
Beyond Good and Evil
Formalizing the Security Guarantees of Compartmentalizing Compilation

Yannis Juglaret1,2 Cătălin Hriţcu1 Arthur Azevedo de Amorim4 Boris Eng1,3 Benjamin C. Pierce4

1Inria Paris 2Université Paris Diderot (Paris 7) 3Université Paris 8 4University of Pennsylvania

Abstract—Compartmentalization is good security-engineering
practice. By breaking a large software system into mutually
distrustful components that run with minimal privileges, re-
stricting their interactions to conform to well-defined interfaces,
we can limit the damage caused by low-level attacks such as
control-flow hijacking. When used to defend against such attacks,
compartmentalization is often implemented cooperatively by a
compiler and a low-level compartmentalization mechanism. How-
ever, the formal guarantees provided by such compartmentalizing
compilation have seen surprisingly little investigation.

We propose a new security property, secure compartmentalizing
compilation (SCC), that formally characterizes the guarantees
provided by compartmentalizing compilation and clarifies its
attacker model. We reconstruct our property by starting from
the well-established notion of fully abstract compilation, then
identifying and lifting three important limitations that make
standard full abstraction unsuitable for compartmentalization.
The connection to full abstraction allows us to prove SCC by
adapting established proof techniques; we illustrate this with
a compiler from a simple unsafe imperative language with
procedures to a compartmentalized abstract machine.

1 Introduction
Computer systems are distressingly insecure. Visiting a web-

site, opening an email, or serving a client request is often all

it takes to be subjected to a control-hijacking attack. These

devastating low-level attacks typically exploit memory-safety

vulnerabilities such as buffer overflows, use-after-frees, or

double frees, which are abundant in large software systems.

Various techniques have been proposed for guaranteeing mem-

ory safety [12], [19], [23], [42], [49]–[53], but the challenges

of efficiency [52], [53], precision [67], scalability [71], back-

wards compatibility [15], and effective deployment [12], [19],

[22], [23], [42], [49]–[51] have hampered their widespread

adoption.

Meanwhile, new mitigation techniques have been pro-

posed to deal with the most onerous consequences of mem-

ory unsafety—for instance, techniques aimed at preventing

control-flow hijacking even in unsafe settings [2], [3], [24],

[64]. Unfortunately, these defenses often underestimate the

power of the attackers they may face [17], [24], [26], [27],

[30], [63]—if, indeed, they have any clear model at all

of what they are protecting against. Clarifying the precise

security properties and attacker models of practical mitigation

techniques is thus an important research problem—and a

challenging one, since a good model has to capture not only

the defense mechanism itself but also the essential features of

the complex world in which low-level attacks occur.

In this paper we focus on the use of compartmentaliza-
tion [13], [31], [66] as a strong, practical defense mechanism

against low-level attacks exploiting memory unsafety. The key

idea is to break up a large software system into mutually dis-

trustful components that run with minimal privileges and can

interact only via well-defined interfaces. This is not only good

software engineering; it also gives strong security benefits.

In particular, control-hijacking attacks can compromise only

specific components with exploitable vulnerabilities, and thus

only give the attacker direct control over the privileges held

by these components. Also, because compartmentalization can

be enforced by more coarse-grained mechanisms, acceptable

efficiency and backwards compatibility are generally easier

to achieve than for techniques enforcing full-blown memory

safety.

When used as a defense mechanism against memory un-

safety, compartmentalization is often achieved via cooperation

between a compiler and a low-level compartmentalization

mechanism [15], [31], [37], [40], [58], [66], [69]. In this paper

we use compartmentalizing compilation to refer to cooperative

implementations of this sort. The compiler might, for instance,

insert dynamic checks and cleanup code when switching

components and provide information about components and

their interfaces to the low-level compartmentalizing mecha-

nism, which generally provides at least basic isolation. Two

such low-level compartmentalization technologies are already

widely deployed: process-level privilege separation [13], [31],

[38] (used, e.g., by OpenSSH [59] and for sandboxing plugins

and tabs in modern web browsers [60]) and software fault

isolation [65] (provided, e.g., by Google Native Client [68]);

many more are on the drawing boards [12], [15], [32], [58],

[66].

So what security guarantees does compartmentalizing com-

pilation provide, and what, exactly, is its attacker model?

A good starting point for addressing these questions is the

familiar notion of fully abstract compilation [1], [4]–[6], [8],

[10], [11], [29], [33], [55]. A fully abstract compiler toolchain

(compiler, linker, loader, and underlying architecture with

its security mechanisms) protects the interactions between a

compiled program and its low-level environment, allowing

the programmer to reason soundly about the behavior of

their code when it is placed in an arbitrary target-language

context, by considering only its behavior in arbitrary source-

language contexts. In particular, if we link the code produced

by such a compiler against arbitrary low-level libraries—

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Yannis Juglaret. Under license to IEEE. 45

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Yannis Juglaret. Under license to IEEE. 45

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Yannis Juglaret. Under license to IEEE.

DOI 10.1109/CSF.2016.11

45

perhaps compiled from an unsafe language or even written

directly in assembly—the resulting execution will not be any

less secure than if we had restricted ourselves to library code

written in the same high-level language as the calling program.

(Why is it useful to restrict attention to attackers written

in a high-level language? First, because reasoning about what

attackers might do—in particular, what privileges they might

exercise—is easier in a high-level language. And second, be-

cause by phrasing the property in terms of low- and high-level

programs rather than directly in terms of attacker behaviors,

specific notions of privilege, etc., we can re-use the same

property for many specific languages.)

Since full abstraction works by partitioning the world into

a program and its context, one might expect it to apply to

compartmentalized programs as well: some set of components

that are assumed to be subject to control-hijacking attacks

could be grouped into the “low-level context,” while some

others that are assumed to be immune to such attacks would

constitute the “high-level program.” Full abstraction would

then allow us to reason about the possible behaviors of

the whole system using the simplifying assumption that the

attacker’s injected behavior for the compromised components

can be expressed in the same high-level language as the

good components. Sadly, this intuition does not withstand

closer examination. Full abstraction, as previously formulated

in the literature, suffers from three important limitations that

make it unsuitable for characterizing the security guarantees

of compartmentalizing compilation.

First, fully abstract compilation assumes that the source

language itself is secure, so that it makes sense to define

target-level security with respect to the semantics of the

source language. However, compartmentalization is often ap-

plied to languages like C and C++, which do not have

a secure semantics—the C and C++ standards leave most

of the security burden to the programmer by calling out a

large number of undefined behaviors, including memory-safety

violations, that are assumed never to occur. Valid compilers

for these languages are allowed to generate code that does

literally anything—in particular, anything a remote attacker

may want—when applied to inputs that lead to undefined

behavior. There is no way to tell, statically, whether or not a

program may have undefined behavior, and compilers do not

check for this situation. (Indeed, not only do they not check:

they aggressively exploit the assumption of no undefined

behaviors to produce the fastest possible code for well-defined

programs, often leading to easily exploitable behaviors when

this assumption is broken.) The point of compartmentalizing

compilation is to ensure that the potential effects of undefined

behavior are limited to the compromise of the component in

which it occurs: other components can only be influenced

by compromised ones via controlled interactions respecting

specified interfaces.

To characterize the security of compartmentalizing compi-

lation, we therefore need a formal property that can mean-

ingfully accommodate source languages in which components

can be compromised via undefined behavior. Full abstraction

as conventionally formulated does not fit the bill, because,

in order to preserve equivalences of programs with undefined

behavior, compilers must abandon the aggressive optimizations

that are the reason for allowing undefined behaviors in the

first place. To see this, consider C expressions buf[42] and

buf[43] that read at different positions outside the bounds of

a buffer buf. These two programs are equivalent at the source

level: they both lead to arbitrary behavior. However, a real C

compiler would never compile these expressions to equivalent

code, since this would require runtime checks that many C

programmers would deem too expensive.

Second, fully abstract compilation makes an open world
assumption about the attacker context. While the context is

normally required to be compatible with the protected pro-

gram, for instance by respecting the program’s typed interface,

the structure and privilege of the context are unrestricted (the

definition quantifies over arbitrary low-level contexts). This

comes in direct contradiction with the idea of least privilege,

which is crucial to compartmentalization, and which relies on

the fact that even if a component is compromised, it does

not immediately get more privilege. Compromised components

cannot change the basic rules of the compartmentalization

game. For instance, in this paper we consider a static compart-

mentalization setting, in which the breakup of the application

into components is fixed in advance, as are the privileges of

each component. A security property suitable for this setting

needs to only consider contexts that conform to a fixed breakup

into components with static privileges.1

Third, because the definition of full abstraction involves ap-

plying the compiler only to a program and not to the untrusted

context in which it runs, a fully abstract compiler may choose

to achieve its protection goals by introducing just a single

barrier around the trusted part to protect it from the untrusted

part [8], [43], [54], [55], [57]. Such compilation schemes force

the programmer to commit in advance to a single compromise

scenario, i.e., to a single static split of their application into a

“good” trusted program and an “evil” untrusted context from

which this program has to be protected. This is not realistic

in the setting of compartmentalizing compilation, where we

generally cannot predict which components may be vulnerable

to compromise by control hijacking attacks, and instead must

simultaneously guard against multiple compromise scenarios.

Compartmentalizing compilers allow us to build more secure

applications that go beyond the blunt trusted/untrusted dis-

tinction made by some fully abstract compilers. To describe

their guarantees accurately, we thus need a new property that

captures the protection obtained by breaking up applications

into multiple mutually distrustful components, each running

with least privilege, and permits reasoning about multiple

scenarios in which different subsets of these components are

compromised.

1In a setting where new components can be dynamically created and
privileges can be exchanged dynamically between components, the details of
this story will be more complicated; still, we expect any secure compartmen-
talizing compilation property to limit the ability of low-level attacker contexts
to “guess” the privileges of existing components.

464646

Our main contribution is the definition of such a property,

which we call secure compartmentalizing compilation (SCC)
(§2). While similar in many respects to full abstraction,

our property escapes the three limitations discussed above.

First, it applies to unsafe source languages with undefined

behaviors by introducing a new notion of fully defined sets of

components. While undefined behavior is a property of whole

programs, full definedness is compositional. Intuitively, a set

of components is fully defined if they cannot be blamed [28]

for undefined behavior in any context satisfying fixed inter-

faces. Second, SCC makes a closed-world assumption about

compromised components, enforcing the basic rules of the

compartmentalization game like the fixed division into com-

ponents and the fixed privileges of each component, including

for instance with which other components it is allowed to

interact. Third, SCC ensures protection for multiple, mutu-

ally distrustful components; it does not assume we know in

advance which components are going to be compromised (i.e.,

in the C setting, which components may contain exploitable

undefined behaviors), but instead explicitly quantifies over all

possible compromise scenarios.

Our second contribution is relating SCC to standard for-

mulations of full abstraction both intuitively and formally

(§3). We start from full abstraction and show how the three

limitations that make it unsuitable in our setting can be

lifted one by one. This results in two properties we call

structured full abstraction and separate compilation, which

can be combined and instantiated to obtain SCC. While our

property directly captures the intuition of our attacker model,

reducing it to structured full abstraction is a useful technical

step, since the latter is easier to establish for specific examples

using a variant of existing proof techniques. Moreover, arriving

at the same property by two different paths increases our

confidence that we found the right property.

Our third contribution is establishing the SCC property

for a simple unsafe imperative language with components

interacting via procedure calls and returns, compiling to an

abstract machine with protected compartments (§4). Despite

the simplicity of the setting, this result gives useful insights.

First, the source language and compilation strategy enable

interesting attacks on components with potential buffer over-

flows, similar to those found in C. Second, we illustrate

how SCC can be achieved by the cooperation of a compiler

(cleaning and restoring registers) and a low-level protection

mechanism (totally isolating compartments and providing a

secure interaction mechanism using calls and returns). Third,

our SCC proof adapts a standard technique called trace seman-
tics [35], [56], via the reduction to structured full abstraction.

The closed-world assumption about the context made by

structured full abstraction requires some nontrivial changes to

the trace semantics proof technique.

The remainder of the paper describes each of our three

contributions in detail (§2–§4) and closes by discussing re-

lated work (§5) and future directions (§6). The supplemental

material associated with this paper includes: (a) a Coq proof

for Theorem 3.4; (b) technical details and proofs for the SCC

instance from §4; and (c) a trace mapping algorithm in OCaml

using property-based testing to support Assumption 4.9. It can

be found at http://yannis.computer/papers/bge.html.

2 Secure Compartmentalizing Compilation
We start with an intuitive explanation of compartmentalizing

compilation, its attacker model, and its security benefits, and

then introduce secure compartmentalizing compilation (SCC).
We consider compartmentalization mechanisms provided by

the compiler and runtime system for an unsafe programming

language with some notion of components.2 In §4 we will

present a simple example in detail, but for the present dis-

cussion it suffices to think informally of C or C++ enriched

with some compartmentalization mechanism. This mechanism

allows security-conscious developers to break large applica-

tions into mutually distrustful components running with least

privilege and interacting only via well-defined interfaces. We

assume that the interface of each component also gives a

precise description of its privilege. Our notion of interface

here is quite generic: interfaces might include any information

that can be dynamically enforced on components, including

module signatures, lists of allowed system calls, or more de-

tailed access control specifications describing legal parameters

to inter-component calls (e.g., ACLs for files). We assume

that the division of the application into components and the

interfaces of those components are statically determined and

fixed throughout execution. In §4, we instantiate this picture

with a rather simple and rigid notion of components and

interfaces, where components don’t directly share any state

and where the only thing one component can do to another

one is to call the procedures allowed by the interfaces of both

components.

We do not fix a specific compartmentalizing compilation

mechanism; we just assume that whatever mechanism is cho-

sen can guarantee that, even if one component is compromised

(e.g., by a control-hijacking attack), it will still be forced

to adhere to its specified interface in its interactions with

other components. What a compromised component can do

in this model is use its access to other components, as

allowed by its interface, to trick them into misusing their

own privileges (confused deputy attacks) and/or attempt to

mount further control-hijacking attacks on other components

by communicating with them via defined interfaces.

We do not assume we know in advance which components

will be compromised: the compartmentalizing compilation

mechanism has to protect each component from all the others.

This allows developers to reason informally about various

compromise scenarios and their impact on the security of

the whole application [31], relying on conditional reasoning

of the form: “If these components get taken over and these
do not, then this might happen (while that cannot), whereas

if these other components get taken over, then this other

2We use the term “runtime system” loosely to include operating system
mechanisms [13], [31], [38], [59], [60] and/or hardware protections [12], [32],
[58], [66] that may be used by the compiler.

474747

thing might happen...” If the practical consequences of some

plausible compromise scenario are too serious, developers can

further reduce or separate privilege by narrowing interfaces

or splitting components, or they can make components more

defensive by dynamically validating the inputs they receive

from other components.

For instance, developers of a compartmentalized web

browser [60] might reason about situations in which some

subset of plugins and tabs gets compromised and how this

might impact the browser kernel and the remaining plugins and

tabs. A possible outcome of this exercise might be noticing

that, if the browser kernel itself is compromised, then all

bets are off for all the components and the application as a

whole, so the developers should put extra energy in defending

the kernel against attacks from compromised plugins or tabs.

On the other hand, if interfaces between tabs and plugins

are appropriately limited, then compromise of one should not

disrupt the rest.

Our goal is to articulate a security property that supports

reasoning about multiple compromise scenarios and clarifies

the associated attacker model. At the same time, our property

is intended to serve as a benchmark for developers of com-

partmentalizing compilation mechanisms who want to argue

formally that their mechanisms are secure. In the rest of this

section we explain the technical ideas behind the SCC property

and then give its formal definition.

An application is a set Cs of components, with corre-

sponding interfaces CIs. These components are separately

compiled (individually compiling each component in the set

Cs is written Cs↓) and linked together (written ��(Cs↓)) to

form an executable binary for the application.

SCC quantifies over all compromise scenarios—i.e., over all

ways of partitioning the components into a set of compromised

ones and a set of uncompromised ones. In order to ensure that

the set of compromised components doesn’t expand during

evaluation, we require that the uncompromised components be

fully defined with respect to the interfaces of the compromised

components. That is, the uncompromised components must

not exhibit undefined behaviors even if we replace the com-

promised components with arbitrary code (obeying the same

interfaces).

The full definedness condition is a necessary part of the

static compromise model considered in this paper. Intuitively,

if an uncompromised component can be tricked into an un-

defined behavior by interface-respecting communication with

other components, then we need to conservatively assume that

the already compromised components will succeed in compro-

mising this component dynamically, so it belongs in the set

of compromised components from the start. This static model

is much simpler to reason about than a model of dynamic

compromise, in which one could perhaps provide guarantees

to not-fully-defined components up to the point at which

they exhibit undefined behavior, but which could, however,

invalidate standard compiler optimizations that involve code

motion. Moreover, it seems highly nontrivial to define our

property for such a more complex model.

Figure 1 illustrates one way to partition five components

C1, . . . , C5 with interfaces i1, . . . , i5, representing the scenario

where C2, C4, and C5 are compromised and C1 and C3 are

not. In order for this compromise scenario to be considered by

our property, C1 and C3 need to be fully defined with respect

to interfaces i2, i4, and i5, which means C1 and C3 cannot

cause undefined behaviors when linked with any components

B2, B4, B5 satisfying interfaces i2, i4, i5.

Formally, full definedness is a language-specific parameter

to our definition of SCC, just as the program equivalence

relations are language-specific parameters to both SCC and

vanilla full abstraction. For instance, in the simple imperative

language in §4, we will say that components Cs are fully

defined with respect to a set of adversary interfaces BIs if,

for all components Bs satisfying BIs, the complete program

��(Cs ↓∪ Bs ↓) cannot reduce to a stuck non-final state

(corresponding to undefined behavior) where the currently

executing component is one of the ones in Cs (i.e., no com-

ponent in Cs can be “blamed” [28] for undefined behavior).

Full definedness might well be defined differently for another

language; for instance, in a concurrent language undefined

behaviors cannot be as easily modeled by stuckness since

normally other threads can proceed even if one of the threads

is stuck. One last thing to note is that full definedness of a

set of components is generally a much weaker property than

the full definedness of each individual component in the set.

Since the interfaces of the adversary components BIs can (and

in §4 do) restrict not only the operations they export but also

the operations they import from Cs, the components in the

set can export dangerous operations just to other components

in the set; the components actually in the set might then all

use these operations properly, whereas arbitrary components

with the same interfaces could abuse them to trigger undefined

behaviors.

SCC states that, in all such compromise scenarios, the

compiled compromised components must not be able to cause

more harm to the compiled uncompromised components via

low-level attacks than can be caused by some high-level

components written in the source language. Basically this

means that any low-level attack can be mapped back to a high-

level attack by compromised components satisfying the given

interfaces. The property additionally ensures that the high-level

components produced by this “mapping back” are fully defined

with respect to the interfaces of the uncompromised compo-

nents. So with SCC, instead of having to reason about the low-

level consequences of undefined behavior in the compromised

components, we can reason in the source language and simply

replace the compromised components by equivalent ones that

are guaranteed to cause no undefined behavior.

Formally, SCC is stated by quantifying over multiple distin-

guishability games, one for each compromise scenario, where

the individual games are reminiscent of full abstraction. The

goal of the attacker in each game is to distinguish between

two variants of the uncompromised components. Figure 2

illustrates these two variants as C1, C3 and D1, D3, where we

use �∼H and �∼L to indicate that the behaviors of two (high-

484848

Figure 1. Compromise scenarios

Figure 2. SCC distinguishability game, for one of the compromise scenarios

or low-level) complete programs are distinguishable, i.e., they

produce different observable outcomes when executed. For

this compromise scenario, SCC specifies that, if compiled

compromised components C2↓, C4↓, C5↓ can distinguish the

C1↓, C3↓ and D1↓, D3↓ variants at the low level, then there

must exist some (fully defined) components A2, A4, A5 that

distinguish C1, C3 and D1, D3 at the high level.
With all this in mind, the SCC property is formally ex-

pressed as follows:

Definition 2.1 (SCC).
• For any complete compartmentalized program and for all

ways of partitioning this program into a set of uncom-
promised components Cs and their interfaces CIs, and a

set of compromised components Bs and their interfaces

BIs, so that Cs is fully defined with respect to BIs, and
• for all ways of replacing the uncompromised components

with components Ds that satisfy the same interfaces CIs
and are fully defined with respect to BIs,

• if ��(Cs↓∪ Bs↓) �∼L ��(Ds↓∪ Bs↓),
• then there exist components As satisfying interfaces BIs

and fully defined with respect to CIs such that

��(Cs ∪ As) �∼H ��(Ds ∪ As).

As suggested before, our property applies to any fully
defined sets of components Cs and Ds (which cannot be dy-

namically compromised by some components with interfaces

BIs). We conjecture that this full definedness precondition

is strictly required in the static corruption model we are

assuming. It is worth noting that we are not proposing any

method for proving that programs are fully defined; this comes

with the territory when dealing with C-like languages. What

we are after is bringing formal foundations to conditional
reasoning of the form “if these Cs are fully defined and the

remaining components Bs get compromised, then...”
Note that the Bs in our SCC definition need not be fully

defined—i.e., the property allows the compromised compo-

nents to contain undefined behaviors (this may well be why

they are compromised!) and promises that, even if they do, we

can find some other components As that are able to distinguish

between Cs and Ds in the source language without causing any

undefined behaviors. Indeed, for those compromise scenarios

in which Bs are already fully defined, our SCC property

trivially follows from correct compilation (Assumption 4.2)

since in that case we can always pick As = Bs.
This generic property is parameterized over a source and a

target language with a notion of component for each, source-

and target-level notions of linking sets of components (��),

source- and target-level notions of distinguishability (�∼), a

compiler mapping source components to target components

(↓), a source-level notion of interface and an interface satis-

faction relation (lifted to sets of components and interfaces),

and a notion of a set of components Cs being fully defined

with respect to a set of adversary interfaces BIs.

3 From Full Abstraction to SCC
§2 presented SCC by directly characterizing the attacker model

against which it defends. In this section we step back and show

how SCC can instead be obtained by starting from the well-

established notion of full abstraction and removing each of the

three limitations that make it unsuitable in our setting. This re-

sults in two properties, structured full abstraction and separate

494949

compilation, which we then combine and instantiate to obtain

SCC. This reduction is not only theoretically interesting, but

also practically useful, since structured full abstraction can

more easily be proved by adapting existing proof techniques,

as we will see in §4.

Full abstraction A fully abstract compiler protects compiled

programs from their interaction with unsafe low-level code

and thus allows sound reasoning about security (and other

aspects of program behavior) in terms of the source language.

Fully abstract compilation [1] intuitively states that no low-

level attacker can do more harm to a compiled program

than some program in the source language already could.

This strong property requires enforcing all high-level language

abstractions against arbitrary low-level attackers.

Formally, full abstraction is phrased as a distinguishability

game requiring that low-level attackers have no more distin-

guishing power than high-level ones.

Definition 3.1. We call a compilation function (written ↓) fully
abstract if, for all P and Q,

(∀A. A[P]∼H A[Q])⇒ (∀a. a[P↓]∼L a[Q↓]).
Here, P and Q are partial programs, A is a high-level context

whose job is to try to distinguish P from Q, and a is a low-

level “attacker context” that tries to distinguish P↓ from Q↓.
The relations ∼L and ∼H are parameters to the definition,

representing behavioral equivalence at the two levels. To be

useful, they should allow the context to produce an observ-

able action every time it has control, letting it convert its

knowledge into observable behaviors. For instance, a common

choice for behavioral equivalence is based on termination: two

deterministic programs are behaviorally equivalent if they both

terminate or both diverge.

When stated this way (as an implication rather than an

equivalence), full abstraction is largely orthogonal to compiler

correctness [41], [44]. While compiler correctness is about

preserving behaviors when compiling from the source to the

target, proving full abstraction requires some way to map each

distinguishing context target to a sourge-level one, which goes

in the opposite direction. This is easiest to see by looking at

the contrapositive:

∀a. a[P↓] �∼L a[Q↓]⇒ ∃A. A[P] �∼H A[Q]

Problem 1: Undefined behavior The first limitation of

full abstraction is that it cannot realistically be applied to

compiling from an unsafe language with undefined behav-

iors. Undefined behaviors are (arbitrarily!) nondeterministic,

and no realistic compiler can preserve this nondeterminism

in the target as required by full abstraction. (Removing it

from the source language would negate the performance and

optimization benefits that are the reason for allowing undefined

behaviors in the first place.)

To adapt full abstraction to a source language with unde-

fined behaviors, we need to restrict attention only to defined
complete programs in the source language. And even with this

restriction, defining full abstraction still requires a little care.

For instance, the following variant is wrong (formally, defined
is another parameter to this property):

(∀A. A[P] and A[Q] defined ⇒ A[P]∼H A[Q]) ⇒
(∀a. a[P↓]∼L a[Q↓])

Any P and Q that both trigger undefined behavior as soon as

they get control would be considered equivalent in the high-

level language because there is no context that can make these

programs defined while observing some difference between

them. All such programs would thus need to be equivalent

at the low level, which is clearly not the case (since their

nondeterminism can be resolved in different ways by the

compiler). The problem here is that if P and Q trigger

undefined behavior then the context often cannot make up for

that and make the program defined in order be able to cause

an observation that distinguishes P and Q.

Solution 1: Full abstraction for unsafe languages The

responsibility of keeping A[P] defined should be thus shared

between A and P . For this we assume a compositional notion

of fully defined behavior for programs and contexts as two

parameters to Definition 3.2 below. We require that these

parameters satisfy the following properties: (1) a program is

fully defined if it does not cause undefined behavior in any

fully defined context, and (2) a context is fully defined if it

does not cause undefined behavior when we plug any fully

defined program into it. Note that properties (1) and (2) are

circular and therefore cannot be used as the definition of full

definedness. For specific languages (e.g., the one in §4) we

can break this circularity and define full definedness using

blame [28]: intuitively we call a partial program fully defined
when it cannot be blamed for undefined behavior in any

context whatsoever. Similarly, we call a context fully defined

when it cannot be blamed for undefined behavior for any

program that we plug into it. Such a blame-based definition

satisfies the properties (1) and (2) above. Full definedness

allows us to introduce a new variant of full abstraction that

applies to unsafe source languages with undefined behavior:

Definition 3.2 (Full abstraction for unsafe languages).
We call a compiler ↓ for an unsafe language fully abstract if

for all fully defined partial programs P and Q

(∀A. A fully defined ⇒ A[P]∼H A[Q]) ⇒
(∀a. a[P↓]∼L a[Q↓]).

Requiring that P , Q, and A are fully defined means that

we can safely apply ∼H to A[P] and A[Q], because neither

the programs nor the context can be blamed for undefined

behavior. This property is incomparable with the original

definition of full abstraction. Looking at the contrapositive,

∀P,Q fully defined. (∃a. a[P↓] �∼L a[Q↓])
⇒ (∃A. A fully defined ∧A[P] �∼H A[Q]),

the P,Q fully defined pre-condition makes this weaker than

full abstraction, while the A fully defined post-condition makes

it stronger. The post-condition greatly simplifies reasoning

about programs by allowing us to replace reasoning about

505050

low-level contexts with reasoning about high-level contexts

that cannot cause undefined behavior.

One might wonder whether the P,Q fully defined pre-

condition is too restrictive, since full definedness is a rather

strong property, requiring each component to be very defensive

about validating inputs it receives from others. In the static

compromise model inherent to full abstraction and without

additional restrictions on the program’s context, we must

be conservative and assume that, if any context can cause

undefined behavior in a program, it can compromise it in

a way that the compiler can provide no guarantees for this

program. The structured full abstraction definition below will

in fact restrict the context and thus use a weaker notion of full

definedness. Moreover, separate compilation will allow us to

quantify over all splits of a program into a fully defined partial

program and a compromised context, which also makes the

presence of the full definedness pre-condition more palatable.

Problem 2: Open-world assumption about contexts While

full abstraction normally requires the contexts to be compatible

with the partial program, for instance by respecting the partial

program’s typed interface, these restrictions are minimal and

do not restrict the shape, size, exported interface, or privilege

of the contexts in any way. This open world assumption about

contexts does not fit with our compartmentalization setting, in

which the breakup of the application into components is fixed

in advance, as are the interfaces (and thus privileges) of all the

components. In our setting, the definition of full abstraction

needs to be refined to track and respect such structural

constraints; otherwise a low-level context with 2 components

might be mapped back to a high-level context with, say, 3

components that have completely different interfaces, and thus

privileges. In particular, the high-level components’ interfaces

could give them more privileges than the low-level components

had, increasing their distinguishing power.

Solution 2: Structured full abstraction We therefore intro-

duce a structured variant of full abstraction, in which partial

programs (indicated by • below) and contexts (◦) are assigned

dual parts of predefined complete program shapes. A shape

might be anything, from a division into components with their

interfaces (as in Theorem 3.4 below), to, e.g., the maximum

size of a component’s code after compilation (which might

expose component sizes in a setting where it’s too costly to

hide them by padding to a fixed maximum size [58]).

Definition 3.3 (Structured full abstraction).
We say that a compiler ↓ for an unsafe language satisfies

structured full abstraction if, for all program shapes s and

partial programs P ∈• s and Q ∈• s so that P and Q are

fully defined with respect to contexts of shape ◦s,(∀A ∈◦ s. A fully defined wrt. programs of shape •s
⇒ A[P]∼H A[Q]

)

⇒ (∀a ∈◦ s. a[P↓]∼L a[Q↓]).
This property universally quantifies over any complete pro-

gram shape s and requires that P ∈• s (read “program P

has shape s”), Q ∈• s, and A ∈◦ s (“context A matches

programs of shape s”). Moreover, the property only requires

programs that are fully defined with respect to contexts of the

right shape, and dually it only considers contexts that are fully

defined with respect to programs of the right shape.

Recovering secure compartmentalizing compilation SCC

can be recovered in a natural way as an instance of structured

full abstraction (Definition 3.3). For both source and target

languages, we take partial programs and contexts be sets of

components and context application be set union. Compilation

of sets of components works pointwise. To obtain an instance

of structured full abstraction we additionally take shapes to be

sets of component interfaces, where each interface is marked

as either compromised or uncompromised.

Theorem 3.4. For any deterministic target language and any

source language that is deterministic for defined programs,

structured full abstraction instantiated to components as de-

scribed above implies SCC.

Proof. Straightforward, though tedious. A machine-checked

Coq proof can be found in the auxiliary materials.

Problem 3: Statically known trusted/untrusted split
While SCC can deal with multiple compromise scenarios, not

all instances of structured full abstraction can. In general, if

a compiler satisfies (structured) full abstraction, how can we

know whether it can deal with multiple compromise scenarios,

and what does that even mean? While we can instantiate full

abstraction to a particular compromise scenario by letting the

partial program P contain the uncompromised components

and the low-level context a contain the compromised ones,

a fully abstract compiler (together with its linker, loader,

runtime etc.) might exploit this static split and introduce only

one single barrier protecting the uncompromised components

from the compromised ones. When presented with a different

compromise scenario for the same program, the compiler could

adapt and produce a different output.

The source of confusion here is that a fully abstract compiler

does not need to compile contexts—only programs. In fact,

even the types of contexts and of partial programs might well

be completely different (e.g., the types of lambda calculus

contexts and terms are different; a compiler for one cannot

compile the other). Even when the types do match so that

we can apply the same compiler to the context, the low-level

context-application operation A↓ [P ↓] can freely exploit the

fact that its first argument is a compiled untrusted context and

its second argument is a compiled trusted program that should

be protected from the context. So if we start with a complete

high-level program C and look at two different compromise

scenarios C = A1[P1] and C = A2[P2], compiling each of the

parts and combining the results using context application does

not necessarily yield the same result (i.e., it could well be that

A1↓[P1↓] �= A2↓[P2↓]) or indeed even behaviorally equivalent

results (i.e., it could well be that A1↓[P1↓] �∼L A2↓[P2↓]). This

means that the user of a fully abstract compiler may need to

commit in advance to a single compromise scenario.

515151

This weakness significantly limits the applicability of full

abstraction. After all, uncertainty about sources of vulner-

ability is precisely the motivation for compartmentalizing

compilation: if we knew which components were safe and

which were not, there would be no reason to distinguish more

than two levels of privilege, and we could merge each group

into a single mega-component. Even in rare cases where we are

certain that some code cannot be compromised—for instance

because we have proved it safe—protecting only the verified

code from all the rest using a fully abstract compiler [7] is

still suboptimal in terms of protection, since it provides no

guarantees for all the code that is not verified.

Moreover, this weakness is not hypothetical: several fully

abstract compilers proposed in the literature are only capa-

ble of protecting a single trusted module from its untrusted

context [8], [43], [54], [55], [57] (recently proposed exten-

sions [58] do aim at lifting this restriction in some cases).

While this setup is appropriate when all one wants to achieve

is protecting trusted (e.g., verified) code from its untrusted

context [7], it is not suitable for a compartmentalization setting

where we do not know in advance which components will be

dynamically compromised and which ones not, so that we want

to simultaneously protect against all possible compromise

scenarios.

Solution 3: Separate compilation We can address this by

requiring that the compiler toolchain have one additional

property:

Definition 3.5. We say that the compiler toolchain (i.e., the

compiler −↓, the linker −[−], and the runtime system embod-

ied in the low-level behavioral equivalence) satisfies separate
compilation if

1) the type of contexts and programs is the same (so that

the compiler can also compile contexts), and

2) (A[P])↓ ∼L A↓[P↓] for all A and P .

Requiring that context application and compilation commute

(condition 2) implies that, if some complete program C can be

written as both C = A1[P1] and C = A2[P2], then separately

compiling each of these splits yields behaviorally equivalent

results: (A1[P1])↓ ∼L (A2[P2])↓. With separate compilation,

full abstraction for an unsafe language (Definition 3.2) can be

instantiated as follows:

∀B. ∀P,Q fully defined. ((B[P])↓ �∼L(B[Q])↓)
⇒ (∃A. A fully defined ∧A[P] �∼H A[Q])

One compelling reading of this is that, for all compromise

scenarios (ways to break a complete program into a compro-

mised context B and an uncompromised program P), and for

all programs Q that we can substitute for P , if the context B
can distinguish P from Q when compiled to low-level code,

then there exists a fully defined context A that can distinguish

them at the high-level.

In a language without undefined behavior, this property

would trivially follow just from (whole program) correct

compilation (see Assumption 4.2 below) by picking A = B.

However, it is nontrivial for a language in which context B

might cause undefined behavior, since then correct compilation

does not apply for B[P] and B[Q]. In our setting, this property

allows us to avoid reasoning about the low-level implications

of undefined behavior in a low-level context and instead

consider just fully defined high-level contexts.

It is trivial to check that our instance of structured full ab-

straction from Theorem 3.4 does satisfy separate compilation.

It should also be easy to show that many previous fully abstract

compilers [8], [43], [54], [55], [57] do not satisfy separate

compilation, since they were not designed to support a setting

of mutual distrust.

4 A Simple Instance of SCC
In this section, we illustrate the main ideas behind SCC

with a proof-of-concept compiler from an unsafe language

with components to an abstract machine with compartments.

We discuss key design decisions for providing secure com-

partmentalization, such as cleaning register values to prevent

unintended communication between compartments. We also

explain how a compiler optimization for component-local calls

makes unwary compiled components vulnerable to realistic

control-flow hijacking attacks. Finally, we show how to adapt

a standard full abstraction proof technique called trace seman-
tics [55] to prove SCC.

In the following, an assumption denotes a property that we

believe is true and rely on, but which we haven’t proved. Lem-

mas, theorems and corollaries denote properties that we have

proved, possibly relying on some of the stated assumptions.

Source Language We work with an unsafe source language

with components, procedures, and buffers. A program in

this language is a set of components communicating via

procedure calls. Buffer overflows have undefined behavior and

may open the door to low-level attacks after compilation.

However, thanks to the cooperation between the low-level

compartmentalization mechanism and the compiler, the effects

of these attacks will be limited to the offending component.

Components have statically checked interfaces that spec-

ify which procedures they import and export. To satisfy an

interface, a component can only call external procedures

that it imports explicitly, and it must define all procedures

exported by its interface. Thus, interfaces define privileges by

preventing components from calling non-imported procedures,

and enable components to define private procedures (that are

not exported in their interfaces). We will use the same notion

of interfaces in our target abstract machine.

The syntax of expressions, given below, is that of a stan-

dard imperative language with mutable buffers and mutually

recursive procedures. Each component C has local procedures

“C.P ” and private local buffers b. Loops are encoded using

recursive calls, sequencing is encoded as a binary operation,

and variables are encoded using buffers. Procedures take a

single argument, which by convention is always passed in the

first cell of the first buffer of the callee component. The only

first class values are integers i; these can be passed across com-

525252

ponent boundaries using procedure calls and returns. Buffers

and procedures are second class.

e ::= i | e1 ⊗ e2 | if e then e1 else e2 | b[e] |
b[e1] := e2 | C.P(e) | exit

where ⊗ ∈ {; ,+,−,×,=,≤, . . .}.
We define a standard continuation-based small-step seman-

tics that reduces configurations cfg . It is deterministic for

programs that don’t cause undefined behavior.

cfg ::= (C, s, σ,K, e) K ::= [] | E::K

E ::= �⊗ e2 | i1 ⊗� | if � then e1 else e2 |
b[�] := e2 | b[i1] := � | C.P(�)

A configuration (C, s, σ,K, e) represents a call in progress

within component C, in which e is the expression being

reduced and K is the continuation for this expression, up to

the latest procedure call. Continuations are evaluation contexts,

here represented as lists of flat evaluation contexts E. We

denote by s a global state recording the values of the local

buffers for each component. Continuations for pending calls

are stored on a call stack σ, together with their call arguments’

values and the names of the compartments they execute in. We

omit the obvious definitions for call stacks σ and states s.

Evaluation starts as a call to a fixed procedure of a fixed

main component, and completes once this call completes,

or whenever the current expression e is exit. We illustrate

the small-step semantics with the three rules that deal with

procedure call evaluation. In these rules, Δ is a mapping from

procedure identifiers to procedure bodies.

s′ = s[C ′, 0, 0 �→ i] σ′ = (C, s[C, 0, 0],K)::σ

Δ � (C, s, σ, C ′.P ′(�)::K, i)→ (C ′, s′, σ′, [],Δ[C ′, P ′])

s′ = s[C ′, 0, 0 �→ i′]
Δ � (C, s, (C ′, i′,K)::σ, [], i)→ (C ′, s′, σ,K, i)

Δ � (C, s, σ,K,C ′.P ′(e))→ (C, s, σ, C ′.P ′(�)::K, e)

As shown on the right-hand side of the first rule, a call starts

with an empty continuation and the procedure body Δ[C ′, P ′]
as the current expression. The first cell in the first buffer of the

callee compartment is updated with the call argument, while

information about the caller’s state when performing the call

gets pushed on the call stack σ. A call completes once an

empty continuation is reached and the current expression is

a value, as is the case in the left-hand side of the second

rule. In this case, the caller’s state is restored from the call

stack, and execution resumes with the call result i as the

current expression. The intermediate steps between the start

and the end of a call reduce the procedure body to a value, as

the last rule illustrates: Whenever e is not a value, reduction

deconstructs e into a subexpression e′ and a flat evaluation

context E such that e = E[e′], where E[e′] means filling the

hole � in E with e′. This expression e′ becomes the new

currently reduced expression, while E gets appended on top

of the current continuation K. Finally, when e is a value i and

the call has not completed (K �= []), the next step is chosen

based on the flat evaluation context found on top of K, which

gets removed from K. In the left-hand side of the first rule, for

example, this flat evaluation context is C ′.P ′(�), for which

the next chosen step, as shown on the right-hand side, is to

start a procedure call to C ′.P ′, using i as the call argument.

Since undefined behaviors are allowed to take the machine

to an arbitrary low-level state, it wouldn’t make much sense

to try to make the source-language semantics describe what

can happen if an undefined point is reached. We therefore

model them at the source level simply as stuckness (as done

for instance in CompCert [45]). In particular, reduction gets

stuck when trying to access or update a buffer out of bounds,

and the type safety theorem says that well-formed programs

can only go wrong (get stuck) by reducing to an out-of-

bounds operation on a buffer. A program is well-formed if

all the used buffers are defined, all imported components are

defined, all imported external procedures are public, and if the

names of all components are unique. Well-formedness extends

straightforwardly to configurations.

Theorem 4.1 (Partial type safety). For any well-formed con-

figuration cfg = (C, s, σ,K, e), one of the following holds:

(1) cfg is a final configuration (either e is exit or else it is

a value and K and σ are both empty);

(2) cfg reduces in one step to a well-formed configuration;

(3) cfg is stuck and has one of the following forms:

(a) (C, s, σ, b[�] :: K, i) where s[C, b, i] is undefined;

(b) (C, s, σ, b[i]:=�::K, i′) where s[C, b, i] is undefined.

In the following, we use the term undefined behavior
configurations for the configurations described in (3), and we

say that a well-formed program is defined if reducing it never

reaches an undefined behavior configuration.

Target Our compiler targets a RISC-based abstract machine

extended with a compartmentalization mechanism, inspired

by a similar design featured in previous work [12]. Each

compartment in this target has its own private memory, which

cannot be directly accessed by others via loads, stores, or

jumps. Instead, compartments must communicate using special

call and return instructions, which, as explained below, include

checks to ensure that the communication respects compartment

interfaces. (Note that this scheme requires a protected call

stack, which, in a real system, could be implemented e.g.,

using a shadow call stack [3], [25] or return capabilities [37].)

Because resource exhaustion and integer overflow issues are

orthogonal to our present concerns, we assume that words are

unbounded and memory is infinite.

The instruction set for our machine is mostly standard.

instr ::= Nop | Const i→ rd | Mov rs → rd
| Load ∗rp → rd | Store ∗rp ← rs
| Jump r | Jal r | Call C P | Return
| Binop r1 ⊗ r2 → rd | Bnz r i | Halt

Const i → rd puts an immediate value i into register rd.

Mov rs → rd copies the value in rs into rd. Load ∗rp → rd

535353

and Store ∗rp ← rs operate on the memory location whose

address is stored in rp (the ∗ in the syntax of Load and Store
indicates that a pointer dereference is taking place), either

copying the value found at this location to rd or overwriting

the location with the content of rs. Jump r redirects control

flow to the address stored in r. Jal r (jump-and-link) does the

same but also communicates a return address in a dedicated

register rra, so that the target code can later resume execution

at the location that followed the Jal instruction. Call C P trans-

fers control to compartment C at the entry point for procedure

“C.P ”. Return C P transfers control back to the compartment

that called the current compartment. Binop r1 ⊗ r2 → rd
performs the mathematical operation ⊗ on the values in r1 and

r2 and writes the result to rd. Finally, Bnz r i (branch-non-

zero) is a conditional branch to an offset i, which is relative

to the current program counter. If r holds anything but value

zero, the branching happens, otherwise execution simply flows

to the next instruciton.

While Jal is traditionally used for procedure calls and

Jump for returns, in this machine they can only target the

current compartment’s memory. They are nonetheless useful

for optimizing compartment-local calls, which need no instru-

mentation; in a realistic setting, the instrumented primitives

Call and Return would likely come with monitoring overhead.

In the low-level semantics, we represent machine states

state as (C, σ,mem, reg, pc) where C is the currently executing

compartment, mem is a partitioned memory, reg is a register

file, pc is the program counter, and σ is a global protected

call stack. We assume a partial function decode from words

to instructions. We write ψ;E � state → state’ to mean that

state reduces to state’ in an environment where component

interfaces are given by ψ and component entry points by E.

Here are the reduction rules for Call and Return:

mem[C, pc] = i decode i = Call C′ P ′ pc′ = E[C ′][P ′]
C ′ = C ∨ C ′.P ′ ∈ ψ[C].import σ′ = (C, pc+1) :: σ

ψ;E � (C, σ,mem, reg, pc)→ (C ′, σ′,mem, reg, pc′)

mem[C, pc] = i decode i = Return σ = (C ′, pc′) :: σ′

ψ;E � (C, σ,mem, reg, pc)→ (C ′, σ′,mem, reg, pc′)

The Call rule checks that the call is valid with respect to

the current compartment’s interface—i.e., the target procedure

is imported by the current compartment—which ensures that

even if a compiled component is compromised it cannot

exceed its static privilege level. Then it puts the calling com-

partment’s name and program counter on the global protected

call stack σ. Finally, it redirects control to the entry point of the

called procedure. The Return instruction retrieves the caller’s

compartment and return address from the protected call stack

and resumes execution there.

Compiler We next define a simple compiler that produces

one low-level memory compartment for each high-level com-

ponent. Each compartment is internally split into buffers, the

code of procedures, and a local stack that can grow infinitely.

The local stack is used to store both intermediate results and

return addresses.

In standard calling conventions, the callee is generally

expected to restore the register values of the caller, if it has

modified them, before returning from a call. Here, however,

compiled components cannot assume that other components

will necessarily follow an agreed calling convention, so they

must save any register that may be needed later. This means,

for instance, that we save the value of the current call argument

on the local stack and write the local stack pointer to a fixed

location in the current compartment’s memory before any

cross-compartment call instruction is performed, so that the

compartment can restore them when it gets control back.

The compiler must also prevent a compromised compart-

ment from reading intermediate states from code in other

compartments that may be in the middle of a call to this one.

Intuitively, a secure compiler must prevent compromised com-

partments from distinguishing compiled components based on

low-level information that (fully defined) high-level attackers

don’t get. In the source language, only a single argument or

return value is communicated at call and return points. Hence,

besides preserving their values for later, the compiler ensures

that all3 registers are cleaned before transferring control to

other compartments.

The compiler implements a simple optimization for local

calls. Since all procedures of a component live in the same

address space and local calls don’t need instrumentation, these

calls can be implemented more efficiently using Jal and Jump
instructions. We therefore use different procedure entry points

for component-local and cross-component calls, and we skip,

for local calls, the steps that store and restore register values

and clean registers.

Because we do not check bounds when compiling buffer

read and write operations, buffer overflows can corrupt a

compartment’s memory in arbitrary ways. Consequently, many

buffer overflow attacks can be reproduced even in our simple

setting, including, due to the local-call optimization, return-

oriented programming attacks [14], [62]. In return-oriented

programming, an attacker overwrites return addresses on the

local stack to produce an unexpected sequence of instructions

of his choice by reusing parts of the code of component-

local procedures. In our setting, buffer overflow attacks thus

enable compiled components to shoot themselves in the foot

by storing beyond the end of a buffer and into the local call

stack.

We assume compiler correctness as stated below for our

compiler. Note that, in the presence of partial type safety,

3 Technically speaking, we believe that, in our very simple setting, the
compiler could choose not to clean unused registers and still be secure.
However, our proof relies on compiled components cleaning all registers
except the one that holds the call argument or return value. Indeed, not
cleaning unused registers makes things harder because it can provide a covert
channel for two compromised compartments between which interfaces would
forbid any direct communication. These compartments could now exchange
values through uncleared registers by interacting with the same unsuspecting
uncompromised component. We conjecture that this possible cooperation
between compromised components doesn’t yield more attacker power in
our case. However, in a setting where registers could be used to transmit
capabilities, this would give more power to the attacker, so our compiler
clears all registers but one, which also simplifies our proof.

545454

(Theorem 4.1), proving either (1) or (2) below is enough to

get the other.

Assumption 4.2 (Whole-program compiler correctness).

∀P. P defined ⇒
(1) P terminates ⇐⇒ P↓ terminates ∧
(2) P diverges ⇐⇒ P↓ diverges

Instantiating structured full abstraction We define pro-

gram shapes, partial programs, and contexts in a similar way

to Theorem 3.4, as detailed below. More precisely, we use

isomorphic definitions so that we can later apply this theorem.

A program shape s is the pairing of a mapping from

component names to component interfaces and a set that

indicates uncompromised components. In the rest of the paper,

we implicitly restrict our attention to well-formed shapes. A

shape is well-formed when (1) all component interfaces in the

shape only import procedures from components that are part

of the shape, and (2) these procedures are exported according

to the shape.

High-level partial programs P and contexts A are defined

as mappings from component names to component definitions.

A high-level partial program P has shape •s when it defines

exactly the components that are marked as uncompromised in

s, with definitions that satisfy the corresponding interfaces, and

when it moreover satisfies the simple well-formedness condi-

tion that all the local buffers it uses are defined. A high-level

context A has shape ◦s under the same conditions, adapted for

compromised components instead of uncompromised ones.

A low-level partial program p or context a is formed by

pairing a partitioned memory with a mapping from proce-

dure identifiers to entry points. This choice is isomorphic

to having sets of named compartment memories with entry

point annotations. A low-level partial program p has shape

•s when the partitioned memory has partitions under exactly

the component names that are marked as uncompromised in s,

and the entry point mapping provides addresses for exactly the

procedures that are exported by these components according

to s. A low-level context a has shape ◦s under the same

conditions, adapted for compromised components instead of

uncompromised ones.

We say that a high-level partial program P ∈• s is

fully defined with respect to contexts of shape ◦s when it

cannot be blamed for undefined behavior when interacting

with such contexts: for every A ∈◦ s, either reducing A[P]
never reaches an undefined behavior configuration, or else the

current component in this undefined behavior configuration

belongs to A. Similarly, a high-level context A ∈• s is fully

defined with respect to programs of shape ◦s when it cannot

be blamed for undefined behavior when interacting with such

programs.

Because we perform a point-wise compilation of high-

level programs, separate compilation (Definition 3.5) trivially

holds for our compiler. Combining it with whole-program

compiler correctness (Assumption 4.2) immediately leads to

the following corollary:

Corollary 4.3 (Separate compilation correctness).

∀s,A ∈◦ s, P ∈• s.
P fully defined wrt. contexts of shape ◦s⇒
A fully defined wrt. programs of shape •s⇒

(1) A[P] terminates ⇐⇒ A↓ [P↓] terminates ∧
(2) A[P] diverges ⇐⇒ A↓ [P↓] diverges

Proof technique for structured full abstraction Trace

semantics were initially proposed by Jeffrey and Rathke [34],

[35] to define fully abstract models for high-level languages.

Patrignani et al. later showed how to use trace semantics [56]

to prove full abstraction for a compiler targeting machine

code [55]. This technique is well suited for deterministic target

languages such as machine code.

This proof technique is well suited for deterministic tar-

get languages such as machine code and proceeds in two

steps. First, we devise a trace semantics for low-level partial

programs and contexts and relate it to the target machine’s

operational semantics (e.g., by proving it fully abstract [56]).

This trace semantics will provide a set of traces for every

partial program, describing all the execution paths that this

program can reach by interacting with an arbitrary context.

Second, we use the trace semantics to characterize the interac-

tion between an arbitrary low-level context and, separately, two

compiled programs that this context distinguishes, resulting in

two traces with a common prefix followed by different actions.

We can then use these traces to construct a high-level attacker,

proving that this attacker distinguishes between the two source

programs.

As our proof demonstrates, proving the trace semantics fully

abstract is not a mandatory first step in the technique. Instead,

we relate our trace semantics to the operational one using

two weaker trace composition and decomposition conditions

(Lemma 4.5 and Lemma 4.6), adapted from the key lemmas

that Jeffrey and Rathke used to prove their trace semantics

fully abstract [34], [35]. This reduces proof effort, since

proving a trace semantics fully abstract typically requires

proving a third lemma with a trace-mapping argument of its

own [34], [35], [56].

Adapting the technique to undefined behavior is straight-

forward, essentially amounting to proving standard full ab-

straction for the safe subset of the language. Then one simply

proves that the context produced by the mapping is fully

defined, thus safe. Adapting to a closed world, however, takes

more work.

The trace semantics that have been used previously to

prove full abstraction characterize the interaction between a

partial program and arbitrary contexts. The context’s shape

is typically constructed as reduction goes, based on the steps

that the context takes in the generated trace. For instance, if

the trace said that the context performs a call, then the target

procedure would be appended to the context’s interface so that

this call becomes possible. For structured full abstraction, we

want a finer-grained trace semantics that enables reasoning

about the interaction with contexts of a specific shape. We

achieve this by making the shape a parameter to the reduction

555555

relation underlying our trace semantics. To make sure that

traces are compatible with this shape, we also keep track

of the current compartment during reduction. This allows

us to generate only context steps that adhere to the current

compartment’s interface, and hence to the context’s shape.

In particular, the context will only be able to call program

procedures for which (1) there is a context compartment whose

interface explicitly imports the target procedure, thus granting

the privilege to call that procedure, and (2) this other context

compartment is reachable from the current compartment via a

chain of cross-compartment calls or returns within the context.

Moving to a closed world also makes the trace mapping

argument harder. The one from Patrignani et al. [55], for

instance, relies on changes in the context’s shape, e.g., adding

a helper component to the context that is not present in the low

level. This is no longer possible for structured full abstraction,

where the context shape is fixed..

Trace semantics for the low-level language We define

a trace semantics in which traces are finite words over an

alphabet Eα of external actions, alternating between program

external actions “γ!” and context external actions “γ?”. We

treat external actions as moves in a two-player game, viewing

the context and the partial program as the players. The trace

semantics is parameterized by a shape s, which the two players

have. External actions either transfer control to the other player

or end the game.

Eα ::= γ! | γ? γ ::= Callreg C P | Returnreg | �
Traces (Eα∗) track the external actions (γ) performed by the

context and the program. The first kind of external action

is cross-boundary communication, which corresponds to the

use of instrumented call instructions Call C P and Return
when they transfer control to a compartment that belongs to

the opponent. For these external actions, traces keep track of

the instruction used together with reg, the values held by all

registers when the instruction is issued. The second kind of

external action is program termination, which we denote with

a tick � and which the opponent cannot answer (� ends the

game). It corresponds to the use of an instruction that makes

execution stuck, such as Halt.
At any point where it has control, a player can take internal

actions (any instruction that neither terminates execution nor

transfers control to the opponent); these are not reflected in

the trace. In particular, cross-compartment communication is

considered an internal action when it transfers control to

a compartment that belongs to the current player. Besides

halting, a player can also end the game by triggering an infinite

sequence of internal actions, making execution diverge. In the

trace, this will correspond to not making any move: the trace

observed thus far will be a maximal trace for the interaction

between the program and context involved, i.e., any extension

of this trace will not be shared by both the program and the

context.

Intuitively, a program p ∈• s has trace t if it answers with

the program actions described in t when facing a context a ∈◦

s that produces the context actions described in t. Similarly,

a program a ∈◦ s has trace t if it answers with the context

actions described in t when facing a program p ∈• s that

produces the program actions described in t. We define Tr◦s(p)
to be the set of traces of a partial program p with respect to

contexts of shape ◦s, and Tr•s(a) to be the set of traces of a

context a with respect to programs of shape •s.

The player that starts the game is the one that owns the

main component according to s. For each player, the trace

semantics is deterministic with respect to its own actions

and nondeterministic with respect to the opponent’s actions.

All possible actions an actual opponent could take have a

corresponding nondeterministic choice, which is formalized

by a property we call trace extensibility.

Lemma 4.4 (Trace extensibility).

∀t, s, p ∈• s, a ∈◦ s.
(t ∈ Tr◦s(p) ∧ t.γ? ∈ Tr•s(a)⇒ t.γ? ∈ Tr◦s(p)) ∧
(t ∈ Tr•s(a) ∧ t.γ! ∈ Tr◦s(p)⇒ t.γ! ∈ Tr•s(a))

Nondeterminism disappears once we choose a particular

opponent for a player, as the two key lemmas below illustrate.

Lemma 4.5 (Trace decomposition).

∀s, p ∈• s, a ∈◦ s. a[p] terminates ⇒
∃t. t ends with � ∧ t ∈ Tr◦s(p) ∩ Tr•s(a)

Trace decomposition is stated for terminating programs. It

extracts the interaction between a program p and a context a
with dual shapes by looking at how a[p] reduces, synthesizing

that interaction into a trace t. Because execution terminates,

this trace ends with a termination marker.

Lemma 4.6 (Trace composition).

∀t, s, p ∈• s, a ∈◦ s. t ∈ Tr◦s(p) ∩ Tr•s(a)⇒
(∀Eα. (t.Eα) �∈ Tr◦s(p) ∩ Tr•s(a))⇒

(a[p] terminates ⇐⇒ t ends with �)

Trace composition is the opposite of trace decomposition,

reconstructing a sequence of reductions based on synthesized

interaction information. It considers a program and a context

with dual shapes, that share a common trace t. The condition

on the second line states that the game has ended: trace t
cannot be extended by any action Eα such that the two

players share trace “t.Eα”. Under these assumptions, trace

composition tells us that one of the following holds: either (1)

the trace ends with a termination marker � and putting p in

context a will produce a terminating program, or (2) putting

p in context a will produce a diverging program and the trace

does not end in �. Intuitively, if the game has ended but

there is no termination marker, it must be because one of the

players went into an infinite sequence of internal actions and

will neither give control back nor terminate.

While the statement of these lemmas is quite close to that

used in an open world setting [34], [35], the trace semantics

itself has to be adapted in order to prove them in the presence

of our closed world assumption. To this end, we incorporate

internal actions within the trace semantics, thus adding more

565656

options to the nondeterministic choice of the next context

action, which allows us to track at any point the currently

executing compartment. When in control, a player can only

perform communicating actions allowed by the interface of

the current compartment. This restricts external actions as

required, while also making it possible to internally switch the

current compartment through allowed internal actions. Using

our semantics, we thus end up with finer-grained traces that

include internal communication, which can be directly mapped

to high-level attackers (Assumption 4.9). The traces we use

otherwise are obtained by erasing internal actions from the

finer-grained traces.

Proof of SCC We prove our instance of structured full

abstraction, which implies SCC by Theorem 3.4 since we have

isomorphic definitions to the ones in §3.

Theorem 4.7 (Structured full abstraction). Our compiler sat-

isfies structured full abstraction.

Recall that the basic idea behind the proof technique is to

extract two traces that characterize the interaction between a

low-level context and two compiled fully defined high-level

programs, and then to map these two traces to a fully defined

high-level context. The high-level context should reproduce

the context actions described in the traces when facing the

same programs as the low-level context.

Unfortunately, a compiled fully defined context cannot

reproduce any arbitrary low-level trace, because the values

transmitted in registers are part of external communication

actions in low-level traces: As enforced by the compiler,

these contexts always clear all registers but the one used for

communication before giving control to the program. They can

thus only produce traces in which registers are cleared in all

context actions, which we call canonical traces. We denote by

ζ(γ) the operation that rewrites action γ so that all registers

but that one are clear. A canonical trace ζ◦(t) can be obtained

from an arbitrary trace t by replacing all context actions “γ?”

by “ζ(γ)?”. We call this operation trace canonicalization.

As we will see, being able to reproduce arbitrary canonical

traces gives enough distinguishing power to the high-level

context. The reason is that, because they can’t trust other

compartments, compiled fully defined components never read

values transmitted in registers with the exception of the one

used for communication. As a consequence, these components

cannot distinguish context external actions based on the con-

tent of these unread registers, which are exactly the ones a

compiled fully defined context cleans. Fully defined programs

thus perform the exact same actions when facing a trace t or

its canonicalization ζ◦(t), as formalized by Lemma 4.8. This

means that having the high-level attacker reproduce canonical

traces instead of the original traces of the low-level context

will be enough to lead compiled programs into reproducing

the actions they took when facing the low-level context.

Lemma 4.8 (Canonicalization).

∀t, s, P ∈• s.
P fully defined wrt. contexts of shape ◦s⇒
t ∈ Tr◦s(P↓) ⇐⇒ ζ◦(t) ∈ Tr◦s(P↓)

The definability assumption below gives a characterization

of our mapping from a canonical trace t and an action γ1 to a

compiled fully defined context A↓ that reproduces the context

actions in t and, depending on the next action γ the program

takes, ends the game with either termination (if ζ(γ) = ζ(γ1))
or divergence (if ζ(γ) �= ζ(γ1)). The context A↓ will thus

distinguish a program p producing trace “t.γ1!” from any

program producing “t.γ!” with ζ(γ) �= ζ(γ1).

Assumption 4.9 (Definability).

∀t, γ1, s. t = ζ◦(t) ∧ (∃p ∈• s. (t.γ1!) ∈ Tr◦s(p))⇒
∃A ∈◦ s. A fully defined wrt. programs of shape •s ∧

(1) t ∈ Tr•s(A↓) ∧
(2) (γ1 �= �⇒ (t.γ1!.�?) ∈ Tr•s(A↓)) ∧
(3) ∀γ. if ζ(γ) �= ζ(γ1) then ∀γ′. (t.γ!.γ′?) �∈ Tr•s(A↓)

The definability assumption gives us a fully defined context

that follows trace t (1) and that, if given control afterwards

via action “γ!” such that γ �= �, acts as follows: if γ = γ1 the

context terminates (2) and if the context can distinguish γ from

γ1, it will make execution diverge by not issuing any action

γ′ (3). Since it is a compiled fully defined context, A↓ can

only access values transmitted using register rcom, the register

that holds the call argument or return value. So A↓ can only

distinguish between γ and γ1 when they differ in rcom, which

is captured formally by the ζ(γ) �= ζ(γ1) condition.

Proving this assumption (even on paper) would be quite

tedious, so we settled for testing its correctness using

QuickCheck [16]. We built an algorithm (in OCaml) that

constructs A out of t. More precisely, the algorithm inputs a

trace with internal actions (the finer-grained trace that erases

to t) and builds a context A that reproduces context internal

and external actions as prescribed by that trace. Execution

will afterwards resume at a different point in A depending

on the next action taken by the program. At each such

point, A will either terminate execution or make it diverge

depending on whether the program action is distinguishable

from action γ1. Because the trace taken as input already

includes internal actions, we do not have to reconstruct them,

hence our algorithm is not more difficult to come up with than

one that works an open-world setting [55]. In the following, we

assume that the algorithm is correct, i.e., that Assumption 4.9

holds. We can now turn to the main theorem.

Detailed proof of structured full abstraction. Consider a low-

level attacker a ∈◦ s distinguishing two fully defined partial

programs P,Q ∈• s after compilation. Suppose without loss

of generality that a[P ↓] terminates and a[Q↓] diverges. We

build a high-level attacker A ∈◦ s that is fully defined with

respect to programs of shape •s and can distinguish between

P and Q.

575757

We can first apply trace decomposition (Lemma 4.5) to a
and P↓ to get a trace ti ∈ Tr◦s(P) that ends with �, such that

ti ∈ Tr•s(a). Call tp the longest prefix of ti such that tp ∈
Tr◦s(Q↓). Because trace sets are prefix-closed by construction,

we know that tp ∈ Tr◦s(P↓) ∩ Tr•s(a).
Moreover, tp is necessarily a strict prefix of ti: otherwise,

we could apply trace composition (Lemma 4.6) and get that

a[Q↓] terminates, a contradiction. So there exists an external

action Eα such that trace “tp.Eα” is a prefix of ti. Now

Eα cannot be a context action, or else trace extensibility

(Lemma 4.4) would imply that “tp.Eα” is a trace of Tr◦s(Q↓),
which is incompatible with tp being the longest prefix of ti in

Tr◦s(Q↓). Therefore, Eα is a program action, i.e., there exists

γ1 such that “Eα = γ1!”. Intuitively, P↓ and Q↓ take the same

external actions until the end of tp, where P↓ takes external

action “γ1!” and Q↓ does not (it takes either a different action

γ �= γ1 or no external action at all).

Now, let tc be the canonicalization of trace tp, i.e.,

tc = ζ◦(tp). By canonicalization (Lemma 4.8), “tc.γ1!” =
ζ◦(tp.γ1!) is a trace of P↓. We can thus use apply definability

(Assumption 4.9) to trace tc and action γ1, using P ↓∈• s
as a witness having trace “tc.γ1!”. This yields a fully defined

context A ∈◦ s such that:

(1) tc ∈ Tr•s(A↓),
(2) γ1 �= �⇒ (tc.γ1!.�?) ∈ Tr•s(A↓),
(3) ∀γ, γ′. (tc.γ!.γ

′?) ∈ Tr•s(A↓)⇒ ζ(γ) = ζ(γ1).

We now show that these conditions imply that A ↓ [P ↓]
terminates while A↓ [Q↓] diverges.

First, we look at P↓. Consider the case where γ1 = �. In

this case, by applying trace extensibility to A↓ in (1), we get

that “tc.�!” is a trace of A↓, so trace composition allows us

to conclude that A↓ [P↓] terminates. Now if γ1 �= � then this

action gives back control to the context, which, given (2), will

perform action “�?”. Applying trace extensibility to P↓, P↓
has trace “tc.γ1!.�?”, so we can apply trace composition and

deduce that A↓ [P↓] terminates in this case as well.

Now, regarding Q ↓, we first obtain the following by

applying canonicalization to tp, “tp.�!”, and “tp.γ1!”:

(a) tc = ζ◦(tp) ∈ Tr◦s(Q↓),
(b) (tc.�!) = ζ◦(tp.�!) ∈ Tr◦s(Q↓)⇒ (tp.�!) ∈ Tr◦s(Q↓),
(c) (tc.γ1!) = ζ◦(tp.γ1!) ∈ Tr◦s(Q↓)⇒ (tp.γ1!) ∈ Tr◦s(Q↓).

After following trace tc, which Q↓ has from (a), Q↓ cannot

perform a terminating action: otherwise using (b) and trace

extensibility for a and tp, we could apply trace composition

to trace “tp.�” and get that a[Q ↓] terminates, which is a

contradiction. Q↓ cannot perform action γ1 either, since (c)

would then violate the fact that tp is the longest prefix of ti
in Tr◦s(Q↓). So Q↓ only has two options left. The first is to

perform no external action by going into an infinite sequence

of internal transitions. In this case, using (1), we can apply

trace composition to get that A↓ [Q↓] diverges. The second

option is to give control back to the context using an external

action γ so that � �= γ �= γ1. Because fully defined compiled

programs clean registers, they only yield canonical actions, i.e.

γ = ζ(γ) ∧ γ1 = ζ(γ1). Combined with (3), this entails that

if A↓ produced an action γ′, we would have γ = γ1, which

is false. Hence, A↓ doesn’t produce any action: it goes into

an infinite sequence of local transitions. We can again apply

trace composition to get that A↓ [Q↓] diverges.

We finally apply separate compiler correctness (Corol-

lary 4.3) to conclude the proof.

5 Related Work
Fully abstract compilation Fully abstract compilation was

introduced in the seminal work of Martı́n Abadi [1] and later

investigated by the academic community. (Much before this,

the concept of full abstraction was coined by Milner [46].) For

instance, Ahmed et al. [9]–[11] proved the full abstraction of

type-preserving compiler passes for functional languages and

devised proof techniques for typed target languages. Abadi and

Plotkin [6] and Jagadeesan et al. [33] expressed the protection

provided by a mitigation technique called address space layout

randomization as a probabilistic variant of full abstraction.

Fournet et al. [29] devised a fully abstract compiler from a

subset of ML to JavaScript.

Patrignani et al. [43], [55] were recently the first to study

fully abstract compilation to machine code, starting from

single modules written in simple, idealized object-oriented

and functional languages and targeting hardware architectures

featuring a new coarse-grained isolation mechanism. They also

recently proposed proof techniques for full abstraction that

work for untyped target languages [20], [56]. Until recently,

Patrignani et al. studied fully abstract compilers that by design

violate our separate compilation property, so they cannot be

applied to our compartmentalizing compilation setting.

In recent parallel work, Patrignani et al. [58] proposed an

extension of their compilation scheme to protecting multiple

components from each other. The attacker model they con-

sider is different, especially since their source language does

not have undefined behavior. Still, if their source language

were extended with unsafe features, we expect that our SCC

property might hold for their compiler.

Formal reasoning about compartmentalized code SCC is

orthogonal to formal techniques for reasoning about compart-

mentalized software: SCC allows transferring security guaran-

tees for compartmentalized code written in a source language

to machine code via compartmentalizing compilation, but

SCC itself does not provide effective reasoning principles to

obtain those security guarantees in the first place. The litera-

ture contains interesting work on formally characterizing the

security benefits of compartmentalizing software. Promising

approaches include Jia et al.’s work on System M [36], and

Devriese et al.’s work on logical relations for a core calculus

based on JavaScript [21], both of which allow bounding the

behavior of a program fragment based on the interface or

capabilities it has access to. One significant challenge we

attack in this paper is languages with undefined behaviors,

while in these other works illegal actions such as accessing a

585858

buffer out of bounds must be detected and make the program

halt.

Verifying correct low-level compartmentalization Recent

work focused on formally verifying the correctness of low-

level compartmentalization mechanisms based on software

fault isolation [40], [47], [70] or tagged hardware [12]. That

work, however, only considers the correctness of the low-

level compartmentalization mechanism, not the compiler and

not high-level security properties and reasoning principles for

code written in a programming language with components.

Communication between low-level compartments is generally

done by jumping to a specified set of entry points, while

the model we consider in §4 is more structured and enforces

correct calls and returns.

Finally, seL4 is a verified operating system microker-

nel [39], that uses a capability system to separate user level

threads and for which correct access control [61] and nonin-

terference properties [48] were proved formally.

6 Conclusion and Future Work
We have introduced a new secure compartmentalizing com-

pilation property, related it to the established notion of full

abstraction, and applied our property in a carefully simplified

setting: a small imperative language with procedures compil-

ing to a compartmentalized abstract machine. This lays the

formal foundations for studying the secure compilation of

mutually distrustful components written in unsafe languages.

In the future we plan to build on this groundwork to study

more realistic source and target languages, compilers, and en-

forcement mechanisms. In the long run, we would like to apply

this to the C language by devising a secure compartmentalizing

variant of CompCert that targets a tag-based reference moni-

tor [12] running on a real RISC processor [18]. We have in fact

started working towards this long term goal [37], but this will

take time to achieve. Beyond tagged hardware, we would also

like to implement the abstract compartmentalization machine

from §4 in terms of various enforcement other mechanisms,

including: process-level sandboxing [13], [31], [38], [59], soft-

ware fault isolation (SFI) [68], capability machines [66], and

multi-PMA systems [58]. As we target lower-level machines,

new problems will appear: for instance we need to deal with

the fact that memory is finite and resource exhaustion errors

cannot be hidden from the attacker, which will require slightly

weakening the security property. Finally, we would like to

study more interesting compartmentalization models including

dynamic component creation and nested components, and the

way these extensions influence the security property.

Acknowledgments We thank André DeHon, Deepak Garg,

and Andrew Tolmach for helpful discussions and thoughtful

feedback on earlier drafts. Yannis Juglaret is supported by a

PhD grant from the French Department of Defense (DGA) and

Inria. Arthur Azevedo de Amorim and Benjamin C. Pierce

are supported by NSF award 1513854, Micro-Policies: A
Framework for Tag-Based Security Monitors.

References
[1] M. Abadi. Protection in programming-language translations. Research

Report 154, SRC, 1998.

[2] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity.
ACM CCS. 2005.

[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity
principles, implementations, and applications. TISSEC, 13(1), 2009.

[4] M. Abadi and J. Planul. On layout randomization for arrays and functions.
POST. 2013.

[5] M. Abadi, J. Planul, and G. D. Plotkin. Layout randomization and
nondeterminism. MFPS, 298:29–50, 2013.

[6] M. Abadi and G. D. Plotkin. On protection by layout randomization.
TISSEC, 15(2):8, 2012.

[7] P. Agten, B. Jacobs, and F. Piessens. Sound modular verification of C
code executing in an unverified context. POPL. 2015.

[8] P. Agten, R. Strackx, B. Jacobs, and F. Piessens. Secure compilation to
modern processors. CSF. 2012.

[9] A. Ahmed. Verified compilers for a multi-language world. SNAPL. 2015.

[10] A. Ahmed and M. Blume. Typed closure conversion preserves observa-
tional equivalence. ICFP. 2008.

[11] A. Ahmed and M. Blume. An equivalence-preserving CPS translation
via multi-language semantics. ICFP. 2011.

[12] A. Azevedo de Amorim, M. Dénès, N. Giannarakis, C. Hriţcu, B. C.
Pierce, A. Spector-Zabusky, and A. Tolmach. Micro-policies: Formally
verified, tag-based security monitors. In 36th IEEE Symposium on
Security and Privacy (Oakland S&P). 2015.

[13] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting
applications into reduced-privilege compartments. USENIX NSDI, 2008.

[14] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When Good In-
structions Go Bad: Generalizing Return-Oriented Programming to RISC.
In Proc. ACM CCS, 2008.

[15] D. Chisnall, C. Rothwell, R. N. M. Watson, J. Woodruff, M. Vadera,
S. W. Moore, M. Roe, B. Davis, and P. G. Neumann. Beyond the PDP-11:
Architectural support for a memory-safe C abstract machine. ASPLOS.
2015.

[16] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. ICFP. 2000.

[17] L. Davi, A. Sadeghi, D. Lehmann, and F. Monrose. Stitching the gadgets:
On the ineffectiveness of coarse-grained control-flow integrity protection.
USENIX Security, 2014.

[18] A. DeHon, E. Boling, R. Nikhil, D. Rad, J. Schwarz, N. Sharma, J. Stoy,
G. Sullivan, and A. Sutherland. DOVER: A Metadata-Extended RISC-
V. In RISC-V Workshop, 2016. Accompanying talk at http://youtu.be/
r5dIS1kDars.

[19] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hard-
Bound: Architectural support for spatial safety of the C programming
language. ASPLOS, 2008.

[20] D. Devriese, M. Patrignani, and F. Piessens. Fully-abstract compilation
by approximate back-translation. POPL, 2016.

[21] D. Devriese, F. Piessens, and L. Birkedal. Reasoning about object
capabilities with logical relations and effect parametricity. EuroS&P,
2016.

[22] U. Dhawan, C. Hriţcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith,
T. F. Knight, Jr., B. C. Pierce, and A. DeHon. Architectural support for
software-defined metadata processing. ASPLOS, 2015.

[23] U. Dhawan, A. Kwon, E. Kadric, C. Hriţcu, B. C. Pierce, J. M. Smith,
A. DeHon, G. Malecha, G. Morrisett, T. F. Knight, Jr., A. Sutherland,
T. Hawkins, A. Zyxnfryx, D. Wittenberg, P. Trei, S. Ray, and G. Sullivan.
Hardware support for safety interlocks and introspection. AHNS, 2012.

[24] Ú. Erlingsson. Low-level software security: Attacks and defenses. In
Foundations of Security Analysis and Design IV, FOSAD 2006/2007
Tutorial Lectures, 2007.

[25] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI:
Software guards for system address spaces. OSDI. 2006.

[26] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,

595959

S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi. Missing the point(er):
On the effectiveness of code pointer integrity. IEEE S&P, 2015.

[27] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. C. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos. Control jujutsu: On the weaknesses of fine-
grained control flow integrity. CCS. 2015.

[28] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
ICFP. 2002.

[29] C. Fournet, N. Swamy, J. Chen, P.-É. Dagand, P.-Y. Strub, and
B. Livshits. Fully abstract compilation to JavaScript. POPL. 2013.

[30] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of
control: Overcoming control-flow integrity. IEEE S&P, 2014.

[31] K. Gudka, R. N. M. Watson, J. Anderson, D. Chisnall, B. Davis,
B. Laurie, I. Marinos, P. G. Neumann, and A. Richardson. Clean
application compartmentalization with SOAAP. CCS. 2015.

[32] Intel software guard extensions (Intel SGX) programming reference,
2014.

[33] R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely. Local memory via
layout randomization. CSF. 2011.

[34] A. Jeffrey and J. Rathke. A fully abstract may testing semantics for
concurrent objects. Theor. Comput. Sci., 338(1-3):17–63, 2005.

[35] A. Jeffrey and J. Rathke. Java Jr: Fully abstract trace semantics for a
core Java language. ESOP. 2005.

[36] L. Jia, S. Sen, D. Garg, and A. Datta. A logic of programs with interface-
confined code. CSF. 2015.

[37] Y. Juglaret, C. Hritcu, A. A. de Amorim, B. C. Pierce, A. Spector-
Zabusky, and A. Tolmach. Towards a fully abstract compiler using micro-
policies: Secure compilation for mutually distrustful components. CoRR,
abs/1510.00697, 2015.

[38] D. Kilpatrick. Privman: A library for partitioning applications. USENIX
FREENIX. 2003.

[39] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. seL4: Formal verification of an OS kernel. SOSP. 2009.

[40] J. Kroll, G. Stewart, and A. Appel. Portable software fault isolation.
CSF. 2014.

[41] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: a
verified implementation of ML. POPL. 2014.

[42] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr., and A. DeHon.
Low-fat pointers: compact encoding and efficient gate-level implementa-
tion of fat pointers for spatial safety and capability-based security. CCS.
2013.

[43] A. Larmuseau, M. Patrignani, and D. Clarke. A secure compiler for ML
modules. APLAS, 2015.

[44] X. Leroy. Formal verification of a realistic compiler. CACM, 52(7):107–
115, 2009.

[45] X. Leroy. A formally verified compiler back-end. JAR, 43(4):363–446,
2009.

[46] R. Milner. Processes: a mathematical model of computing agents, pages
157–174. North-Holland, 1975.

[47] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan. RockSalt:
better, faster, stronger SFI for the x86. PLDI. 2012.

[48] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. seL4: from general purpose
to a proof of information flow enforcement. IEEE S&P. 2013.

[49] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Hardware-Enforced
Comprehensive Memory Safety. IEEE Micro, 33(3):38–47, 2013.

[50] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. WatchdogLite:
Hardware-accelerated compiler-based pointer checking. CGO. 2014.

[51] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Everything you
want to know about pointer-based checking. SNAPL. 2015.

[52] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. SoftBound:
highly compatible and complete spatial memory safety for C. PLDI. 2009.

[53] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. CETS:
compiler enforced temporal safety for C. ISMM. 2010.

[54] M. Patrignani. The Tome of Secure Compilation: Fully Abstract

Compilation to Protected Modules Architectures. PhD thesis, KU Leuven,
Leuven, Belgium, 2015.

[55] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and
F. Piessens. Secure compilation to protected module architectures.
TOPLAS, 2015.

[56] M. Patrignani and D. Clarke. Fully abstract trace semantics for protected
module architectures. Computer Languages, Systems & Structures, 42:22–
45, 2015.

[57] M. Patrignani, D. Clarke, and F. Piessens. Secure compilation of object-
oriented components to protected module architectures. APLAS. 2013.

[58] M. Patrignani, D. Devriese, and F. Piessens. On modular and fully-
abstract compilation. CSF, 2016.

[59] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation.
In 12th USENIX Security Symposium. 2003.

[60] C. Reis and S. D. Gribble. Isolating web programs in modern browser
architectures. EuroSys. 2009.

[61] T. Sewell, S. Winwood, P. Gammie, T. C. Murray, J. Andronick, and
G. Klein. seL4 enforces integrity. ITP. 2011.

[62] H. Shacham. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). ACM CCS. 2007.

[63] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-
R. Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization. IEEE S&P. 2013.

[64] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike. Enforcing forward-edge control-flow integrity
in GCC & LLVM. USENIX Security. 2014.

[65] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. SOSP, 1993.

[66] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. An-
derson, D. Chisnall, N. H. Dave, B. Davis, K. Gudka, B. Laurie, S. J.
Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera. CHERI: A hybrid
capability-system architecture for scalable software compartmentaliza-
tion. IEEE S&P, 2015.

[67] C. Williams. Oracle’s Larry Ellison claims his Sparc M7 chip is hacker-
proof – errr... The Register, 2015.

[68] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: a sandbox for
portable, untrusted x86 native code. CACM, 53(1):91–99, 2010.

[69] B. Zeng, G. Tan, and Ú. Erlingsson. Strato: A retargetable framework
for low-level inlined-reference monitors. USENIX Security. 2013.

[70] L. Zhao, G. Li, B. D. Sutter, and J. Regehr. ARMor: fully verified
software fault isolation. EMSOFT. 2011.

[71] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools using
exploitable buffer overflows from open source code. FSE. 2004.

606060

