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Abstract—We present a system model, an enforcement mech-
anism, and a policy language for the proactive enforcement of
timed provisions and obligations. Our approach improves upon
existing formalisms in two ways: (1) we exploit the target system’s
existing functionality to avert policy violations proactively, rather
than compensate for them reactively; and, (2) instead of requiring
the manual specification of remedial actions in the policy, we
automatically deduce required actions directly from the policy. As
a policy language, we employ timed dynamic condition response
(DCR) processes. DCR primitives declaratively express timed
provisions and obligations as causal relationships between events,
and DCR states explicitly represent pending obligations. As key
technical results, we show that enforceability of DCR policies
is decidable, we give a sufficient polynomial time verifiable
condition for a policy to be enforceable, and we give an algorithm
for determining from a DCR state a sequence of actions that
discharge impending obligations.

I. INTRODUCTION

Many security requirements can be decomposed into pro-

visions and obligations [4], [17], [26]. Provisions specify

conditions or properties dependent on the present and the past.

They cover most traditional access control requirements. For

example, access to customer records is granted to users in the

role of customer-relations manager, provided customer con-

sent was previously granted. Obligations, in contrast, impose

conditions on the future that an agent or process should fulfil.

For example, a hospital may need to delete patient records

within 14 days of a patient’s release.

Provisions and their enforcement by access control mech-

anisms are well understood. Obligations are less well under-

stood, and subject to active research [1], [3], [10]–[13], [18],

[20], [22]–[25], [31], [35]. Enforcement of obligations is diffi-

cult as, to be enforceable, obligations must be associated with

deadlines. A simple but limited enforcement mechanism is to

associate obligations with access control rules, whereby the

enforcement mechanism immediately takes the obliged action

when the rule grants access, e.g., logging the taken action.

Alternatively, obligations may be associated with deadlines,

whose expiration triggers remedial actions to be taken by the

access control mechanism.

The state of the art generally handles obligations in limited

ways, like those suggested above. The theory of how to

handle obligations is underdeveloped, especially when dead-

lines are involved. With few exceptions, policy violations are

not prevented, they are remediated. Namely, the enforcement

mechanism witnesses a deadline expiring, but is powerless to

prevent the concomitant policy violation and is reduced to

taking remedial actions after the fact, such as logging, lowering

a reputation, etc. Moreover, the enforcement mechanism’s

interaction with the target system is often too limited for

effective obligation enforcement or the exact extent of the

mechanism’s control over the target system is unclear. While

an enforcement mechanism can intercept actions and prevent

them from happening, it cannot, a priori, force the target

system to take action when required. Existing mechanisms

tend to take only actions independent of the target system’s

functionality, such as logging or sending notifications. We

expand on these points and discuss exceptions in Section VI.

Approach and Results. We tackle the problem of proactive

policy enforcement and present an enforcement mechanism

that directs the target system to prevent policy violations. Not

every policy can be enforced, and enforceability depends on

the enforcement mechanism’s exact powers over the target

system. We distinguish between whether the enforcement

mechanism can (1) control an action by denying that it happens

at a given point in time, (2) proactively cause an action to

happen in the target system, or (3) merely observe that an

action happens in the target system.

The above distinctions are critical. For some actions, e.g.

a patient at a hospital dies, it is neither meaningful for an

enforcement function to deny nor cause the action to happen.

In other cases it may make sense for a mechanism to control

whether the action is allowed, but not for the mechanism to

cause the action to happen by itself. For instance, a hospital

IT system may be able to deny the immediate re-admission of

a released patient; however, it cannot outright cause a patient

to be readmitted, as that would require the patient’s consent.

Finally, some actions may be both controllable and causable,

e.g., the enforcement mechanism can both deny and proac-

tively cause the transfer of records from local data storage to

a remote archive, depending on the exact circumstances. Such

distinctions between controllable (in the sense of denying)

and uncontrollable (but observable) actions are well-known in

other areas, such as supervisory-control theory [32]. Here the

supervisor plays the role of the enforcement mechanism; how-

ever, in the classical supervisory-control theory, the supervisor

does not cause actions in the target system.
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These observations motivate the following technical ques-

tions, answered in this paper. Given the ability to cause
certain actions to happen in the target system, how do we

decide whether a given policy is in fact enforceable? Can

we efficiently compute a sequence of actions sufficient to

resolve a given impending obligation violation? And in what

sense can this be done transparently in that the enforcement

mechanism alters the target system’s behaviour only when

absolutely required by the policy?

Answering these questions necessarily involves a system

model, a policy language, and an enforcement mechanism.

The system model must clarify how the target system and the

enforcement mechanism interact and what the mechanism can

and cannot cause or control in the target system. The policy
language must be expressive enough to formulate realistic

policies, yet constrained enough that we can efficiently com-

pute (1) whether a policy is enforceable and (2) which actions

are needed to avert impending obligation violations. Finally,

the enforcement mechanism connects the system model and

the policy, using the latter to compute action sequences for

execution by the former.

In our policy language, it must be possible to express

declaratively timed properties of both the past and the future,

close to their natural-language formalisation. Moreover, we

need a run-time representation that can be updated as events

occur, and we must also be able to plan the actions to be taken

to avoid violating obligations. Standard approaches, based on

metric temporal logics for specifications and automata for the

run-time representation, depend on a translation from formu-

las into automata, which suffers from state-space explosion.

The formalism that we will use, Timed Dynamic Condition
Response Processes (DCR processes, for short), combines the

declarative specification and run-time representation, avoiding

this translation. As we will show, this allows us to compute

plans and enforce policies at run-time based directly on the

declarative specification, avoiding translation to an exponen-

tially larger operational model.

Untimed DCR processes were introduced in [8] as a process

language for describing DCR graphs [15], a declarative graph-

ical process notation. DCR processes are expressive enough

for many security applications: For untimed properties they are

equivalent in their expressivity to Büchi automata [8], but their

language primitives are rather different. Instead of specifying

processes in terms of states and transitions, a DCR process

describes the causal relationships between events declaratively

in terms of conditions and responses, and describes dynamic

conflict relationships between events in terms of exclusions

and inclusions. To allow for the specification of timed polices,

we conservatively extend the DCR process language intro-

duced in [8] to allow for describing timed DCR graphs [16].

Contributions. Conceptually, we present a system model, a

policy language, and an enforcement mechanism for timed

provisions and obligations. Our enforcement mechanism de-
duces those actions necessary to avert policy violations and

proactively causes the target system to take these actions in

Target System
Enforcement
Mechanism

request

inform

cause

grant/deny

Fig. 1. System Model

the nick of time, that is, whenever a deadline is about to be

missed.

This approach improves upon existing formalisms in two

ways: (1) we exploit the target system’s existing functionality

to avert proactively policy violations, rather than to compen-

sate reactively for them, and, (2) rather than requiring the

manual specification of remedial actions in the policy, we

automatically deduce relevant actions directly from the policy.

Technically, we show that the enforceability of policies

expressed as timed DCR processes is decidable but NP-hard.

We then give a sufficient polynomial time verifiable condition

for a DCR policy to be enforceable. Moreover, we give an

algorithm that, given a DCR state of an enforceable DCR

policy, computes a sequence of actions that, when executed

on the target system, will discharge impending obligations.

As proof-of-concept, we have built a prototype implemen-

tation of the algorithms in this paper. The implementation

is available on-line at http://dcr.itu.dk/obligations along with

simulations of the examples presented in this paper.

Scope. We focus exclusively on policies governing the se-

quencing of actions. This approach plays to the strengths of

the DCR formalisms and helps focus the presentation on the

central issue of proactive policy enforcement. We leave open

extensions to the policy language, like the addition of events

dependent on data, and the question of whether and how

comparable enforcement mechanisms can be realised in other

formalisms.

Overview. In Section II we present our system model and

define enforcement. We present timed DCR processes in

Section III, and give examples of policies in Section IV. We

show in Section V when and how a DCR policy is enforceable

and report briefly on a prototype implementation of a DCR

policy enforcement point. Finally, in Sections VI and VII we

discuss related work and draw conclusions. Proofs and most

lemmas have been relegated to Appendix A.

II. SYSTEM MODEL AND ENFORCEMENT

A. System Model

Our system model is depicted in Figure 1. The target

system and the enforcement mechanism (also called a Policy

Enforcement Point, or simply PEP) are independently running

processes, which interact in three distinct ways:

1) Whenever the target system wishes to undertake some

controllable action, it requests permission from the en-

forcement mechanism (upper arrow, left to right), which
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will return either “grant” or “deny” (upper arrow, right to

left). The target system actually undertakes the requested

action iff the enforcement mechanism responds “grant”.

2) Whenever the target system performs an uncontrollable
action, it informs the enforcement mechanism that it

does so (middle arrow).

3) Finally, a subset of actions of the target system, its

causable actions, are available to be triggered by the

enforcement mechanism, as indicated by the bottom

arrow labelled “cause”.

(1) and (2) ensure that the target system and the enforcement

mechanism are synchronised. (1) makes it possible to suppress

controllable actions, thereby enforcing provisions. Through

(3), the architecture supports the proactive policy enforcement.

Note that the target system may take internal actions not

observable by the enforcement mechanism; the policy enforced

must be independent of such internal actions.

In this paper we will restrict our attention to discrete time

systems (as in, e.g., [5], [27]) and assume that enforcement

mechanisms can only proactively cause actions within a time-

step, just before a tick of time. For example, if the target

system needs to undertake action a within deadline d, the

enforcement mechanism can, before some tick within the

deadline d, force the system to undertake action a, using

the lower arrow. Note that the enforcement mechanism relies

only on its own clock (indicated by the clock symbol in

the diagram). The model does not stipulate synchronisation

between the clocks of the enforcement mechanism and the

target system.

In practice, there are various ways that the abstract com-

munication in the above model can be realised. For example,

suppose the target system is an HTTP/REST component

within a larger system, and that “actions” are the external

invocation of its own APIs, or its own invocation of other

components’ APIs. The upper arrow can simply and crudely be

implemented by the enforcement mechanism intercepting and

selectively dropping incoming and outgoing requests; TCP’s

failure semantics will handle the rest. The middle arrow is

just listening to messages representing uncontrollable actions.

The lower arrow is the enforcement mechanism issuing HTTP

requests against the target system’s API. A more relaxed im-

plementation might see the enforcement mechanism realising

the upper arrow as its own HTTP/REST API.

B. Target System and Policies

Prior to formalising systems and policies, we first introduce

relevant notation. For a finite alphabet Σ of actions, we write

Σ∗ for the set of finite words over Σ, Σω for the infinite

words, and let Σ∞ = Σ∗ ∪ Σω . As usual, we refer to a set

L of words as a language. We write concatenation of words

w and v as w · v and write v � w iff v is a prefix of w, i.e.

w = v · v′ for some word v′. We write w \ x for the word w
with every occurrence of the symbol x ∈ Σ removed. Finally,

we let prefixes(L) be the prefix closure of the language L and

write ε for the empty word.

We account for time by requiring a special symbol tick
in our alphabets; the passage of time is indicated by the

occurrence of this tick action. We say that a word is non-
Zeno if it is finite or contains infinitely many tick actions; a

language L is non-Zeno if every word in it is non-Zeno.

Now, following the system model, a target system is a lan-

guage over an alphabet of uncontrollable actions, controllable

actions, causable actions, and time.

Definition 1: A target system (S,Σ,Γ,Δ) comprises a

prefix-closed language S ⊆ Σ∗ with tick ∈ Σ; controllable
actions Γ ⊆ Σ \ {tick}; and causable actions Δ ⊆ Σ \ {tick}.

In this definition, prefix-closure ensures that the target

system S produces actions consecutively. Time is considered

neither controllable nor causable: it can be neither suppressed

nor caused. We consider only the finite behaviour of the

target system due to our focus on the enforcement of safety

properties in the form of provisions and deadlines. Still,

timed security policies may speak of safety properties that

are never fulfilled for finite sequences, such as the property,

that “an examination must be performed every other month”.

Consequently, we define policies as non-Zeno languages over

both finite and infinite sequences.

Definition 2: A security policy P over an alphabet Σ with

tick ∈ Σ is a non-Zeno language P ⊆ Σ∞.

Example 3: As a running example, consider a target system
t = (S,Σ,Γ,Δ) with alphabet Σ = {a, b}, causable actions

Δ = {a}, controllable actions Γ = {b}, and language S
defined by the regular expression (a + b + tick)∗, i.e., any

finite sequence over a, b, and tick. We want to enforce the

policy P defined by the ω-regular expression (a+ tick)ω , i.e.,

b is never allowed, and every tick is preceded by at least one a.

C. Enforcement Mechanisms

Now, what should an enforcement mechanism accomplish?

We define here abstractly the requirements for such a mech-

anism. Later, in Section V, we give a concrete instance.

Following [24], [31], the result of enforcement should be

a stream of actions performed jointly by the target system

and the enforcement mechanism. Clearly, the mechanism

should ensure that this stream complies with the policy being

enforced. However, rather than retroactively translating the

output of the target system as done in most previous work,

our focus is on proactive enforcement: the enforcement mech-

anism directs the target system by suppressing and causing

actions. It cannot cause actions not enabled in the target system

to happen, i.e., it does not add to the possible behaviours.

To capture what it means to direct the target system,

we define the directed language of a monotone, idempotent

function m : S → S as the least fixed point of “directed steps”

extending the execution of an already directed trace w by an

action a into m(w · a).
Definition 4: Let (S,Σ,Γ,Δ) be a target system, and let

m : S → S be a monotone and idempotent function. Define

the directed language Dm of m inductively by

1) m(ε) ∈ Dm

2) m(w·a) ∈ Dm whenever w ∈ Dm, a ∈ Σ, and w·a ∈ S .
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Note that monotonicity (i.e. if v � w then m(v) � m(w)) and

idempotency (i.e. m(m(v)) = m(v)) means respectively, that

the function m does not retroactively change its past decisions

and it agrees with its own directives.

An enforcement mechanism for a target system can now be

defined as a function m : S → S for which the directed steps

respect the constraints of controllable and causable actions,

and only cause actions immediately before a tick action.

Definition 5: An enforcement mechanism for a target system

(S,Σ,Γ,Δ) is a recursive, monotone, and idempotent function

m : S → S satisfying:

1) m(ε) = ε
2) for all v ∈ Dm and a ∈ Σ with v · a ∈ S , we have

m(v · a) = m(v) · w where w satisfies:

a) if a = tick then w ∈ Δ∗ · tick;

b) if a ∈ Γ then w ∈ {ε, a}; and

c) otherwise w = a.

When m is an enforcement mechanism, we will call Dm the

enforcement language.

The conditions on the function m formalise that: (1) m will

wait for time to pass or the target system to take an action

before acting; (2a) m cannot stop the passage of time, but

may cause actions in Δ to be taken just before a tick; (2b) m
may either suppress or preserve controllable actions; and (2c)

m must preserve uncontrollable actions.

Example 6: We define a function m : S → S for the target

system t of Example 3. The function m removes all bs and

inserts a before tick when necessary.

m(w) = n(w \ b)

n(w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε when w = ε
a · tick when w = tick
n(w · tick) · a · tick when w = w′ · tick · tick
n(w′) · x otherwise, assuming wlog

w = w′ · x
It is straightforward to verify that both m and n are recursive,

monotone, and idempotent functions, and to prove by induc-

tion on w that the directed language Dm of m is exactly the

set Dm = prefixes
(
(a+ tick)ω

)
. Moreover, it is easy to see

that m satisfies the remaining conditions of Definition 5.

We proceed to consider correctness and transparency. Our

notion of correctness necessarily deviates from standard no-

tions. In the presence of pending obligations, the current

(corrected) output m(v) might not be a word of the policy.

However, it must be extensible to one that is. Intuitively, the

extension w discharges pending obligations, taking the output

string m(v) · w back into the policy language.

Definition 7: Let P be a policy over Σ. An enforcement

mechanism m is correct for P iff for all v ∈ Dm there exists

some w ∈ Σ∞ such that v · w ∈ P .

A violation of the policy P is a word u that has no possible

extension to a word in the policy: no matter what the target

system subsequently does, it will never get u back within

the bounds of the policy. This situation would arise if, for

example, an impermissible action was executed, or a deadline

was missed. Our notion of correctness is such that a correct

enforcement mechanism will tolerate no such finite violations
Lemma 8: Define the finite violations language P̄ of a policy

P over Σ by P̄ = Σ∗ \ prefixes(P). If m is correct for policy

P then for all v ∈ Dm we have m(v) �∈ P̄ .

Note that this language is closely related to the notion of

bad prefixes for languages over infinite words, defined in [21].

We now formulate transparency in terms of the finite

violations language:

Definition 9: Let m be an enforcement mechanism for a

target system (S,Σ,Γ,Δ). We say that m is transparent iff

for all v ∈ Dm and a ∈ Σ such that v · a ∈ S , whenever

m(v · a) �= m(v) · a then m(v) · a ∈ P̄ .

That is, a transparent enforcement mechanism modifies an

action a iff taking the action would violate the policy.

Example 10: Continuing Example 6, we saw that the

enforcement language of Dm is exactly the prefixes of the

policy P = (a+ tick)ω and hence m is a correct enforcement

mechanism. It is straightforward to verify by cases on the last

symbol of w that it is also transparent. Note that while the

policy language P contains no finite words, the enforcement

language Dm does: prefixes(P) = Dm.

The question remains of how to construct useful enforce-

ment mechanisms and build practical, running PEPs based on

them. In the coming sections, we will show how timed DCR

processes can be used for this purpose.

III. POLICY SPECIFICATION LANGUAGE

We present here timed DCR processes, the semantics of

which defines a security policy over an alphabet Σ in the sense

of Definition 2. The language is closely based on the core

DCR process language [8], conservatively extended to make

it possible to express timed DCR graphs as introduced in [16].

DCR processes are about events E and constraints between

events. Constraints define under what circumstances (1) events

may or may not happen, and (2) under what circumstances they

may be required to happen in the future or be dynamically

excluded from (or re-included to) the process.

In general, each event e ∈ E has an associated label �(e) ∈
Σ \ {tick}. The set Σ (which includes tick) will be used as

the (finite) alphabet for defining the language recognised by

a timed DCR process. For simplicity, we restrict our attention

to DCR processes where E = Σ \ {tick} and �(e) = e.

A. Syntax

A DCR process P = [M ] T comprises a marking M and a

term T ; the full syntax is given in Figure 2. Here N is the set

of natural numbers, excluding 0. The marking M specifies the

state of events; the term T specifies both constraints between

events, and the effects on that state of executing events. We

explain terms and markings separately.

Terms. Terms describe constraints and effects between events

as follows.

• A condition e • k←− f imposes the constraint that for the

event e to happen, the event f must either previously
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T, U ::= e • k←− f condition, k ∈ N ∪ {0}
| e •d−→ f response, d ∈ N ∪ {ω}
| e→+ f inclusion

| e→% f exclusion

| e 	← f milestone

| T | U parallel

| 0 unit

Φ ::= (h, i, r) event state

M,N ::= M, e : Φ marking

| ε
P,Q ::= [M ] T process

Fig. 2. DCR Process Syntax.

have happened at least k time units ago, or currently be

excluded. Note that k is a natural number or zero.

• A response e •d−→ f imposes the effect that when e
happens, f becomes pending (obliged) and must happen

within d time units or be excluded. Note that the deadline

d is a natural number or infinity (“eventually”), but cannot

be zero—one cannot require things to happen “now”.

• An exclusion e →% f imposes the effect that when e
happens, it excludes f . An excluded event cannot happen;

it is ignored as a condition. Moreover, it need not happen

if pending, unless it is subsequently re-included.

• An inclusion e →+ f imposes the effect that when the

event e happens, it re-includes the event f .

• A milestone e 	← f imposes the constraint that for the

event e to happen, the event f must be either not pending

or excluded.

If several condition (response) constraints are defined be-

tween the same two events in T , the process will have the

maximal delay (minimal deadline). An untimed process [8]

corresponds to a timed process with all delays 0 and all

deadlines ω, so we write e •−→ f for e •ω−→ f and f •←− e

for f • 0←− e.
Example 11: Recall the obligation of the hospital given in

the introduction, where the event delete (“the patient’s record

is deleted”) must happen within 14 days after the event release
(“a patient is released from the hospital”). We specify this

obligation with a timed response relation:

release •14d−−→ delete .

If we instead wish to model the provision that the event archive
(“archiving data”’) cannot be followed by the event unarchive
(“delete archived data”) for at least 8 years, we use a timed

condition:

unarchive • 8y←− archive .

Markings. The marking M is a finite map from events to

triples (h, i, r), called the event state. The first component,

h ∈ N ∪ {0,⊥}, indicates whether the event happened, and

if so how many ticks ago, i.e., the event’s age. Namely, h ∈
N ∪ {0} represents that the event happened h ticks ago and

⊥ represents that it did not happen. Note that an event may

happen several times, and the state only records the age of

the last occurrence. The second component, i ∈ {⊥,�}, is a

boolean indicating whether the event is currently (i)ncluded.

Finally, the third component, r ∈ N ∪ {0, ω,⊥}, indicates

whether the event is a pending (r)esponse, that is, obliged

to happen in the future, and if so a possible deadline. Here

r = ⊥ represents that it is not pending, a natural number

r ∈ N∪{0} represents an unfulfilled obligation that the event

should happen within r time steps, and ω represents that the

event is obliged to happen eventually, i.e. without any fixed

deadline. We write dom(M) for the domain of the marking

M and take dom([M ] T ) = dom(M). As is commonly done

for environments, we write markings as finite lists of pairs

of events and states, e.g., M = e1 : Φ1, . . . , ek : Φk. We

understand the extension M, e : Φ of such an environment M
to be undefined when e ∈ dom(M).

B. Enabledness and effects

A process [M ] T has some subset of its events enabled.

Enabled events can be executed and will, when executed, apply

an effect to the marking M , yielding a new marking M ′. We

shall use these notions in Section III-C to define a timed

labelled transition system (LTS) for a given DCR process

[M ] T , which has markings as states and event executions

and time steps as transitions. Given this LTS, we can then

define the language accepted by [M ] T .

The notions of enabled events and effects are given by

the judgement [M ] T � e : E, I,R, defined in Figure 3.

The judgement should be read: “in the marking M under the

constraints T , e is enabled and will when executed have the

effect of excluding events E, including events I , and recording

the pending responses R, possibly with deadlines.”

Rules 1–2 formalise constraints between events. The first

rule says that if f is a condition for e, then e can happen only

when (1) it is itself included, and (2) if f is included, then f
previously happened at least k steps ago. The second says that

if f is a milestone for e, then e can happen only if (1) it is

itself included, and (2) if f is included, then it is not pending.

Rules 3–5 formalise the effects an event might have on other

events (and itself). The third rule says that if f is a response
to e with deadline d and e is included, then e can happen with

the effect of making f pending with deadline d. The fourth

(respectively fifth) rule says that if f is included (respectively

excluded) by e and e is included, then e can happen with the

effect of including (respectively excluding) f .

Rules 6–8 formalise the composition of rules. The sixth rule

says that for the completely unconstrained process 0, an event

e can happen if it is currently included. The seventh rule says

that a relation allows any included event e to happen without

effects when e is not constrained by that relation; that is, when

e is not the relation’s left-hand–side event. Finally, the last rule

accounts for compositionality: it says that if both T1 and T2
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i⇒ h ≥ k

[M, f : (h, i, ), e : ( ,�, )] e • k←− f � e : ∅, ∅, ∅
(1)

i⇒ r = ⊥
[M, f : ( , i, r), e : ( ,�, )] e 	← f � e : ∅, ∅, ∅ (2)

[M, e : ( ,�, )] e •d−→ f � e : ∅, ∅, {f : d}
(3)

[M, e : ( ,�, )] e→+ f � e : ∅, {f}, ∅ (4)

[M, e : ( ,�, )] e→% f � e : {f}, ∅, ∅ (5)

[M, e : ( ,�, )] 0 � e : ∅, ∅, ∅ (6)

e �= f

[M, e : ( ,�, )] f R f ′ � e : ∅, ∅, ∅ (7)

[M ] T1 � e : E1, I1, R1 [M ] T2 � e : E2, I2, R2

[M ] T1 | T2 � e : E1 ∪ E2, I1 ∪ I2, R1 ∪R2
(8)

Fig. 3. Enabling and effects. We write “ ” for “don’t care” and write R for

any of the relations • k←−,�←, •d−→, →+, or →%.

allow an event to execute, then so does T1 | T2, with the effect

of the event being the union of the component effects.

We proceed to define how the effects derived in Figure 3

affect a marking. Suppose e is enabled in the process [M ] T
with the effect δ = (E, I,R). We first register in the state

of e that it happened now (setting the age to 0) and that

it is no longer pending (setting the response deadline to

⊥). Formally, we define e〈M〉 inductively by e〈ε〉 = ε and

e〈M, f : (h, i, r)〉 = e〈M〉, f : (h′, i′, r′), where (h′, i′, r′) =
(0, i,⊥) if e = f and otherwise (h′, i′, r′) = (h, i, r). We then

apply the effect δ = (E, I,R) of the event, that is, excluding

the events in E, including the events in I and registering

response deadlines given in R. Formally, we inductively define

δ〈M〉 by δ〈ε〉 = ε and

δ〈M, f : (h, i, r)〉
= δ〈M〉, f : (h, (i ∧ f �∈E) ∨ f ∈I︸ ︷︷ ︸

included?

, r′
)
, (9)

where r′ = min{d | f : d ∈ R} if f : d ∈ R and r′ = r
otherwise. That is, if f : d ∈ R then f is marked pending

with the minimal deadline d for which f : d ∈ R; otherwise,

it keeps the deadline recorded in the current state. Note that if

an event is both excluded and included by the effect, inclusion

takes precedence.

Example 12: Consider the process

[release : (⊥,�,⊥), delete : (⊥,�,⊥)] release •14d−−→ delete .
(10)

Both events have the same state: they have not been previously

executed, they are included, and they are not pending, i.e., have

no obligation to eventually execute. Following Figure 3, we

find that both events are enabled with the following effects:

release : ∅, ∅, {delete : 14d} and delete : ∅, ∅, ∅ .
Applying first the event release to the marking of (10), we

obtain the following (where we highlight changes in grey ):

release〈release : (⊥,�,⊥), delete : (⊥,�,⊥)〉
= release : ( 0 ,�,⊥), delete : (⊥,�,⊥) .

Now applying the effect (∅, ∅, {delete : 14d}) we get

(∅, ∅, {delete : 14d})〈release : (0,�,⊥), delete : (⊥,�,⊥)〉
= release : (0,�,⊥), delete : (⊥,�, 14d ) .

That is, release is registered as having happened now (age 0)

and delete is registered with deadline 14d. A second example:

[archive : (⊥,�, ω), unarchive : (⊥,�,⊥)]
unarchive • 8y←− archive .

This process has only the single enabled and pending event

archive : ∅, ∅, ∅. The unarchive event is not enabled, as it has

an unfulfilled condition. Executing archive yields the following

marking (this time skipping the intermediate steps):

archive : ( 0 ,�, ⊥ ), unarchive : (⊥,�,⊥) .
In the new marking, archive is registered as having just

happened (age 0) and no longer pending (response deadline

⊥). The event unarchive is still not enabled, as the age of

archive must be at least 8y for unarchive to be enabled.

Example 13: Returning to the running example, we rep-

resent that the event a should happen before every tick by

making it initially pending and having itself as a response with

deadline 1, and we suppress b by making it initially excluded:

[a : (⊥,�, 0), b : (⊥,⊥,⊥)] a •1−→ a . (11)

When applying the event a to the marking, a gets the state

( 0 ,�, ⊥ ), i.e. age 0 and no longer pending, but when we

subsequently apply the effect (∅, ∅, {a : 1}), the deadline is set

to 1 thus yielding the marking [a : ( 0 ,�, 1 ), b : (⊥,⊥,⊥)].
C. Transition semantics

Prior to defining the LTS of a DCR process [M ] T , we

must account for time. First, we define the function deadline
inductively on markings:

deadline(ε) = ω

deadline(M, e : (h, i, r)) = min{r′, deadline(M) }
where r′ = r if i = �, else r′ = ω. That is, deadlines of

excluded events are ignored. We use the deadline function to

ensure that time cannot progress beyond any deadline of an

included event. When time advances, we update the marking

by incrementing histories (“it is now k + 1 steps since the
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[M ] T � e : δ

T �M
e−→ δ〈e〈M〉〉 [EVENT]

deadline(M) > 0

T �M
tick−−→ tick〈M〉

[TIME]

Fig. 4. Transition semantics.

event e happened”) and decrementing deadlines (“there are

now k − 1 steps left before we must do event e”). Formally,

we inductively define the effect of tick on a marking:

tick〈ε〉 = ε,

tick〈M, e : (h, i, r)〉 = tick〈M〉, e : (h+ 1, i,max{0, r − 1}),
where ⊥+1 = ⊥, ⊥− 1 = ⊥ and ω− 1 = ω. Using tick〈−〉
and deadline, we give timed transition semantics to processes

in Figure 4. The event transition M
e−→M ′ applies the effect

of an enabled event e to the marking M . Note that in general

more than one event e might be enabled. The time transition
M

tick−−→ M ′ advances the time by one in the marking M . In

examples so far, we have given relative time with units like 14d
or 8y. These units are just a convenience; one may normalise

them to seconds, in which case they would be 1209600 or

252460800 respectively.

The transitions give rise to a timed event labelled transition

system (LTS).

Definition 14: A timed DCR process [M ] T defines a

timed event LTS, lts([M ] T ) = (M, E ′,→,M, �′,Σ), where

the components are: events E ′ = E � {tick}; transitions
→ ⊆ M × E ′ ×M, where M

α−→ M ′ iff T � M
α−→ M ′;

states M = {M ′ |M →∗ M ′}; initial state M ; and labelling
defined by �′(e) = �(e) for e ∈ E and �′(tick) = tick.

Definition 15: A run of lts([M ] T ) is a finite or infinite

sequence of transitions starting from the initial state M =
M0

α0−→ · · ·, for αi ∈ E ′.
The LTS has a notion of acceptance: a run is accepting iff

it is non-Zeno and every response is eventually discharged.

Recall that we write “ ” for “don’t care”.

Definition 16: A run is live iff for every state Mi, if

whenever an event e is pending in Mi, i.e., Mi(e) = ( ,�, d)
for d �= ⊥, then there exists some j ≥ i such that either

Mj
e−→Mj+1 or e is excluded in Mj , i.e., Mj(e) = ( ,⊥, ).

A run is accepting iff it is live and non-Zeno. A trace of a

process [M ] T is a possibly infinite word s = (si)i∈I such that

[M ] T has an accepting run Mi
αi−→ Mi+1 with si = �(αi).

The timed language lang(P ) of a process P is the set of traces

of P , which defines a security policy according to Definition 2.

Note that the set of traces is not necessarily prefix-closed,

e.g. the timed language of the running example process (11)

is indeed the policy (a+ tick)ω .

Example 17: The following is a run of the process of (10):

release : (⊥,�,⊥), delete : (⊥,�,⊥)
release−−−−→ release : ( 0 ,�,⊥), delete : (⊥,�, 14d )

tick−−→ release : ( 1 ,�,⊥), delete : (⊥,�, 13d )
delete−−−→ release : (1,�,⊥), delete : ( 0 ,�, ⊥ ) .

This run is non-Zeno and accepting. Other runs exist:

• release · tick is a non-accepting finite run.

• release · release · . . . is an infinite Zeno run.

• tick · tick · . . . is an infinite, non-Zeno, accepting run.

IV. DCR POLICY EXAMPLES

We now illustrate the mechanics of specifying provisions

and obligations in a DCR process. We use these examples to

clarify the subsequent discussion and results about the proac-

tive enforceability of obligations. We consider a typical health-

care data retention policy like [19] from [2, Section 3.3].

A. Data protection in hospitals

Hospitals balance the dual requirements of protecting pa-

tients’ privacy while documenting treatments given and pro-

cedures followed. This tension is resolved by retaining patient

records in a central hospital database during the treatment and

moving the records to a restricted-access archive shortly after

the patient’s release. In practice, a policy might look like this:

1) Records must be deleted within 14 days of release.

2) Records must not be deleted if archival is pending.

3) Records must be archived for at least 8 years.

4) Records must not be deleted should the patient be re-

admitted within the 14 days.

We formalise this policy as a DCR process. For clarity, we

consider only a single fixed patient and set of records. The

events are as follows:

release The patient is released.

delete The patient’s records are deleted from the cen-

tral database.

archive The patient’s records are copied from the central

database to the restricted long-term archive.

unarchive The archived records are deleted.

readmit The patient is re-admitted.

We formalise next the constraints T0 and effects. We model

the obligation 1) that records must be deleted within 14 days

of the patient’s release using a response.

release •14d−−→ delete

The provision in (2) is modelled using a milestone relation.

delete 	← archive

Recall that a milestones means (in this case) that as long as we

have an unfulfilled obligation to execute archive, we cannot

execute delete.

Next, we model the retention requirement in (3) that records

must be archived by an (unbounded) response

release •−→ archive

and we model the timed provision that they should remain

for 8 years after archival by a condition relation with a time

constraint.

unarchive • 8y←− archive
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Note, this rule says that 8 years must pass before archived

records can be deleted, not that they must in fact be deleted.

If the patient is re-admitted, we must remove the obligation

to delete records (4). We model this using exclusion.

readmit→% delete

Once the patient is (re-)released, we must reinstate the obli-

gation to delete records. We model this using inclusion.

release→+ delete

Putting these rules together and re-arranging them for clarity,

we obtain the following set of rules:

T0 = release •14d−−→ delete | release •−→ archive

| release→+ delete | delete 	← archive

| readmit→% delete

| unarchive • 8y←− archive .

(12)

As for markings, we assume that initially, the patient is already

admitted. Although the textual description of the model above

does not say so explicitly, it stands to reason that it should not

be possible to delete patient records prior to release. Hence,

for our initial marking, we leave that event excluded:

M0 = release : (⊥,�,⊥),
delete : (⊥,⊥,⊥), archive : (⊥,�,⊥),
unarchive : (⊥,�,⊥), readmit : (⊥,�,⊥) .

Altogether, our model is P0 = [M0] T0.

B. Example runs

We consider a few runs of this model, presenting them as

tables. Each row starts with the event leading to the current

marking, which is represented by the rest of the row.

The common case: provisions and obligations. Refer to

Figure 5. The first row describes the initial marking M0. No

event is previously executed as all h (happened) columns are

⊥. All events but delete are included as can be seen from

the i (included) columns. No events are pending since all r
columns are ⊥. We walk through the sequence of events.

1) release is executed. The age of release is set to “just

executed” (h = 0). Looking at our constraints T0 in (12),

we see that executing release imposes obligations to

delete within 14 days and to eventually archive; these

obligations are reflected in the marking by the change

to r = 14d for the former and r = ω for the latter.

Moreover, T0 also stipulates that delete is now included,

which is reflected in the marking by the change to i = �.

2) 4d passes. The age of release and the deadline for delete
are respectively incremented and decremented by 4 days.

Note that the “eventual” deadline ω for archive remains

as ω − 4d = ω.

3) archive is executed. This meets the deadline of archive,

which is then cleared.

4) 1d passes. The age and deadlines are updated.

5) delete is executed. The deadline for delete is cleared.

Note that unarchive still cannot execute as it is con-

ditional on archive having happened at least 8y in the

past.

6) 10y passes. The condition unarchive • 8y←− archive is now

fulfilled, hence unarchive is now executable.

7) unarchive is executed.

An attempted violation. Will records be deleted? Consider the

run in Figure 6. The event delete has deadline 0 at the end

of the run and is still included. That means that the minimum

response deadline, deadline(M) is now 0, and so the tick-

transition cannot fire, that is, time cannot advance. (Obviously,

an enforcement mechanism cannot rely on stopping time;

rather, it must take care to avoid finding itself in a situation

where advancing time would violate the policy. We will

return to this in Section V-A.) Hence, the model prevents this

potential policy violation by refusing to let time pass in this

state. To allow time to pass again, we must either re-admit the

patient (thereby excluding the pending delete event), releasing

the patient again (thereby extending the deadline of delete by

another 14 days), or delete the records. Neither re-admitting

nor releasing the patient again make sense as a general way to

enforce the policy. And we cannot delete the records straight

away since, because of the milestone delete 	← archive and

the fact that archive is pending, we must first archive the

records—see Figure 7.

As we will see in Section V, this policy is enforceable

only if either the event readmit, the event release, or both the

events archive and delete can be executed by the PEP. Also

note that if, for instance, only archive but not delete can be

controlled by the PEP, then one can consider policy redesign.

For instance, one can introduce an event notify (notifying the

IT Department’s Data Retention Officer of undeleted data) that

is controllable by the PEP, is enabled when the deadline of

delete is met, and cancels the delete event by excluding it.

release •14d−−→ notify | notify • 14d←−− release | notify→% delete .

This is an instance of a general escalation pattern for dealing

with uncontrollable events with deadlines. It is suggestive

of the way obligations are often traditionally treated: rather

than preventing the original policy from being violated, the

enforcement mechanism triggers remedial actions such as

notifications or logging information for subsequent audits.

Re-admission—dynamic exclusion of obligations. Figure 8

presents the case where a patient is readmitted. The initial

markings in the first two events follow the first example: the

patient is release’ed, and four days pass (row 4d). The patient

is readmit’ted. Following the rules T0, readmit excludes the

delete event (i = ⊥). Ten days pass (row 10d). Notice that the

deadline for delete reaches zero. However, this zero-deadline

does not prevent time from progressing further: because delete
is excluded, this zero does not contribute to the computation

of the minimum deadline deadline(M). So another four days

pass (row 4d). By the definition of tick〈−〉, the deadline for
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Event release delete archive unarchive readmit
h i r h i r h i r h i r h i r

– ⊥ � ⊥ ⊥ ⊥ ⊥ ⊥ � ⊥ ⊥ � ⊥ ⊥ � ⊥
release 0 � ⊥ ⊥ � 14d ⊥ � ω ⊥ � ⊥ ⊥ � ⊥
4d 4d � ⊥ ⊥ � 10d ⊥ � ω ⊥ � ⊥ ⊥ � ⊥
archive 4d � ⊥ ⊥ � 10d 0 � ⊥ ⊥ � ⊥ ⊥ � ⊥
1d 5d � ⊥ ⊥ � 9d 1d � ⊥ ⊥ � ⊥ ⊥ � ⊥
delete 5d � ⊥ 0 � ⊥ 1d � ⊥ ⊥ � ⊥ ⊥ � ⊥
10y 10y5d � ⊥ 10y � ⊥ 10y1d � ⊥ ⊥ � ⊥ ⊥ � ⊥
unarchive 10y5d � ⊥ 10y � ⊥ 10y1d � ⊥ 0 � ⊥ ⊥ � ⊥

Fig. 5. “Common case” run.

Event release delete archive unarchive readmit
h i r h i r h i r h i r h i r

– ⊥ � ⊥ ⊥ ⊥ ⊥ ⊥ � ⊥ ⊥ � ⊥ ⊥ � ⊥
release 0 � ⊥ ⊥ � 14d ⊥ � ω ⊥ � ⊥ ⊥ � ⊥
14d 14d � ⊥ ⊥ � 0 ⊥ � ω ⊥ � ⊥ ⊥ � ⊥

Fig. 6. “Attempted violation” run.

archive 14d � ⊥ ⊥ � 0 0 � ⊥ ⊥ � ⊥ ⊥ � ⊥
delete 14d � ⊥ 0 � ⊥ 0 � ⊥ ⊥ � ⊥ ⊥ � ⊥

Fig. 7. Continuation of the “attempted violation” run.

Event release delete archive unarchive readmit
h i r h i r h i r h i r h i r

– ⊥ � ⊥ ⊥ ⊥ ⊥ ⊥ � ⊥ ⊥ � ⊥ ⊥ � ⊥
release 0 � ⊥ ⊥ � 14d ⊥ � ω ⊥ � ⊥ ⊥ � ⊥
4d 4d � ⊥ ⊥ � 10d ⊥ � ω ⊥ � ⊥ ⊥ � ⊥
readmit 4d � ⊥ ⊥ ⊥ 10d ⊥ � ω ⊥ � ⊥ 0 � ⊥
10d 14d � ⊥ ⊥ ⊥ 0 ⊥ � ω ⊥ � ⊥ 10d � ⊥
4d 18d � ⊥ ⊥ ⊥ 0 ⊥ � ω ⊥ � ⊥ 14d � ⊥
release 18d � ⊥ ⊥ � 14d ⊥ � ω ⊥ � ⊥ 14d � ⊥

Fig. 8. “Dynamic exclusion of obligations” run.

the excluded delete event cannot become negative and thus

remains zero. When the patient is finally again release’ed,

release has its usual effects: it includes delete, and resets its
deadline to 14d. Note the semantics: an event can have only

one response deadline; setting a new response deadline cancels

the previous one.

V. PROACTIVE ENFORCEMENT OF DCR POLICIES

We now consider what is necessary for a DCR policy to

be proactively enforceable. That is, under what circumstances

does an enforcement mechanism exist for the policy?

A. Enforceability and Time-locks

It might happen that the deadline for meeting an obligation

has arrived, but the action required to meet the obligation

would violate the (overall) security policy.

Example 18: Suppose we were to add the constraints

early •1y−→ unarchive | archive→% early

to the data retention policy T0 given previously in (12). These

new constraints model that the patient can request that his

records are unarchived early, no later than a year after the

request, but this request can only be made before archival.

These new constraints would contradict the old constraint that

unarchival cannot happen before 8 years after archival:

release unarchive archive
h i r h i r h i r

– ⊥ � ⊥ ⊥ � ⊥ ⊥ � ⊥
release 0 � ⊥ ⊥ � ⊥ ⊥ � ω

early 0 � ⊥ ⊥ � 1y ⊥ � ω

archive 0 � ⊥ ⊥ � 1y 0 � ⊥
1y 1y � ⊥ ⊥ � 0 1y � ⊥

In the last state, the event unarchive must happen now, but it

cannot due to the required delay of 8 years since archive. The

deadline would be extended by re-executing early, but early
is excluded. This process is not deadlocked: release can still

happen. It is, however, time-locked: it has reached a marking
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from which time cannot possibly advance.

Definition 19 ([16]): A process [M ] T is time-locked iff no

marking M ′ reachable from M has T �M ′ tick−−→M ′′.
We conclude that a DCR policy is not necessarily enforce-

able, even if all events are controllable and causable: If there

is a time-lock in a policy, then there are target systems for

which no correct transparent enforcement mechanism exists,

since one cannot prevent time from advancing.

Theorem 20: Let P be the language of a DCR process P
that has a time-lock. Assume that P non-empty and take as tar-

get system (prefixes(P), dom(P )∪{tick}, dom(P ), dom(P )).
Then no transparent enforcement mechanism m is correct

for P .

We can decide whether a DCR policy has a time-lock, using

that its LTS is extended bisimilar [14] to a finite one (see the

Appendix).

Proposition 21: It is decidable whether a DCR process P
is time-lock free.

But decidable is not the same as feasible:

Definition 22: Let P = [M1] T be a DCR process, and let

e be an event of P . We say that e is eventually executable in
P iff there is a transition sequence M1

e1−→ M2
e2−→ · · · en−→

Mn+1
e−→ N .

Lemma 23: There exists an NLOGSPACE-reduction from

boolean satisfiability to eventual executability for time-lock–

free DCR processes.

Theorem 24: (a) Deciding eventual executability of any e in

any DCR process P is NP-hard; and (b) deciding time-lock–

freedom for DCR processes is NP-hard.

B. Avoiding Time-locks

We have just seen that the existence of an enforcement

mechanism for a DCR policy depends at least on the policy’s

time-lock–freedom. We now give a polynomial-time com-

putable sufficient condition for a DCR policy to be time-

lock free, which also supports the effective computation of

a sequence of events that averts violating a given deadline.

We call such a DCR policy “resolvable”. In Section V-C, we

use this notion to define a correct, transparent enforcement

mechanism for resolvable DCR policies.

Definition 25 (Resolvability): Let P = [M ] T be a DCR

process and S ⊆ dom(M) a subset of events. We say that

P is S-resolvable iff for any marking M ′ reachable from M
with deadline(M ′) = 0, there exists a {e1, . . . , en} ⊆ S such

that (1) the following is a transition sequence:

M ′ e1−→M ′
1

e2−→ · · · en−→M ′
n

and (2) deadline(M ′
n) > 0. Assume a particular choice of

such a sequence and define resolve([M ′] T ) to be the (partial)

function that exhibits this choice.

That is, in any reachable state with one or more deadlines

about to be missed, one may execute some sequence of the

events in the set S to avoid missing those deadlines.

Lemma 26: A DCR process P is time-lock–free iff it is

S-resolvable for some S.

Example 27: It is easily verified that the policy T0 given

in Section IV is S-resolvable for S = {release}, or S =
{readmit}, or S = {delete, archive}.

Note that a DCR process P can be time-lock–free and

yet have no way to accept, e.g., [e : (⊥,�, ω)] e • 0←− e. This

lemma has the subtle consequence that resolvability does not
entail that any trace of P can be extended to an accepting one.

From Proposition 21 and Theorem 24, we can bound the

complexity of determining resolvability, for some S.

Proposition 28: Let P be a DCR process and let S ⊆
dom(M). It is decidable, but NP-hard, whether a P is S-

resolvable.

Given NP-hardness, we need tractable approximations to

resolvability. We begin by considering which events may reach

deadlines. We call these busy events.

Definition 29: An event e is busy in [M ] T iff there exists

a reachable marking M ′ with e : (i,�, k) ∈ M ′ for some

k �= ⊥ and some i.
Note that as defined, busy events may have the indefinite

deadline ω. We can identify busy events in time polynomial

in the size of the DCR process:

Lemma 30: An event e is busy in [M ] T only if for some

k �= ⊥ either e : (i,�, k) ∈M for some i or f •k−→ e ∈ T for

some f .

The only way to violate an obligation is to neither execute

nor exclude a busy event when its deadline comes up. Clearly,

either (1) the busy event must be under the enforcement

mechanism’s control or (2) an alternative event that excludes

the busy event must be under the enforcement mechanism’s

control. In the following, we will focus just on the first option.

To this end, we define dependable events.

Definition 31: An event e is dependable in P iff in any P ′

reachable from P , the event e is either excluded or enabled.

The following proposition follows immediately.

Proposition 32: Let P be a DCR process, let B be the set of

busy events of P , and suppose every event in B is dependable.

Then P is B-resolvable.

This proposition gives us an approximation for resolvability

that can be computed in time polynomial in P , since we can

approximate the busy events using Lemma 30 and dependable

events with those that have no conditions or milestones. In

practice, however, it is unlikely that every busy event is

dependable. For example, in the example of Section IV, delete
is busy, but not dependable: it has a milestone from archive,

and so may be included but not enabled. We will need to

consider the dependencies of busy events.

Definition 33: Let P = [M ] T , and let e be an event of P .

The inhibitors of e is the set

I(e) = {f | ∃k.e • k←− f ∨ e 	← f} .
Let the inhibition graph I(P ) of P be the directed graph that

has nodes dom(P ) (P ’s events) and an edge from f to e iff

f ∈ I(e). For a subset of events X , define the inhibition
subgraph for X as the subgraph of I(P ) comprising every

event f with a path to some e ∈ X in I(P ) and every edge
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on those paths. We denote this graph ÎP (X) and its set of

nodes IP (X), dropping the subscript P when it is clear from

context. We call the set I(X) the inhibition closure of X .

The inhibitors of an event e is (the transitive closure of)

those events that may cause e to be not executable, because

they are milestones or conditions for e.

Definition 34: Let X be a set of events of a DCR process

[M ] T . We say that X is dependable iff the following three

conditions hold.

1) The inhibition graph Î(X) is acyclic.

2) For any two nodes e, f in Î(X), if there is a relation

e •k−→ f for some k or a relation e→+ f , then there is

a path from e to f .

3) For any two nodes e, f in Î(X), if there is a relation

f • k←− e for some k, then k = 0.

Intuitively, a set of events is dependable if, when we

build the graph of those events’ dependencies (milestones

and conditions), the dependencies form a directed acyclic

graph (1), and we can eventually execute any event in the

set by simply executing the events in that acyclic graph in a

topological order, i.e., “bottom-up”.

Care must be taken because of the interplay between re-

sponses and milestones. We must avoid the situation where

resolving a dependency by executing it re-blocks a previously

resolved dependency by either reinstating a milestone or a

condition (2). Similarly, we must ensure that no event in the

set depends any other event in the set with a delay (3).

Theorem 35 (Approximation of Resolvability): Let P have

busy events B. If B is dependable, then P is I(B)-resolvable.

Moreover, there exists a polynomial time algorithm computing

resolve of Definition 25 for every P ′ reachable from P .

The actual algorithm is simply this: Given a subset X ⊆ B,

resolve(B) is the topological sort of Î(X).

Example 36: We return to our data retention example P0 of

Equation (12) on page 8. Inspecting the relations, we see that

the inhibition graph has only the two edges:

archive �→ unarchive archive �→ delete .

The busy events of P0 are over-approximated by Lemma 30 to

B = {delete, archive}. The inhibition subgraph and inhibition

closure of B are then simply ÎP0(B) = archive �→ delete and

IP0
(B) = {archive, delete}. It is straightforward to verify that

IP0
(B) is dependable. By Theorem 35, it is thus decidable in

polynomial time that P0 is indeed {archive, delete}-resolvable.

Summing up, if we have the ability to execute archive and

delete we can guarantee compliance for obligations.

C. Proactive DCR Policy Enforcement

With the mechanics of statically avoiding time-locks in

DCR policies in place, we now define an enforcement mech-

anism, from which we derive a prototype implementation

of a PEP. First note that a DCR process directly defines a

policy language in the sense of Definition 2. We define an

enforcement mechanism for a process P .

Definition 37: Define a function m(·, ·) that, for a given

DCR policy P with dom(P ) ⊆ Σ\{tick} and action a ∈ Σ,

says what actions to take.

m(P, a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

resolve(P ) · tick (i)
when a = tick ∧ deadline(P ) = 0

ε when a ∈ dom(P ) and (ii)
a is not executable in P

a otherwise (iii)

We lift m to finite sequences of actions. We must advance

the “current” DCR policy whenever the target system takes

an action. Let a〈P 〉 = P ′ iff P
a−→ P ′. This is well-defined

because the transition semantics of DCR processes in Figure

4 assigns at most one transition for any a, P and each event

has a unique label. Moreover, define advance(P, ε) = P and

advance(P, a ·w) = advance(a〈P 〉, w), for w ∈ Σ∗. Then the

DCR enforcement mechanism mP is given inductively by

mP (ε) = ε

mP (w · a) = mP (w) ·m(advance(P,mP (w)), a) .

Note that mP is not defined for all P , since resolve
(Definition 25) is only defined on resolvable DCR processes.

Theorem 38: Let t = (S,Σ,Γ,Δ) be a target system, and

let P be a DCR process with dom(P ) = Σ and dependable

busy events B ⊆ Δ, and assume every event Σ \Γ is enabled

in any P ′ reachable from P . Then mP is a correct, transparent

enforcement mechanism.

From Lemma 8, we know then that mP steers clear of the

finite violations language:

Corollary 39: Let P and mP be defined as in the Theo-

rem 38. Then for all w ∈ Dm we have w �∈ P̄ .

To apply DCR policy enforcement in practice, we require:

1) A target system (S,Σ,Γ,Δ),
2) A DCR policy P over Σ such that P is Δ-resolvable,

and every P ′ reachable from P has every e ∈ Σ \ Γ
enabled, and

3) A PEP implementing mP .

For (1), note that the causable actions Δ must be enabled in

the target system whenever they are to be caused according

to the policy P : otherwise the PEP cannot rely on executing

them to avert deadlines. In practice, this either requires (some)

white-box knowledge of the target system, for example, the

knowledge that these actions are always available when needed

or that the actions are always enabled, e.g. the actions are

provided as a web service.

For (2), apply Theorem 35 to get resolvability. We do

not address here the means of ensuring that uncontrollable

events, i.e., events in Σ \ Γ, are always enabled. Several

options exists along the lines of Theorem 35. A very pragmatic

approach is simply to require the events Σ\Γ to be completely

unconstrained in P . Alternatively, it suffices for the set Σ \ Γ
to be empty. This will be the case when the target system must

ask the PEP for permission on all (policy-relevant) actions and

is analogous to the principle of complete mediation for access

control policies.
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// A PEP takes as input an Observation which is
// either an (attempted) transition, or a deadline
// approaching.
type Observation =

| Transition of DCR.event
| Deadline of DCR.event
| Inform of DCR.event

// A PEP produces as output a Reaction. (Code for
// acting on the Reaction is not included here.)
type Reaction =

| Grant
| Deny
| Cause of DCR.event list
| Ignore

// DCR-PEP. Takes a current DCR policy-state P and
// an Observation, and produces a Reaction and a
// new DCR policy-state.
let PEP P observation =

match observation with
| Deadline e ->

Cause (resolve P e), P // (i)
| Transition e ->

if (DCR.is_executable P e) then
Grant, DCR.execute e P // (iii)

else
Deny, P // (ii)

| Inform e ->
Ignore, DCR.execute e P // (iii)

Fig. 9. F# implementation of mP .

For (3), we have constructed a prototype PEP implementing

mp, built on top of the DCR process engine of [7]. This

prototype is available on-line at http://dcr.itu.dk/obligations.

Our prototype PEP repeatedly waits to either be consulted

about an action by the target system, or for a deadline to come

close, in either case acting as m of Definition 37: For actions,

it grants or denies depending on whether the corresponding

event is executable in the current DCR policy state. When

actions are granted, the state is advanced by executing the

event in it. For deadlines, the PEP instructs the target system

to issue actions as given by resolve. Since we have assumed

that non-controllable events Σ \ Γ are always enabled, they

need no special treatment.

We give the actual F# code implementing m in Figure 9.

Note the comments connecting various branches to cases

of Definition 37. Note too the use of the resolve algorithm

provided of Definition 25, guaranteed to exist by Theorem 35.

Our prototype uses the policy P also as the target system;

this is enough for experimentation and simulation in the DCR

Workbench. To lift the prototype to an actual enforcement

mechanism, it suffices to update the driver function producing

the Observation inputs and executing the Reaction
outputs of Figure 9 to one that interacts, say, via REST, with an

actual system, as dictated by the system model of Section II.

VI. RELATED WORK

In this section, we compare our approach with related

policy specification languages for handling obligations and

with alternative enforcement mechanisms.

A. Specification

The idea of adding obligations to policies was first proposed

by Minsky and Lockman [26]. They augmented permissions

with tasks to be executed within a stated deadline after

an access request is granted. This deadline corresponds, for

example, to the passage of time or is triggered by other events.

Park and Sandhu examined obligations in the context of usage

control [28] and Bettini et al. [4] systematically considered the

combination of provisions and obligations within a datalog for-

malism. In both cases, the emphasis is on policy specification

(and, in the case of [4], also analysis), rather than applications

to enforcement and monitoring.

Obligations have also been used in languages such as PON-

DER [6] and XACML [34]. Obligations there are triggered

by events: an event’s occurrence directly results in actions to

discharge the obligation. This is in contrast to our work where

obligations are associated with events that become pending but

need not be immediately discharged.

Temporal logics are, of course, well suited for specifying

properties based on the past (provisions) and future (obliga-

tions). For example, linear-time temporal logics (LTL) have

been used in [3], [12], [18], [35] to formalise regulations

with obligations and usage-control policies. LTL formulas

are closely related to DCR processes: Core (untimed) DCR

processes are equivalent in their expressivity to ω-regular

languages [8], whereas (propositional) LTL is equivalent to

a subset of ω-regular languages, namely the star-free lan-

guages [33]. DCR processes also have the advantage that

their operational semantics does not depend on the possibly

exponential translation to (e.g. Büchi) automata, which is most

often employed for LTL; see, for example, the use of LTL and

Büchi automata to formalise (untimed) obligations in [9].

B. Enforcement

Obligations are fundamentally more difficult to enforce than

provisions. For provisions, policy monitoring and enforcement

are equivalent. Any enforceable policy can be monitored as

the enforcement mechanism’s denial of an action signifies a

policy violation when that action takes place. Conversely, a

monitor can serve as a policy decision point for an enforce-

ment mechanism. When policies contain obligations, there are

monitorable policies that cannot be enforced, in particular

when one distinguishes, as we have done (see also [20]),

between actions that can be controlled by the enforcement

mechanism versus those that can only be observed [1].

Our solution is for the (standard) setting where one interacts

with the target system as a black box, which one can neither

examine nor modify. Even with these restrictions, enforceabil-

ity is a rich concept that depends on the underlying mechanism

used [11], [13], for example, whether the mechanism can only

suppress actions, like security automata [31], or can initiate or

change actions as with edit automata [23], [24] or mandatory

results automata (MRA) [25].

As with our approach, edit automata and MRA share the

ability to proactively change behaviour to enforce policies.

131131131



They differ though in that neither formalism handles real-

time constraints, which is an essential aspect of obligations.

Their system models are quite different too. Our system model

essentially extends that of security automata with additional

target-system interfaces of controllable and causable actions.

The MRA system model interposes the enforcement mecha-

nism between the target system and an execution platform. For

edit automata, no distinction is made between observable and

controllable events and hence it remains open what an edit

automaton can actually control on the target system.

A number of enforcement mechanisms have been proposed

for obligations, like those for PONDER and XACML, which

do not involve any sophisticated calculations. They enforce

obligations simply by executing the appropriate actions (such

as logging information) when the obligation to do so arises.

Li et al. [22] provide operational extensions to XACML

enforcement such as support for pre-obligations and on-going

obligations, as introduced in the UCON model [28]—see also

Elrakaiby et al. [10] who study enforcement of UCON-style

obligations in the context of active databases.

Finally, there is related work in other communities. For

example, in supervisory-control theory for discrete event sys-

tems [29], a supervisor process (in our work, enforcement

mechanism) attempts to control the behaviour of a generator

process (in our work, the target system) over its controllable

events, which corresponds to our mechanism without the

ability to force actions. Subsequent extensions of supervisory-

control theory to timed discrete event systems [5], [32] include

delays and deadlines of each event and a designated subset

of so-called forcible events. The supervisor process can now

disable the tick (time) actions in case a forcible event is

enabled. But the target system may choose to perform a non-

forcible event; indeed the supervisor cannot enforce that a

forcible event happens as in our approach. Also closely related

is the research of Renard et al. [30] who present an automata-

based framework for enforcing regular timed properties with

uncontrollable events. Their enforcement mechanisms work by

buffering and delaying input events so that the output satisfies

a specified policy. Again, in contrast, our mechanisms do not

buffer and delay, but actively schedule controllable events to

prevent obligations’ violations.

VII. CONCLUSIONS AND FUTURE WORK

Obligations are a central notion found in a wide range

of security policies such as those for usage control, data

protection and privacy, and digital rights management. We

have investigated their specification and enforcement in a

black-box setting where the enforcement mechanism proac-

tively computes and schedules events needed to prevent policy

violations. As not all policies in this setting are enforceable,

we have also established complexity results for enforceability

and given a sufficient polynomial-time verifiable condition for

a policy to be enforceable.

The present work investigates avoiding the violation of

obligations by proactively taking action. We have assumed

that the sequence of actions caused proactively can always be

executed within a single time-step. If time is measured in hours

or days this is usually reasonable, but for finer granularities of

time or if resolving an obligation requires delays, one needs to

support tick actions during enforcement. This support would

require generalising Definition 34 of dependable sets.

The approach of this paper is not limited to obligations: one

can reasonably consider proactively avoiding the violations of

provisions too. For example, suppose we have the provision

“action a can happen only if b previously happened”, and

suppose the string w contains no occurrences of b. The present

approach would suppress a, i.e., m(w · a) = m(w). However,

we might instead cause the action b to happen before allowing

a: m(w · a) = m(w) · b · a.

Finally, with respect to the usefulness of proactive enforce-

ment in practice, the proof of the pudding is in the eating.

We are presently engaged in a large-scale case study of policy

enforcement with a major European railway service. While

it seems that our policy language is well-suited for capturing

temporal constraints between actions, the formalism presented

here does not handle actions depending on data. An extension

to handle data is currently underway.
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APPENDIX

A. Proofs

Here we provide the remaining proofs for all lemmas and

theorems in the paper.

Proof of Lemma 8: Let v ∈ Dm. Observe that from

Definition 5, m(v) is finite. It follows by the definition of

correctness that m(v) ∈ prefixes(P); but then m(v) �∈ P̄ .

Proof of Theorem 20: Suppose m is correct and trans-

parent. By the definition of a time-lock, there exists a w ∈
prefixes(P) such that w is a shortest sequence exhibiting a

time-lock in lts(P ). Because m is transparent, w ∈ Dm and

m(w) = w. Because w exhibits a time-lock, w is not accepting

and so w �∈ P . Let v ∈ dom(P )∗. By the definition of a time-

lock, w · v is also not accepting. But then m is not correct,

which is a contradiction.

Proof of Proposition 21: Immediate from Proposition 43.

Proof of Lemma 23: Let B be a boolean satisfiability

problem over atoms, conjunction and negation, that is, B is a

string generated by the language

S ::= x | S ∧ S | ¬S .

Construct a DCR process �B� which has, for each non-leaf

node n of the abstract syntax tree of B, events nt, nf and

nb1, nb2, nb3; and for each atom a nodes at, af and ab1, ab2.

For each non-leaf node n, add relations as follows.

1) For each atom a, add relations ab1 •←− ab1 and ab2 •←−
ab2; and at •←− ab1 and af •←− ab2 and at →+ ab2 and

af →+ ab1.

2) For each non-leaf node n, add relations nb1 •←−
nb1, nb2 •←− nb2, nb3 •←− nb3.

3) For each non-leaf node n = u ∧ v add relations nt •←−
nb1, nt •←− nb2 and nf •←− nb3; and ut →% nb1, vt →%
nb2; and uf →% nb3, vf →% nb3.

4) For each non-leaf node n = ¬u add relations nt •←− uf

and nf •←− ut.

Define a marking M0 where every event is (⊥,�,⊥), except

ab1 and ab2 which must be (⊥,⊥,⊥). Consider a run of �B�
executing a maximal number of distinct events of �B�. Note

that for each atom a; either at or af has been executed, but

not both; define from this an assignment a �→ � or a �→ ⊥.

By induction, each non-leaf node n has nt executed iff this

assignment evaluates n true and nf executed iff it evaluates n
false. But then for the root node r of B, rt is executed in some

run iff B is satisfiable and rf is executed in some run iff it is

not; i.e., rt is eventually executable in �B� iff B is satisfiable.

The DCR process �B� has O(|B|) nodes and relations, and

so this reduction is in NLOGSPACE. By inspection of the

reduction, we see that �B� contains no responses or initially

pending events; it is then trivially time-lock–free.

Proof of Theorem 24: (a) is immediate from Lemma 23.

For (b), let B be a boolean satisfiability problem, suppose

(�B�, e) is the corresponding eventual execution problem,

and suppose �B� = [M ] T . Choose f �∈ dom(M). Then

[f : (⊥,�, 0),M ] T | f • 0←− e is time-lock free iff f is even-

tually executable iff B has a satisfying assignment.

Proof of Lemma 26: Suppose P is not S-resolvable for

any S. By definition, there exists then a state from which time

cannot advance after any finite sequence of events, and so P
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has a time-lock. Suppose instead P is S-resolvable for some

S, and suppose for a contradiction that P ′ is reachable from P
and is time-locked. But then resolve(P ′) is defined and leads

to a state in which time has advanced. Contradiction.

Proof of Lemma 30: Immediate from the Definition of

busy events.

Proof of Theorem 38: We show (a) that mP is a

function, (b) that it is an enforcement mechanism in the sense

of Definition 5, and (c) that it is a correct such mechanism.

For (a), by Theorem 35, the function resolve is defined on

every reachable marking of P , and so mP is a function.

For (b), it is straightforward to show by cases on m(·, ·)
that mP is monotone and idempotent. For the properties, (1)

is immediate by the definition of mP . (2a-c) are immediate

by the definition of m.

For (c), mP is correct. Consider mP (v) for some v ∈ Dm.

Note inductively using the definition of mP (v) and that Σ \Γ
are always enabled that mP (v) is a run of P . We must prove

that this run is accepting or can be extended to an accepting

one. If it is already accepting, then we are done, so suppose it

is not. Again by Theorem 35 B is resolvable, so any pending

response can be discharged; it follows that mP (v) can be

extended to an accepting run. Finally, mP is transparent, which

follows straightforwardly from the definition of m.

Lemma 40: If X is dependable for [M ] T , then so is any

Y ⊆ X .

Proof: Immediate from the definition.

Proof of Theorem 35: Suppose M ′ is reachable from

M , and suppose X is the maximal set of events satisfying

x : (ix, 1, 0) ∈ M ′ for x ∈ X and some ixs. We must prove

that there is some finite set of events {e1, . . . , em} ⊆ I(X)
such that

M ′ e1−→M ′
1

e2−→ · · · em−−→M ′
m (13)

is an event transition sequence and deadline(M ′
m) > 0. Clearly

each x ∈ X is busy, X ⊆ B, and X is dependable by

Lemma 40. Because X is dependable, Î(X) is acyclic. Let

e1, . . . , en be a topological sorting of Î(X). We prove by

induction on n that:

1) a subsequence of e1, . . . , en is a transition sequence

from M ′,
2) at each M ′

i , ei is either enabled or excluded, and

3) at each M ′
j with j > i, ei is excluded if it was at M ′

i ,

pending only if it is excluded, and executed otherwise.

For k = 1, by the definition of Î(X), e1 has no conditions

or milestones and so is either enabled or excluded (2). If

it is enabled, we keep and execute it, otherwise we forget

about it (1). (3) is vacuously true. For k > 1 we know

that all of the conditions and milestones of ek are among

e1, . . . , ek−1, and by the induction hypothesis (2) and (3) each

of those are either executed or excluded. By Definition 34

of dependability, item 3, if ek has a condition to an earlier

ej , it is with time constraint 0. Thus ek is enabled iff it is

included. If it is excluded we have (1,2). If it is included and

so enabled, we execute it to establish (1,2). By Definition 34

of dependability, item 2, executing ek does not make any of

e1, . . . , ek−1 pending or included, establishing (3).

Clearly, each x ∈ X are among e1, . . . , en, and by con-

struction, each x is either excluded or executed in M ′
n. By the

definition of dependability, if follows that deadline(M ′
n) > 0.

This proof also provides an algorithm for computing resolve:

Simply compute Î(X) from its definition—clearly in polyno-

mial time—and topologically sort the resulting graph.

B. Finite LTS for Timed DCR Processes

We define a finite LTS. To simplify the definition, we use the

same limit for all events, namely the maximal delay occurring

in the term T identified by the function maxdelay defined as

follows:

maxdelay(e • k←− f) = k

maxdelay(e R f) = 0 (when R�= e • k←− f )

maxdelay(T | U) = max{maxdelay(T ),maxdelay(U)} .
We then inductively define a function that truncates a marking

to a given maximum delay, taking ε|k = ε, and

M, e : (h, i, r)|k =M|k, e : (min{k, h}, i, r) .
We say that markings M and M ′are k-equivalent if M|k =
M ′|k, and define the bounded LTS as the quotient.

Definition 41: Let [M ] T be a DCR process with k =
maxdelay(T ). We define the bounded LTS ltsb([M ] T ) =
(M|k, E ′,→,M|k, �′,Σ), with components events E ′ = E �
{tick}; transitions → ⊆M|k ×E ′×M|k, with M|k

α−→M ′|k
iff T � M|k

α−→ M ′; states M|k = {M ′|k | M →∗ M ′},
initial state M|k, and labelling �′(e) = �(e), for e ∈ E and

�′(tick) = tick.

Finiteness is immediate by noting that the first state compo-

nent, the age, is bounded by the maximum delay, while the

third state component, the response deadline, is bounded by

the maximum response given by the initial marking and all

response relations e •k−→ f .

We define accepting runs for the bounded LTS as for the

timed event LTS.

Lemma 42: Let [M ] T be a DCR process with k =
maxdelay(T ). Then T � M

α−→ M ′ iff T � M|k
α−→ M ′′

with M ′′|k =M ′|k.

Proof: By structural induction on T , we have [M ] T �
e : δ iff [M|k] T � e : δ. Now note that ((e : δ)〈M〉)|k =
((e : δ)〈M|k〉)|k and tick〈M〉|k = tick〈M|k〉|k. The lemma

follows using the definition of transitions in Figure 4.

Proposition 43: Let P = [M ] T be a DCR process, and

let k = maxdelay(T ). Then P = [M ] T in lts(P ) and P|k =
[M|k] T in ltsb(P ) are bisimilar and the languages of the two

LTSes coincide, that is, lang(lts(P )) = lang(ltsb(P )).
Proof: Assume k = maxdelay(T ). By Lemma 42 it

follows that {(M ′,M ′|k) | M →∗ M ′} is a bisimulation.

Moreover, for any M , the second and third components of M|k
are identical, so this bisimulation is an extended bisimulation

in the sense of [14] that respects the acceptance of runs.
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