
A Hybrid Framework for Data Loss Prevention and
Detection

Elisa Costante
SecurityMatters

Email: elisa.costante@secmatters.com

Davide Fauri, Sandro Etalle, Jerry den Hartog, Nicola Zannone
Eindhoven University of Technology

Email: {d.fauri, s.etalle, j.d.hartog, n.zannone}@tue.nl

Abstract—Data loss, i.e. the unauthorized/unwanted disclosure
of data, is a major threat for modern organizations. Data Loss
Protection (DLP) solutions in use nowadays, either employ pat-
terns of known attacks (signature-based) or try to find deviations
from normal behavior (anomaly-based). While signature-based
solutions provide accurate identification of known attacks and,
thus, are suitable for the prevention of these attacks, they cannot
cope with unknown attacks, nor with attackers who follow
unusual paths (like those known only to insiders) to carry out
their attack. On the other hand, anomaly-based solutions can
find unknown attacks but typically have a high false positive
rate, limiting their applicability to the detection of suspicious
activities. In this paper, we propose a hybrid DLP framework that
combines signature-based and anomaly-based solutions, enabling
both detection and prevention. The framework uses an anomaly-
based engine that automatically learns a model of normal user
behavior, allowing it to flag when insiders carry out anomalous
transactions. Typically, anomaly-based solutions stop at this stage.
Our framework goes further in that it exploits an operator’s
feedback on alerts to automatically build and update signatures
of attacks that are used to timely block undesired transactions
before they can cause any damage.

I. INTRODUCTION

Data loss, i.e. the unauthorized disclosure of sensitive

information from a corporate network or a database [1], is

a major threat for organizations. Organizations can lose their

competitive advantage if confidential information is stolen.

Moreover, data breaches can affect customers’ perception

towards a company’s image by decreasing its reputation, espe-

cially if sensitive personal information is leaked. Unsurprisingly,

data leakages are typically propagated by Insider Threats [2].

To minimize the risk of data breaches, organizations often

employ Data Loss Protection (DLP) solutions as a defense

mechanism [3]. DLP solutions monitor the access and exchange

of confidential data to identify unauthorized disclosure or

improper usage [4]. To distinguish allowed from malicious

transactions, DLP systems maintain a model of either allowed

(whitelisting) or malicious (blacklisting) behavior. This model

can either be specified based on an expert’s knowledge or

learned from past transactions.

A blacklist with signatures describing well-known attacks

hardly produces any false positive, allowing it to be used

for prevention by blocking attacks before they are executed.

However, such an approach cannot detect unknown attacks. In

particular, it is often easy for insiders to avoid blacklisting-

based detection. The insider has (privileged) access to systems,

and can usually carry out actions that qualify as data leakage

without breaking the system’s rules and/or using leakage paths

that are specific to the target system, and which cannot be

considered in a general-purpose signature.

Anomaly-based solutions, which learn a model of normal

behavior and flag any deviation from the model as a suspicious

activity, can find unknown attacks but may have a high false

positive rate. As such, anomaly-based systems are typically

used only for detection; they raise an alert upon detecting a

suspicious activity but do not block the activity. Alerts typically

have to be manually analyzed to determine whether they are

false positive or they correspond to an actual attack. This,

however, has high operational costs and a lengthy response

time to security incidents.

Despite the number of technological steps that have been

taken to reduce data losses, cases of data breaches are not

decreasing. A recent study conducted by the Open Security

Foundation shows that over 502 million records, including

credit card numbers, access credentials and other personal

information, were leaked in the first half of 2014 [5].

According to MacDonald [6], the main problem lies in the

fact that enterprises have long overspent on threat prevention

and underspent on detection and response. He points out that

it is impossible to have a signature available before an attack,

but it is possible to have it after. Thus, it is necessary to have

the ability to define new signatures as soon as new attacks are

identified.

In this paper, we address the problem of identifying and

reacting to insider threats by monitoring user activities and

detecting anomalous behavior. In addition, once an anomaly

has been flagged as suspicious we create on-the fly rules that

are able to block any transactions that matches the suspicious

pattern. Summarizing, we use an anomaly-based engine to

detect anomalous transactions and, once the security operator

flags an alert as malicious, our framework automatically creates

attack signatures from the alert to prevent the execution of

similar activities in the future.

To block new attacks, we design and integrate a prevention

system with a white-box anomaly detection system in the style

of [7]. The key characteristic of a white-box approach is that it

provides an operator with the root causes of alerts. This allows

the operator to interpret an alert and determine whether the

alert is a false positive (i.e., a legitimate transaction marked as

a suspicious activity) or a true positive (i.e., an actual attack).

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Elisa Costante. Under license to IEEE.

DOI 10.1109/SPW.2016.24

324

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Elisa Costante. Under license to IEEE.

DOI 10.1109/SPW.2016.24

324

2016 IEEE Security and Privacy Workshops

© 2016, Elisa Costante. Under license to IEEE.

DOI 10.1109/SPW.2016.24

324



This feedback is used to improve the model for detection (false

positive) or for prevention (true positive). In the latter case, the

root causes of alerts are used to create and maintain blocking

(or warning) rules that are used to prevent (or signal) the

execution of the flagged activities in the future. In this work,

we focus our attention on database activities. Nonetheless, our

framework can be easily adapted to detect and prevent data

loss by analyzing other types of data (e.g., network packets).

Our framework offers several benefits compared to existing

DLP solutions. First, the anomaly-based component of the

framework tailors itself to the user’s behavior, making it

possible to detect unknown and insider attacks. In addition, it

overcomes the limitations of existing anomaly-based solutions

by reducing the response time to alerts and consequently the

spread of data leakages and the damages they cause. Finally, our

framework reduces operational costs for handling suspicious

activities in that alerts for similar malicious activities do not

have to be reexamined. We have validated the framework

using both synthetic and real-life datasets. In particular, we

tested our approach using a log of database transactions

executed within a service provider in the Netherlands.

The paper is structured as follows. The next section presents

an overview of DLP solutions and discusses related work.

Section III introduces a motivating example and presents an

overview of our framework. Section IV presents an approach to

white-box anomaly-based detection, and Section V defines how

the rule base used for prevention is constructed and maintained.

Section VI presents experiment results. Finally, Section VII

concludes the paper and provides directions for future work.

II. OVERVIEW OF DLP SOLUTIONS

In this section we categorize existing DLP solutions and

identify their main benefits and shortcomings, which determine

the aim for our hybrid approach.

DLP solutions usually aim either at detection, i.e. raising an

alert when suspicious activities are observed, or at prevention,

i.e. blocking malicious activities. In either cases a model

distinguishing normal from suspicious activities is needed. We

identify two main dimensions to characterize the model under-

lying a DLP solution: i) filtering approach, which describes

whether permitted uses or misuses are captured, and ii) model
construction, which describes how the model is constructed.

Notice that there are other dimensions which can be used to

classify DLP solutions (e.g., network-based vs. host-based).

However, these dimensions are less relevant for the purpose of

this work, and thus we will not consider them. We refer to [8],

[3] for more detailed taxonomies.

Filtering can be based on blacklisting or whitelisting.

Blacklisting is used to represent transactions that are not

allowed (e.g., well-known threats or undesired behavior). Every

transaction matching an element in a black-list is blocked

(prevention) or generates an alert (detection). In contrast,

whitelisting is used to specify the allowed behavior; hence, only

transactions that do match the model are considered legitimate.

Two main types of approaches have been proposed to build

the model: specification- and learning-based. In a specification-

based approach, the model is defined based on an expert’s

knowledge and background. This approach leads to very

accurate models (low false positive rate) but exhibits some

drawbacks as well. For instance, specification-based blacklisting

systems (also called signature-based) can detect known attacks

for which a signature is provided but cannot detect unknown at-

tacks (e.g., those caused by exploiting zero-day vulnerabilities).

This is a major limitation for nowadays IT systems, in which

most damages caused by malicious activities can be related

to previously unseen attacks (consider, for instance, the Sony

case in the domain of data leakage [9] or the Stuxnet case in

the domain of cyber attacks to industrial networks [10]). On

the other hand, a specification-based whitelisting model can be

used to detect unknown attacks, but maintaining the white-list

up-to-date might be too costly, especially in highly dynamic

environments. The effectiveness of specification-based solutions

strongly depends on the quality of the model. The definition

of such a model, however, is time-consuming and error prone,

and requires a deep knowledge of the application domain.

Learning-based approaches significantly reduce this effort;

they automatically learn the model using machine learning

or statistical modeling techniques. Clearly, these approaches

might create models that are less accurate than those manually

specified; hence, they are incline to a high false positive rate, i.e.

a large number of alerts are generated for legitimate actions.

Since each alert has to be analyzed by a human operator,

anomaly-based solutions have a high operational cost. However,

their potential of detecting unknown attacks (when combined

with whitelisting) together with the possibility of automatically

creating the model, makes them an attractive solution.

In the remainder of the section, we review existing

specification-based and learning-based solutions. As the focus

of this work is on the analysis of database activities, we mainly

survey solutions that can be applied for the detection and

prevention of data breaches in database systems.

a) Specification-based solutions: Specification-based so-

lutions relying on either blacklisting or whitelisting, are widely

used nowadays for DLP. Signature-based (i.e., specification-

based blacklisting) solutions use a model comprising of rules

that define patterns of malicious activities or fingerprints of

sensitive data that are not allowed to leave the organization

network, and block any transaction matching the model.

The fingerprinting of confidential documents or database

records (e.g., credit card number) is commonly used by

organizations to prevent data loss. A fingerprint is the hash

value of a set of data [3]. Every transaction is inspected

and its content is fingerprinted. The resulting hash value is

compared with fingerprints of confidential information: if the

value matches, the transaction is blocked. Since each fingerprint

is computed from a sequence of words (or letters), a change in

one character of the data results in a different hash value. This

means that fingerprinting can be bypassed by slightly rephrasing

the content (e.g., by replacing some characters). To overcome

this problem, Shapira et al. [11] propose to fingerprint the core

confidential contents, ignoring non-relevant (non-confidential)

parts of a document. This way, escaping the detection requires

325325325



more extended changes to the document. There are also

methods that create a model of sensitive values using keywords,

regular expressions, text classification [12], and information

retrieval [13], [14], to detect the presence of sensitive data

leaving the organization perimeter. Among signature-based

solutions for DLP, we can also find several network Intrusion

Detection Systems (IDS). For instance, Snort [15], the most

widely used signature-based IDS, listens to the network traffic

and blocks transactions that match its internal rules. Snort can

be adapted to detect unauthorized disclosure of sensitive data

over the network, e.g. by creating string matching rules.

Though typically not called DLP, access control [16] is

a form of specification-based whitelisting. Access control

mechanisms rely on policies defining the actions users can

perform on an object. There are access control mechanisms,

e.g. based on XACML [17], which can act both as blacklisting

and whitelisting. These mechanisms allow the specification

of both positive and negative authorization policies and can be

configured to map non-applicable and indeterminate decisions

to either permit or deny decisions depending on the context

of use. Policy authoring, however, has been proven to be

time consuming and error prone [18], [19]. Moreover, access

control mechanisms are too rigid and are not suitable for

complex social systems like healthcare.

b) Learning-based solutions: Learning-based solutions

are usually based on whitelisting [20], [21], [22], [23], [24],

[25], [26], [27], [28]. These systems, called anomaly-based,

automatically learn a model of normal behavior by observing

past activities and flag deviations from the model as anomalies.

Different approaches and sets of features (to characterize

transactions) have been proposed to learn the model underlying

anomaly-based solutions. For instance, Fonseca et al. [22] build

normal behavior profiles based on the assumption that SQL

commands and the order in which queries are executed are

relevant. During detection, if an attacker executes valid queries

but in an incorrect order, an alert is raised. In [24] normal

profiles are built using a Naı̈ve Bayes classifier. The system

learns to predict the userid or role of users based on the SQL

command, tables and columns in the query. When a new query

arrives, an alarm is raised if the userid (or role) predicted by

the classifier does not match the actual value. Wu et al. [28]

use a similar approach with an extended feature space. Mathew

and Petropoulos [25] propose to profile normal behavior based

on the data users retrieve. A mixed approach combining result-

centric and context-centric features is presented in [23] in which

a mining algorithm is used to define association rules between

context and result set. This way, the same request may be

legitimate if performed within one context but abnormal within

another context. In [27] normal profiles are represented in terms

of statistical distribution: if a new query does not match the

original probability distribution, it is considered anomalous. The

white-box anomaly-based detection system in [7] aims to detect

and rank alerts within DBMS by assessing their anomaly level,

i.e. to what extent database activities are anomalous, based on

a rich set of syntax-, context- and result-centric features.

A drawback of existing solutions is that they provide little or

no support for alert handling [29]. In particular, when an alert is

raised, it is often accompanied only with information about the

anomaly level of the event that raised the alert, e.g. deviation
degree and anomaly score. In addition, these solutions do not

provide support for “enforcing” an alert, e.g. by automatically

creating response actions that can be taken when the same (or

similar) alerts come along.

To the best of our knowledge, no blacklisting learning-based

solutions have been proposed for database systems. Although

such solutions are conceivable, there are intrinsic problems

in their definition. First, the availability of attack datasets is

typically scarce, making it difficult to learn a model. More

importantly, database attacks, even of the same type, can vary

significantly from each other, making it difficult to identity

distinguishing features for their characterization.

c) Hybrid Solutions: A few IDS combine signature-based

and anomaly-based solutions. However, they either assemble

these two techniques with no feedback loops and, thus, are not

able to define new signatures [30], or infer signatures from

predefined data-mining schemes [31]. In both cases, domain

knowledge is not exploited for detection and alert handling.

III. APPROACH

This section illustrates the challenges in data loss detection

and prevention through a running example within the healthcare

domain and presents a framework to address these challenges.

A. Motivating Example

This section introduces a case study in healthcare, which is

used to illustrate the challenges concerning data loss prevention

and detection. A local hospital provides treatment for a

variety of diseases, ranging from common flu to HIV. Patient

information is stored in a central database at the hospital in

the form of electronic health records. Our scenario focuses

on two different employees, Rob, a doctor, and Jos, a system

administrator. Due to his duties, Rob often accesses patient

information concerning diagnoses and may work at any hour

of the day. Jos, on the other hand, typically works from 8am

to 5pm and accesses patients’ contact information but not their

diagnoses and prescribed treatments. Fig. 1 shows the profile

of normal behavior for these two users, while Fig. 2 shows the

usage of IP addresses ranges. Intuitively, the profiles describe

how likely users perform actions with the given characteristics

(called transaction features). In Fig. 1 and subsequent

examples, we use an illustrative set of features to characterize

transactions. We refer to [7] for an exhaustive list of transaction

features for the characterization of database activities. Within

this setting, consider the following insider threat scenario.

Example 1. A pharmaceutical firm is interested in the testing
of a new drug to treat HIV infection. Eve, who is involved in
the commercialization of the drug, knows that Jos works as a
system administrator for a healthcare provider with thousands
of patients. Eve persuades Jos to provide her the list of all
patients at the facility suffering from HIV. To accomplish this
task, Jos queries the database to retrieve the email address
of those patients. However, he cannot obtain the complete list

326326326



Figure 1: Example of (partial) profiles for Rob and Jos.

Figure 2: Example of profile for IP (range).

Alert ID User Command/Column Time Result set IP
001 jos Select/email 07:09 {aa@ut.nl,. . . ,zz@ut.nl} 10.10.12.5
002 jos Select/diagnosis 07:14 {flu} 10.10.12.22
003 jos Select/diagnosis 07:14 {HIV} 10.10.12.22
004 jos Select/drugs 08:01 {Atripla} 10.10.12.22
005 rob Select/diagnosis 23:54 {Achalasia} 10.10.12.23

Table I: Example of alerts. The cells in red identify the root causes
of the corresponding alert.

using a single SQL query. The access to the health record of
patients in certain therapy groups is subject to restrictions. For
each of these patients Jos has to check her record individually
and then retrieve the email address if the patient is affected by
HIV. To not arouse suspicion, Jos accesses the database from
a workstation in a less visible corner of the office, and carries
out the operation in the early morning.

Jos, as a system administrator, has permission to access the

records in the hospital database although for IT maintenance

purposes only. Thus, specification-based prevention approaches

(e.g., access control or blacklisting) cannot prevent this attack.

At most, a blacklist could specify that Jos can only access a

limited number of records per day. This would slow Jos down

but not prevent him from getting the data spread over a number

of days. On the other hand, an anomaly detection approach

could detect that Jos misbehaved. As shown in Table I, Jos
performs actions that do not match his profile on several aspects.

However, although most anomaly-based approaches are able

to signal anomalous transactions to the security operator, they

offer very little useful information to analyze the alerts.

White-box anomaly detection [7], in addition to raising

alerts, also indicates their root causes, i.e. the features of

the action that are unusual given Jos’s profile. For instance,

alert 002 has the following root causes: (i) Jos executed a

select operation on column diagnosis; (ii) Jos was active before

his usual working hours; and (iii) Jos retrieved data that he

typically does not access. These root causes provide the security

operator with crucial information to analyze the alert and

determine whether a response is needed. Yet, how to form and

execute this response is not yet addressed by existing anomaly-

based solutions. Moreover, anomaly-based approaches can be

characterized by a high false positive rate. The main problem

is that any behavior not previously observed is marked as an

anomaly. For instance, alert 005 indicates that Rob retrieved

the diagnosis for a patient affected by Achalasia. Achalasia is

a very rare disease and Rob never treated a patient affected

by this disease in the past. However, doctors can retrieve the

diagnosis of the patients they treat regardless of what the

diagnosis is; thus, this alert can be considered a false positive.

B. Framework
As illustrated in the previous section, existing DLP solutions

are not fully able to cope with the problem of data breaches.

In this section, we present a hybrid framework that combines

signature-based and anomaly-based approaches to overcome

their limitations. In particular, it provides capabilities to

immediately respond to an alert by automatically creating

rules that are used to block similar queries. An overview of

the framework is presented in Fig. 3. It consists of five main

phases: (i) learning; (ii) prevention, (iii) detection, (iv) alert

analysis and (v) rule management.
During the learning phase, transactions are analyzed by a

learning engine to create profiles of normal behavior. Here, we

consider profiles created using the white-box anomaly-based

solution presented in [7]. This solution specifies profiles of

normal behavior in terms of feature histograms as the ones in

Fig. 1. Specifically, for every feature, a histogram is learned

from a given set of transactions by analyzing the frequency of

feature values. However, the framework is general enough to

be extended to any detection tool able to generate white-box

alerts indicating the root causes of anomalous transactions.

327327327



Figure 3: Framework for Data Loss Prevention and Detection

Every new transaction is analyzed by the prevention module.

This module matches the transaction against a rule base, which

comprises deny (or blocking) rules and warning rules. If the rule

base contains a rule matching the transaction, the transaction

is blocked or a warning is raised according to the type of

rule that is fired; otherwise, the transaction is passed through

to the detection engine. The detection engine aims to detect

unknown attacks. In particular, this engine verifies whether the

transaction matches the previously learned profiles of normal

behavior (Section IV). In case of a match, the transaction is

used to update the current profiles; otherwise, an alert is raised.

Alerts are analyzed by an operator, who leveraging his

domain knowledge can flag them as true/false positives. If

an alert is marked as a false positive (i.e., it corresponds to a

legitimate activity), it is used to update the model of normal

behavior. Otherwise, if the alert corresponds to a malicious

activity, the operator can decide to enforce it, namely to

automatically create some rules (devised from the alert) to

be added to the rule base. In particular, the operator can decide

to enforce the alert by creating a blocking rule or a warning rule.

This way, when a similar transaction arrives, it can be blocked

or signaled before its execution without further intervention

from the operator, hence providing prevention capabilities.

Our framework offers several benefits compared to existing

DLP solutions. First, the anomaly-based component of the

framework allows the detection of unknown attacks. In addition,

it reduces the response time to alerts and consequently the

spread of data leakages and the damages they cause. For

instance, after the alert 002 generated by Jos’s activity, an

operator could promptly act by enforcing the alert and blocking

every new query for diagnosis information coming from Jos.
This reduces operational costs for handling suspicious activities

in that alerts for similar activities do not have to be reexamined.

IV. WHITE-BOX ANOMALY-BASED DETECTION

For the detection and analysis of anomalous activities, we

adopt the white-box anomaly-based detection system proposed

in [7]. This system uses an anomaly detection engine that

automatically learns the normal behavior by observing past

database activities (learning phase) and flags any deviation

from such a behavior as an anomaly (detection phase). This

DLP system offers a number of advantages compared to other

DLP systems. First, while being able to detect unknown attacks

because of its anomaly-based design, it results in a lower false

positive ratio compared to other anomaly-based approaches.

Moreover, the white-box approach enables the extrapolation

of the root causes of alerts. This information is at the basis

of the creation and update of a rule base for the prevention

of malicious activities (Section V). In the remainder of this

section, we present the main concepts underlying this detection

system in terms of database transactions. However, the system

is general and can be applied to other application domains

(e.g., [32] applies these ideas to network intrusion detection).

Definition 1 (Transaction). A transaction is a triple
〈Q,RS,CI〉 where Q is an SQL query, RS is the corresponding
result set and CI denotes the context in which Q is executed.
T denotes the set of all possible transactions.

Transactions are characterized through features.

Definition 2 (Feature). A feature f : T −→ Vf is a function
associating to each transaction a value from its codomain Vf .
A feature value vf is the result of applying function f to a
transaction t ∈ T , i.e. vf = f(t). A feature space 〈f1, ..., fn〉
is an ordered sequence of features.

Features are defined with respect to query, result set and

context information. For instance, syntax-centric features are

328328328



used to characterize aspects related to the specification of the

queries (e.g., SQL command and table list); context-centric

features include the user who submitted the query and the time
when the transaction was executed.

Definition 3 (Transaction vector). Given a feature space
〈f1, ..., fn〉 and a transaction t, a transaction vector

〈vf1 , ..., vfn〉 is a sequence of feature values vfi where
vfi = fi(t). X denotes the set of possible transaction vectors.

Intuitively, a transaction vector is the feature representation

of a transaction. In some cases, anomalies can only be detected

by considering a set of features together. To this end, we use

the notion of compound feature proposed in [33].

Definition 4 (Compound Feature). Given a feature space
〈f1, ..., fn〉, a compound feature c is an element of C with
C ⊆ P({f1, ..., fn}).

Given a feature space 〈f1, f2, f3, f4〉, we use notation

{f1, f2&f4, f3} to represent the set of compound features

{{f1}, {f2, f4}, {f3}} and we use {vf1 , vf2&vf4 , vf3} to rep-

resent the values the compound features take.

Definition 5 (Detection Engine, Root Cause and Anomaly).
Given a feature space 〈f1, ..., fn〉, a set of compound features
C ⊆ P({f1, ..., fn}) and a transaction vector x ∈ X , a detec-
tion engine is a function m : X ×C → {anomalous, normal}.
In addition, we say that:

• x∈X is an anomaly iff ∃ c ∈C s.t. m(x, c)=anomalous;
• c ∈ C is a root cause iff m(x, c) = anomalous.

Whenever a detection engine receives a transaction, it will

raise an alert if the corresponding transaction vector is flagged

as an anomaly. The root causes allow an operator to interpret

the anomaly (alert analysis phase) and, thus, decide how future

occurrences of (similar) transactions should be handled, i.e.

either improving the detection model if it is a false positive or

creating a prevention rule if the alert is a true positive.

Example 2. The detection engine presented along with
our running example (Section III-A) uses feature space
〈user, command, columns, time, resultSet, IP〉. Anomalies are
determined with respect to the set of compound features C =
{user&command&columns, user&time, user&resultSet, IP}.
Consider a transaction t = 〈Q,RS,CI 〉 raising alert 003 in
Table I. The result set is RS = {HIV }, and context information
is CI = {user = jos, time = 07:14, IP = 10.10.12.22};
the corresponding transaction vector is x = 〈jos, select,
{diagnosis}, 07:14, {HIV }, 10.10.12.22〉. In addition,
suppose that the detection engine m gives the following results:

• m(x, user&command&columns) = anomalous

• m(x, user&resultSet) = anomalous

• m(x, user&time) = anomalous

• m(x, c) = normal for every other c ∈ C
Thus, transaction vector x is flagged as anomalous, and
compound features user&command&columns, user&resultSet
and user&time are the root causes of the alert.

V. PREVENTION AND RULE MANAGEMENT

In this section, we discuss the prevention capabilities of

our framework. In particular, we first present a formalism to

represent the rule base and to match new transactions against it.

Then, we show how the rule base is updated when the operator

flags an alert as a true positive.

A. Rule Modeling and Matching

The rule base allows the timely response to anomalous

transactions. It consists of signatures of malicious activities

represented as sequences of (anomalous) features’ values. The

data structure storing the rule base should allow matching and

update operations to be easy and computationally efficient.

Moreover, it should be understandable and easy to maintain

and explore. To this end, we represent it in form of a tree.

Definition 6 (Rule Tree). Given a feature space 〈f1, ..., fn〉
and a set of actions A, a rule tree Δi rooted in feature fi
(with i ∈ {1, . . . , n}) is defined as follows:{

A tree Δi : Vfi �→ Ti+1 is a partial function to subtrees
A leaf Δn+1 is an element of A, i.e. Tn+1 = A

where Vfi is the codomain of fi and Ti all trees rooted in fi.

A rule tree Δi rooted in feature fi can be seen as a

set of edges labeled with feature values that connect fi
to its immediate subtrees. Thus, hereafter, we use notation

{(v1,Δi+1
1 ), . . . , (vw,Δ

i+1
w )} to denote the partial function

that assigns Δi+1
j to vj ∈ Vfi (j = 1, . . . , w), i.e. Δi+1

j =
Δi(vj) is the immediate subtree of Δi for vj . In a rule tree

there is often a ‘default value’, i.e. all but a few values will

have the same subtree. We introduce symbol ⊗ to denote any
other value. To capture this in the format introduced above,

we use {(v1,Δi+1
1 ), . . . , (vk,Δ

i+1
k ), (⊗,Δi+1

k+1)} to denote the

(total) function that assigns Δi+1
j to vj (j = 1, . . . , k) and

Δi+1
k+1 to all other values (vk+1 ∈ Vfi \{v1, . . . vk}). It is worth

noting that given a feature space comprising n features, a tree

rooted in f1 has always depth equal to n+ 1.

When a new transaction arrives, it is matched against the rule

base to verify whether it is has to be blocked or it should be

passed on to the detection engine. For the matching, the tree is

traversed; if a matching path from the root until a leaf is found,

then the action represented by the leaf is fired (i.e., DENY or

WARN). Otherwise, the transaction is allowed to go further.

Definition 7 (Transaction Matching). Given a feature space
〈f1, ..., fn〉, the partial function match takes a transaction
vector and matches it with a rule tree to return the resulting
action in A if any:

match(〈vfi , . . . , vfn〉,Δi)=match(〈vfi+1 , . . . , vfn〉,Δi(vfi))

match(〈〉,Δn+1) = Δn+1

Recall that Δn+1 is an action in A. We say a transaction t
with transaction vector x matches a rule tree Δ if match(x,Δ)
is defined; we call the action it returns the fired action.

329329329



Figure 4: An example of rule tree

Note that the matching of a transaction with a rule base

returns only one action. This is guaranteed by the tree structure

used to represent the rule base.

Example 3. Fig. 4 shows a sample rule tree for our running
example. The rule tree states that Rob (a doctor) cannot execute
transactions with command delete, insert or select on columns
IBAN and address. The rule base also prevents Jos from
selecting column diagnosis and from retrieving values including
HIV in the result set. Clearly, Jos can do any other transaction
not matching the tree. In addition, the rule tree raises a warning
for transactions coming from IP 10.10.12.5, indicating, for
instance, that activities from this IP are kept under observation.

B. Rule Creation & Rule Base Update

Given an alert, generated by the detection engine, the

operator has to decide whether the alert is a true or a false

positive. It is worth noting that a transaction can be flagged

as anomalous because of different reasons, i.e. more than

one compound feature can be anomalous for the transaction.

Essentially, the root causes of an alert provide different and

independent explanations of why the transaction is anomalous.

The operator should decide for which root causes a rule should

be created along with the action to be enforced.

Definition 8 (Rule Creation). Given a feature space
〈f1, . . . , fn〉, a set of compound features C ⊆ P({f1, ..., fn}),
an anomalous transaction vector x = 〈vf1 , . . . , vfn〉 and an
action a ∈ A, the rule tree for a root cause c ∈ C is Δ1 given
by (i ∈ {1 . . . n}):

Δi =

{
{(vfi ,Δi+1)} if fi ∈ c
{(⊗,Δi+1)} otherwise

Δn+1 = a

Next, we exemplify rule creation using our running example.

Example 4. Let assume that Jos, noticing he cannot ac-
cess column diagnosis any longer, decides to select col-
umn drugs because he knows that, if a patient takes
Atripla, then he almost certainty has HIV. This action
from Jos produces the following transaction vector x =
〈jos, select, {drugs}, {Atripla}, 08:01, 10.10.12.22〉. Since,
according to Jos’s profile, he never accessed column drugs
before, the detection engine m will give the following results:

• m(x, user&command&columns) = anomalous
• m(x, user&resultSet) = anomalous
• m(x, c) = normal for every other c ∈ C

Both compound features user&command&columns and
user&resultSet are anomalous. Thus, two rules can be created
to prevent the execution of similar transactions, one for each
root cause. These rules are shown in Fig. 5.

Next, we define how, given a rule, the rule base is updated.

We provide a general update procedure that does not make

assumptions about how the rule is created. This, however,

means that the rule may define an action for a transaction

that already has an action defined in the rule base. To deal

with this we assume, from here on, that the actions have a

precedence. For example, DENY overrides WARN, meaning

that the former will be used rather than both.

Definition 9 (Rule Tree Update). Given a feature space
〈f1, . . . , fn〉 and an ordered set of actions A, we define the
merge of two rule trees Δi

1 and Δi
2 both rooted in feature fi

(using functional notation) as follows: For all v ∈ Vfi ,

(Δi
1 +Δi

2)(v) =

⎧⎨
⎩

Δi
1(v) if Δ2(v) is undefined

Δi
2(v) if Δ1(v) is undefined

Δi
1(v) + Δi

2(v) if both are defined

Δn+1
1 +Δn+1

2 = max{Δn+1
1 ,Δn+1

2 }

330330330



Figure 6: An example of added rules to the tree

Figure 5: An example of single trees as derived from alerts.

To merge two actions we use their precedence as explained

above. To merge two trees we take the subtrees in either tree

where subtrees occurring in both are (recursively) merged.

Example 5. Consider the rules created in Example 4
(Fig. 5) to respond to anomalous transaction
x = 〈jos, select, {drugs}, {Atripla}, 08:01, 10.10.12.22〉.
To block future executions of similar transactions, these rules
are used to update the rule-tree in Fig. 4. The resulting tree
is shown in Fig. 6. The first rule creates a new branch at the
column level to block the selection of column drugs by Jos.
The second rule create a new branch at the ResultSet level to
block queries made by Jos that returns Atripla in the result set.

VI. VALIDATION

To validate our approach, we have extended the RapidMiner

plugin described in [7] with a prevention module based on the

proposed framework. The plugin implements modules to learn

normal behavior profiles and to detect anomalous transactions.

The prevention module automatically creates and updates the

rule base based on the alerts generated by the detection module

and matches newly arriving transactions against it.

A simple analytical analysis can already prove the correctness

of our approach in blocking all similar repeated attacks,

i.e. those with the same root causes, as soon as the first true

positive is identified. Thus, in the experiments we focus on

evaluating how effective our approach is, in blocking new

‘unwanted’ behavior and thus reducing the effort for the

operator. We henceforth assume that every alert raised by

the detection module is a true positive: upon receiving an alert,

the preventive module creates a DENY rule for every root

cause, and updates the rule base accordingly. Note that we

could also randomly select certain alerts as false positives, and

use them to improve the detection model: this, however, does

not influence the overall reduction in the number of raised

alerts as subsequent occurrences of similar transactions would

just be detected as normal traffic.

To assess the impact of our solution we measure the number

of alerts raised over time, with and without the prevention

module in place. This gives a measure of the transactions

that were blocked, thus providing an indication of the reduced

effort for the operator and, indirectly, of how much data loss

was prevented. A precise quantification of this latter value,

however, would require assigning a value to the data; while

there is some work addressing this, e.g. [29], it is outside

the scope of this paper. Likewise, we do not analyze the

331331331



(a) Small training set

(b) Large training set

Figure 7: Number of alerts with/without prevention for synthetic data

effectiveness of the detection engine in terms of detection

rate and false positive rate as this has already been evaluated

in a previous work (see [7]): we note that a reduction in the

absolute amount of alerts implies a proportional reduction

in the absolute amount of false positives. We performed a

number of experiments using both synthetic and real-life logs.

A. Synthetic data

In the first set of experiments, we used a synthetic dataset

obtained from the healthcare management system GnuHealth

(http://health.gnu.org). We simulated the normal behavior of

users at a hospital (validated by domain experts), including an

admin and different users, mainly doctors and nurses taking

care of patients with different diseases. The dataset contains

30,490 queries spanned over a time frame of 15 days.

To evaluate how much the increase in effectiveness depends

on the accuracy of the initial detection module, we varied the

size of the dataset used to train the detection engine. In partic-

ular, we learned normal behavior profiles using 3% and 30%

of the dataset (915 and 9,146 transactions resp.); the remaining

70% of the dataset (21,344 transactions) was analyzed by the

obtained detection engines, for validation purposes.

The results of the experiments are presented in Fig. 7. The

figure shows the number of alerts raised by the detection system

over time. In particular, the dashed line indicates the number

of alerts when only the detection module is operative, whereas

the continuous line indicates the number of alerts when also

the prevention module is in place. Since these transactions

represent undesired behavior, the graph gives an idea of the

amount of malicious operations that were blocked. Note that

the two lines do not start at the same number of alerts: this

is because the rule base is not updated daily but after each

transaction, i.e. a new rule is added to the rule base as soon

as the detection engine raises an anomaly.

As shown in Fig. 7, the use of the prevention module leads

to a reduction in the number of alerts. This is in line with the

fact that, over time, the detection model and the rule base gain

(a) Small training set

(b) Large training set

Figure 8: Number of alerts with/without prevention for real data

in accuracy. Over the 15 days of our analysis, we observed a

reduction of approximately 35% when the small dataset was

used for the training of the detection engine (Fig. 7a) and 10%

when the large dataset was used (Fig. 7b).

B. Real-life data

The real dataset is taken from the log of an (Oracle)

operational database of a large IT company. The database is

accessed through a web application internal to the organization,

which has about 100 users. The dataset was created by

enabling the DBMS auditing facility, and it contains 12,040,910

transactions. To execute the experiments, we used 3,612 and

361,227 transactions (approximately 0.03% and 3% of the

whole dataset resp.) to learn the normal behavior, while we

used 8,428,637 transactions (70% of the dataset) for validation.

The results of the experiments are presented in Fig. 8. Clearly,

the difference in the number of alerts in the two cases increases

with the passing of time. In particular, we can observe a

reduction of approximately 18% when the small dataset was

used for the training of the detection engine (Fig. 8a), and

15% when the large dataset was used (Fig. 8b). Note that two

days are characterized by a large number of alerts compared

to the others (recognizable in Fig. 8 for the steepness of the

line). This is mainly because a significantly higher number of

transactions were executed in those days.

C. Discussion

The effectiveness of our prevention system depends on how

often unwanted transactions, similar to those already found, are

attempted. To get an estimation of the “frequency” of unwanted

behavior, we learned an intentionally incomplete model of

normal behavior and used the remaining transactions to

represent the unwanted behavior. Fig. 7 gives the best and worst

case scenario for our approach, where repetition of unwanted

behavior is respectively prevalent (35%) or ‘rare’ (10%), while

Fig. 8 shows the typical expected behavior in a real system.

The experiments show that our approach offers prompt

responses to seal leakage (by updating the rule base), reducing

332332332



response time and, with it, the amount of data leaked. This

provides great benefit especially considering that data leakages

typically stay unsealed for days or weeks [9].

One of the main problems in detection systems is that an

operator has to deal with a large number of alerts, many of

which can be false positive. An advantage of our approach is

that, in the long term, it reduces the amount of alerts and, at the

same time, it improves the accuracy of the whole DLP system.

In particular, the overall number of alerts is reduced because

the prevention module blocks (already analyzed) undesired

transactions without passing them on to the operator.

Finally, although our implementation is not optimized with

respect to performance, the time to match a transaction against

a rule base containing over a thousand rules is around 0.4 ms,

which makes our approach suitable for real time applications.

VII. CONCLUSION

In this paper, we have presented a hybrid approach for data

loss prevention and detection. Existing approaches focus either

on prevention, e.g. by applying signature-based techniques that

are unable to detect zero-day attacks, or on detection, e.g. by

applying anomaly-based techniques that suffer a high false pos-

itive rate and thus have high operational costs. In this paper, we

overcome these limitations by combining a white-box anomaly-

based detection technique able to raise alerts for any previously

unseen transaction, with a rule-based prevention technique that

blocks transactions that an operator has previously flagged as

malicious. After an operator determines whether an anomaly

raised by the detection engine is an actual attack, our approach

automatically creates rules (devised from the alert) and updates

the rule base accordingly. Experiments show that our approach

achieves promising results, providing the capability of reducing

the spread of data leakage and the effort required by the

operator. Finally, although we define a transaction in terms of

SQL queries, the use of a different feature set to characterize

transactions (e.g., to reflect request/response in a web applica-

tion or packets in a control network) allows the easy adaption

of our solution to different domains, like web applications,

firewalls or network-based intrusion detection systems.

Acknowledgments: This work has been partially supported by

the European Commission through project FP7-SEC-607093-

PREEMPTIVE, by the Dutch program COMMIT through the

THeCS project and by NWO through the IDEA ICS project.

REFERENCES

[1] P. Gordon, “Data Leakage - Threats and Mitigation,” SANS Institute,
Tech. Rep., 2007.

[2] C. L. Huth, D. W. Chadwick, W. R. Claycomb, and I. You, “Guest edi-
torial: A brief overview of data leakage and insider threats,” Information
Systems Frontiers, vol. 15, no. 1, p. 1, 2013.

[3] A. Shabtai, Y. Elovici, and L. Rokach, A survey of data leakage
detection and prevention solutions, ser. SpringerBriefs in Computer
Science. Springer, 2012.

[4] T. Wuchner and A. Pretschner, “Data loss prevention based on data-driven
usage control,” in Proc. of ISSRE. IEEE, 2012, pp. 151–160.

[5] Open Security Foundation, “Data breach trends during the first half of
2014,” Report, 2014.

[6] N. MacDonald, “Architecting a new approach for continous advanced
threat protection,” in Gartner Security & Risk Manag. Summit, 2014.

[7] E. Costante, J. den Hartog, M. Petkovic, S. Etalle, and M. Pechenizkiy,
“Hunting the unknown - white-box database leakage detection,” in Data
and Applications Security and Privacy XXVIII, ser. LNCS 8566. Springer,
2014, pp. 243–259.

[8] R. Koch, “Towards next-generation intrusion detection,” in Proceedings
of International Conference on Cyber Conflict. IEEE, 2011, pp. 1–18.

[9] “2014: A Year of Mega Breaches,” Ponemon Institute, Res. Rep., 2015.
[10] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet,” Symantec,

Symantec Security Response, 2011.
[11] Y. Shapira, B. Shapira, and A. Shabtai, “Content-based data leakage

detection using extended fingerprinting,” CoRR, vol. abs/1302.2028, 2013.
[12] M. Hart, P. Manadhata, and R. Johnson, “Text classification for data loss

prevention,” in PET, ser. LNCS 6794. Springer, 2011, pp. 18–37.
[13] E. Gessiou, Q. H. Vu, and S. Ioannidis, “IRILD: an Information Retrieval

based method for Information Leak Detection,” in Proc. of Eur. Conf.
on Computer Network Defense. IEEE, 2011, pp. 33–40.

[14] J. M. Gómez-Hidalgo, J. M. Martın Abreu, J. Nieves, I. Santos,
F. Brezo, and P. G. Bringas, “Data leak prevention through named
entity recognition,” in Proceedings of International Conference on Social
Computing. IEEE, 2010, pp. 1129–1134.

[15] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,” in
Proc. of LISA. USENIX Association, 1999, pp. 229–238.

[16] P. Samarati and S. D. C. d. Vimercati, “Access Control: Policies, Models,
and Mechanisms,” in FOSAD. Springer, 2001, pp. 137–196.

[17] OASIS XACML Technical Committee, “eXtensible Access Control
Markup Language (XACML) Version 3.0,” OASIS Standard, 2013.

[18] G. Hughes and T. Bultan, “Automated Verification of Access Control
Policies Using a SAT Solver,” STTT, vol. 10, no. 6, pp. 503–520, 2008.

[19] F. Turkmen, J. den Hartog, S. Ranise, and N. Zannone, “Analysis of
XACML Policies with SMT,” in Principles of Security and Trust, ser.
LNCS 9036. Springer, 2015, pp. 115–134.

[20] C. Bockermann, M. Apel, and M. Meier, “Learning SQL for database
intrusion detection using context-sensitive modelling,” in DIMVA, ser.
LNCS 5587. Springer, 2009, pp. 196–205.

[21] C. Chung, M. Gertz, and K. Levitt, “DEMIDS: A Misuse Detection
System for Database Systems,” in Integrity and Internal Control in
Information Systems, ser. IFIP AICT 37, 2000, pp. 159–178.

[22] J. Fonseca, M. Vieira, and H. Madeira, “Integrated intrusion detection
in databases,” in Dependable Computing, ser. LNCS 4746. Springer,
2007, pp. 198–211.

[23] M. Gafny, A. Shabtai, L. Rokach, and Y. Elovici, “Poster: applying
unsupervised context-based analysis for detecting unauthorized data
disclosure,” in Proc. of CCS. ACM, 2011, pp. 765–768.

[24] A. Kamra, E. Terzi, and E. Bertino, “Detecting anomalous access patterns
in relational databases,” VLDB Journal, vol. 17, pp. 1063–1077, 2008.

[25] S. Mathew and M. Petropoulos, “A data-centric approach to insider
attack detection in database systems,” in Recent Advances in Intrusion
Detection, ser. LNCS 6307. Springer, 2010, pp. 382–401.

[26] A. Roichman and E. Gudes, “DIWeDa - Detecting Intrusions in Web
Databases,” in Data and Applications Security XXII, ser. LNCS 5094.
Springer, 2008, pp. 313–329.

[27] R. Santos, J. Bernardino, M. Vieira, and D. Rasteiro, “Securing Data
Warehouses from Web-Based Intrusions,” in Web Information Systems
Engineering, ser. LNCS 7651. Springer, 2012, pp. 681–688.

[28] G. Wu, S. Osborn, and X. Jin, “Database intrusion detection using role
profiling with role hierarchy,” in Secure Data Management, ser. LNCS
5776. Springer, 2009, pp. 33–48.

[29] S. Vavilis, A. Egner, M. Petkovic, and N. Zannone, “An anomaly analysis
framework for database systems,” Computers & Security, vol. 53, pp.
156–173, 2015.

[30] O. Depren, M. Topallar, E. Anarim, and M. Ciliz, “An intelligent intrusion
detection system (IDS) for anomaly and misuse detection in computer
networks,” Expert Syst. App., vol. 29, no. 4, pp. 713–722, 2005.

[31] K. Hwang, M. Cai, Y. Chen, and M. Qin, “Hybrid intrusion detection
with weighted signature generation over anomalous internet episodes,”
Dependable and Secure Computing, vol. 4, no. 1, pp. 41–55, 2007.

[32] O. Yüksel, S. Etalle, and J. den Hartog, “Reading between the fields:
Practical, effective intrusion detection for industrial control systems,” in
Proc. of SAC. ACM, 2016.

[33] E. Costante, J. den Hartog, M. Petkovic, S. Etalle, and M. Pechenizkiy,
“A behaviour-based approach to database leakage detection,” Journal of
Information Security and Applications, 2015, to appear.

333333333


