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Abstract— The search for new authentication methods to re-
place passwords for modern mobile devices such as smartphones
and tablets has attracted a substantial amount of research in
recent years. As a result, several new behavioral biometric
schemes have been proposed. Most of these schemes, however,
are uni-modal. This paper presents a new, bi-modal behav-
ioral biometric solution for user authentication. The proposed
mechanism takes into account micro-movements of a phone
and movements of the user’s finger during writing or signing
on the touchscreen. More specifically, it profiles a user based
on how he holds the phone and based on the characteristics
of the points being pressed on the touchscreen, and not the
produced signature image. We have implemented and evaluated
our scheme on commercially available smartphones. Using Mul-
tilayer Perceptron (MLP) 1-class verifier, we achieved ≈ 95%
True Acceptance Rate (TAR) with 3.1% False Acceptance Rate
(FAR) on a dataset of 30 volunteers. Preliminary results on
usability show a positive opinion about our system.

Index Terms—Biometrics, Authentication, Human-Computer
Interaction

I. INTRODUCTION

Smartphones and tablets are widely used personal devices

[1]. They generate and store an increasing amount of sensitive

information. Furthermore, smartphones and tablets are used

to perform security-critical transactions such as mobile pay-

ments, remote access to a company’s intranet, etc. Existing

authentication methods based on PINs and passwords are not

convenient for the type of user interactions that characterize

smartphones (very frequent [2] and short [3]); as a result,

more and more users simply do not use any security (up

to 40.9% according to a recent study [4]). Thus, the focus

of security research has shifted towards biometric-based

authentication schemes as a possible alternative. In particular,

behavioral biometrics looks attractive since it is easy to

implement because it requires only the standard hardware

provided by most modern smartphones.

A handwritten signature establishes a user’s identity based

on how he writes his name. This behavioral modality is

very popular because it is socially and legally accepted as a

means of personal identification in everyday life, however its

implementations require dedicated pads [5]. Modern touch-

screens make it feasible to implement handwritten signatures

in smartphones and tablets. However, like all other biometric

modalities, this behavioral modality faces two basic chal-

lenges: intra-class variability and inter-class similarity. Intra-

class variability refers to variations in signatures of the same

person while inter-class similarity refers to the similarity

of signatures of two or more persons found incidentally or

intentionally as a result of an adversary’s targeted attack. In

smartphone user authentication scenarios, intra-class varia-

tion is challenging due to the comparatively smaller display

area and the quality of the touchscreen, which result in large

intra-class variations [6] [7]. Intra-class variations and inter-

class similarity lead respectively to higher FRR and FAR.

This paper presents a smartphone user authentication sys-

tem based on how a user holds his phone while signing on

its touchscreen. The system profiles pressed screen points

(so-called touch-points) and the micro-movements of the

phone during the signing process in order to verify the

user’s identity. Although typing a PIN is easier than writing

something on the touchscreen, a PIN can be forgotten,

whereas most users remember their own name. Moreover,

launching shoulder surfing and smudge attacks to steal PINs

and passwords is relatively easy. In our method, even if

an attacker knows what is being written, access is still

denied because he cannot mimic the phone movements of

the legitimate user.

We registered the phone micro-movements using multiple

physical sensors available on most smartphones. These sen-

sors are triggered when a user starts writing (first touch-point)

and stop as the user finishes writing (last touch-point). We

do not take into account the signature image because it can

be copied and mimicked [8]. We tested our mechanism over

a dataset collected from 30 users, by applying the anomaly

detection (one-class) approach. Results show that using MLP

as verifier, we achieve ≈ 95% TAR and 3.1% FAR.

The main contributions of this paper are:

• The proposal and implementation of Hold & Sign,

a new behavioral biometric user authentication mecha-

nism, based on how the user holds his smartphone in his

hand and signs his name on the smartphone touchscreen.

It combines two behavioral modalities. Furthermore, it

implements dynamic handwritten signature verification

using multiple sensors that do not require the use of a
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dedicated device to capture the signature.

• Experimental validation, considering how different situ-

ations in which a user can use the device can affect the

robustness and accuracy of the biometrics.

• Performance and power consumption analysis during

acquisition, training and testing phases. A preliminary

usability analysis was carried out to assess how end-

users reacted to our solution.

The rest of the paper is organized as follows. Section

II describes related work. Section III presents our solution.

Section IV illustrates the experimental analysis. Section V

discusses the prototype implementation and some operational

concerns such as power consumption. Section VI presents an

analysis of users’ experiences with the prototype. Section VII

analyzes the results. Section VIII concludes the paper.

II. RELATED WORK

Researchers have proposed several biometric-based solu-

tions for smartphone user authentication. In this section, we

survey the most relevant approaches.

A. Sensor-Based Authentication
Physical three-dimensional sensors – such as accelerome-

ters, gyroscopes, and orientation sensors – are built into most

smartphones. These sensors have been used to identify users

based on their walking patterns [9], arm movements [10],

arm movement and voiceprints [11], gesture models [12],

and free-text typing patterns [13].

Li et al. [14] investigated the role of three sensors, namely

accelerometer, orientation sensor, and compass, in addition

to the touch gestures in continuous user authentication.

They propose a transparent mechanism, which profiles finger

movements and interprets the sensed data as different ges-

tures. It then trains the Support Vector Machine (SVM) clas-

sifier with those gestures and performs authentication tasks.

The authors achieved 95.78% gesture recognition accuracy

on a database of 75 users.

Zhu et al. [12] propose a mobile framework Sensec, which

makes use of sensory data from the accelerometer, orientation

sensor, gyroscope, and magnetometer and constructs a user

gesture model of phone usage. Based on this gesture model,

Sensec continuously computes the sureness score, and au-

thorizes the real users to enable/disable certain features to

protect their privacy. Users were asked to follow a script, i.e.

a sequence of actions; the sensory data was collected during

the entire user interaction. Sensec identified a valid user with

75% accuracy and it detected an adversary with an accuracy

of 71.3% (with 13.1% FAR) based on 20 recruited users.

Buriro et al. [13] authenticate users using a sensor-

enhanced touch stroke mechanism based on two human

behaviors: how a person holds his phone and how he types

his 4-digit free-text PIN. Using a Bayesian classifier and a

Random Forest (RF) classifier, they achieved 1% Equal Error

Rate (EER).

A recent study [15] makes use of Hand Movement, Ori-

entation, and Grasp (HMOG) to continuously authenticate

smartphone users. HMOG transparently collects data from

the accelerometer, gyroscope, and magnetometer when a

user grasps, holds and taps on the smartphone screen. On a

dataset of 100 test subjects (53 male and 47 female), HMOG

achieved the lowest EER of 6.92% in walking state with the

SVM verifier.

All the solutions given above use some of the three-

dimensional sensors available in most smartphones and con-

firm the potential of these sensors for user authentication. Our

solution uses 3-dimensional built-in sensors in combination

with handwritten signatures to achieve high accuracy for

authentication.

B. Touch-Based Authentication
User authentication based on touch-interaction is a com-

paratively less explored area. Touch-interactions can be used

both for one-shot login and continuous user authentication

[16]. Touch-based features may include time, position, the

size of touch, pressure and touch velocity, etc. De Luca et

al. [17] profile touch data generated during different slide

operations for unlocking the smartphone screen. Using the

Dynamic Time Warping (DTW) algorithm, they achieve 77%

authentication accuracy.

Angulo et al. [18] suggest an improvement to the phone

lock patterns. Their system authenticates users based on the

lock patterns combined with the touch data associated with

those lock patterns. They try multiple classifiers and they

achieve an EER of 10.39% using a Random Forest classifier.

Sae-Bae et al. [19] use specific five-finger touch gestures.

They achieve an accuracy of 90% on the Apple iPad. How-

ever, the method is not feasible for the small touchscreens of

typical smartphones. Shahzad et al. [20] consider customized

slide-based gestures to authenticate a smartphone’s users.

Their study yielded an EER of 0.5% with the combination

of just three slide movements. Sun et al. [21] require users to

draw an arbitrary pattern with their fingers in a specific region

of the screen for unlocking their smartphones. Users were au-

thenticated on the basis of geometric features extracted from

their drawn curves along with their behavioral and physio-

logical modalities. The solution in Sae-Bae and Memon [22]

is conceptually similar to our work. This uni-modal online

signature verification scheme extracts the histogram features

from the user signature and performs user authentication. The

lowest EER achieved was 5.34% across different sessions.

Our solution relies on the screen touch-points being

pressed and the velocity of finger movement during the

signing – neither signature image nor its geometry is used.

It does not require the user to draw specific patterns for

authentication, but simply use any pattern, which is conve-

nient or well-known to him - e.g. to sign his name. This

increases usability of our solution as the user is not required

to perform an initial learning of an unknown pattern in order

to memorize it and for his signing features to become stable

and reliable.

C. Signature-Based Authentication
Some work has been done regarding signature-based bio-

metric authentication on smartphones. Koreman and Morris
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[23] propose a continuous authentication method based on

multiple modalities, namely the face, voice, and signature on

the touchscreen. Their study yielded an EER of 2.3%, 17%,

4.3% and 0.6% for voice, face, signature and fused modalities

respectively.

Vahab et al. [24] implement online signature verification

using an MLP classifier on a subset of Principal Component

Analysis (PCA) features. The validation was performed using

4000 signature samples from the SIGMA database [25] and

yielded an FAR of 7.4% and an FRR of 6.4%.

In recent work of Xu et al. [26], users were asked to

write different alphabets on the screen; 42 handwriting fea-

tures were extracted using a handwriting forensics approach

(which focuses on the geometry of writing [27]). Those fea-

tures were then classified using SVM. The proposed solution

achieved an EER of 5.62%. Additionally, the touch slide

(touch-points stimulated when writing an alphabet) yielded

an EER of 0.75%.

Images of handwriting signatures have been used by

SignEasy as an authentication method in iOS8 [28], allowing

users to transparently add their electronic signatures on im-

portant documents. Similarly, a signature recognition system

[29] performs user identification based on user signatures

captured via a smartphone touchscreen or via a dedicated

signature capturing device. It verifies signatures by comput-

ing the similarity score between the query signature and the

stored signature template. Additionally, this system provides

client-server solutions based on signature images. None of

them uses phone movements and/or touch features for user

authentication.

Our solution is different because it is bi-modal thus in-

tuitively more secure than the uni-modal ones; it takes into

account phone movements and finger movements during the

signing process. Spoofing only one of the two modalities

would not suffice to grant access to the phone.

III. PROBLEM FORMULATION AND SOLUTION

In this section, we describe the main building blocks of

our solution.

A. Threat Model
We consider the adversarial model in which the attacker

is already in possession of the device. The attacker can be

a stranger who steals or finds the smartphone. Similarly, the

attacker can be a family member, close friend or co-worker

(who knows the implemented authentication mechanism).

The goal of both types of attacker is the same: gaining access

to the device and its contents. This threat model does not

include the possibility of opening the phone and stealing a

genuine biometric template. We do address this problem, by

means of cryptography and trusted storage, however this issue

is outside the scope of this paper.

B. Our Solution
Our solution (see Figure 2) exploits the phone movements

in hand and finger movements on the touchscreen as shown

in Figure 1. In particular, we consider all the touch-points

Fig. 1: Different phone positions during signing process

Fig. 2: Our proposed authentication system

pushed for the entire signature and the velocity of the finger

movement. All the physical sensors are triggered and kept

running during the whole signing process (from first to last

touch-point) on the touchscreen. Obtained sensor readings are

then preprocessed to extract useful features. As we propose a

bi-modal system, we need to combine the extracted features

from both built-in sensors and the touchscreen to profile user

behavior. Our model involves feature selection, which entails

selecting the subset of productive features to be used for user

authentication. A user profile template is formed based on

the selected feature subset and is then stored in the main

database. These behavioral vectors are later matched with

the vector of the test sample in order to authenticate/reject

the claimant.

C. Considered Data Sources

1) Sensors: Related work [13] [11] [30] [31] [15] shows

that each user has a unique way of holding and/or picking

up his smartphone. This movement behavior can be profiled

only with three-dimensional sensors.

Our solution relies on three built-in three-dimensional

sensors: the accelerometer, the gravity sensor, and the mag-

netometer. We derived two additional sensor readings from

the accelerometer by applying two filters1 (low pass and

high pass) with the parameter α = 0.5, and call the out-

comes Low-Pass Filter (LPF) and High-Pass Filter (HPF)

accelerometer readings. Thus, in total, we have three variants

1http://developer.android.com/guide/topics/sensors/sensors motion.html

278278278



of accelerometer sensor readings: Raw, LPF, and HPF ac-

celerometer readings. A raw accelerometer reading produces

raw values including gravity values. An LPF accelerometer

reading measures the apparent transient forces acting on the

phone, caused by the user activity, and an HPF reading

produces the exact acceleration applied by the user on the

phone. The gravity sensor provides the magnitude and direc-

tion of the gravity force applied on the phone. The coordinate

system and the unit of measurement of gravity sensor are the

same as those of the accelerometer sensor. The magnetometer

sensor measures the strength and/or direction of the magnetic

field in three dimensions. It differs from the compass as it

does not provide point north. The magnetometer measures

the Earth’s magnetic field if the device is placed in an

environment absolutely free of magnetic interference. All

the above sensors generate continuous streams in x, y and

z directions. We have added a fourth dimension to all of

these sensors and name it magnitude. Magnitude has been

tested in the context of smartphone user authentication [13]

[32] [15] and has proved to be very effective in classification

accuracy. The magnitude is mathematically represented as:

SM =
√
(a2x + a2y + a2z) (1)

where SM is the resultant dimension and ax, ay and az are

the accelerations along the X, Y and Z directions.

2) TouchScreen: The touchscreen provides the user in-

terface for the operation of the device. Devices can be

categorized as single or multi-touch devices. A finger and/or

a pen interacts with the touchscreen. In Android, the library

MotionEvent provides a class for tracking the motion of

different pointers such as a finger, stylus, mouse, trackball,

etc. The event triggered as a result of a touch is reported by an

object of this class. This object may contain a specific action

code such as the location of the touch in XY coordinates

of the touchscreen, and information about pressure, size and

orientation of the touched area. The action code represents

the state of the touch action, e.g. Action_Down stands for

the start of a touch action while Action_Up represents the

end of a touch action. The Android VelocityTracker
class is used to track the motion of the pointer on the

touchscreen. The class methods, getXVelocity() and

getYVelocity(), are used to acquire the velocities of the

pointer on the touchscreen in the X and Y axes respectively.

D. Considered Classifiers

Generally, the problem of user biometric authentication is

solved in two ways: with binary classification (training with

two classes) and anomaly detection (training with only the

target class). Classifiers are very powerful in discriminating

the true user from a given training set, whereas anomaly

detectors check for deviation from the legitimate user’s be-

havior and authenticate/reject on the basis of this deviation. In

order to train a binary classifier, the biometric data from both

the owner and the non-owner of the smartphone is required,

which is an unrealistic assumption in the real world, since

the sharing of biometric information between smartphone

users may lead to privacy concerns. Hence, we used anomaly

detectors (1-class verifiers) for user authentication [15] [33].

We chose four different verifiers, i.e. BayesNET, K-Nearest

Neighbor (KNN), Multilayer Perceptron (MLP) and Random

Forest (RF), because they were found to be very effective in

previous studies. BayesNET and RF verifiers were used with

their default settings. However, the parameters of both MLP

and KNN were optimized, because with default parameters

they performed quite poorly. We used K = 3 in KNN and

similarly used 3 hidden layers in MLP. We used all of

our verifiers wrapped into Weka’s metaclass classifier; the

OneClassClassifier2.

E. Success Metric
True Acceptance Rate (TAR): The proportion of attempts

of a legitimate user correctly accepted by the system.

False Acceptance Rate (FAR): The proportion of attempts

of an adversary wrongly granted access to the system. It can

be computed as FAR = 1− TRR
False Rejection Rate (FRR): The proportion of attempts

of a legitimate user wrongly rejected by the system. It can

be computed as FRR = 1− TAR.

True Rejection Rate (TRR): The proportion of attempts of

an adversary correctly rejected by the system.

Failure to Acquire Rate (FTAR): The proportion of failed

recognition attempts (due to system limitations). A reason

for this failure could be the inability of the sensor to capture,

insufficient sample size, number of features, etc.

IV. EXPERIMENTAL ANALYSIS

A. Data collection
Android supports data collection in both fixed and

customized intervals after registering the sensors

with registerlistener()3. Such intervals are often

termed Sensor Delay Modes. There are four delays:

SENSOR DELAY FASTEST with a fixed delay of 0s,

SENSOR DELAY GAME with a fixed delay of 0.02s,

SENSOR DELAY UI with a fixed delay of 0.06s and

SENSOR DELAY NORMAL with a fixed delay of 0.2s.

We developed an Android application, Hold & Sign,

which can be installed on any Android smartphone starting

from version 4.0.4. We used SENSOR DELAY GAME, since

we observed that SENSOR DELAY NORMAL and SEN-
SOR DELAY UI were too slow and some of the sensors were

not able to sense the user interactions in these two modes.

SENSOR DELAY FASTEST mode could have been used as

well, but it includes noise in the data collection.

We recruited 30 volunteers (22 male and 8 female); the

majority of them are either Master’s or Ph.D. students but not

security experts. In order to have diversity, we recruited users

from several nationalities. The purpose of the experiment

and the description of our proposed solution was clearly

2http://weka.sourceforge.net/doc.packages/oneClassClassifier/weka/
classifiers/meta/OneClassClassifier.html

3http://developer.android.com/reference/android/hardware
/SensorManager.html
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explained to each user individually. The process of data

collection and how data are stored were carefully explained.

Each volunteer provided explicit consent to participate in the

experiment. We collected data in three different activities,

sitting, standing and walking with Google Nexus 5.

B. Features

We gathered 4 data streams from every 3-dimensional

sensor except touchscreen, and we extracted 4 statistical

features, namely mean, standard deviation, skewness, and

kurtosis, from every data stream. Data from every sensor

was transformed into a 4 by 4 features matrix. In total we

obtained 16 features from all four dimensions of each sensor.

Similarly, we extracted 13 features from touchscreen data.

The extracted features from touchscreen data are shown in

Table I.

C. Features Fusion

In a study conducted by Jain et al. [34], the authors explain

that there are five levels in a biometric system at which the ac-

quired data can be fused: sensor; feature; match score; rank;

and decision level. The fusion of data as early as possible may

increase the recognition accuracy of the system. However,

the fusion of data at sensor level may not yield better results

because of the presence of noise during data acquisition. Thus

fusion at feature level is expected to provide better results,

because the feature representation communicates much more

relevant information. The extracted feature set from the data

from multiple sources can be combined to form a new feature

set. We used fusion at the feature level, in order to provide the

maximum amount of relevant information to our recognition

system. The fusion of 16 features from each sensor makes a

new feature vector and we call this feature vector the pattern

of user’s hold behavior. The length of this feature vector is 80
features (16 for each of the five used sensors). Similarly, the

feature vector of sign behavior is small (13 features, extracted

from the captured touch-points through the touchscreen) and

we call it a sign pattern.

The length of the fused feature vector for both modalities

becomes 93 features.

D. Feature Subset Selection

To avoid overfitting and address the curse of dimension-

ality issue, we performed feature subset selection. Feature

subset selection is the process of choosing the best possible

subset, i.e. the set that gives the maximum accuracy, from

the original feature set. Note that even if we achieve the

same accuracy with reduced features, smaller feature vectors

decrease computation time and allow the classifier to decide

faster.

We evaluated our feature set (93 features for fused behav-

iors) with Recursive Feature Elimination (RFE) feature subset

selection methods. We relied on scikit-learn4, a Python-based

tool for data mining and analysis, for RFE feature subset

selection.

4http://scikit-learn.org/stable/

TABLE I: List of selected features from touchscreen data

No. Touch Features

1 StartX

2 EndX

3 StartY

4 EndY

5 AvgXVelocity

6 AvgYVelocity

7 MaxXVelocity

8 MaxYVelocity

9 STDX

10 STDY

11 DiffX

12 DiffY

13 EUDistance

Fig. 3: RFE Feature Selection from sitting, standing and

walking states.

The RFE classifier trains itself on the initial set of features

and assigns weights to each of them. The features with

smallest weights are later pruned from the current feature

set. The procedure is repeated until the intended number of

features is eventually reached5. We applied RFE with 10-fold

stratified cross-validation using an SVM classifier on the data

of all activities for two classes. The plot (see Figure 3) shows

the optimal number (11) of features selected from fused data

in standing and walking state and 10 for sitting state.

5http://scikit-learn.org/stable/modules/feature selection.html

TABLE II: List of selected features from fused (bi-modal)

data.

Sitting Standing Walking Combined
MgX Mean HPFMag Kurt EndY HPFY Mean

RAWY STD RAWY STD RAWY STD HPFZ Mean

DiffX DiffX DiffX GrZ Skew

StartY StartX RAWZ Mean StartX

MgY Mean EU Distance STDY EndX

StartX RAWMag STD HPFZ Mean StartY

EndY StartY StartY EndY

MgMag Mean DiffY HPFX Skew MaxYVelocity

GrY Mean HPFX Mean HPFX Mean AvgXVelocity

STDX MgMag Mean DiffY STDY

- EndX HPFY Mean DiffX
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TABLE III: Results of different classifiers (averaged over all

30 users) in different activities.

Sitting Standing Walking
Classifiers TAR FAR TAR FAR TAR FAR

BN 0.758 0.001 0.740 0.003 0.710 0.000
MLP 0.797 0.001 0.790 0.004 0.790 0.000
IBk 0.761 0.001 0.750 0.002 0.720 0.000
RF 0.767 0.001 0.750 0.002 0.710 0.000

E. Analysis
We analyzed data in two settings, i.e. (i) a verifying

legitimate user scenario, and (ii) an attack scenario.

In the verifying legitimate user scenario, we train the

system with the data from the owner class and then test the

system with the patterns belonging to that class. The outcome

can be either accept or reject. We used a 10-fold stratified

cross-validation method for testing. In cross-validation, the

dataset is randomized and then split into k (here k = 10)

folds of equal size. In each iteration, one fold is used for

testing, and the other k − 1 folds are used for training

the classifier. The test results are averaged over all folds,

which give the cross-validation estimate of the accuracy. This

method is useful in dealing with small datasets. Using cross-

validation we tested each available sample in our dataset. We

report the results of these settings in terms of TAR and FRR.

In the attack scenario, we train the system with all the

data samples from the owner class and then test the system

with the patterns belonging to all the remaining classes (29
users). The outcome can be either false accept or true reject.

We report the results of these settings in terms of FAR and

TRR.

F. Results
We report our results in three ways: intra-activity, inter-

activity and activity fusion. By intra-activity, we mean train-

ing and testing each single activity (i.e. training walking to

test walking only). Inter-activity means training with one

single activity and using that training for testing all activities.

We tested the training for each activity. In activity fusion, we

used the combined data of all 3 activities for both training

and testing (i.e. training with fused data from walking, sitting

and standing) to test all activities. The reason for this is that

we want to check whether training in a single activity is

sufficient to recognize all the testing samples across activities.

Otherwise, we would need to train the recognition system

with patterns of multiple activities. As the MLP verifier

has consistently out-performed all other verifiers in all three

activities (see Table III), we will take into account only this

verifier in further analysis.

The results of all settings are presented below:

1) Intra-Activity: The results of all three activities, prior

to feature selection (averaged over 30 users), are given in

Table III. We achieved ≥ 79% TAR with full features in

all the activities using the MLP verifier. We then applied a

feature subset selection method (RFE) on our dataset. Figure

4 shows that we improved our authentication results (from
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Full/RFE

(features)

Standing

Full/RFE

(features)
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Full/RFE
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Fig. 4: Comparison of TAR for Full and RFE based feature

subsets in Intra-activity.
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Fig. 5: Comparison of TAR for Full and RFE based feature

subsets in Inter-activity.

≥ 79% to 85.56% in sitting, 86.75% in standing and 86% in

walking) with our chosen RFE feature subsets (see Table II).

We obtained 85.5% to 86.7% TAR with the MLP verifier

in the three user activities. In related work, [15] reported

93.08% TAR but at the expense of 6.92% FAR using the 1-

class SVM verifier and [11] reported 10.28% FAR and 3.93%
FRR with 1-class RF verifier.

2) Inter-Activity: In order to validate the applicability

of our mechanism in multiple user positions, we tested its

performance across multiple activities. For example, if we

train the system with the training patterns of just the sitting
activity and test it with the patterns of both standing and

walking activities and vice versa, we can observe whether or

not training with a single activity is sufficient. Figure 5 shows

unsatisfactory results (65.82% at best), and thus we conclude

that we need to train our system in multiple situations to

increase its accuracy.

3) Activity Fusion: Training the system in just one activ-

ity and using it in multiple activities does not lead to good

results. As a solution, we combined the patterns of multiple

activities and applied the RFE feature selection method on the

combined data. As done earlier, we picked 11 highly ranked

features (see the last column of Table II) and proceeded

to further analysis. We applied the same methodology (as

per section IV-E) to test our combined dataset from all
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TABLE IV: Results of MLP (averaged over all 30 users) for

combined data of all three activities.

Combined data from all activities
Classifiers TAR FRR FAR TRR

MLP 0.948 0.052 0.031 0.969

three activities. The results are summarized in Table IV. The

system achieved ≈ 95% TAR at the expense of just 3.1%
FAR. We observed that activity fusion could be useful in

terms of usability (as it requires one-time training in multiple

activities) and accuracy (we obtained ≈ 95% TAR) so we

checked its efficacy with the final implementation of Hold &
Sign. We trained the system with a different set of training

patterns from different activities and used the same set of

features (see the last column of Table II) and compared the

results.

V. HOLD & SIGN IMPLEMENTATION

We developed the final prototype of Hold & Sign taking

into consideration all our findings. Hold & Sign uses the MLP

classifier based on the feature set extracted using the RFE

method. The analysis was performed using this application

on a Google Nexus 5 smartphone running Android 4.4.4.

Screenshots for training and testing are shown in Figure 6.

Hold & Sign requires a minimal configuration, i.e. a user may

choose either both modalities or any one of them (as shown in

Figure 6b) and needs to train the classifier accordingly. The

user can also decide the number of training instances, i.e.

how many times to write his own name on the touchscreen

to train the classifier (Figure 6c). In all choices, the user is

helped by the display of suggested recommended values. The

user is later required to write his own name for authentication

(see Figure 6d).

A. Performance
We tested the performance of Hold & Sign. We measured

three different timings: sample acquisition time, training time

and testing time. We computed these times for 3 different

settings: with 15, 30 and 45 patterns. We tested each setting

on the Google Nexus 5 with 35 tries for each time. Results

are averaged over all 35 runs.

1) Sample Acquisition Time: This is the time used by the

user to provide a sample for authentication. It is important

to know it because users may feel annoyed by the required

acquisition time that possibly results in complete removal

of the Hold & Sign application. We compared the sample

acquisition time for multiple mechanisms in Table V. What

makes our acquisition fast is the free-text feature, e.g. the

user can write any word (e.g. own name).

2) Training/Testing Time: Training time is the time re-

quired to train the classifier. It is usually computed just

once, at the installation, when the training samples are

provided to the system. In contrast, testing time is the time

required by the system to accept/reject the authentication

attempt. Our mechanism took 3.497s, 6.193s and 9.310s for

classifier training with 15, 30 and 45 patterns, respectively.

TABLE V: Sample acquisition time for different methods

adapted from [35].

Method Sample Acquisition Time (s)
Our method 3.5

PIN 3.7
Password 7.46

Voice 5.15
Face 5.55

Gesture 8.10
Face + Voice 7.63

Gesture + Voice 9.91

Similarly, the testing times with 15, 30 and 45 patterns were

0.200s, 0.213s, and 0.253s, respectively. Comparison with

the performance of other recent proposals is shown in Table

VI.

B. Power Consumption
Generally, it is quite difficult to determine with high

accuracy the power consumption of single mobile applica-

tions. Using dedicated hardware allows high accuracy [15].

However, there are software-based approaches that though

less accurate, are being extensively used [36]. Since we

wanted an initial indication, we used the software-based

approach.

In order to check the overhead resulting from use of the

application (in different steps), we terminated all the running

applications and all Google services, switched off WiFi,

Bluetooth, and cellular radios. The screen was kept running

for the entire duration of the experiment with brightness at the

lowest level and automatic brightness adjustment disabled.

A similar approach is applied in [36]. We used Trepn6 and

performed the experiments as follows.

In the first step, we computed reference power consump-

tion by running Hold & Sign with all the steps (sensor data

collection, feature extraction, etc.) disabled. In the second

stage, we enabled the sensor data collection part only to

compute the overhead resulting from sensory data collection.

In the third stage, we enabled the features extraction part to

compute the power consumption resulting from this process.

In the final step, we analyzed the app with all functionalities.

We profiled the power consumption for all these settings

of Hold & Sign for the entire duration (shortest duration 1
minute and 50s and longest 2 minutes and 40s) of the exper-

iment with 35 attempts each. The reference power consump-

tion is 460mW . We observed 7.17% overhead (493mW )

for sensor data collection, 27.8% in both data collection and

feature extraction stages (588mW ) and ≈ 1000mW in all

stages of the final setting. The feature computation incurred

just 19.2% overhead corresponding to data collection.

We observed that the average power consumption of our

mechanism is very low, which makes it a power-friendly app.

This claim can be supported by looking at some common

smartphone tasks and their average power consumption [37]

[38]:

6https://play.google.com/store/apps/details?id=com.quicinc.trepn&hl=en.
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(a) (b) (c) (d) (e)

Fig. 6: Screenshots of Hold & Sign in training (a to d) and testing phase (d & e)

• A one-minute phone call: 1054mW
• Sending a text message: 302mW
• Sending or receiving an email over WiFi: 432mW
• Sending or receiving an email over a mobile network:

610mW

VI. USABILITY ANALYSIS

We report the usability of our mechanism in two ways:

based on how many patterns are enough for training the

classifier to achieve significant authentication accuracy, and

by applying standard the System Usability Scale (SUS) for

collecting users’ views about our proposed mechanism.

A. Tradeoffs between Training and Accuracy
As shown in Table V, the average duration of a signature

drawn by a user on the touchscreen was 3.5s with the lowest

value being 2s. In our test, we observed that the willingness

of users to participate in our testing is strongly related to

the amount of time spent for training. We expect a similar

dependency also in normal usage. Hence it is important to

evaluate the ratio of training time to accuracy. We observed

that with just 15 patterns (in which case a user may take

less than a minute to train the system), the user could be

identified with around 70% TAR. Accuracy can be increased

at the cost of training time. It took less than 4 minutes for

the slowest of our testers to train the system with 45 patterns

(15 in each activity) and authentication results were ≈ 90%.

The TAR percents are averaged over 35 user attempts. The

results are shown in Figure 7.

B. Evaluation
We distributed Hold & Sign along with an 11-question

questionnaire adapted from the System Usability Scale7

(SUS) to our chosen volunteers (30 users). The SUS assess-

ment tool is widely used for gathering subjective impressions

about the usability of a system. It has already been used in

the context of smartphone authentication [35]. The response

to each question can be given on a five-point scale ranging

7http://www.usability.gov/how-to-and-tools/methods/system-usability-
scale.html.
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Fig. 7: User authentication on the prototype application. This

figure verifies the average results obtained from the fusion of

activities as described in Section IV-F3.The values above the

bars indicate time spent to provide samples

from ‘Strongly Disagree’ to ‘Strongly Agree’. The SUS

score is a value between 0 and 100 where a higher value

indicates a more usable mechanism. A raw SUS score can be

transformed to a percentile [40] or to a grading scale [41],

allowing easier interpretation of results. The average SUS

score is 68. Like the previous study [35], we added a question

to this questionnaire: What did you like or dislike about the
mechanism? This question was optional and subjective; users

were to write some lines supporting the reason for like or

dislike. We wanted to collect early feedback to allow us to

improve our solution in future. We asked the users to use

our app for some days (preferably a week) and share their

experience with us. We received responses from 18 out of 30
volunteers (60%).

C. Responses
We received useful feedback on our mechanism. We

achieved an average SUS score of 68.33%. Our score is better

than the well-established voice recognition score (66%) and

its fusion with the face (46%) and gestures (50%) as reported
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TABLE VI: Comparison of our results with state of the art.

Ref. Devices Classifier No. of Users Training Time Testing Time
Our method Nexus 5 MLP 30 3.5 - 9.3s 0.215 - 0.250 s

Lee et al. [31] Nexus 5 SVM 8 6.07s 20s
Li et al. [14] Motorolla Droid Sliding patterns 75 n.a 0.648s

Nickel et al. [39] Motorolla Milestoon KNN 36 90s 30s

in the literature [35]. Most of the responses were positive

about the use of signing as an authentication credential.

Most of the participants were also positive and comfortable

using a finger and using the smartphone touchscreen (i.e. no

complaints about the size of the display). We also got some

negative responses, mostly related to the initial setup; it was

“too cumbersome” for some, i.e. “a user has to sign multiple

times in order to train the system whereas setting up a PIN is

easier”. We also received some negative responses regarding

the system requiring the use of both hands.

Our mechanism is clearly in the initial stages and requires

a lot of tuning. We are planning to incorporate these initial

suggestions into future versions of Hold & Sign and also to

run more extensive usability studies.

VII. LIMITATIONS

Our current solution suffers from two important limita-

tions. Firstly, also pointed out by a volunteer, users must

use both hands. One hand holds the phone and other hand’s

fingertip is used for the signature. The user, therefore, may

experience some difficulty in using our solution, especially

when on the move. Secondly, the system cannot predict the

user’s ongoing activity in order to extract the best pre-selected

features and use them for verifying user identity.

VIII. CONCLUSION & FUTURE WORK

We proposed a new bi-modal behavioral biometric authen-

tication, Hold & Sign, using as behaviors how a user holds

a phone and how he writes on the touchscreen. We achieved

79% TAR at zero FAR from 1-class MLP with full features

in walking activity. The reason for this achievement could be

the fact that during walking, sensors gather more data thus

is possible to build accurate patterns. After applying feature

subset selection, TAR improved to 86.7% at the expense of

just 0.1% FAR. Lastly, processing the data from combined

activities yielded 94.8% TAR at 3.1% FAR.

Hold & Sign requires on average just 3.5s to enter the

behavioral pattern. Its ability to authenticate/reject a user

within 0.215−0.250s makes it very fast. The closest reported

testing time in the literature is 0.648s [14].

Hold & Sign offers two advantages over traditional mech-

anisms. Firstly, a user can write his own name in an uncon-

strained way with a finger on the smartphone’s touchscreen,

which makes memorability and repetition easier.

There is no need to remember a password/pattern and no

need to keep them secret, thus eliminating the problem of

sharing and stolen passwords. Also, it is easy to integrate

and implement in most modern smartphones without the need

for additional hardware. Hold & Sign can be used as a stand-

alone method or can be used in conjunction with other well-

established mechanisms for additional security.

Since signature-based authentication is already deployed

for user identification and it is also very common to use finger

movements for navigating documents, e.g. web pages, photo

albums, messages, etc., we expect our solution to receive

positive user acceptance. The results of the preliminary

usability analysis, with an SUS score above the average

(68.33%), is a positive starting point.

As future work, we plan to investigate the permanency

of this biometric modality, extend our work in terms of

continuous authentication and explore its usability with a

larger and more heterogeneous sample of testers. We are also

going to address the problem of seamless and fast detection of

a user’s current activity since this would allow authenticating

users based on the best feature subset selected from that

particular activity.
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