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Abstract—While there have been various studies identifying
and classifying Android malware, there is limited discussion
of the broader class of apps that fall in a gray area. Mobile
grayware is distinct from PC grayware due to differences in
operating system properties. Due to mobile grayware’s subjective
nature, it is difficult to identify mobile grayware via program
analysis alone. Instead, we hypothesize enhancing analysis with
text analytics can effectively reduce human effort when triaging
grayware. In this paper, we design and implement heuristics for
seven main categories of grayware. We then use these heuristics to
simulate grayware triage on a large set of apps from Google Play.
We then present the results of our empirical study, demonstrating
a clear problem of grayware. In doing so, we show how even
relatively simple heuristics can quickly triage apps that take
advantage of users in an undesirable way.

I. INTRODUCTION

Ensuring the scarcity of harmful applications (apps) within

markets, such as Google Play, is essential for maintaining user

confidence. While popular media frequently reports on mobile

malware, recent reports indicate that the problem is not as dire

as once thought [1]. One difficulty for researchers is defining

what constitutes malware. Often the intent of functionality

within an app is unclear. This ambiguity has lead Google to

publicize a categorization of Potentially Harmful Apps (PHAs)

that they actively monitor [2]. However, Google’s classification

focuses mostly on characteristics of malware. In contrast,

the focus of this paper is grayware: a class of PHAs that

occupy the nebulous middle ground between genuine utility

and malicious behavior. Although grayware may not perform

actions that can be labeled as outright illegal or malicious, its

actions may still negatively impact the user in terms of privacy,

performance, and user efficiency.

Existing studies on mobile app characterization focus on

malware [3], [4]; however, there has been limited discussion

of grayware. While there has been discussion on the privacy

leakage of location and phone identifiers [5], [6], the imping-

ing functionality is typically secondary to the app (e.g., due to

advertisements). Grayware is broader than privacy leaks. PC

grayware includes not only spyware, but also user annoyances.

Indeed, popular media reporting on mobile app security has

discussed imposter apps [7], [8], [9], spyware [10], [11], and

apps that do not implement functionality that they claim [12],

[13]. However, PC grayware characterizations do not directly

apply to mobile devices due to changes in the underlying

operating system (OS) and software distribution.

This work is motivated by two research questions: RQ1:
What categories of grayware are relevant for mobile device
stakeholders?; and RQ2: What analysis techniques can triage
mobile grayware in app markets? Clearly, RQ2 depends on

the answer to RQ1. To answer RQ1, we begin with a grayware

definition for PCs and then perform a broad survey of apps

on Google Play. We identify nine prevalent classes of mobile

grayware. We use this characterization to define a suite of

analysis techniques to answer RQ2.

Grayware is subjective by its very nature. Ultimately, a

human is needed to verify the results of any automated analysis

of grayware. Even Google’s PHA analysis includes manual

review [14]. Therefore, the goal of analysis should be to triage.

That is, we seek to use human resources as effectively as

possible. We are in part motivated by prior techniques to triage

mobile malware [15]. Given the subjective nature of grayware,

we expect program analysis alone is insufficient. Instead, we

hypothesize that text analytics can effectively reduce human

effort when identifying grayware. For each class determined

by RQ1, we propose heuristics that combine text analytics

with program analysis for effective triage.

We simulate triage by applying our analysis techniques to

a large set of Google Play apps. In doing so, we make the

following broad findings: (1) text analytics is a promising

approach to triage grayware in app markets, (2) grayware

appears within top search results for popular topics on Google

Play; (3) some grayware apps have a significant number of

downloads, and therefore may impact a large number of users;

(4) user ratings are an ineffective metric to triage grayware.

This paper makes the following main contributions:

• We develop lightweight heuristics to triage grayware
on mobile devices. We vary our methodology for each

heuristic, which primarily combines text analytics with

lightweight static analysis of disassembled code.
• We conduct a breadth study of grayware on Google Play.

Our findings show that grayware is a significant concern

that warrants development of sophisticated algorithms for

accurate detection.

The remainder of this paper presents our mobile grayware

characterization, heuristics for triaging mobile grayware, and

evaluation on a large set of apps from Google Play.

II. MOBILE GRAYWARE

Grayware occupies the nebulous middle ground between

genuine utility and apps intending to harm the user or other
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stakeholders. TrendMicro defines PC grayware as apps con-

taining annoying, undesirable, or undisclosed behaviors that

cannot be classified as malware [16]. Prior literature has iden-

tified apps with functionality that is not malicious, but ethically

questionable, such as leaking users’ location and personal

data [5] and aggressive advertising [17]. Mobile grayware

subsumes and goes beyond these previous characterizations.

The underlying distinction between malware and grayware

is the clarity of intention. For example, an app that performs

actions to directly damage or disrupt a system is clearly

malicious due to its intentions to harm the user (e.g., inten-

tionally causing data loss, stealing money, or authentication

credentials). Likewise, an app that intentionally attempts to

bypass security or protection mechanisms is also malware.

However, the intention of apps that collect personal data or

simply annoy the user falls into a gray area. Identifying

grayware by analyzing app behaviors is difficult, because a

behavior itself does not define intent. For example, consider

a spyware app that tracks the user’s location, and a child-

monitoring app that contains the same functionality. Both apps

are expected to have the same behavior, but the intent is

different. Making this distinction often requires a human to

review the overall context in which the functionality occurs.

Apps that do not satisfy the requirements of all stakeholders

shall be classified as grayware. A distinctive use case is

highlighted by the bring-your-own-device (BYOD) scenario,

where users perform personal and business activities on the

same device. In this scenario, a one-click-root app installed

by an employee may function as intended, but may weaken

protection around enterprise data. In contrast, a keylogger

installed by the employer may violate the employee’s privacy.

A. Survey Methodology

Existing classifications of grayware on PCs [18] are insuf-

ficient for mobile devices. Overall, mobile grayware differs

from PC grayware due to (1) different use cases (e.g., BYOD),

(2) new OS protection mechanisms, and (3) the move to a

centralized app distribution model. New OS protections require

clear app installation, which limits the feasibility of droppers

(Section II-C). Further, the centralized app distribution model

minimizes app piggybacking, which is another common instal-

lation mechanism for PC grayware. Finally, apps are treated

as security principals and cannot modify the configuration of

other apps, limiting hijackers (Section II-C).

These insufficiencies lead us to our first research question,

which revisits the grayware classification.

RQ1: What categories of grayware are relevant for
mobile device stakeholders?

We answered RQ1 by empirically surveying existing apps.

Note that our goal was to get a broad understanding for types

of mobile grayware that exist, as opposed to extracting an

exhaustive classification.

Methodology: From Google Play, we retrieved a list of app

metadata, which was gathered by the August 2014 Playdrone

archive snapshot [19], and then we randomly selected a

subset of around 40k apps. For each app, we downloaded

the user reviews and queried the reviews for keywords (e.g.,

“scam”), applying filters based on the average user ratings, and

manually triaging the results for interesting apps. We supple-

mented this information with various news articles focused on

misbehaving apps on the app markets, covering other platforms

such as Apple’s App Store and Microsoft’s Windows Store.

B. Categories of Mobile Grayware

We found 11 categories of grayware, each with a unique

behavioral signature. Of these categories, 9 are relevant to

mobile devices, while 2 are more relevant to PCs.

Of the 9 mobile grayware categories, 2 are defined with

respect to installation tactics. The remaining 7 categories are

defined based on runtime behaviors. While many of these

category names have historical precedence in PC grayware,

we describe how they are relevant to mobile devices.
1) Gray Installation Tactics: There are 2 categories of

grayware that use questionable tactics to obtain installation.

Apps that fall into these categories are gray, because there is

potential for the user to be deceived into installing them based

on the presented identity or claimed functionality. That is, the

actual identity or functionality is not what the user may have

expected. We first discuss imposters, a name referenced by

popular media [7], [8], [9]. We then discuss misrepresentors,

a name that we define to characterize installation tactics.

1. Impostors: Imposters are apps that impersonate other

apps or companies to gain installation. Impostors leverage

social engineering tactics to trick users into downloading these

impostors by using similar titles, developer names, icons, or

descriptions. Tactics can be similar to DNS typosquatting [20],

which is used for website impersonation. Imposters are gray,

because there may be legitimate reasons for apps with these

characteristics. Determining whether or not an app is an

imposter is difficult, because two apps could share very similar

names and icons without attempting to be an imposter. For ex-

ample, a flashlight app may have titles, icons, and descriptions

similar to a well-known app without attempting to impersonate

it. Note that impostors are distinct from repackaged apps [21],

as impostors do not generally copy code, but simply project

an outward appearance similar to a well-known app.

2. Misrepresentors: Misrepresentors are apps that falsely

claim to provide functionality to users. We define two sub-

categories based on the type of misrepresented functionality.

Viable misrepresentors claim to provide functionality that

is possible to implement. For example, in April 2014, an app

claiming to be an antivirus (Virus Shield [13]) was found

changing a picture from an “X” to a checkmark instead of

actually scanning the system for threats. However, claiming to

implement functionality that is not provided is not inherently

malicious. For example, apps may have free and premium

versions with similar descriptions while the free version does

not necessarily implement all the mentioned functionality.

Fictitious misrepresentors claim to provide functionality

that is impossible to implement with or without additional
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hardware. For example, on Google Play, we located blood

pressure scanners that claim to calculate the blood pressure

from the touchscreen interface, which is not possible using

only the touchscreen. This subcategory is gray, because such

apps exist for entertainment purposes.
2) Gray Runtime Behaviors: The remaining 7 categories

are categorized as such due to their runtime behaviors. We

use existing PC grayware names [18], [22] for consistency.

3. Madware: Madware, or “mobile adware”, are apps that

aggressively display advertisements to the user after instal-

lation. Ads play a major role in incentivizing developers to

offer apps for no charge. However, ads transition into the

gray area when they use aggressive advertising practices that

affect the user experience. Symantec defined and released a

report categorizing the behaviors of madware [17]; however,

their definition contains categories that cross over into spyware

behavior. Therefore, we define the following criteria to classify

an app as madware: (1) advertisements in the notification bar;

(2) installing icons on the home screen; (3) setting the wallpa-

per; (4) displaying system alert windows with advertisements;

(5) advertisements that continue after the user exits the app;

and (6) advertisement walls (i.e., blocking app functionality).

4. Dialers: Dialers are apps that automatically make telephone

calls or send SMS messages without the user’s knowledge.

These calls or SMS messages may be targeted towards the

user’s contacts to send ads (e.g., to alert friends that the user

installed an app). Another class of dialers may operate with

the user’s knowledge to programmatically annoy friends (e.g.,

CatFacts). Although wireless carriers began to block SMS

messages to premium-rate phone numbers [23], unauthorized

use is still problematic.

5. Prank Programs: Prank programs are apps that cause

system interference to annoy or irritate the user. For example,

prank programs may change the user’s wallpaper, add icons

to the home screen, or undesirably play noises through the

speaker. A common use case is to play a practical joke on a

friend by installing it onto their phone when it is unattended.

6. Scareware: Scareware uses shock, anxiety, or a perceived

threat to get the user to perform some arbitrary action (e.g.,

download or uninstall software). For example, an antivirus app

may tell the users that their device is infected to persuade them

to buy a premium version. If the displayed information is not

true, the app enters the gray area.

7. Rooting Tools: Rooting tools are apps that allow the users

to gain root privileges on their device. Even without malicious

intentions, such apps may violate the security requirements of

stakeholders and are therefore gray. For example, the users

may desire root access on their BYOD phone and download

a rooting app, but the corporation may view such root access

as a security violation. Note that Google also defines rooting

tools as a PHA [2].

8. Spyware/trackware: Spyware tracks the user’s activities

and collects information without the user’s authorization. For

example, spyware may track the user’s web browsing habits,

monitor the user’s location, or log the user’s keystrokes. Prior

research has extensively studied mobile apps that harvest

privacy sensitive data [5], [24], [25], [26] and keyloggers using

third-party soft keyboards [27]. The functionality of tracking

or monitoring a user does not necessitate maliciousness. For

example, child-monitoring software is technically a form of

spyware; but since the parent installs the software on the

system, it is not inherently malicious.

9. Remote Access Tools (RATs): RATs provide functionality

for the remote administration of a device. RATs are not inher-

ently malicious, as they can provide legitimate functionality.

Unlike RATs in PCs, RATs in Android are only as powerful

as third-party apps, and can perform only tasks such as data

management, retrieval, and tracking.

C. Less Pertinent Grayware Categories

Two PC grayware categories are less pertinent to mobile

devices. These categories manifest themselves only via social

engineering or by exploiting vulnerabilities.

10. Droppers: Droppers retrieve and install additional unde-

sired apps in the background without user consent. Apps on

mobile devices are generally restricted from installing other

apps without the user’s consent. For example, third-party

Android apps cannot acquire the “INSTALL PACKAGES”

permission unless they are signed with the same key as the

system image. As a result, third-party apps cannot install

other apps in the background without finding an exploit in

the system or by tricking the user to confirm installation

through social engineering. Note that apps delivering grayware

payloads via dynamic code loading are not droppers, because a

new app is not installed and the code executes under the app’s

identity. Since the gray behaviors are being performed by the

app itself, such characteristic causes the app to be identified

as another grayware class (e.g., spyware).

11. Hijackers: Hijackers manipulate system or app settings

to reroute the user (e.g., via browser settings, bookmarks,

network proxies). Unlike traditional OSes where apps operate

with the user’s ambient authority, Android apps are run in

sandboxes and have limited access to security-sensitive APIs

of the system and other apps. Therefore, to exist on Android, a

hijacker must exploit a vulnerability or feature within another

app. Exploiting such vulnerabilities would result in the app to

be classified as malicious.

III. BACKGROUND

This section provides a brief background of Android apps,

and the analytics techniques used in our heuristics.

A. Android

Android is an application-centric operating system where

users perform tasks and interact with the device via apps.

Android apps are distributed in archive files called Android

application packages (APKs). APKs contain a variety of data

that can be leveraged for analysis. This data for an app includes

the app’s compiled bytecode (i.e., DEX), a manifest file called

the AndroidManifest.xml, layout files, and other resource files,

such as the strings.xml. The manifest file contains data, such as
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the components declared by the app, the permissions requested

and defined by the app, and the events registered by the app

to receive from the system (e.g., intent actions). Developers

are urged to place strings that are displayed to the user into a

resource file named strings.xml.
One major change emerging in mobile platforms is the shift

to a centralized app distribution model (e.g., Google Play). To

download or install apps, users browse these app markets to

find the app that suites their goal. There are many types of

metadata that the user encounters while browsing these app

markets. This metadata for an app includes information such

as the app’s title, the app’s icon, the name of the developer,

a description of the app’s functionality, user comments, and

user reviews.

B. Text Analytics

We next introduce the text analytics techniques that we use

to process and derive meaning from app metadata.

Bag-of-Words model is a representation used in natural

language processing that disregards the order of words (i.e.,

grammatical structure), but maintains the multiplicity of the

words. Techniques that leverage the bag-of-words model can

account for the rearrangement of words in a string. For exam-

ple, when using this model, the bags produced by the titles of

“Google Chrome” and “Chrome Google” are equivalent.

Stemming is a common text-preprocessing technique that

reduces words to their word stem. For example, the words

“argue”, “arguing”, and “argues” are all reduced to “argu”.

Stemming is useful for preparing natural language text to be

used by techniques that consider the frequency of words, as

stemming reduces the variances of multiple tenses of a word.

Stopword Removal is a text-preprocessing technique to re-

move frequent words from a body of text (e.g., “the”, “and”).

Latent Dirichlet Allocation (LDA) is a generative probabilis-

tic model that discovers topics within a collection of unlabeled

text in the given dataset. A topic in LDA is a group of words

that occur frequently together. LDA is known to be sensitive

to noise in the dataset; thus, preprocessing the text is required.

K-means Clustering is an unsupervised classification algo-

rithm that partitions data into k clusters. Each one of the k
clusters contains a centroid, which is located at the mean of

all of the points in the cluster. K-means clustering can group

similar bodies of text together by converting the text to vectors

and inputting the vectors to the algorithm.

IV. TRIAGING TECHNIQUES

Having answered RQ1 in Section II, we next turn to analysis

techniques to help triage grayware in app markets, motivated

by our second research question.

RQ2: What analysis techniques can triage mobile gray-
ware in app markets?

To answer RQ2, we propose a suite of lightweight tech-

niques to triage mobile grayware on Google Play. We design

techniques to identify 7 out of the 9 categories of grayware

defined in Section II. We do not propose techniques for

spyware and scareware, because both have been explored on

mobile devices and have had triaging techniques proposed

previously [5], [25], [28], [6], [29]. Note that in this section,

categories with similar methodologies are presented together

and are not necessarily presented in the same order as Sec-

tion II.

Identifying grayware ultimately requires some form of hu-

man review, as discussed in Section II. Looking at program

behavior alone is insufficient, because doing so does not

incorporate the broader context used by a human to determine

the gray-ness of an app. We hypothesize that a combination of

text analytics and program analysis can effectively reduce the

number of apps that a human must review. We next discuss

triage techniques for each category. For each technique, we

describe the steps that a human performs for confirmation.

A. Impostors

Impostors use user-facing app metadata to impersonate

popular apps (e.g., title, icon, developer name). We identify

impostors in two phases. First, we compute the similarity

of apps’ titles and developer names. Next, we use fuzzy

hashing [30] to score the similarity of the icons.

Phase 1: Title Scoring: To compare the titles of two given

apps, we use the bag-of-words model and score their relat-

edness using the cosine similarity. We do not compute the

similarity if the two apps are from the same developer, as

impostor apps from the same developer are counter-intuitive.

First, we convert each app’s title into a bag of words. Next,

we create a set out of the unique words in both bags (i.e.,

titles). To represent each app, we construct a vector (whose

size is the set’s size), in which each index corresponds to a

unique word in the set. We set the value at each vector index

to the number of times the corresponding word appears in the

title. Afterward, we compute the cosine-similarity score of the

vectors. The score is a value between 0 and 1, with 1 being a

perfect match.

Phase 2: Icon Scoring: In this phase, we inspect the app pairs

whose titles match beyond a certain threshold. Specifically,

in our experiments in Section V-B, we search for blatant

impostors, i.e., matches with similarity score 1. We download

the app icons and use the ssdeep [31] implementation of fuzzy

hashing to determine the similarity of the icons.

Confirmation: If the icons match, we manually compare the

app descriptions for semantic similarity to confirm our results.

If the descriptions are also similar within human interpretation,

one of the apps is an impostor. To correctly identify the

impostor, we assume well-known apps (e.g., top 50 apps in

each category of Google Play) are not impostors. Note that

future work can design more sophisticated text analytics to

quantitatively measure semantic similarity of app descriptions.

B. Fictitious Misrepresentors, Prank Programs, and Dialers

We next discuss the heuristics for fictitious misrepresentors,

dialers, and prank programs. We use topic modeling, since
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Fig. 1. The Topic-Extraction Pipeline

all of these categories rely on understanding apps’ semantic

topics. We first discuss the topic-extraction pipeline (shown in

Figure 1) used for all three analysis techniques. Note that using

topic modeling on app descriptions may not work well on apps

with short descriptions, and descriptions may be intentionally

designed to produce noisy results (e.g., keyword lists).

1) Topic-Extraction Pipeline (TEP): The TEP contains the

following five steps for triaging the three categories of gray-

ware: (1) preprocessing, (2) LDA topic modeling, (3) topic

selection, (4) topic fitting, and (5) confirmation.

Preprocessor: The preprocessor takes app descriptions as

input and outputs a set of refined descriptions. For each app

description, the preprocessor performs the following steps. (1)

Convert the description to lowercase and use regular expres-

sions to remove HTML markup tags, URLs, email addresses,

formatting characters, punctuation, non-ASCII characters, and

stopwords. (2) Remove a list of popular words occurring

within descriptions (e.g., Google, Facebook) and common

words (e.g., free, app), (3) Stem the descriptions using the

Snowball Stemmer [32]. (4) Remove most and least frequent

words across all descriptions. Recall that preprocessing is nec-

essary to remove noise. If many descriptions contain the same

irrelevant words, LDA may incorrectly draw correlations. All

lists used for analysis are available on our project website [33].

LDA-Topic Modeler: The LDA-topic modeler takes n topics

and a set of refined descriptions from the preprocessor and

outputs a set of topics. We use MALLET’s implementa-

tion [34] of LDA with parameter values recommended by

prior research [35], i.e., α = 50/n, β = 0.01, and the

number of iterations to 1000. Furthermore, to determine the

optimal number of topics n to select, we iteratively vary n and

maximize the logarithmic likelihood [35]. Once LDA extracts

the topics, we output the top 20 words for each topic for

manual topic selection.

Topic Selection: In the topic-selection phase, the analyst

selects topics that represent functionality that cause an app to

fall within the grayware categories. Therefore, in this phase,

we manually read through the outputted topics, and select the

subset of topics of interest.

Topic Fitter: The topic fitter takes the following data as

input: (1) a set of descriptions and app names, (2) a set of

topics, and (3) the selection threshold. Based on experimental

exploration to optimize the effectiveness of confirmation, we

set the selection threshold to 0.25 for all runs (i.e., there is

a 25% probability that the description fits within the topic).

For each description, the topic estimator uses the preprocessor

to refine the set of descriptions, and estimates the probability

that the description corresponds to the selected topics. If the

probability is over the selection threshold, the topic estimator

outputs the app name of the description for further verification.

Confirmation: The confirmation phase replicates what an

analyst would do when verifying grayware. This phase consists

of reading the description, examining the app’s screenshots,

and manually running the app if a decision cannot be made

based on the first two criteria.

2) Fictitious Misrepresentors: Fictitious misrepresentors

use user-facing text to claim to provide functionality that is

not possible to implement without additional hardware. Our

heuristic extracts topics from a training set of app descriptions

that claim to implement impossible functionality (e.g., claim to

be for entertainment purposes). Our heuristic then determines

how a larger set of unseen apps fit within these topics.

We observed that there exist many apps that claim to be

pranks or for entertainment purposes. Our intuition is that

topics in these apps can be used as a baseline to identify

fictitious misrepresentors. Therefore, to select our training set,

based on keywords, we search for apps that include one of

the following terms or phrases: “prank”, “gag”, “hoax”, and

“entertainment purpose”. The training set is input to the TEP.

During the topic-selection phase, we manually select topics

that appear to be impossible to implement on mobile devices

without additional hardware. These topics are available on our

project website [33]. We pass the selected topics to the topic

fitter along with a random selection of app descriptions. After

the topic estimator outputs the results, we prune results that

contain the keywords in our selection criteria (e.g., “gag”).

The confirmation phase manually analyzes apps flagged by

our heuristic to determine whether they are truly fictitious

misrepresentors.

3) Prank Programs: Prank programs aim to annoy the user

by interfering with the user interface or system functionality.

From Section II, recall that in a multi-stakeholder environment,

apps that violate the requirements of a single stakeholder can

be classified as grayware (e.g., installing a prank program on

a friend’s device to annoy or scare them). We categorize such

apps as grayware, because they outright claim to be pranks

that can be installed on a victim’s device, unknown to the

victim, to cause fear, annoyance, or shock. They do not fulfill

the requirements of the unwitting victim.

We triage prank programs by extracting the topics of apps

that claim to be pranks and returning apps that cause system

interference. Therefore, the training set for prank programs

is identical to that of fictitious misrepresentors. Again, the

training set is preprocessed and fed to the topic modeler.

The difference between the two heuristics is that the prank

program heuristic is fed a different data set. Once the LDA

topic modeler outputs the extracted topics, we manually select

topics that appear to cause system inference and pass those

topics to the topic fitter. These topics are available on our

project website [33]. We pass the same set of descriptions used

for training back to the topic fitter, because we want to analyze

apps that explicitly claim to be pranks. In the confirmation

phase, the reviewer manually analyzes the flagged apps to

determine whether they are grayware.
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Example (1). Classes from method invocations:
invoke-direct {v0}, Ljava/util/HashMap;-><init>()V
Example (2). Obfuscated class:
a/b/c/d
Example (3). Classes declared within the app (for the apk com.example):
Lcom/example/Class1

Fig. 2. App-Clustering Process: Code Examples

4) Dialers: Since dialers require access to sensitive inter-

faces (i.e., phone and SMS) to function, we select the training

set by searching for apps that use the “CALL PHONE” and

“SEND SMS” permissions. Similar to the first two heuristics,

we pass the app descriptions to the preprocessor. Once the

topics are outputted, we select the topics that do not appear

to require phone or SMS access. These topics are available

on our project website [33]. Similar to the prank-program

heuristic, we pass the training set back to the topic estimator.

In the confirmation phase, the reviewer manually analyzes the

flagged apps to determine whether they are grayware.

C. Viable Misrepresentors

Since viable misrepresentors misrepresent the functionality

that they provide, our heuristic aims to identify whether apps

actually implement their claimed functionality. We collect

groups of apps that claim to implement similar functionality

to identify apps that do not fulfill the claim. For our study in

Section V, we consider three types of apps: antiviruses, signal

boosters, and performance boosters. To identify these apps, we

use Google Play’s search interface to find apps matching “an-

tivirus”, “signal booster”, and “performance booster”. While

it is unknown what specific analytics algorithms Google uses,

future work can explore text-clustering approaches.

For each group of functionality, we extract API-class names

used in each app in the group to form feature vectors for

the apps, and apply k-means clustering on the feature vectors

to identify outliers; i.e., apps that do not implement the

common features. The primary intuition behind this heuristic

is that in order to implement a specific piece of functionality,

apps need to access similar resources and use similar APIs

(e.g., framework APIs). If we assume that most apps are

not misrepresentors (a valid assumption if we consider top-

rated apps), then by clustering apps along their API use,

we can mark the outliers as grayware. Note that we choose

class names instead of method names to minimize the size of

the feature vector, and reduce potential noise in the clusters.

Prior work has used similar techniques for clustering API

invocations to detect code similarities and reuse [36].

Given a set of disassembled apps A, the clustering process

is composed of the following four activities.

1. Extracting class names: We begin by extracting method

invocations from the disassembled code, except those called

within known ad library namespaces defined by App-

Brain [37]. We extract the class names from method invo-

cations, as highlighted in Example (1) in Figure 2.

2. Acquiring feature vector V : We consolidate the lists of

class names acquired from each app into a feature vector

V containing unique classes. We optimize V by filtering (1)

classes that occur in fewer than 3 apps; (2) classes that are

obfuscated, e.g., Example (2) in Figure 2; and (3) classes

that are declared in the target app itself, e.g., Example (3) in

Figure 2. For the above first group of classes being filtered, we

empirically chose the threshold of 3 by examining the feature

vector and finding those class names that had little impact on

the app’s primary functionality.

3. Initializing feature vectors va: Each app a ∈ A is assigned

a feature vector va, generated from the global feature vector

V . Each element va[c] of va is initialized to ‘0’ or ‘1’ based

on the absence or presence of the class c in app a’s class list.

4. Clustering using k-means & generating outliers: We

perform k-means clustering using Weka [38] on the app-class

matrix formed using feature vectors va of all a ∈ A and V . As

we need only one cluster of apps with similar functionality,

we set k to 1. The outliers are apps that do not implement

the common functionality. We compute the Euclidean distance

of each app from the cluster’s centroid. The outliers are apps

farther than 2 times of the standard deviation from the centroid.

Confirmation: For every outlier app, we extract the corre-

sponding APK and metadata from Google Play. We install the

app and confirm that it fails to perform the said functionality,

and also inspect the metadata for a misleading title, descrip-

tion, or both. In case further inspection is needed, we inspect

the classes used by the outlier app, comparing it with an app

close to the centroid.

D. Madware

To identify madware, we target aggressive forms of ads

that escape the boundaries of the app. That is, an ad library

that advertises even when the user may not be using the

app can be classified as aggressive, and hence, madware. Us-

cilowski [17] characterized aggressive advertising on mobile

phones. However, unlike Uscilowski, we only consider behav-

iors that visually appear to the user. Our heuristic leverages

the first four aggressive advertising behaviors identified in

Section II-B: (1) advertisements in the notification bar, (2)

installing icons on the homescreen, (3) setting the wallpaper,

and (4) displaying system alert windows with advertisements.

The last two indicators are difficult to identify statically, so

we exclude them from this study.

To identify ad libraries within apps, we use the list of

88 ad libraries defined by AppBrain [37]. We download and

disassemble apps that include these libraries, and search for

behaviors (within the ad libraries) that correspond to at least

one of the four behaviors discussed above. Upon finding an

aggressive behavior within the ad library, we categorize it as

madware. We describe the results of the classification in Ta-

ble III. For each madware library, we note the library package

namespace. To identify apps as madware, we search for these

namespaces in the disassembled apps. Similar techniques have

been used by prior work [39].

Confirmation: The triage technique provides a list of apps that

contain the madware libraries. For our study in Section V, we

assume that this madware functionality is used by the apps.

When deploying this technique to a real app market, apps

containing madware libraries should be executed to confirm
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that the madware behavior occurs before marking the app as

grayware.

E. Rooting Tools and Remote Access Tools

To detect rooting tools and remote access tools (RATs), we

perform keyword-based search of app descriptions for “1-click

root” and “remote access tool”. In the confirmation phase,

the reviewer manually verifies the results. Note that this very

simple heuristic is sufficient to detect rooting tools and RATs,

because if any of these rooting or RAT behaviors is hidden

within an app, the app would become malware.

V. EVALUATION

In this section, we evaluate our grayware heuristics by

simulating triage on a large set of Google Play apps. Our

datasets and results are available on our project website [33].

A. Datasets

Viennot et al. [19] designed a large-scale crawler called

Playdrone for Google Play. Archive.org ran the Playdrone

crawler and uploaded APKs and metadata, including ver-

sion codes, to the Playdrone Archive [40]. For experimental

repeatability, we collect app metadata and APKs from the

Playdrone Archive unless otherwise noted.

Every category of grayware described in Section II-B is

different, and requires the evaluation of suitable heuristics with

appropriate datasets. Therefore, in this paper, we use 4 separate

datasets, each of which is used in evaluating one or more

heuristic. The datasets are described as follows.

PD 1M: The PD 1M dataset consists of the metadata of

1,029,422 apps that we downloaded from the Playdrone

Archive [40]. The dataset was previously collected from

Google Play in October 2014.

PD RNDM: The PD RNDM dataset consists of the metadata

of 100k randomly selected apps from the PD 1M dataset. We

downloaded the APKs of these apps for analysis required

to verify some heuristics (e.g., presence of madware). We

successfully downloaded 99,827 APKs, of which 698 were

downloaded from Google Play as they were unavailable on the

PlayDrone Archive. We were unable to obtain 173 apps due

to unsupported device restrictions, or the apps were removed

from Google Play and not archived on PlayDrone.

GP TOP50: To find impostors, we require popular apps that

an impostor would benefit from impersonating. Hence, we

collected metadata for the 50 most popular apps from Google

Play, for each category (except games and comics), in both

“free” and “paid” subcategories. Our dataset consists of the

metadata for 2,500 apps, some of which may fall in more than

one category. As we want a representative dataset for popular

apps in each category, we refrain from removing overlaps.

GP SPA: The GP SPA dataset consists of 674 Android apps,

extracted based on their proposed functionality. Of the 674

apps, there are 224 signal boosters, 236 performance boosters,

and 214 antivirus apps. Each category of apps was selected

from the top 250 results that were retrieved via keyword-

searching Google Play for “antivirus”, “signal booster”, and

Title

Developer Name

Package Name

Icon

Downloads

The Coupons App

Most Popular Downloads

thecouponsapp.dailydeals

0.5 - 1 million

The Coupons App

Most Popular Download

thecouponsapp.coupon

10 - 50 million

Original App Impostor App

Fig. 3. The original Coupons app, and its impostor, which has the same
title, icon, and description. The identical areas in both apps are shaded.

“performance booster”, respectively. Due to device restrictions

and paid apps, we could not download 36 antivirus apps, 14

performance boosters, or 26 signal boosters.

B. Experiments

In this section, we discuss our specific experiment setups for

each heuristic and discuss the triage results. With the exception

of identifying the madware libraries, all manual confirmation

consists of analysis of disassembled source code.

1) Impostors: Since impostors attempt to impersonate pop-

ular apps, we use the app titles and developer names from the

GP TOP50 dataset as our representative set of popular apps.

With this set, we look for impostors in the PD 1M dataset,

using the heuristic described in Section IV-A.

Results: Out of the 1 million apps, our triage techniques

reduced the manual review to 997 exact title matches, of which

22 app pairs had similar icons (triage reduction 1M → 22).

Through manual confirmation of the matching pairs’ de-

scriptions, we found 8 impostors. While detailed results are

available on our project website [33], Figure 3 shows an

example of the Coupons app. These apps have the same

title, icon, and description, but developer names differ by one

character. Investigating further, we found that the impostor’s

developer website links to the Google Play web page of the

real app. While the example demonstrates the usefulness of

our technique, we acknowledge that in rare cases, a real-

world developer may submit variants using different developer

names. Such scenarios are beyond the scope of our study.

2) Fictitious Misrepresentors: The training set consists of

2,938 apps selected based on keyword-searching the PD 1M

dataset using the criteria described in Section IV-B2. The

evaluation set consists of the 100k preprocessed descriptions

in the PD RNDM dataset. We maximized the log-likelihood to

get the optimal number of topics for LDA using the technique

discussed by Griffiths and Steyvers [35], resulting in 650

topics. We used standard parameters for training the LDA

model: α = 50/650, β = 0.01, and 1000 iterations. During the

topic-selection step of the pipeline, we manually read through

the list of 650 topics outputted after the training phase and

selected 32 topics that appeared to be misrepresentors.

Results: Out of the 100k apps of which the topic fitter

estimated the probability, a total of 311 results were returned

for manual confirmation (triage reduction 100k → 311). Out
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of the 311 results, we manually verified that 18 apps claim

that they implement functionality that is not possible.

Out of the 18 apps, the majority overstate the capabilities of

the hardware on mobile devices (e.g., reading fingerprints from

the touchscreen). The 10 apps that claim to read fingerprints

from the touchscreen include lie detectors, blood pressure

readers, biometric authenticators, mood detectors, and physical

feature identifiers (e.g., age, appearance). During the manual

inspection, we encountered 6 blood pressure readers that claim

to calculate the user’s blood pressure via the camera. We

verified the legitimacy of these apps and our results account for

this fact. The 4 apps that overstate the camera’s functionality

include claims of night vision, infrared detection, and x-ray

vision. We found 3 apps claiming that the magnetometer can

be used for detecting supernatural phenomenon. Finally, we

found one app that claims to determine whether the user is

sober by monitoring the accelerometer and gyroscope sensors.

3) Prank Programs: The training set and parameters for

LDA are the same as the fictitious misrepresentors in Sec-

tion V-B2. However, the main difference is that the training set

is fed back into the topic fitter as described in Section IV-B3

During the topic-selection step of the topic-extraction pipeline,

we manually read through the list of topics and select those

that appear to cause system interference (i.e., 9 of 650 topics).

Results: Out of the 2,938 apps that the topic fitter estimated

the probability, 104 results were returned for manual confirma-

tion (triage reduction 1M → 104). We found that 79 out of the

104 apps appeared to cause system interference. Out of the 79

apps, 66 spoofed a cracked screen, 8 played annoying alarms,

3 popped-up computer-infection warnings, 1 popped-up fire

alerts, and 1 randomly vibrated the phone in the background.

We disregarded all interactive sound apps.

4) Dialers: The training set consists of 11,282 apps from

the PD 1M dataset by using the selection criteria in Sec-

tion IV-B4. The LDA-topic modeler runs with the following

parameter values: the number of topics = 260, α = 50/260,

and β = 0.01. We selected topics that appeared not to be

related to phone calls or SMS during the topic-selection phase.

In total, we selected 4 of the 260 topics. Recall that the training

set is also used for evaluation, as explained in Section IV-B4.

Results: Out of the 11,282 apps of which the topic fitter

estimated the probability, a total of 58 results were returned

for manual confirmation (triage reduction 1M → 58). Out

of the 58 results, we manually found that 36 had legitimate

reasons for requesting the “SEND SMS” or “CALL PHONE”

permission. We could not rule out the remaining 22 apps as

dialers without manually executing them, which we did not

do for this study.

5) Viable Misrepresentors: To evaluate this category, we

chose apps whose core functionality is executed in the back-

ground, which means users are less likely to notice whether

the claimed functionality is implemented. Our evaluation set

consisted of the three groups of apps from the GP SPA dataset.

For each group, we ran k-means clustering separately, as

described in Section IV-C, with k=1. We considered outliers to

TABLE I
VIABLE MISREPRESENTORS STATISTICS

False Positives

App Group Total
outliers

Fake
apps

Misleading
titles

Dataset
Selection Clustering

Antivirus 10 3 1 6 0

Performance
Boosters 5 1 3 0 1

Signal
Boosters 39 20 4 15 0

TABLE II
FAKE ANTIVIRUS APPS

Title (Package Name) Description
Anti Virus & Mobile Security!
(com.suzyapp.anti.virus.app.security)

“It checks for malware, vulnerabilities, and
even cleans up trash.”

Anti Virus Android
(com.viruskiller.antivirusandroid545)

“This app Provides comprehensive protection
for your Android phone or tablet.”

Antivirus for Android
(com.yoursite.afa1)

“. . . protects your android device from harm-
ful viruses, malware, spyware. . . ”

be points more than two standard deviations from the centroid.

Results: Table I shows our results (triage reduction 200 →
5-39). For each group of apps, we recorded (1) the number of

outliers, (2) the apps that advertised fake functionality (i.e.,

fake apps), (3) the apps that only advertised a misleading

title, but mentioned their true functionality in their descriptions

(misleading titles), (4) false positives, i.e., benign apps that

were a part of the outliers either due to the broad app selection

to form the GP SPA dataset, or the k-means clustering itself.

After manual analysis of the fake apps, we observed that

the nature of the fake apps is similar across all the groups. For

conciseness, we only discuss results with respect to antivirus

apps. We provide detailed results for all the groups on our

project website [33].

As shown in Table II, the three found fake antivirus apps

clearly describe their purpose as antiviruses, both in their title

and descriptions. We manually ran these apps, and found they

only display advertisements to other antivirus apps. We found

that one of these apps (i.e., “Anti Virus Android”) appears

at the 16th position when Google Play is searched with the

keyword “antivirus”; thus, it is prominently visible to the

user as a top app in its category. The app has more than

100k downloads, and a 4-star user rating. We discuss the

implications of these findings in Section V-C.

The encountered false positives occurred for two reasons:

(1) the broad selection criteria for building the GP SPA

dataset, and (2) the feature vector used for the k-means

clustering. The former resulted in the inclusion of legitimate

apps that did not have misleading names or titles (e.g.,

“Antivirus Guides”). As seen in Table I, all but one of the

false positives belong to this category, and can be eliminated

by fine-tuning the search criteria. Furthermore, our technique

can be improved by identifying and filtering out non-essential

functionality and third-party libraries from the feature vector.

In case of the apps with misleading titles, but a roughly

correct description, it is unclear whether there was a genuine

attempt to fake functionality, or whether the misleading title

was a mistake. In such cases, we take the conservative ap-

proach, and do not classify such apps as grayware.

6) Madware: As described in Section IV-D, we first ana-

lyzed popular ad libraries from AppBrain, and classified them

as madware if they exhibited aggressive advertising behaviors.
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TABLE III
MADWARE STATISTICS

Library Name # Apps Characteristics
mobileCore 1706 Notifications
AppBrainAppLift 716 Notifications
GetJar 123 Notifications
SkPlanet 91 Notifications
domob 89 Notifications
PapayaOffer 89 Notifications, AdWall
Tapcontext 81 Notifications
YouMi 61 Notifications
PontiflexOffers 38 Notifications
AdsMogo 10 Notifications
WAPS 7 Notifications
AppBucks 6 Notifications, Shortcuts
Kuguo 6 Notifications, Shortcuts
sellAring 1 Shortcuts, Replace dialtone
MoolahMedia 0 Notifications

We then disassembled apps from the PD RNDM dataset,

and looked for the presence of the ad libraries classified as

madware using a path-based heuristic.

Results: Table III provides the list of madware libraries that

we identified, and the number of apps that contain each

library. Most of the ad libraries that we identified as madware

displayed notifications to the user. Further, we found three

instances of aggressive advertisement libraries that install

advertisement shortcuts to the homescreen (i.e., AppBucks,

Kuguo, sellAring). Our analysis of the PD RNDM dataset

returned 3,024 occurrences of madware out of the 100k apps.

MobileCore alone is in 1.7K apps, i.e., more than 1% of the

apps in our dataset show advertisements in the notification bar.

7) Rooting Tools and RATs: We conduct keyword-based

search on the PD RNDM dataset as discussed in Section IV-E.

Results: Out of the 100k descriptions, we did not locate any

rooting tools or RATs, which may be due to dataset selection.

C. Summary of Findings

In this section, we discuss the effectiveness of our triaging

techniques and the overall lessons learned from our findings.

Effectiveness of Triage: The results in Section V-B clearly

demonstrate the effectiveness of our triaging techniques, and

that text analytics is a promising approach for triaging gray-

ware. We noted the triage reduction for each grayware cate-

gory. In many cases, we reduced the workload from 1 million

apps down to tens of apps. For smaller datasets, we reduced the

workload from thousands of apps down to hundreds of apps.

These reductions clearly indicate the value of text analytics in

aiding in the identification of grayware in app markets.

Lessons from Triage: The results in Section V-B demon-

strate the problem of grayware on Google Play. Our findings

demonstrate that grayware is even present within some of the

top-ranked apps displayed to the user. For example, a viable

misrepresentor antivirus app is displayed within the top 20

results returned when users search for “antivirus” on Google

Play. Since this app has been downloaded between 100k-

500k times, this example demonstrates that grayware has the

potential to impact a large number of users. Since many of

these top-ranked grayware apps also have high ratings, not

much confidence can be placed in the user’s ratings/reviews

to identify grayware. Our findings also show that grayware

(e.g., imposters) may also negatively impact on the developer’s

brand and user experience. Some grayware may adversely

impact the user’s health and wellbeing (e.g., fake blood

pressure), and are outright dangerous. Overall, the presence of

grayware among the top apps on Google Play clearly indicates

that it escapes the oversight of the app-market quality control.

VI. RELATED WORK

Malware Classification: Prior work in classifying threats in

the mobile software ecosystem has focused on malware. Zhou

and Jiang [3] systematically characterize over 1,200 malware

samples, detailing their installation methods, activation meth-

ods, and nature of their payloads. Felt et al. [4] survey 46

malware samples across iOS, Android, and Symbian plat-

forms. They characterize the incentives of these malware and

formulate strategies for defending against them. In contrast,

our work focuses on grayware, where classification of types

and incentives has been poorly understood.

Malware Detection: Prior work in detecting unwanted apps

has also mainly focused on malware. Zhou et al.’s ap-

proach [41], RiskRanker [42] and Crowdroid [43] use heuris-

tics based on app behaviors and code properties to identify

malware. MAST [15] triages app markets for malware by

using multiple correspondent analyses on app behaviors and

code properties. While these approaches contribute to building

behavior-based signatures and heuristics, they focus on known

malicious behavior, and may not be applicable for grayware

identification.

Potentially Unwanted Apps: VetDroid [44] identifies PUAs

using permission-based dynamic taint analysis to collect fine-

grained information on the use of protected resources. While

VetDroid focuses on malware, permission-use information

could enhance some of our triaging techniques.

Privacy: Prior work has proposed techniques to detect poten-

tial privacy violations in mobile apps. TaintDroid [5] uses dy-

namic taint analysis to track sensitive information in Android

apps. FlowDroid [24], AndroidLeaks [28], and PiOS [25] use

static taint analysis for similar purposes. BAYESDROID [45]

detects privacy leaks by transforming it into a Bayesian-

classification problem.

Text Analytics for Security: Many of our grayware-triaging

techniques rely on the analysis of text associated with apps

(e.g., descriptions). Whyper [46] and AutoCog [47] use text

analytics to justify permission requests based on an app’s

description. Chabada [48] detects suspicious apps by detecting

anomalous permission requests by clustering apps based on

their descriptions. Our heuristics for identifying misrepresen-

tors operate at the API-level granularity and focus on overall

app functionality rather than just protected behaviors.

VII. CONCLUSION

In this work, we investigated the topic of mobile grayware.

We discussed how mobile grayware differs from PC gray-

232232232



ware, and provided a generalized characterization for mobile

grayware behaviors. Based on these characteristics, we defined

lightweight triaging heuristics that leverage text analytics and

program analysis. Using these heuristics, we conducted a

breadth study of grayware on Google Play. We found evidence

that grayware appears to be a significant problem, warranting

further investigation. Furthermore, we found that text analytics

is a promising approach to triage grayware in app markets.
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