since pc = q←, meaning that only principals

with integrity q← have influenced the computation. With

〈p← � q← | q←〉 in the delegation context, added via the

ASSUME rule, the premises of BINDM are now satisfied, so

the expression type-checks.

Creating a delegation value requires no special privilege be-

cause the type system ensures only high-integrity delegations

are used as evidence that enable new flows. Using low-integrity

evidence for authorization would be insecure since attackers

could use delegation values to create new flows that reveal

secrets or corrupt data. The premises of the ASSUME rule

ensure the integrity of dynamic authorization computations

Π; pc 	 � ≤ s

[P-UNIT] Π; pc 	 � ≤ unit

[P-PAIR]
Π; pc 	 � ≤ s1 Π; pc 	 � ≤ s2

Π; pc 	 � ≤ (s1 × s2)

[P-FUN]
Π; pc 	 � ≤ s2

Π; pc 	 � ≤ s1
pc′−−→ s2

[P-TFUN]
Π; pc 	 � ≤ s

Π; pc 	 � ≤ ∀X. s

[P-LBL1]
Π; pc 	 � ≤ s

Π; pc 	 � ≤ �′ says s
[P-LBL2]

Π; pc � � � �′

Π; pc 	 � ≤ �′ says s

Fig. 7: Type protection levels

that produce values like 〈p← � q←〉 in the example above.8

The second premise, Π; pc � pc � ∇(q), requires that the pc
has enough integrity to be trusted by q, the principal whose

security is affected. For instance, to make the assumption

p � q, the evidence represented by the term e must have

at least the integrity of the voice of q, written ∇(q). Since

the pc bounds the restrictiveness of the dependencies of e,
this ensures that only information with integrity ∇(q) or

higher may influence the evaluation of e. The third premise,

Π; pc � ∇(p→) � ∇(q→), ensures that principal p has

sufficient integrity to be trusted to enforce q’s confidentiality,

q→. This premise means that q permits data to be relabeled

from q→ to p→.9

Assumption terms evaluate to where expressions (rule E-

ASSUME). To simplify the formalization, these expressions

are not part of the source language but are generated by the

evaluation rules. The term e where v records that e is eval-

uated in a context which includes the delegation v. The rule

WHERE gives a typing rule for where terms; though similar to

ASSUME, it requires only that there exist a sufficiently trusted

label pc′ such that subexpression e type-checks. In the proofs

in Section VII, we choose pc′ using the typing judgment of

the source-level assume that generates the where term.

V. EXAMPLES REVISITED

We can now implement our examples from Section II in

FLAC. Using FLAC ensures that authority and information

flow assumptions are explicit, and that programs using these

abstractions are secure with respect to those assumptions. In

this section, we discuss at a high level how FLAC types help

enforce specific end-to-end security properties for commitment

schemes and bearer credentials. Section VII formalizes the

semantic security properties of all well-typed FLAC programs.

A. Commitment Schemes

Figure 8 contains the essential operations of a one-

round commitment scheme—commit, receive, and open—

8These premises are related to the robust FLAM rule LIFT.
9More precisely, it means that the voice of q’s confidentiality, ∇(q→),

permits data to be relabeled from q→ to p→. Recall that ∇(Alice→) is just
Alice’s integrity projection: Alice←.

140140140

commit :∀X. p→ says X
p←−−→ p says X

commit =

ΛX.λ(x :p→ says X)[p←].

assume 〈⊥← � p←〉 in bind x′ = x in (ηp x′)

receive :∀X. p says X
q←−−→ p ∧ q← says X

receive =

ΛX.λ(x :p says X)[q←].

assume 〈p← � q←〉 in bind x′ = x in (ηp∧q← x′)

open :∀X. p ∧ q← says X
∇(p→)−−−−→ p← ∧ q says X

open =

ΛX.λ(x :p ∧ q← says X)[∇(p→)].
assume 〈∇(q→) � ∇(p→)〉 in
assume 〈q→ � p→〉 in bind x′ = x in (ηp←∧q x′)

Fig. 8: FLAC implementations of commitment scheme operations.

implemented in FLAC. Typically, a principal p commits to a

value and sends it to q, who receives it. Later, p opens the

value, revealing it to q. The commit operation takes a value

of any type (hence ∀X) with confidentiality p→ and produces

a value with confidentiality and integrity p. In other words, p
endorses [23] the value to have integrity p←.

Attackers should not be able to influence whether principal

p commits to a particular value. The pc constraint on commit

ensures that only principal p and principals trusted with at least

p’s integrity, p←, may apply commit to a value.10 Furthermore,

if the programmer omitted this constraint or instead chose

⊥←, say, then commit would be rejected by the type system.

Specifically, the assume term would not type-check via rule

ASSUME since the pc does not act for ∇(p←) = p←.

Next, principal q accepts a committed value from p using

the receive operation. The receive operation endorses the

value with q’s integrity, resulting in a value at p ∧ q←, the

confidentiality of p and the integrity of both p and q.

As with the commit operation, FLAC ensures that receive

satisfies important information security properties. Other prin-

cipals, including p, should not be able to influence which

values q receives—otherwise an attacker could use receive

to subvert q’s integrity, using it to endorse arbitrary values.

The pc constraint on receive ensures in this case that only

q may apply receive. Furthermore, the type of x requires

received values to have the integrity of p. Errors in either of

these constraints would result in a typing error, either due to

ASSUME as before, or due to BINDM, which requires that p
must flow to p ∧ q←.

Additionally, receive accepts committed values with con-

fidentiality at most p→. This constraint ensures that q does

10We make the reasonable assumption that an untrusted programmer cannot
modify high-integrity code, thus the influence of attackers is captured by the
pc and the protection levels of values. Enforcing this assumption is beyond
the scope of FLAC, but has been explored in [24].

not receive values from p that might depend on q’s secrets:

unopened commitments, for example. In cryptographic pro-

tocols, this property is usually called non-malleability [25],

and is important for scenarios in which security depends on

the independence of values. Consider a sealed-bid auction

where participants submit their bids via commitment protocols.

Suppose that q commits a bid b, protected by label q. Then

p could theoretically influence a computation that computes

a value b + 1 with label p ∧ q→ since that label protects

information at q→, but only has p← integrity. If q received

values from p that could depend on q’s secrets, then p could

outbid q by 1 without ever learning the value b.

Finally, open reveals a committed value to q by relabeling a

value from p∧ q← to p←∧ q, which is readable by principal q
but retains the integrity of both p and q. Since open accepts a

value protected by the integrity of both p and q and returns a

value with the same integrity, the opened value must have

been previously committed by p and received by q. Since

the open operation reveals a value with confidentiality p→, it

should only be invoked by principals that are trusted to speak

for p→. Otherwise, q could open p’s commitments. Hence,

the pc label of open is ∇(p→). For p = Alice, say, the pc
label would be Alice←. FLAC ensures these constraints are

specified correctly; otherwise, open’s implementation could

not produce a value with label p← ∧ q.

The implementation requires two assume terms. The outer

term establishes that principals speaking for q→ also speak for

p→ by creating an integrity relationship between their voices.

With this relationship in place, the inner term may reveal the

commitment to q.11

In DCC, functions are not annotated with pc labels and may

be applied in any context. So a DCC function analogous to

open might have type

dcc open : ∀X. p ∧ q← says X −→ p← ∧ q says X

However, dcc_open would not be appropriate for a com-

mitment scheme since any principal could use it to relabel

information from p-confidential (p→) to q-confidential (q→).

To simplify the presentation of our commitment scheme

operations, we make the assumption that q only receives one

value. Therefore, p can only open one value, since only one

value has been given the integrity of both p and q. A more

general scheme can be achieved by pairing each committed

value with a public identifier that is endorsed along with

the value, but remains public. If q refuses to receive more

that one commitment with the same identifier12, p will be

unable to open two commitments with the same value since

it cannot create a pair that has the integrity of both p and

q, even if p has multiple committed values (with different

identifiers) to choose from. We present the simpler one-round

11 i.e., it satisfies the ASSUME premise Π; pc � ∇(p→) � ∇(q→).
12For cryptographic commitment schemes, the commitment ciphertext itself

could act as a public identifier, and q could rely on cryptographic assumptions
that distinct values cannot (with high probability) have the same identifier
instead of explicitly checking whether the identifier has been used before.

141141141

commitment scheme above since it captures the essential infor-

mation security properties of commitment while avoiding the

tedious digression of defining encodings for numeric values

and numeric comparisons.

The real power of FLAC is that the security guarantees

of well-typed FLAC functions like those above are compo-

sitional. The FLAC type system ensures the security of both

the functions themselves and the programs that use them. For

instance, the code should be rejected because it would permit

q to open p’s commitments:

ΛX.λ(x :p ∧ q← says X)[q←]. assume 〈q � p〉 in open x
FLAC’s guarantees make it possible to state general security

properties of all programs that use the above commitment

scheme, even if those programs are malicious. For example,

suppose we have pcp = ∇(p), pcq = ∇(q), and

Γcro = commit, receive, open, x :p
→
says s, y :p ∧ q← says s

Intuitively, pcp and pcq are execution contexts under the

control of p or q, respectively. Γcro is a typing context

for programs using the commitment scheme.13 The variable

x represents an uncommitted value with p’s confidentiality,

whereas y is a committed value. Since we are interested in

properties that hold for all principals p and q, we want the

properties to hold in an empty delegation context: Π = ∅.

Below, we omit the delegation context altogether for brevity.

Using results presented in Section VII, we can prove that:

• q cannot receive a value that hasn’t been committed.
For any e and s′ such that Γcro; pcq � e : p∧q← says s′,
the value that e computes is independent of x.

• q cannot learn a value that hasn’t been opened. For

any e, �, and s′ such that Γcro; pcq � e : �
 q→ says s′,
the value that e computes is independent of x and y.

• p cannot open a value that hasn’t been received. For

any e such that Γcro; pcp � e : p← ∧ q says s′, the value

that e computes is independent of x.

For the first two properties, we consider programs using our

commitment scheme that q might invoke, hence we consider

FLAC programs that type-check in the Γcro; pcq context. In the

first property, we are concerned with programs that produce

values protected by policy p ∧ q←. Since such programs

produce values with the integrity of p but are invoked by q, we

want to ensure that no program exists that enables q to obtain

a value with p’s integrity that depends on x, which is a value

without p’s integrity. The second property concerns programs

that produces values at �
 q→ for any �; these are values

readable by q. Therefore, we want to ensure that no program

exists that enables q to produce such a value that depends on

x or y, which are not readable by q.

The final property considers programs that p might invoke to

produce values at p← ∧ q, thus we consider FLAC programs

that type-check in the Γcro; pcp context. Here, we want to

ensure that no program invoked by p can produce a value

13For presentation purposes, we have omitted the types of commit,
receive, and open in Γcro. Their types are as defined previously.

at p← ∧ q that depends on x, an unreceived value. Complete

proofs of these properties are found in Appendix B.

B. Bearer Credentials

We can also use FLAC to implement bearer credentials, our

second example of a dynamic authorization mechanism. We

represent a bearer credential with authority k in FLAC as a

term with the type

∀X. k→ says X pc−→ k← says X

which we abbreviate as k→
pc
=⇒ k←. These terms act as bearer

credentials for a principal k since they may be used as a proxy

for k’s confidentiality and integrity authority. Recall that k← =
k← ∧ ⊥→ and k→ = k→ ∧ ⊥←. Then secrets protected by

k→ can be declassified to ⊥→, and untrusted data protected

by ⊥← can be endorsed to k←. Thus this term wields the full

authority of k, and if pc = ⊥←, the credential may be used in

any context—any “bearer” may use it. From such credentials,

more restricted credentials can be derived. For example, the

credential k→
pc
=⇒ ⊥→ grants the bearer authority to declassify

k-confidential values, but no authority to endorse values.

We postpone an in-depth discussion of terms with types of

the form k→
pc
=⇒ k← until Section VI-B, but it is interesting to

note that an analogous term in DCC is only well-typed if k is

equivalent to ⊥. This is because the function takes an argument

with k→ confidentiality and no integrity, and produces a value

with k← integrity and no confidentiality. Suppose L is a

security lattice used to type-check DCC programs with suitable

encodings for k’s confidentiality and integrity. If a DCC term

has a type analogous to k→ =⇒ k←, then L must have the

property k→ � ⊥ and ⊥ � k←. This means that k has

no confidentiality and no integrity. That FLAC terms may

have this type for any principal k makes it straightforward

to implement bearer credentials and demonstrates a useful

application of FLAC’s extra expressiveness.

The pc of a credential k→
pc
=⇒ k← acts as a sort of caveat: it

restricts the information flow context in which the credential

may be used. We can add more general caveats to credentials

by wrapping them in lambda terms. To add a caveat φ to a

credential with type k→
pc
=⇒ k←, we use a wrapper:

λ(x :k→
pc
=⇒ k←)[pc].ΛX.λ(y :φ)[pc]. xX

which gives us a term with type

∀X.φ pc−→ k→ says X
pc−→ k← says X

This requires a term with type φ (in which X may occur)

to be applied before the authority of k can be used. Similar

wrappers allow us to chain multiple caveats; i.e., for caveats

φ1 . . . φn, we obtain the type

∀X.φ1 pc−→ . . .
pc−→ φn

pc−→ k→ says X
pc−→ k← says X

which abbreviates to

k→
φ1×···×φn;pc
========⇒ k←

142142142

Like any other FLAC terms, credentials may be protected

by information flow policies. So a credential that should

only be accessible to Alice might be protected by the type

Alice→ says (k→
φ;pc
==⇒ k←). This confidentiality policy

ensures the credential cannot accidentally be leaked to an at-

tacker. A further step might be to constrain uses of this creden-

tial so that only Alice may invoke it to relabel information. If

we require pc = Alice←, this credential may only be used in

contexts trusted by Alice: Alice→ says (k→
φ;Alice←
=====⇒ k←).

A subtle point about the way in which we construct caveats

is that the caveats are polymorphic with respect to X , the same

type variable the credential ranges over. This means that each

caveat may constrain what types X may be instantiated with.

For instance, suppose isEduc is a predicate for educational

films; it holds (has a proof term with type isEduc X) for

types like Bio and Doc, but not RomCom. Adding isEduc X
as a caveat to a credential would mean that the bearer of the

credential could use it to access biographies and documen-

taries, but could not use it to access romantic comedies. Since

no term of type isEduc RomCom could be applied, the bearer

could only satisfy isEduc by instantiating X with Bio or Doc.

Once X is instantiated with Bio or Doc, the credential cannot

be used on a RomCom value. Thus we have two mechanisms for

constraining the use of credentials: information flow policies

to constrain propagation, and caveats to establish prerequisites

and constrain the types of data covered by the credential.

As a more in-depth example of using such credentials,

suppose Alice hosts a file sharing service. For a simpler

presentation, we use free variables to refer to these files; for

instance, x1 : (k1 says ph) is a variable that stores a photo

(type ph) protected by k1. For each such variable x1, Alice

has a credential k→1
⊥←
==⇒ k←1 , and can give access to users by

providing this credential or deriving a more restricted one. To

access x1, Bob does not need the full authority of Alice or

k1—a more restricted credential suffices:

λ(c :k1
Bob←
===⇒ Bob→ ∧ k←1 ph)[Bob←].

bind x′1 = c x1 in (ηBob→∧k←1 x′1)

Here, c is a credential k1
Bob←
===⇒ Bob→ ∧ k←1 whose polymor-

phic type has been instantiated with the photo type ph. This

credential accepts a photo protected at k1 and returns a photo

protected at Bob→ ∧ k←1 , which Bob is permitted to access.

The advantage of bearer credentials is that access to x1 can

be provided to principals other than k1 in a decentralized way,

without changing the policy on x1. For instance, suppose Alice

wants to issue a credential to Bob to access resources protected

by k1. Alice has a credential with type k→1
⊥←
==⇒ k←1 , but she

wants to ensure that only Bob (or principals Bob trusts) can

use it. In other words, she wants to create a credential of type

k1
Bob←
===⇒ k←1 , which needs Bob’s integrity to use.

Alice can create such a credential using a wrapper that

derives a more constrained credential from her original one.

λ(c :k→1
⊥←
==⇒ k←1)[Alice←].

ΛX.λ(y :k1 says X)[Bob
←].

bind y′ = y in (c X) (ηk→ y′)

Then Bob can use this credential to access x1 by deriving a

credential of type k1
Bob←
===⇒ Bob→ ∧ k←1 ph using the function

λ(c :k1
Bob←
===⇒ k←1)[Bob←].

λ(y :k1 says ph)[Bob
←].

bind y′ = c ph y in (ηBob→∧k←1 y′)

which can be applied to obtain a value readable by Bob.

Bob can also use this credential to share photos with friends.

For instance, the function

λ(c :k1
Bob←
===⇒ k←1)[Bob←].

assume 〈Carol← � Bob←〉 in
λ(:unit)[Carol←].
bind x′1 = c ph x1 in (ηCarol→∧k←1 x′1)

creates a wrapper around a specific photo x1. Only principals

trusted by Carol may invoke the wrapper, which produces a

value of type Carol→ ∧ k←1 says ph, permitting Carol to

access the photo.

The properties of FLAC let us prove many general proper-

ties about such bearer-credential programs; here, we examine

three properties. For i ∈ {1..n}, let

Γbc = xi :ki says si, ci :Alice says (k
←
i
⊥←
==⇒ k←i)

where ki is a primitive principal protecting the ith resource of

type si, and ci is a credential for the ith resource and protected

by Alice. Assume ki �∈ {Alice, Friends, p} for all i where p
represents a (potentially malicious) user of Alice’s service, and

Friends is a principal for Alice’s friends, (e.g., Friends =
(Bob ∨ Carol)). Also, define pcp = p← and pcA = Alice←.

• p cannot access resources without a credential. For

any e, �, and s′ such that Γbc; pcp � e : �
 p→ says s′,
the value of e is independent of xi for all i.

• p cannot use unrelated credentials to access resources.
For any e, �, and s′ such that

Γbc, cp : (k
←
1
⊥←
==⇒ k←1); pcp � e : �
 p→ says s′

the value e computes is independent of xi for i �= 1.

• Alice cannot disclose secrets by issuing credentials.
For all i and j �= 1, define

Γ′bc = xi :ki says si, ci :Alice says (k
←
j
⊥←
==⇒ k←j),

cF :Friends says (k
←
1
⊥←
==⇒ k←1)

Then if Γ′bc; pcA � e : �
 p→ says (k←j ⊥←
==⇒ k←j) for

some e, �, and s′, the value of e is independent of x1.

These properties demonstrate the power of FLAC’s type sys-

tem. The first two ensure that credentials really are necessary

143143143

for p to access protected resources, even indirectly. In the

first, p has no credentials, and the type system ensures that

p cannot invoke a program that produces a value p can read

(represented by �
p→) that depends on any variable xi. In the

second, a credential cp with type k←1
⊥←
==⇒ k←1 is accessible

to p, but p cannot use it to access other variables. The third

property eliminates covert channels like the one discussed in

Section II-B. It implies that credentials issued by Alice do

not leak information, in this case about Alice’s friends. By

implementing bearer credentials in FLAC, we can demonstrate

these three properties with relatively little effort.

VI. FLAC PROOF THEORY

A. Properties of says

FLAC’s type system constrains how principals apply ex-

isting facts to derive new facts. For instance, a property of

says in other authorization logics (e.g., Lampson et al. [1]

and Abadi [2]) is that implications that hold for top-level

propositions also hold for propositions of any principal �:

� (s1 −→ s2) −→ (� says s1 −→ � says s2)

The pc annotations on FLAC function types refine this prop-

erty. Each implication (in other words, each function) in FLAC

is annotated with an upper bound on the information flow

context it may be invoked within. To lift such an implication

to operate on propositions protected at label �, the label � must

flow to the pc of the implication. Thus, for all � and si,

� (s1 pc��−−−→ s2)
pc−→ (� says s1

pc−→ � says s2)

This judgment is a FLAC typing judgment in logical form,

where terms have been omitted. We write such judgments with

an empty typing context (as above) when the judgment is valid

for any Π, Γ, and pc. A judgment in logical form is valid if

a proof term exists for the specified type, proving the type is

inhabited. The above type has proof term

λ(f : (s1
pc��−−−→ s2))[pc].

λ(x :� says s1)[pc]. bind x′ = x in (η� f x
′)

In order to apply f , we must first bind x, so according to

rules BINDM and APP, the function f must have a label at

least as restrictive as pc 	 �. All theorems of DCC can be

obtained by encoding them as FLAC implications with pc =
�→, the highest bound. Since any principal � flows to �→,

such implications may be applied in any context.

These refinements of DCC’s theorems are crucial for sup-

porting applications like commitment schemes and bearer

credentials. Recall from Sections V-A and V-B that the security

of these mechanisms relied in part on restricting the pc
to a specific principal’s integrity. Without such refinements,

principal q could open principal p’s commitments using open,

or create credentials with p authority: p→
pc
=⇒ p←.

Other properties of says common to DCC and other logics

(cf. [26] for examples) are similarly refined by pc bounds.

Two examples are: � s pc−→ � says s which has proof term:

λ(x :s)[pc]. (η� s) and

� � says (s1 pc��−−−→ s2)
pc−→ (� says s1

pc−→ � says s2)

with proof term:

λ(f :� says (s1
pc��−−−→ s2))[pc]. bind x′ = x in

λ(y :� says s1)[pc]. bind y′ = y in (η� x
′ y′)

As in DCC, chains of says are commutative in FLAC:

� �1 says �2 says s pc−→ �2 says �1 says s

with proof term

λ(x :�1 says �2 says s)[pc].
bind y = x in bind z = y in (η�2 (η�1 z))

In some logics with different interpretations of says (e.g.,

CCD [27]) differently ordered chains are distinct, but here we

find commutativity appealing since it matches the intuition

from information flow control. When principal �1 says that �2
says s, we should protect s with a policy at least as restrictive

as both �1 and �2, i.e., the principal �1 	 �2. Since 	 is

commutative, who said what first is irrelevant.

B. Dynamic Hand-off

Many authorization logics support delegation using a “hand-

off” axiom. In DCC, this axiom is actually a provable theorem:

� (q says (p⇒ q))→ (p⇒ q)

where p⇒ q is shorthand for

∀X. (p says X −→ q says X)

However, p ⇒ q is only inhabited if p � q in the security

lattice. Thus, DCC can reason about the consequences of p � q
(whether it is true for the lattice or not), but a DCC program

cannot produce a term of type p⇒ q unless p � q.

FLAC programs, on the other hand, can create new trust

relationships from delegation expressions using assume terms.

The type analogous to p⇒ q in FLAC is

∀X. (p says X pc−→ q says X)

which we wrote as p
pc
=⇒ q in Section V-B. FLAC programs

construct terms of this type from proofs of authority, repre-

sented by terms with acts-for types. This feature enables a

more general form of hand-off, which we state formally below.

Proposition 1 (Dynamic hand-off). For all � and pc′, let pc =
�→ ∧∇(p→) ∧ q←

(∇(q→) � ∇(p→)) pc−→ (p � q) pc−→
∀X. (p says X pc′−−→ q says X)

144144144

Proof term.

λ(pf 1 : (∇(q→) � ∇(p→)))[pc].
λ(pf 2 : (p � q))[pc].
assume pf 1 in assume pf 2 in

ΛX.λ(x :p says X)[pc′]. bind x′ = x in (ηq x
′)

The principal pc = �→ ∧ ∇(p→) ∧ q← restricts delegation

(hand-off) to contexts with the integrity of ∇(p→)∧ q←. The

two arguments are proofs of authority with acts-for types: a

proof of ∇(q→) � ∇(p→) and a proof of p � q. The pc
ensures that the proofs have sufficient integrity to be used in

assume terms since it has the integrity of both ∇(p→) and

q←. Note that low-integrity or confidential delegation values

must first be bound via bind before the above term may be

applied. Thus the pc would reflect the protection level of both

arguments. Principals �→ and pc′ are unconstrained.

Dynamic hand-off terms give FLAC programs a level of

expressiveness and security not offered by other authorization

logics. Observe that pc′ may be chosen independently of the

other principals. This means that although the pc prevents

low-integrity principals from creating hand-off terms, a high-

integrity principal may create a hand-off term and provide it

to an arbitrary principal. Hand-off terms in FLAC, then, are

similar to capabilities since even untrusted principals may use

them to change the protection level of values. Unlike in most

capability systems, however, the propagation of hand-off terms

can be constrained using information flow policies.

Terms that have types of the form in Proposition 1 illustrate

a subtlety of enforcing information flow in an authorization

mechanism. Because these terms relabel information from one

protection level to another protection level, the transformed

information implicitly depends on the proofs of authorization.

FLAC ensures that the information security of these proofs is

protected—like that of all other values—even as the policies

of other information are being modified. Hence, authorization

proofs cannot be used as a side channel to leak information.

VII. SEMANTIC SECURITY PROPERTIES OF FLAC

A. Delegation invariance

FLAC programs dynamically extend trust relationships,

enabling new flows of information. Nevertheless, well-typed

programs have end-to-end semantic properties that enforce

strong information security. These properties derive primarily

from FLAC’s control of the delegation context. The ASSUME

rule ensures that only high-integrity proofs of authorization

can extend the delegation context, and furthermore that such

extensions occur only in high-integrity contexts.

That low-integrity contexts cannot extend the delegation

context turns out to be a crucial property. This property

allows us to state a useful invariant about the evaluation of

FLAC programs. Recall that assume terms evaluate to where

terms in the FLAC semantics. Thus, FLAC programs typically

compute values containing a hierarchy of nested where terms.

The terms record the values whose types were used to extend

the delegation context during type checking.

For a well-typed FLAC program, we can prove that certain

trust relationships could not have been added by the program.

Therefore, if these relationships exist, they must have existed

in the original delegation context.

Lemma 1 (Delegation invariance). Suppose Π;Γ; pc � e : s
such that e −→ e′ where v. Then for some �, p′, q′, and Π′,
we have Π;Γ; pc � v : � says p′ � q′, and Π′; Γ; pc � e′ : s.
Furthermore, for all p and q such that Π; pc � pc � ∇(q),

Π; pc � p � q ⇐⇒ Π′; pc � p � q

Proof. See Appendix A.

First, Lemma 1 says that at each step of evaluation, there

exists a Π′ such that e′ is well typed. More importantly, this

Π′ has a useful invariant. If pc does not speak for a principal

q, then Π and Π′ must agree on the trust relationships of q.

B. Noninterference
Lemma 1 is critical for our proof of noninterference, a result

that states that public and trusted output of a program cannot

depend on restricted (secret or untrustworthy) information. Our

proof of noninterference for FLAC programs relies on a proof

of subject reduction under a bracketed semantics, based on the

proof technique of Pottier and Simonet [20]. This technique

is relatively standard, so we omit it here. The complete proof

of subject reduction is in our technical report [28]; proofs for

other results are found in Appendix A.
In other noninterference results based on bracketed seman-

tics, including [20], noninterference follows almost directly

from the proof of subject reduction. This is because the subject

reduction proof shows that evaluating a term cannot change its

type. In FLAC, however, subject reduction alone is insufficient;

evaluation may enable flows from secret or untrusted inputs

to public and trusted types.
To see how, suppose e is a well-typed program according

to Π;Γ, x : s; pc � e : s′. Furthermore, let H be a principal

such that Π; pc � H ≤ s and Π; pc � H ≤ s′. In other

words, x is a “high” variable (more restrictive; secret and

untrusted), and e evaluates to a “low” result (less restrictive;

public and trusted). In [20], executions that differ only in

secret or untrusted inputs must evaluate to the same value,

since otherwise the value would not be well typed. In FLAC,

however, if the pc has sufficient integrity, then an assume term

could cause Π′; pc � H ≤ s′ to hold in a delegation context

Π′ of a subterm of e. The key to proving our result relies on

using Lemma 1 to constrain the assumptions that can be added

to Π′. Thus noninterference in FLAC is dependent on H and

its relationship to pc and the type s′.
Theorem 1 states that for some principal H that flows to s

but not � says bool, if pc has low integrity relative to∇(H→)
and the integrity of �, and if the evaluation of e differs only in

the value of s-typed inputs, the computed values are equal.14

14It is standard for noninterference proofs in languages with higher-
order functions to restrict their results to non-function types (cf. [20], [11],
[29]). In this paper, we prove noninterference for boolean types, encoded as
bool = (unit + unit). With an appropriate equivalence relation on terms,
this noninterference result can be lifted to more general types.

145145145

Theorem 1 (Noninterference). Let Π;Γ, x : s; pc � e :
� says bool such that

1) Π; pc � H ≤ s
2) Π; pc � H ≤ � says bool
3) Π; pc � pc � ∇(H→) ∧ �←

Then e[x �→ v1] −→∗ v′1 and e[x �→ v2] −→∗ v′2 implies
v′1 = v′2.

Proof. See Appendix A.

Condition 1 identifies s as a “high” type—at least as

restricted as H . Condition 2 identifies � says bool as a

“low” type, to which information labeled H should not flow.

Condition 3 identifies pc as having low integrity compared to

the voice of H→ and �←, the integrity of the expression e. If

e evaluates to v′1 and v′2, then v′1 = v′2.

Noninterference is a key tool for obtaining many of the

security properties we seek. For instance, noninterference is

essential for verifying the properties of commitment schemes

discussed in Section V-A. The proofs of these properties are

described in Appendix B.

C. Robust declassification

Using our noninterference result, we obtain a more general

semantic security property for FLAC programs. That property,

robust declassification [30], requires disclosures of secret

information to be independent of low-integrity information.

Robust declassification permits some confidential information

to be disclosed to an attacker, but attackers can influence nei-

ther the decision to disclose information nor the choice of what

information is disclosed. Therefore, robust declassification is a

more appropriate security condition than noninterference when

programs are intended to disclose information.

Programs and contexts that meet the requirements of The-

orem 1 trivially satisfy robust declassification since no infor-

mation is disclosed. In higher-integrity contexts where the pc
speaks for H→ (and thus may influence its trust relationships),

FLAC programs exhibit robust declassification.

Following Myers et al. [31], we extend our set of terms with

a “hole” term [•] representing portions of a program that are

under the control of an attacker. We extend the type system

with the following rule for holes with lambda-free types:

[HOLE]
Π; pc H← ≤ t Π; pc � H← � ∇(pc)

Π; Γ; pc [•] : t

We write e[�•] to denote a program e with holes. Let an

attack be a vector �a of terms and e[�a] be the program where ai
is substituted for •i. An attack �a is a fair attack [30] on a well-

typed program with holes e[�•] if the program e[�a] is also well

typed. Unfair attacks give the attacker enough power to break

security directly, without exploiting existing declassifications.

Theorem 2 (Robust declassification). Given a program e[�•]
such that Π;Γ, x : s; pc � e[�•] : � says bool, where the
following conditions hold,

1) Π; pc � H ≤ s

2) Π; pc � H ≤ � says bool
3) Π; pc � H← � ∇(H→)
4) Π; pc � pc � �←

Choose any �a and �b such that Π;Γ, x : s; pc � e[�a] :
� says bool and Π;Γ, x : s; pc � e[�b] : � says bool. Then,
suppose e[�a][x �→ vi] −→∗ v′i for i ∈ {1, 2} such that v′1 � v′2.
Then if e[�b][x �→ vi] −→∗ v′′i for i ∈ {1, 2}, v′′1 � v′′2 .

Proof. See Appendix A.

Our formulation of robust declassification is more general

than previous definitions since it permits some endorsements,

albeit restricted to untrusted principals that cannot influence

the trust relationships of �←, the integrity of the result.

Previous definitions of robust declassification [31], [30] for-

bid endorsement altogether; qualified robustness [31] permits

endorsement but offers only possibilistic security.

VIII. RELATED WORK

Many languages and systems for authorization or access

control have combined aspects of information security and

authorization (e.g., [32], [33], [34], [8], [35], [9]) in dynamic

settings. However, almost all are susceptible to security vul-

nerabilities that arise from the interaction of information flow

and authorization [12]: probing attacks, delegation loopholes,

poaching attacks, and authorization side channels.

DCC [11], [2] has been used to model both authorization

and information flow, but not simultaneously. DCC programs

are type-checked with respect to a static security lattice,

whereas FLAC programs can introduce new trust relationships

during evaluation, enabling more general applications.

Boudol [36] defines terms that enable or disable flows for

a lexical scope, similar to assume terms, but does not restrict

their usage. Rx [8] and RTI [9] use labeled roles to represent

information flow policies. The integrity of a role restricts

who may change policies. However, information flow in these

languages is not robust [31]: attackers may indirectly affect

how flows change when authorized principals modify policies.

Some prior approaches have sought to reason about the

information security of authorization mechanisms. Becker [37]

discusses probing attacks that leak confidential information to

an attacker. Garg and Pfenning [38] present a logic that ensures

assertions made by untrusted principals cannot influence the

truth of statements made by other principals.

Previous work has studied information flow control with

higher-order functions and side effects. In the SLam calcu-

lus [39], implicit flows due to side effects are controlled via in-
direct reader annotations on types. Zdancewic and Myers [40]

and Flow Caml [20] control implicit flows via pc annotations

on function types. FLAC also controls side effects via a

pc annotation, but here the side effects are changes in trust

relationships that define which flows are permitted. Tse and

Zdancewic [22] also extend DCC with a program-counter label

but for a different purpose: their pc tracks information about

the protection context, permitting more terms to be typed.

146146146

DKAL� [41] is an executable specification language for

authorization protocols, simplifying analysis of protocol im-

plementations. FLAC may be used as a specification language,

but FLAC offers stronger guarantees regarding the information

security of specified protocols. Errors in DKAL� specifications

could lead to vulnerabilities. For instance, DKAL� provides no

intrinsic guarantees about confidentiality, which could lead to

authorization side channels or probing attacks.

The Jif programming language [21], [42] supports dynami-

cally computed labels through a simple dependent type system.

Jif also supports dynamically changing trust relationships

through operations on principal objects [43]. Because the

signatures of principal operations (e.g., to add a new trust

relationship) are missing the constraints imposed by FLAC,

authorization can be used as a covert channel. FLAC shows

how to close these channels in languages like Jif.

Dependently-typed languages are often expressive enough

to encode authorization policies, information flow policies,

or both. The F� [44] type system is capable of enforcing

information flow and authorization policies. Typing rules like

those in FLAC could probably be encoded within its type

system, but so could incorrect, insecure rules. Thus, FLAC

contributes a model for encodings that enforce strong informa-

tion security. Aura [45] embeds a DCC-based proof language

and type system in a dependently-typed general-purpose func-

tional language. As in DCC, Aura programs may derive new

authorization proofs using existing proof terms and a monadic

bind operator. However, since Aura only tracks dependencies

between proofs, it is ill-suited for reasoning about the end-to-

end information-flow properties of authorization mechanisms.

IX. CONCLUSION

Existing security models do not account fully for the inter-

actions between authorization and information flow. The result

is that both the implementations and the uses of authorization

mechanisms can lead to insecure information flows that violate

confidentiality or integrity. The security of information flow

mechanisms can also be compromised by dynamic changes in

trust. This paper has proposed FLAC, a core programming lan-

guage that coherently integrates these two security paradigms,

controlling the interactions between dynamic authorization

and secure information flow. FLAC offers strong guarantees

and can serve as the foundation for building software that

implements and uses authorization securely. Further, FLAC

can be used to reason compositionally about secure autho-

rization and secure information flow, guiding the design and

implementation of future security mechanisms.

ACKNOWLEDGMENTS

We thank Mike George, Elaine Shi, and Fred Schneider

for helpful discussions, our anonymous reviewers for their

comments and suggestions, and Jed Liu and Matt Stillerman

for feedback on early drafts. This work was supported by

grant N00014-13-1-0089 from the Office of Naval Research,

by MURI grant FA9550-12-1-0400, and by a grant from the

National Science Foundation (CCF-0964409). This paper does

not necessarily reflect the views of any of these sponsors.

REFERENCES

[1] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in distributed systems: Theory and practice,” in 13th ACM Symp. on
Operating System Principles (SOSP), Oct. 1991, pp. 165–182, Operating
System Review, 253(5).

[2] M. Abadi, “Access control in a core calculus of dependency,” in 11th

ACM SIGPLAN Int’l Conf. on Functional Programming. New York,
NY, USA: ACM, 2006, pp. 263–273.

[3] F. B. Schneider, K. Walsh, and E. G. Sirer, “Nexus Authorization
Logic (NAL): Design rationale and applications,” ACM Trans. Inf. Syst.
Secur., vol. 14, no. 1, pp. 8:1–8:28, Jun. 2011.

[4] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,
“SPKI certificate theory,” Internet RFC-2693, Sep. 1999.

[5] A. Birgisson, J. G. Politz, Úlfar Erlingsson, A. Taly, M. Vrable,
and M. Lentczner, “Macaroons: Cookies with contextual caveats for
decentralized authorization in the cloud,” in Network and Distributed
System Security Symposium (NDSS), 2014.

[6] D. Ferraiolo and R. Kuhn, “Role-based access controls,” in 15th National
Computer Security Conference, 1992.

[7] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a role-based
trust-management framework,” in IEEE Symp. on Security and Privacy,
2002, pp. 114–130.

[8] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic, “Managing policy
updates in security-typed languages,” in 19th IEEE Computer Security
Foundations Workshop (CSFW), Jul. 2006, pp. 202–216.

[9] S. Bandhakavi, W. Winsborough, and M. Winslett, “A trust management
approach for flexible policy management in security-typed languages,”
in Computer Security Foundations Symposium, 2008, 2008, pp. 33–47.

[10] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “2011
cwe/sans top 25 most dangerous software errors,” Common Weakness
Enumeration, vol. 7515, 2011.

[11] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A core calculus
of dependency,” in 26th ACM Symp. on Principles of Programming
Languages (POPL), Jan. 1999, pp. 147–160.

[12] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization,” in
28th IEEE Symp. on Computer Security Foundations (CSF), Jul. 2015.

[13] P. Wadler, “Propositions as types,” Communications of the ACM, 2015.
[14] M. Naor, “Bit commitment using pseudorandomness,” Journal of cryp-

tology, vol. 4, no. 2, pp. 151–158, 1991.
[15] J. Howell and D. Kotz, “A formal semantics for SPKI,” in ESORICS

2000, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2000, vol. 1895, pp. 140–158.

[16] M. Y. Becker, C. Fournet, and A. D. Gordon, “SecPAL: Design
and semantics of a decentralized authorization language,” Journal of
Computer Security, vol. 18, no. 4, pp. 619–665, 2010.

[17] K. J. Biba, “Integrity considerations for secure computer systems,”
USAF Electronic Systems Division, Bedford, MA, Tech. Rep. ESD-
TR-76-372, Apr. 1977, (Also available through National Technical
Information Service, Springfield Va., NTIS AD-A039324.).

[18] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, pp. 5–19, Jan. 2003.

[19] A. K. Wright and M. Felleisen, “A syntactic approach to type
soundness,” Information and Computation, vol. 115, no. 1, pp. 38–94,
1994.

[20] F. Pottier and V. Simonet, “Information flow inference for ML,” ACM
Trans. on Programming Languages and Systems, vol. 25, no. 1, Jan.
2003.

[21] A. C. Myers, “JFlow: Practical mostly-static information flow control,”
in 26th ACM Symp. on Principles of Programming Languages (POPL),
Jan. 1999, pp. 228–241.

[22] S. Tse and S. Zdancewic, “Translating dependency into parametricity,”
in 9th ACM SIGPLAN Int’l Conf. on Functional Programming, 2004,
pp. 115–125.

[23] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers, “Secure
program partitioning,” ACM Trans. on Computer Systems, vol. 20,
no. 3, pp. 283–328, Aug. 2002.

[24] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and A. C.
Myers, “Sharing mobile code securely with information flow control,”
in IEEE Symp. on Security and Privacy, May 2012, pp. 191–205.

147147147

[25] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,” in
SIAM Journal on Computing, 2000, pp. 542–552.

[26] M. Abadi, “Logic in access control,” in Proceedings of the 18th
Annual IEEE Symposium on Logic in Computer Science, ser. LICS ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 228–233.

[27] ——, “Variations in access control logic,” in Deontic Logic in
Computer Science, ser. Lecture Notes in Computer Science, R. van der
Meyden and L. van der Torre, Eds. Springer Berlin Heidelberg, 2008,
vol. 5076, pp. 96–109.

[28] O. Arden and A. C. Myers, “A calculus for flow-limited authorization:
Technical report,” Cornell University Computing and Information
Science, Tech. Rep. 1813–42406, Feb. 2015.

[29] L. Zheng and A. C. Myers, “Dynamic security labels and static
information flow control,” International Journal of Information Security,
vol. 6, no. 2–3, Mar. 2007.

[30] S. Zdancewic and A. C. Myers, “Robust declassification,” in 14th

IEEE Computer Security Foundations Workshop (CSFW), Jun. 2001,
pp. 15–23.

[31] A. C. Myers, A. Sabelfeld, and S. Zdancewic, “Enforcing robust
declassification and qualified robustness,” Journal of Computer Security,
vol. 14, no. 2, pp. 157–196, 2006.

[32] W. H. Winsborough and N. Li, “Safety in automated trust negotiation,”
in IEEE Symp. on Security and Privacy, May 2004, pp. 147–160.

[33] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic, “Dynamic updating
of information-flow policies,” in Foundations of Computer Security
Workshop, 2005.

[34] K. Minami and D. Kotz, “Secure context-sensitive authorization,”
Journal of Pervasive and Mobile Computing, vol. 1, no. 1, pp. 123–156,
March 2005.

[35] ——, “Scalability in a secure distributed proof system,” in 4th

International Conference on Pervasive Computing, ser. Lecture Notes
in Computer Science, vol. 3968. Dublin, Ireland: Springer-Verlag,
May 2006, pp. 220–237.

[36] G. Boudol, “Secure information flow as a safety property,” in Formal
Aspects in Security and Trust. Springer, 2008, pp. 20–34.

[37] M. Y. Becker, “Information flow in trust management systems,” Journal
of Computer Security, vol. 20, no. 6, pp. 677–708, 2012.

[38] D. Garg and F. Pfenning, “Non-interference in constructive authorization
logic,” in 19th IEEE Computer Security Foundations Workshop (CSFW),
2006.

[39] N. Heintze and J. G. Riecke, “The SLam calculus: Programming with
secrecy and integrity,” in 25th ACM Symp. on Principles of Programming
Languages (POPL), San Diego, California, Jan. 1998, pp. 365–377.

[40] S. Zdancewic and A. C. Myers, “Secure information flow via linear
continuations,” Higher-Order and Symbolic Computation, vol. 15, no.
2–3, pp. 209–234, Sep. 2002.

[41] J.-B. Jeannin, G. de Caso, J. Chen, Y. Gurevich, P. Naldurg,
and N. Swamy, “DKAL�: Constructing executable specifications of
authorization protocols,” in Engineering Secure Software and Systems.
Springer, 2013, pp. 139–154.

[42] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom,
“Jif 3.0: Java information flow,” Jul. 2006, software release,
http://www.cs.cornell.edu/jif.

[43] S. Chong, K. Vikram, and A. C. Myers, “SIF: Enforcing confidentiality
and integrity in web applications,” in 16th USENIX Security Symp.,
Aug. 2007.

[44] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang,
“Secure distributed programming with value-dependent types,” in 16th

ACM SIGPLAN Int’l Conf. on Functional Programming, ser. ICFP ’11.
New York, NY, USA: ACM, 2011, pp. 266–278.

[45] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and
S. Zdancewic, “Aura: A programming language for authorization and
audit,” in 13th ACM SIGPLAN Int’l Conf. on Functional Programming,
Sep. 2008.

[46] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization:
Technical report,” Cornell University Computing and Information
Science, Tech. Rep. 1813–40138, May 2015.

APPENDIX A

PROOFS OF NONINTERFERENCE AND ROBUSTNESS

Lemma 2 (Soundness). If e −→∗ e′ then �e�1 −→ �e′�1 and
�e�2 −→ �e′�2.

Syntax extensions

v ::= . . .
∣
∣ (v | v)

e ::= . . .
∣
∣ (e | e)

Typing extensions

[BRACKET]

Π; Γ; pc e1 : s Π;Γ; pc e2 : s
Π; pc � H � pc Π; pc H ≤ s

Π;Γ; pc (e1 | e2) : s
Evaluation extensions

[B-STEP]
ei −→ e′i ej = e′j {i, j} = {1, 2}

(e1 | e2) −→ (e′1 | e′2)

[B-APP] (v1 | v2) v −→ (v1 �v�1 | v2 �v�2)

[B-TAPP] (v1 | v2) s −→ (v1 s | v2 s)

[B-CASE]
case (v1 | v2) of inj1(x). e1 | inj2(x). e2 −→(
case v1 of inj1(x). �e1�1 | inj2(x). �e2�1∣
∣ case v2 of inj1(x). �e1�2 | inj2(x). �e2�2

)

[B-ASSUME]
assume (v1 | v2) in e −→

(assume v1 in e | assume v2 in e)

Fig. 9: Extensions for bracketed semantics

Proof. By inspection of the rules in Figure 4 and Figure 9.

Lemma 3 (Completeness). If �e�1 −→∗ v1 and �e�2 −→∗ v2,
then there exists some v such that e −→∗ v.

Proof. Assume �e�1 −→∗ v1 and �e�2 −→∗ v2. The extended

set of rules in Figure 9 always move brackets out of subterms,

and therefore can only be applied a finite number of times.

Therefore, by Lemma 2, if e diverges, either �e�1 or �e�2
diverge; this contradicts our assumption.

It remains to be shown that if the evaluation of e gets

stuck, either �e�1 or �e�2 gets stuck. This is easily proven by

induction on the structure of e. Therefore, since we assumed

�e�i −→∗ vi, then e must terminate. Thus, there exists some

v such that e −→∗ v.

Lemma 4 (Robust transitivity). If Π; � � p � q and Π; � �
q � r, then Π; � � p � r.

Proof. This is a consequence of the FLAM’s Factorization

Lemma [12]. See [46] for Coq proof.

Lemma 5 (Voices). If Π; � � p � q then Π; � � ∇(p) � ∇(q).
Proof. By induction on the derivation of Π; � � p � q. L �
p � q implies Π; pc; � � ∇(p) � ∇(q) (verified in [46]),

and each 〈p � q | pc; �〉 ∈ Π has Π; � � ∇(p→) � ∇(q→),
so 〈p � q | pc; �〉 ∈ Π implies Π; � � ∇(p) � ∇(q). The

remaining cases are trivial.

Lemma 6 (pc reduction). If Π;Γ; pc′ � e : s and Π; pc �
pc � pc′, then Π;Γ; pc � e : s.
Proof. By induction on the derivation of Π;Γ; pc′ � e : s and

Lemma 4.

148148148

Theorem 3 (Subject reduction). Suppose Π;Γ; pc � e : s and
�e�i −→ �e′�i. If i ∈ {1, 2} then assume Π; pc � H � pc.
Then Π;Γ; pc � e′ : s.
Proof. By induction on the derivation of �e�i −→ �e′�i. See

the technical report [28] for details.

Lemma 1 (Delegation invariance). Suppose Π;Γ; pc � e : s
such that e −→ e′ where v. Then for some p′, and q′, and
Π′, we have Π;Γ; pc � v : (p′ � q′), Π′; Γ; pc � e′ : s.
Furthermore, for all p and q such that Π; pc � pc � ∇(q),

Π; pc � p � q ⇐⇒ Π′; pc � p � q

Proof. If e′ is not a where term, choose Π′ = Π. Otherwise

e′ = (e′′ where v), and Π′ = Π, 〈p′ � q′ | pc ; �〉.
Assume Π; pc � p � q, then Π′; pc � p � q by R-

WEAKEN. In the other direction, assume Π′; pc � p � q,

but for contradiction, also assume that Π; pc � p � q. By

Theorem 3, we have Π;Γ; pc � e′′ where v : s. By WHERE

with pc′ = pc, Π;Γ; pc � v : � says p′ � q′, Π′; Γ; pc � e : s,
Π; pc � pc � ∇(q′).

Suppose Π; pc � q′ � q. Then we have Π; pc � ∇(q′) �
∇(q) by Lemma 5. But Π; pc � pc � ∇(q′) implies Π; pc �
pc � ∇(q), a contradiction.

Therefore Π; pc � q′ � q, and for all p′′ such that Π; pc �
p′′ � q′, we have Π′; pc � p′′ � q. Thus, since p did not act

for q in Π (Π; pc � p � q), it also does not act for q in Π′:
Π′; pc � p � q, which contradicts our assumption.

Theorem 1 (Noninterference). Let Π;Γ, x : s; pc � e :
� says bool such that

1) Π; pc � H ≤ s
2) Π; pc � H ≤ � says bool
3) Π; pc � pc � ∇(H→) ∧ �←

Then e[x �→ v1] −→∗ v′1 and e[x �→ v2] −→∗ v′2 implies
v′1 = v′2.

Proof. Assume v1 �= v2 and e[x �→ vi] −→∗ v′i for i ∈ {1, 2}.
By Lemma 3, there is some v′ such that e[x �→ (v1 | v2)] −→∗
v′. Furthermore, �v′�i = v′i by Lemma 2.

We prove �v′�1 = �v′�2 by showing, via induction on the

structure of v′, that v′ contains no bracketed terms. Without

loss of generality, assume v′i = ui where wi. By Theorem 3

and Lemma 1, and WHERE with pc′ = pc, there exists a Π′

such that Π′; Γ; pc � ui : s and

Π; pc � pc � ∇(H→) ∧ �← ⇐⇒
Π′; pc � pc � ∇(H→) ∧ �←

Then, since Π; pc � pc � ∇(H→) ∧ �←, it must be the case

that either Π′; pc � pc � ∇(H→) or Π′; pc � pc � �←, so

we have Π′; pc � H ≤ � says bool. Therefore v′ cannot be

a bracketed value, so �v′�1 = �v′�2.

Theorem 2 (Robust declassification). Given a program e[�•]
such that Π;Γ, x : s; pc � e[�•] : � says bool, where the
following conditions hold,

1) Π; pc � H ≤ s

2) Π; pc � H ≤ � says bool
3) Π; pc � H← � ∇(H→)
4) Π; pc � pc � �←

Choose any �a and �b such that Π;Γ, x : s; pc � e[�a] :
� says bool and Π;Γ, x : s; pc � e[�b] : � says bool. Then,
suppose e[�a][x �→ vi] −→∗ v′i for i ∈ {1, 2} such that v′1 � v′2.
Then if e[�b][x �→ vi] −→∗ v′′i for i ∈ {1, 2}, v′′1 � v′′2 .

Proof. Assume v1 �= v2 and e[�a][x �→ vi] −→∗ v′i such that

v′1 = v′2, and e[�b][x �→ vi] −→∗ v′′i for i ∈ {1, 2}. We want to

show that v′′1 = v′′2 .

Suppose for contradiction e[�b][x �→ vi] −→∗ v′′i for i ∈
{1, 2} but v′′1 �= v′′2 . Then �b must contain some element bj
such that bj [x �→ v1] �= bj [x �→ v2].

By induction on Π;Γ, x : s; pc � e[�•] : s′, Lemma 1, and

Lemma 6, there exists a Π′,Γ′ where Π′ ⊇ Π and Γ′ ⊇ Γ
such that Π′; Γ′; pc � [•j] : � says bool, Π′; Γ′; pc � bj :
� says bool, and

Π; pc � r � ∇(H→) ∧ �← ⇐⇒
Π′; pc � r � ∇(H→) ∧ �←

Therefore, since Π; pc � pc � �←, we have Π′; pc � pc � �←,

and by HOLE, Π′; pc � H← ≤ sj , Finally, by Theorem 1, the

evaluation of bj does not depend on x, so no bj exists such

that bj [x �→ v1] �= bj [x �→ v2]. Thus v′′1 = v′′2 .

APPENDIX B

COMMITMENT SCHEME VERIFICATION

To prove the desired properties of commitment schemes for

boolean values, let s = bool and recall:

Γcro = commit, receive, open, x :p
→
says s, y :p ∧ q← says s

• q cannot receive a value that hasn’t been commit-
ted. Let H = p→ ∧ q←. For any e and Γcro; pcq �
e : p ∧ q← says bool, observe that Π; pcq � H ≤
p→ says bool, Π; pcq � H→ � p→, Π; pcq � H← �
(p ∧ q)←, and Π; pcq � pcq � ∇(H→) ∧ (p ∧ q)←.

Therefore, by Theorem 1, if e[x �→ v1] −→∗ v′1 and

e[x �→ v2] −→∗ v′2, then v′1 � v′2.

• q cannot learn a value that hasn’t been opened. Let

H = p→ ∧ q←. For any e, �, and Γcro; pcq � e :
�
 q→ says bool, Observe that both Π; pcq � H ≤
p→ says bool and Π; pcq � H ≤ p ∧ q→ says bool.
Therefore, Theorem 1 applies as above for both x and y.

Thus if e[x �→ v1] −→∗ v′1 and e[x �→ v2] −→∗ v′2, then

v′1 � v′2. and if e[x �→ v1] −→∗ v′′1 and e[x �→ v2] −→∗
v′′2 , then v′′1 � v′′2 .

• p cannot open a value that hasn’t been received. Let

H = p→ ∧ p←. For any e and Γcro; pcp � e : p← ∧
q says bool, observe that Π; pcp � H ≤ p→ says bool,
Π; pcp � H→ � q→, Π; pcp � H← � (p ∧ q)←,

and Π; pcp � pcp � ∇(H→) ∧ (p ∧ q)←. Therefore, by

Theorem 1, if e[x �→ v1] −→∗ v′1 and e[x �→ v2] −→∗ v′2,

then v′1 � v′2.

149149149

