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Abstract—PDF has become a de facto standard for exchanging
electronic documents, for visualization as well as for printing.
However, it has also become a common delivery channel for
malware, and previous work has highlighted features that lead
to security issues.

In our work, we focus on the structure of the format,
independently from specific features. By methodically testing
PDF readers against hand-crafted files, we show that the
interpretation of PDF files at the structural level may cause
some form of denial of service, or be ambiguous and lead to
rendering inconsistencies among readers. We then propose a
pragmatic solution by restricting the syntax to avoid common
errors, and propose a formal grammar for it. We explain how
data consistency can be validated at a finer-grained level using
a dedicated type checker. Finally, we assess this approach on a
set of real-world files and show that our proposals are realistic.

1. Introduction

PDF – Portable Document Format – dates back to the
early 1990’s and became the ISO 32000-1 specification
in 2008 [10]. It is now a very common way to exchange, dis-
play and print documents. PDF is also a widespread channel
for malware delivery since, contrary to popular belief, the
format is featureful and allows to embed various types of
active content (JavaScript, Flash). These features can lead
to vulnerabilities, either by themselves, or through flaws in
the embedded interpreters, and they have been studied in
previous work. Yet, we noticed that the structural layer of
PDF files has not received wide consideration, even if the
standard is complex and encourages lax behavior in PDF-
handling software. The parsing stage is often overlooked and
only the subsequent steps, starting with an abstract syntax
tree, are studied.

Our work thus focuses on the syntax and the structure
of PDF files. First, we explore ambiguities in the speci-
fication and, by using crafted files, we test how common
software behaves. In the course of this study, we uncovered
several novel bugs and found inconsistencies among PDF
readers. To overcome these problems, we propose a stricter
interpretation of the specification. The proposed rules were
implemented in a tool, CARADOC, and we show that they

can be applied to real-world PDF files. In some cases, a
normalization stage is initially required.

Contrary to most of previous studies, we endeavor to
follow a “whitelist” approach, since our goal is to propose a
subset of PDF that we are able to reliably parse and analyze,
instead of trying to identify or remove unsafe parts of
PDF files (the corresponding “blacklist” approach). Reliable
parsing is indeed a necessary step for reliable higher-level
analyses. Our contributions in this paper are threefold:

• uncovering bugs and inconsistencies in common
PDF readers (bugs were reported and are currently
under review by software editors [6], [7]);

• proposing a restricted version of the specification,
including new validation rules;

• implementing this proposal and discussing the first
results (the tool, named CARADOC is available as
an open source project on GitHub1).

Section 2 presents the file format and some of its pitfalls.
Then, we examine known problems and their corresponding
solutions in section 3. Section 4 further investigates new
issues that we uncovered regarding the low-level structure
of PDF files. Next, we describe in section 5 our proposal to
restrict PDF using additional rules at syntactic and semantic
levels. Section 6 presents CARADOC, our implementation
of these rules, as well as the first results that we obtained.
Next, we propose some perspectives in section 7. Section 8
compares our approach to some related work.

2. PDF: a quick tour

In this section, we introduce the key elements that con-
stitute a PDF file, from the syntax to the document structure.

2.1. Syntax of objects

A PDF file is made of objects describing the various
parts of the document. For example, a page, an image or an
entry in the table of contents are objects.

Character set. In its simplest form, a PDF file is written
as a text file, mostly made of alphanumeric characters and
some special characters.

1. https://github.com/ANSSI-FR/caradoc
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Like many textual formats, syntactic elements are sepa-
rated by whitespace characters. These characters are inter-
changeable and do not have a special meaning – except for
newline characters in some contexts.

PDF files can also contain comments that are seman-
tically equivalent to whitespace. They begin with the ’%’
character and last until the end of the line.

Direct objects. PDF objects are made of a few basic types:

• null, represented by the keyword null;
• booleans, represented by true and false;
• integers, written as sequences of digits, like 123;
• reals, digits separated by a period, like -4.56;
• strings, between parenthesis, like (foo);
• names, introduced by a slash, like /bar;
• arrays, whose elements are space-separated between

brackets, like [1 2 3] or [(foo) /bar];
• dictionaries, associative tables made of key-value

pairs enclosed in double angle brackets, like
<< /key (value) /foo 123 >>.

References. It is also possible to define shared objects as
indirect references. An indirect object is identified by an
object number and a generation number. The latter is used to
keep track of updates and starts with 0 for a new object. The
following example binds the pair (object No. 15, generation
No. 3) to the object foo, using keywords obj and endobj.

15 3 obj

foo
endobj

This object is accessible elsewhere in the document using
the syntax 15 3 R.

Streams. A stream is a combination of a dictionary and a
byte sequence. It is necessarily an indirect object and has
the following format.

1 0 obj

<< stream dictionary >>
stream

byte sequence
endstream

endobj
The dictionary contains metadata and allows to use com-
pression filters. Using streams, images can come with their
dimensions as metadata and be compressed with suitable
algorithms.

2.2. File structure

Basic structure. In its simplest form, a PDF file is made
of five elements (see Fig. 1):

• a header that identifies the PDF file and its version;
• a body that contains indirect objects;
• a cross-reference table (a.k.a. xref table) that gives

the positions of objects in the file;

Header

Object

Object
...

Xref table

Trailer

End-of-file

%PDF-1.7

1 0 obj

<< /Type /Catalog

/Pages 2 0 R >>

endobj

2 0 obj

<< /Type /Pages /Count 1

/Kids [3 0 R] >>

endobj

xref

0 6

0000000000 65536 f

0000000009 00000 n

0000000060 00000 n

...

trailer

<< /Size 6 /Root 1 0 R >>

startxref

428

%%EOF

File

Figure 1. Structure of a simple PDF file.

• a trailer that indicates the root of the document;
• an end-of-file marker that indicates the position of

the xref table.

Incremental updates. It is possible to quickly modify a
PDF file by appending new content after the end of the file,
instead of rewriting it entirely. To this aim, the following
elements are added to the basic structure: the objects intro-
duced by the update, a new xref table to reference them and
a new trailer. The new table points to the first table, which
gives access to the older objects (see Fig. 2). Updates can
also mark objects as free when they are not used anymore.

Header

Objects

Table and
trailer #1

EOF #1

Objects

Table and
trailer #2

EOF #2

%PDF-1.7

xref

0 6

0000000000 65536 f

0000000009 00000 n

...

trailer

<< /Size 6 /Root 1 0 R >>

startxref

428

%%EOF

xref

0 3

0000000002 65536 f

0000000567 00001 n

...

trailer

<< /Size 7 /Root 1 1 R

/Prev 428 >>

startxref

1347

%%EOF

Original
file

Update

Figure 2. Updated PDF file.

Linearized file. The basic structure of PDF is problematic in
a network context when one wants to display the content of a
file during downloading, as critical information is present at
the end of the file. PDF 1.2 thus introduced a new structure
called linearized PDF, which adds reference tables – called
hint tables – at the beginning of the file. Such tables give
the positions of objects required to display each page.
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Object streams. In the basic format, objects are stored one
after another, uncompressed. Since they use a textual format,
the size of the document is not optimized. For this reason,
the notion of object stream was introduced in PDF 1.5. It
is a stream that contains other objects (Fig. 3). The benefit
is that streams can be compressed.

Object
stream

Stream dictionary

Stream content
(compressed)

Object

Object

Figure 3. Object stream layout.

2.3. Document structure

From a semantic point of view, objects are organized
into a directed graph whose edges are indirect references.
The root of this graph is the trailer, that contains several
metadata and refers to the catalog.

The rest of the document is referenced by this catalog.
The most common parts are:

• pages, that contain the graphical content to be dis-
played or printed;

• outlines, that form a table of contents for an easier
navigation among pages;

• name dictionaries, that provide a way to reference
objects via names instead of references;

• information for the viewing software, such as the
page layout or page labels;

• various metadata, that optionally give further infor-
mation about the document.

Page tree. The graphical content of a PDF document is
made of pages, organized into a tree. This structure enables
inheritance of attributes – e.g. page dimensions – among
ranges of pages. Pages are the leaves of this tree, as shown
on Fig. 4.

Root

Page 3Node Page 4

Page 1 Page 2

Figure 4. A simple page tree.

Description of pages. In order to provide a rich set of
features, each page of a PDF document can be associated
with a lot of objects. The most common ones are shown on
Fig. 5.

The content stream contains a sequence of commands
describing the graphical content of a page: text, geometric
shapes, colors, images, etc.

The page is bound to resources – such as fonts and
images – that are not directly stored in the content stream.
The content stream can refer to them by means of names.

Interactive content is described by annotations. For ex-
ample a page may contain a hyperlink: when the user
clicks inside a rectangle, they are redirected to a URI. An
annotation connects the geometric shape to the destination,
but is dissociated from the text of the link (which is stored
in the content stream).

Page

Content stream

Resources

Annotations

ImagesFonts

Destinations

Other pageURI

Figure 5. Common objects associated with a page.

3. Known problems and available tools

3.1. Flaws in security policies

Even if the specification has been available since 1993,
PDF has not really been studied from a security point of
view until the late 2000’s. In 2007, Filiol et al. [9] pre-
sented some features that are possibly unsafe in a PDF file:
automatic actions upon opening the document, execution of
arbitrary commands on the user’s machine, submission of
forms on a remote URL, execution of JavaScript code, etc.
They pointed out flaws in the security policy of ADOBE

READER. In fact, some critical actions – such as Internet
access – usually require a confirmation from the user by
means of a dialog window. Yet, the configuration allowed
to bypass this confirmation process, e.g. by adding a domain
name to a whitelist. These flaws could in particular be used
in phishing attacks.

Raynal et al. [28] had a similar approach and gave an in-
depth analysis of the security and trust management mecha-
nisms implemented by ADOBE READER. They pointed out
that some features – such as JavaScript code – could be
declared in privileged mode, which allowed them to run
without user action. This privilege is based on a certification
system and the authors noted that some of Adobe’s software
contained the private key used to sign privileged content.
Thus, an attacker could extract this key and sign a file
containing malicious content.

3.2. Polymorphic files

One of the biggest issues of current PDF readers is that
they accept flawed files and try to correct the errors by
themselves. Wolf [36] noted that ADOBE READER accepts a
file containing the header in the first 1024 bytes, instead of
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at the very start of the file. The cross-reference table can also
be invalid or even missing without causing any warning!

This lax behavior is accounted for compatibility reasons
with existing PDF files. However, one can object that this
does not promote a strict behavior on the PDF-writing
software side. Consequently, competing PDF readers have
to accommodate these errors if they want to stay in the race.

Raynal et al. [28] produced polyglot files, that are at the
same time valid PDF files – or more precisely files accepted
by PDF readers – and valid files of another format, such
as JPEG. The trick is to store the PDF content inside a
comment field of the JPEG file, with the PDF header in the
first 1024 bytes of the file.

In the same spirit, Albertini published numerous variants
of PDF files that are also – among others – valid ZIP, Flash,
HTML or Java files [2], [3]. He also gave examples of
schizophrenic PDF files, that display different content with
different PDF readers [1].

This polymorphism can lead to security problems. Jana
et al. [11] have shown that malware detectors are often
fooled by files having multiple “types”, because they only
identify one of these types. For example, an attacker could
embed a malicious PDF inside a JPEG file. If an antivirus
only identifies the JPEG type, it will see an innocuous file
and accept it.

The fundamental issue here is that the question “Is this
file safe?” is much harder to answer than the question “Is
this file, considered as X, safe?” Specifications can help
avoiding type collision by requiring a fixed magic number
at the beginning of files, but this rule needs to be strictly en-
forced. An alternative approach is to use a typed filesystem
to keep track of file formats, as was proposed by Petullo et
al. in Ethos operating system [27].

3.3. Analysis of JavaScript content

Since version 1.3, PDF documents can contain
JavaScript code. A lot of vulnerabilities were discovered
and often exploited by malware in the JavaScript interpreter
of ADOBE READER. For example, CVE-2014-0521 showed
how to leak sensitive information such as the content of an
arbitrary file. Hence, several studies focused on extracting
and analyzing JavaScript code in PDF files.

In this context, Laskov et al. presented a tool to de-
tect malicious JavaScript code, called PJSCAN [19]. The
extraction process was based on the POPPLER library, a
free implementation of PDF used by the majority of PDF
readers on Linux. This can lead to problems regarding the
reliability of extraction, as we will see in section 4. Their
static code analysis was based on statistical methods aimed
at recognizing patterns similar to known malware.

Tzermias et al. have developed a dynamic tool called
MDSCAN [35]. JavaScript code extraction was only based
on the presence of a /JS key in some objects. The code
was then emulated and the memory was analyzed to find
malicious patterns. The authors pointed out that they used
the free JavaScript engine SPIDERMONKEY and that there
were idiosyncratic differences with the implementation of

ADOBE READER. These implementation disparities can lead
to misinterpretation and false negatives.

In his master thesis [30], Schade presented FCSCAN.
He pointed out the inherent problems of emulation: idiosyn-
crasies of a specific interpreter, PDF-specific API extending
the JavaScript language, timing differences between emula-
tion and real software... He thus proposed a more generic
analysis of function calls to detect uncommon patterns.

3.4. Statistical methods

In the field of computer security, several studies have
explored machine learning methods [13]. Some of them
focused on PDF files.

Maiorca et al. presented PDF MALWARE SLAYER [23],
a tool that extracts several features from a PDF file, such
as the frequency of some keywords. This set of features
was then compared to a database of benign and malicious
documents with a statistical classification method. Smutz et
al. [33] had a similar approach, but also used more exotic
features such as the total number of pixels in images or the
length of the /Author attribute. Their tool PDFRATE is a
web service where one can send files to analyze.

However, these methods have several flaws. In fact, they
rely on the principle that malicious files are significantly
different from benign ones. The authors of these tools con-
ceded that a mimicry attack was possible, where an attacker
modifies its malicious file so that it resembles a benign one.
The authors proposed various methods to counter this attack,
for example by modifying the feature set.

Biggio et al. conducted a more in-depth study of a
mimicry attack from a mathematical point of view, and
applied it to PDF files [4]. They noted that it was easy
to add content to a PDF file in order to manipulate its
features, e.g. with an update (see Fig. 2). Laskov et al. [18]
proposed to add content directly after the cross-reference
table but before the end-of-file marker. Such content is then
ignored by PDF readers, but not by a simple parser such as
PDFRATE.

Maiorca et al. presented a method of reverse
mimicry [22]. Instead of starting with a malicious file, they
proposed to start with a benign file and add malicious
content to it, which also proved to be an efficient evasion
technique.

4. Structural problems: a new avenue

In 2014, Bogk et al. attempted to write a formally
verified parser with the proof assistant COQ [5]. They
pointed out ambiguities in the format, detected with the
help of COQ. While PDF allows to write several incremental
updates successively, the specification does not clearly set
constraints against making a recursive structure with two
updates, where each update refers to the other one as the
previous update (see Fig. 6). In particular, an update is not
required to be located before its predecessor in the file.

To forbid such recursive structures, Bogk et al. chose
to register the positions of tables that have already been
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Header

Objects

Table #1

Trailer #1

End-of-file #1

Objects

Table #2

Trailer #2

End-of-file #2

xref

...

trailer

<< /Prev 1347 ... >>

startxref

428

%%EOF

xref

...

trailer

<< /Prev 428 ... >>

startxref

1347

%%EOF

Figure 6. Loop in updates.

explored, at the cost of a more complex proof – adding 500
lines of code. Besides, their parser only handled a basic
subset of the syntax and did not validate compression nor
relationships between objects. Writing a feature-complete
PDF parser verified in COQ seems to be a daunting task.

As a matter of fact, many sub-structures of a PDF doc-
ument are organized into directed acyclic graphs. However,
as with the cross-reference example, PDF readers rarely
enforce the expected properties with all necessary checks.
In particular, cyclic structures can trigger infinite recursion
on most readers.

With that in mind, we forged several PDF files, con-
taining either malformed elements, or valid elements with
an unclear interpretation. Some of these files triggered inter-
esting behavior in PDF readers. We present several examples
of problems that we found and a summary of the obtained
results.

4.1. Trees and graphs

The document outline is an optional feature allowing to
display a table of contents, usually shown on the side of
the reader. Each element contains a link to a position in
the document, for example to access chapters. This table
of contents is organized as a tree structure that contains
several levels of hierarchy. The parent-children relationship
is stored by means of a doubly-linked list. The parent
contains references to the first and last children, and each
child links to the previous and next children, as Fig. 7 shows.

Yet, as with the cross-reference tables, it is possible to
create an incorrect hierarchy that is not a tree. We tested ill-
formed outlines containing various forms of cycles – such as
Fig. 8 – against several PDF readers. Most of them looped
indefinitely for at least one file.

We believe that the specification is faulty here, because
the intended structure is a tree, but neither the data structure
nor the implementation notes explicitly enforce it. Also, a
simpler structure, for example with a flat array instead of a
doubly-linked list, would have been more appropriate and
easier to parse in practice.

Outline root

ChapterChapter Chapter

SectionSection Section

Figure 7. The outline hierarchy.

ItemItem

Figure 8. Example of an incorrect structure.

4.2. An idol with feet of clay

High-level analyses are based on the proper decoding of
the file at syntactic and structural levels. If the parser is not
reliable, these analyses become irrelevant. Some mimicry
attacks already exploited discrepancies between the library
used for the analysis and the one used for rendering. That
is why we tested PDF readers on files containing low-level
errors. Here are two meaningful results on dictionaries, that
constitute the backbone of the PDF structure because the
majority of complex objects are built upon them.

First, the specification states that all keys shall be unique
in a dictionary. For example, the following structure is
invalid because the key /Key is present twice.

<<
/Key (value 1)
/Key (value 2)

>>

In practice, none of the tested software reported an error,
but instead, all of them associated the key /Key with the
second value (value 2). However, other parsers might
interpret it differently.

Second, a problem arise from escape sequences, that
allow to use any characters in names, including special
characters. The pattern #xx, where xx are hexadecimal
digits, is replaced by the byte with the corresponding code.
If the ’#’ character is not followed by two hexadecimal
digits, the escape sequence is invalid and an error should
occur2, but most readers do not report it. Even worse,

2. Here again, the standard does not specify a clear behavior to adopt.
One could reject the character, the name, the object or even the entire file.
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the pattern /Foo#7/Bar has two possible interpretations:
some readers see one name token whereas others see two
names: /Foo#7 and /Bar. This allowed us to create a file
with totally different interpretations among readers.

4.3. Generation numbers

As described in section 2.1, indirect objects are iden-
tified by a pair which consists of an object number and
a generation number. However, the generation number does
not seem to have any semantic meaning and it is often set to
zero in practice. Thus, we wanted to investigate the behavior
of PDF readers regarding these numbers.

Incorrect number. When no object corresponds to the pair
of numbers, some readers discard the generation number and
look for an object with the same object number.

% undefined generation number
7 1 R
% targeted object
7 0 obj ... endobj

Negative number. Generation numbers must be between 0
and 65535 – inclusive. Thus, we tested negative numbers.
Most readers incorrectly recognized the targeted object in
the following example.

% negative generation number
7 -2 R
% targeted object
7 -2 obj ... endobj

Special value. The PDF reference [10] states that free
objects – i.e. objects that have been deleted – must have
a generation number of 65535 = 216 − 1. However, it is
not really clear whether this value should be allowed for
in-use objects. We tested the following example and some
readers effectively identified a deleted object whereas others
recognized our target.

% special generation number
7 65535 R
% targeted object
7 65535 obj ... endobj

4.4. A summary of problematic behaviors

In this study, we compared the behavior of several
PDF readers: ADOBE READER, EVINCE, FOXIT READER,
SUMATRAPDF, as well as the embedded viewers of
CHROME and FIREFOX browsers. This list was not intended
to be exhaustive and other readers might be affected as well.

We tested several elements of the PDF syntax and
structure, such as those presented in the previous sections.
For each element, we crafted ill-formed files and compared
the behavior of PDF readers. This included the displayed
content, the CPU usage and whether the software crashed.

This study uncovered many problems leading to denial
of service or rendering discrepancies. Fig. 9 summarizes the
kinds of problems that we found. Details about these bugs
have been reported to software editors.

Description Count
Tested features 17

At least one reader crashed 4

At least one reader exhausted all CPU resources 3

Inconsistencies between readers 12

Non-conforming behavior w.r.t the standard 13

Figure 9. Test of syntactic and structural errors.

Discussion. In our study, we did not find any open source
PDF parser relying on lexer and parser generators. Instead,
each implementation is written as an ad hoc parser, which is
more error-prone and leads to the aforementioned discrepan-
cies. It is worth noting that the PDF specification describes
the format in a natural language in English text but does
not provide a formal grammar in Backus-Naur Form – or
similar. For all these reasons, we decided to propose such
a (restricted) grammar, as well as additional rules to build
a clear and unambiguous description of what a PDF file
should be.

5. Towards a PDF/Restricted format

Reliably interpreting a PDF file raises many issues, and
an exhaustive validation is a difficult task. To address this
problem, we chose to focus on the validation at syntactic
and structural levels, in order to provide a solid basis for
higher-level verifications.

Because the full PDF format is very complex, we first
propose a restriction of the syntax that is easier to validate,
and show how files can be rewritten to conform to this
restricted format. We then present a type checking algorithm
that allows to validate the consistency of each object. Fi-
nally, we describe how we can check the overall consistency
of more complex structures.

5.1. Restriction of the syntax and normalization

Motivation. In the previous sections, we discussed how PDF
readers try to correct invalid files, and how it is possible
to create polymorphic files. To avoid these problems, it is
essential to guarantee that objects can be extracted unam-
biguously from PDF files.

Moreover, some features of the language – such as
incremental updates or linearization – add complexity to
PDF parsers but are not essential to the format expressivity.

For these reasons, it seems natural to define a new
format to simplify the validation process3. Two properties
are desirable:

3. This format could be called PDF/R for PDF Restricted, in the same
spirit as PDF/A for PDF Archive.
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• it should be a restriction of PDF, so that validated
files are directly usable without further processing4;

• it should be compatible with the most common
features of PDF, to have practical use.

Definition of a grammar. As is, PDF is error-prone and it
is not easy to verify that a parser is correct. The main reason
is that the cross-reference table, that indicates the position
of objects, is located at the end of the file. This prevents im-
plementations from parsing the file linearly because distinct
objects could overlap, holes could be inserted with unknown
content between objects, etc.

An elegant approach is to define an unambiguous gram-
mar and use lexer and parser generators, because verifying
a grammar is easier than verifying a custom parsing code.
Furthermore, using a grammar is language-agnostic and can
easily be adapted to various projects.

For these reasons, we propose a grammar that makes it
possible to parse files linearly, but only supports a restriction
of the PDF language. The goal is to define an LR(1)
grammar, to use tools such as MENHIR – a parser generator
for OCAML. We could have targeted LALR(1) grammars
as well – to use YACC or GNU BISON.

Grammar rules. Our intent was to parse the most basic
format shown on Fig. 1, i.e. files that are not linearized and
that contain neither incremental updates nor object streams.
These files can be processed linearly, which means that
objects can be extracted without the help of the cross-
reference table. We then have to check the consistency
between declared positions in the cross-reference table and
real positions of objects in the file.

Apart from constraining the overall structure of the file,
we decided to add other restrictions. At a syntactic level,
we remove comments, because they can contain arbitrary
content that allows to create polymorphic files (see [1]).
Besides, comments are mostly useless – humans seldom
read the raw content of a file – and they have no meaning
for a software – or at least they should not!

Likewise, we restrict the set of allowed whitespace
characters – there are six of them in PDF. We did not find
errors related to them, but they are all equivalent – except
newline characters that are required in some contexts – and
it is possible that an implementation forgets one of them or
confuses the NULL character for an end-of-string marker.
That is why we only allow four whitespace characters:
space, tabulation, line feed and carriage return.

Practical issues. Defining an LR(1) grammar raised some
practical issues. The main reason is how indirect references
are written. For instance, the [1 2 R] array contains one
element (a reference), whereas the [1 2] array contains
two elements (integers).

In that case, after reading tokens 1 and 2, we do not
know if we are in the middle of a reference or if we have

4. This property excludes new formats designed from scratch, as the
Simple Representation proposed by Rutkowska for Qubes OS [29].

already read two integers. For this reason, we have to use
non-trivial rules to discriminate integers from references.
Hopefully, this problem solely occurs in arrays because it is
the only place where a sequence of integers is allowed.

Additional rules. Aside from the grammar, we add con-
straints to guarantee the file consistency. For example, the
positions in the cross-reference table must point to the
corresponding objects in the file. The /Length value of
streams must match the number of bytes between stream
and endstream keywords.

Regarding indirect objects, we force the generation
numbers to be zero, to avoid the problems presented in
section 4.3. Besides, we require all objects to be used –
except for object number zero that is never used. To further
simplify the structure of the cross-reference table, we require
that object numbers form a single continuous range starting
from zero.

Last, we restrict the encoded content of streams, for-
bidding them to contain keywords of the PDF language,
such as endstream or endobj. Otherwise, parsers might
be fooled if they rely on endstream and do not check
the length of streams, as Wolf noted [36]. However, this
restriction should not be a practical issue because it is
always possible to rewrite a stream with a filter to get
rid of these sequences; for example /ASCIIHexDecode
produces only hexadecimal characters.

Normalization. In practice, our subset of the PDF language
is too strict for most PDF files. A solution was to create a
normalization tool that accepts more files and rewrites them
in a simpler form (no incremental update, no comments,
etc.). Of course, such a tool is more difficult to verify, but
our goal was to trust only the validation tool, which works
on the restricted PDF language. A practical use case would
be to run the normalization tool in an isolated environment –
for example before a file enters a sensitive network – and
then to check the file in the classical user environment – for
example each time the user opens a file with a PDF reader.

5.2. Type checking

Motivation. Once we are confident about the overall file
structure, we have to check that objects are semantically
consistent. For example, we expect the leaves of the page
tree to be pages, not images or integers. Unknown problems
might arise when types are inconsistent.

Besides, we want to be able to set up a whitelist of
allowed features, to avoid malicious content. To ensure this,
it is first necessary to know the type of every object.

Finally, we must mention that object types are not obvi-
ous. In fact, dictionaries may contain a /Type attribute, but
this is optional in most cases. Thus, we could not merely
iterate over objects to find their types. It was necessary to
infer types from the context in which objects are used.

Algorithm. A PDF document forms a connected graph,
whose edges are indirect references and whose root is the
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trailer. To infer the types of objects, we do a breadth-first
traversal of the graph, starting with the trailer. We propagate
type constraints through references until we have identified
and checked every object.

During the traversal, each object is in one of three
possible states: it is either unknown, inferred or checked.
The type of an object is in inferred state if constraints
from other objects require a given type, but we have not
checked its content yet – i.e. this object is in the queue of
the breadth-first traversal. At the beginning, the state of the
trailer is inferred, and other objects have an unknown state.
The goal is that all objects end up in the checked state after
the propagation of constraints.

If several type constraints are conflicting or if an object
does not comply with its inferred type, we stop the algorithm
and reject the file.

Since we perform a breadth-first traversal of the graph,
the complexity of our type checking algorithm is linear in
the number of edges.

Handling transitional ambiguities. Sometimes, we cannot
infer the exact type of an object until we actually check it.
For example, the page tree is made of two different types of
objects: leaves (pages) and internal nodes (page intervals).
A priori, a child of an internal node can be of either type so
it cannot be inferred directly when the parent is traversed.

Thus, we infer this object as a sum type, a superposition
of several types that will be resolved at checking time. It is
indeed possible to resolve unambiguously such situations by
looking only at the object, without further constraint propa-
gation (otherwise the algorithm would require backtracking),
because there always exists a discriminating attribute that
directly specifies the type, in the form of a name, an integer
or a boolean. For example, the /Type field of a page is
/Page, whereas it is /Pages for an internal node.

PDF types. The PDF reference defines many types that we
have to include in our algorithm. We organized these types
into the following building blocks.

• Basic types: null, booleans, numbers, names, strings.

• Enumerated types: basic objects that have a
small set of possible values. For example the
/BitsPerComponent attribute of an image may
only take certain values (1, 2, 4, 8 or 16).

• Classes: the majority of complex objects are dictio-
naries, that contain a set of attributes with predefined
keys. For example, a page object contains – among
others – the following attributes: /Type, /Parent,
/Contents, etc. Some attributes are mandatory
and others are optional.

<<
/Type /Page
/Parent 437 0 R
/Contents 415 0 R
/MediaBox [0 0 612 792]
/Resources 414 0 R

/Annots [413 0 R]
>>

• Homogeneous arrays: sequences of values of the
same type. For example, an internal node in the page
tree contains a list of children nodes.

<<
/Type /Pages
/Kids [1 0 R 2 0 R 3 0 R]
...

>>

• Optional arrays: in some contexts, when an array
contains only one element, the array part is optional.
For example, the /Filter attribute of a stream
defines a sequence of chained compression filters,
such as:

[/ASCIIHexDecode /FlateDecode]

But when only one filter is present, the following
expressions are equivalent:

/FlateDecode
[/FlateDecode]

• Tuples: arrays of fixed size with a given type for
each index. For example, a destination describes
a position in the document, that can be targeted
by internal hyperlinks, and is typically of the form
[page /XYZ x y zoom], to target a page at
position x, y with a zoom factor.

• Arrays of tuples: to define an array of tuples,
the PDF language often uses a 1-dimensional array,
instead of an array of arrays. For instance, a name
tree contains pairs of strings and objects, laid out in
the following manner.

<< /Names [
(section 1) 1 0 R
(section 2) 2 0 R
(section 3) 3 0 R

] ... >>

In this example, (section 1) is mapped to object
1 0 R, (section 2) to object 2 0 R, etc.

• Homogeneous dictionaries: dictionaries that map
arbitrary names to values of a given type. For in-
stance, the font resource dictionary maps names to
font objects. These names can be referred to by
content streams.

<<
/F1 123 0 R
/F2 456 0 R

>>

In this example, name /F1 is bound to font object
123 0 R and name /F2 to object 456 0 R.
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Complex dependencies. Some constraints are difficult to
express with our formalism. For example, classes have
mandatory and optional attributes. Some mandatory at-
tributes can in fact be inherited from ancestors in a tree
structure and are not mandatory at object level.

More precisely, each page must declare its dimensions,
but this property can be inherited in the page tree, because
pages often have the same dimensions within a document.
The dimension attribute is neither mandatory in a single
page object nor in a single node object, but each page must
have an ancestor with this attribute. We cannot check this
kind of property at this stage because our algorithm works
locally. However, we could declare the dimension attribute
as optional and validate the constraint independently... or
the specification could be amended to make the validation
of this rule easier.

5.3. Higher-level properties

Our parser and type checker provide a basis to verify
higher-level properties. This includes the consistency of the
graph of objects and the validity of embedded elements
(fonts, images, etc.). We already implemented some veri-
fications on the graph and other checks can be integrated in
a future work.

Checking graph properties. We have seen in section 4.1
that graph structures such as the page tree or the outline
hierarchy raise problems when they are incorrect. To vali-
date these structures, we check that they do not contain any
cycle, and we ensure that doubly-linked lists are consistent.

Checking features. Once we have confidently identified the
types of objects, it is possible to perform checks on specific
features. For example, we could integrate tools that analyze
JavaScript, such as those presented in section 3.3. We could
also check that embedded fonts and images conform to their
respective specifications.

6. Implementation and results

6.1. Implementation

Implementation choices. CARADOC was implemented us-
ing OCAML. Here are the advantages of this language,
regarding our goal to write a robust parser.

• OCAML is a strongly-typed functional language,
which allows the developer to catch more errors at
compile-time, with relevant debugging information,
instead of getting them later at runtime.

• The language is naturally expressive, which helps to
write concise code: in particular, sum types allow
to naturally define abstract syntax trees representing
PDF objects. Similarly, pattern matching provides an
elegant and efficient method to visit these structures.

• As the memory is handled automatically by the
garbage collector, several classes of attacks (double
frees, buffer overflows) are impossible5.

• Pattern matching exhaustiveness check is a very
helpful feature when dealing with complex struc-
tures or algorithms, since the compiler will remind
you of unhandled cases.

For the lexical and syntax analysis part, we chose to
use OCAMLLEX with MENHIR, respectively a lexer and a
parser generators for OCAML, allowing us to simply use the
grammar presented in section 5.1.

For all these reasons, we believe not only that our tool
is a direct implementation of our language restriction rules,
but also that our implementation choices lead to source code
that can more easily be verified. It is interesting that other
projects have recently used OCAML to achieve complex
tasks: PARSIFAL [21], a binary parser generator, and NOT-
QUITE-SO-BROKEN-TLS [17], a new TLS stack written by
the Mirage project. In both cases, similar arguments have
been argued in favor of OCAML as a safe and expressive
language.

Workflow. We organized our implementation into the fol-
lowing workflow.

First, we implemented a strict parser that complies with
our restricted grammar and extracts the objects from the file.
We also implemented a relaxed parser that accepts more
syntactic structures of PDF, in order to normalize a wide
range of files into our restricted format (see Fig. 10).

PDF

strict parser

relaxed parser

objects

graph of
references

extraction of
specific objectsnormalization

Figure 10. Objects extraction.

Once the objects are extracted, we can perform type and
graph checking. Further checks could be added to complete
the validation (see Fig. 11).

Apart from that, the user can collect information along
the way: retrieve a specific object, extract the graph of all
indirect references or get the types of objects.

6.2. Tests on real files

Set of files. In order to assess our tools with real-world
files, we gathered a set of PDF files from the Internet. To
find these files, we used a search engine, specifying that we
wanted PDF files. Each query consisted of a single word

5. However, to be honest, this alone is far from perfect, since we may
avoid arbitrary execution but not a fatal exception.
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Figure 11. Validation process.

PDF

10000 files

relaxed
parser

encrypted

478 files

parsed

8993 files

syntax
errors

529 files

Figure 12. Set of real-world files.

extracted randomly from an English dictionary. In total, we
gathered 10000 files.

This method may have some biases: correct files have
more chances to be indexed by the search engine, documents
are likely to be written in English because of the queries
that we make and the search engine may prefer some kind
of high-quality content. However, we observed that the
resulting set comprised a great variety of features and errors
at every level of the validation process.

Some of the files contained encrypted objects and others
had syntax errors that were not recovered by our relaxed
parser. In total, we could parse 8993 files (see Fig. 12).

All possible versions of PDF – from 1.0 to 1.7 – were
present in the set (Fig. 13). The majority of the files con-
tained between 50 and 300 objects (Fig. 14).

Direct validation. We first tested the validation chain di-
rectly. Only 1465 files were accepted by our strict syntactic

Version Number of files
1.0 0.1%

1.1 0.5%

1.2 4.1%

1.3 19.7%

1.4 32.2%

1.5 23.6%

1.6 15.6%

1.7 4.2%

Figure 13. PDF Version.

101 102 103 104 105

Figure 14. Number of objects per file (8993 files).

PDF

10000 files

strict
parser

parsed

1465 files

type
checking

type
checked

536 files

graph
checking

no error
found

536 files

Figure 15. Direct validation.

rules, of which 536 were successfully type-checked. No
error was found in the graph structure for them (Fig. 15).

Limitations of the strict parser. In fact, the majority
of the files made use of incremental updates, that were
not allowed by our restrictions. Some files even contained
several successive updates (Fig. 16).

Apart from that, many files used object streams and/or
contained free objects (Fig. 17).

Finally, from the files that did not contain these forbid-
den structures, a significant number did not conform to our
strict syntactic rules.

6.3. Normalization

Relaxed parser. In order to handle more files, we im-
plemented a normalization tool that rewrites files into the
restricted format when possible. This tool was based on our
relaxed parser. Contrary to the strict parser – that processes

Number of updates Number of files
0 36.2%

1 43.1%

2 18.3%

3 1.3%

4 0.4%

≥ 5 0.8%

Figure 16. Number of incremental updates per file.

Problematic structure Number of files
Incremental updates 64%

Object streams 35%

Free objects 29%

Encryption 5%

At least one of these structures 76%

Figure 17. Structures not allowed by the strict parser.
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the file linearly from the beginning to the end – the re-
laxed parser uses the xref table(s) to obtain the positions
of objects and extract them. Hence, it was able to decode
files containing incremental updates and object streams. It
did not recognize linearized files as such, but these files
could be decoded by means of standard xref tables, because
linearization only adds metadata to the classic structure.

Our normalization tool then removed all objects that
were not accessible from the trailer and renumbered the
objects in a continuous range starting from zero. In total,
we could rewrite 8993 files out of 10000.

Ad hoc extensions. In practice, some files did not pass
the relaxed parser, either because they contained encrypted
objects or because of syntax errors with respect to the
standard PDF specification.

For example, we found files that contained ill-formed
cross-reference tables. In fact, the cross-reference table al-
lows to define in-use objects but also free objects. This is
useful to remove content by means of incremental updates.
The invalid files that we found incorrectly declared in-use
objects at offset zero instead of using the appropriate syntax
for free objects. Hence, our first version of the relaxed parser
could not parse them – since it did not recognize an object
at offset zero. However, since this bug was common, we
decided to add an ad hoc option to accept this mistake and
be able to normalize the files in question.

We implemented similar options for common bugs that
we noticed, but did not intent to correct every possible
mistake. Thus, some files could not be normalized. The 8993
normalized files were obtained with these options.

Consistency. A required property of any normalization step
is to be non-destructive: a normalized file must be equivalent
to the original one from a semantic point of view. For
this purpose, we checked manually – i.e. on a restricted
set of files – that the normalized files could effectively be
opened in PDF readers and that the graphical result was the
same. Since our normalization simply rewrote the objects
in a cleaner manner but did not modify the content of
these objects, we have good confidence that the process is
effectively non-destructive.

Benefits. Moreover, we found cases where the normalized
file was better than the original. For example, PDF allows to
integrate forms that the user can fill in and save into a new
file. This new file often makes use of an incremental update
to append the new content of the forms – and invalidate
the previous content. However, we noticed that some forms
filled-in with some reader could sometimes not be loaded by
other readers. Yet, after normalization by CARADOC, these
files were readable by all readers. Clearly, normalization
made these files more portable.

This example also shows that incremental updates are
not well supported by PDF readers in some cases, and that
it made sense to disallow them in our restricted format.

6.4. Type checking

The whole PDF language contains a large number of
types, presented in more than 700 pages in the specification.
Hence, we did not intent to be feature-complete, but to
integrate the most common types. This subset can easily
be extended in the future.

Choices of types. To define the types to include first, we
worked with simple PDF files produced by LATEX, such as an
article and a BEAMER presentation. We added types incre-
mentally until these files were fully type-checked. Then, we
also used the set of real-world files to add some widespread
types that were not present in our LATEX files.

In the end, our set comprises 165 types, including 108
classes. It contains the following types:

• overall structure of the document: the catalog, the
page tree, name trees and number trees;

• graphical content of pages and resources: colors,
images, fonts;

• interactive content: the outline hierarchy, simple an-
notations, common actions (such as destination to a
URI), transitions (for slideshows);

• various metadata: viewer preferences (default view
of a document), page labels (to number pages in a
specific range).

We did not implement the following elements yet, but
they could be integrated in a future work:

• advanced interactive content: JavaScript code, mul-
timedia;

• the logical structure of a document (that allows
to identify elements such as chapters, sections or
figures).

Results. We present here the results of the type-checker on
the normalized files.

Although our set of types was incomplete, it gave
promising results on our data set. In the majority of the
files, we could infer the types of more than 90% of the
objects (Fig. 18).

0 0.2 0.4 0.6 0.8 1

Figure 18. Proportion of objects of inferred type per file (7597 files).

In most cases, we could only partially check the file,
which means that the types of some objects were not in-
ferred, but no errors were found in the checked objects.
This partial inference was possible because we used a
placeholder any type for types that we did not implement
yet. Consequently, objects with this any type were not
further inspected – and objects referenced by them were
not traversed. Similarly, we sometimes included only the
most common attributes in some types, which means that
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we could find unknown attributes – such as metadata – in
the wild. Type checking failed on 1391 files, either because
our type subset was too restrictive or because the files had
indeed incorrect types (Fig. 19).

norm-
alized

8993 files

type
checking

type
checked

1429 files
type error

1391 files

graph
checking

no error
found

1427 files

Figure 19. Validation after normalization.

Discussion. We found several reasons for type errors to
occur in real-world files that are not malicious.

First, type constraints seemed to be too restrictive in
some cases. For example, objects that represent fonts include
a wide range of attributes, but there are 14 pre-defined fonts
for which these attributes are standardized. To ensure com-
patibility between the two kinds of fonts, the specification
states that the additional attributes shall either be all present
or all absent. However, we found files where only some of
these attributes were present. These files are not compliant,
but this is probably a mistake rather than an intentional error,
and PDF readers cope with such errors in practice.

Second, we found files with spelling mistakes. For
example, some object contained the name /Blackls1
(with a lowercase ‘L’) whereas the specification requires
/BlackIs1 (with an uppercase ‘i’). In fact, the specifica-
tion is itself distributed as a PDF file and such names are
written in a sans-serif font, with makes it difficult to distin-
guish the two letters, hence the mistake. Another example
was the misspelling /XObjcect instead of /XObject.

We hope that our tool can provide feedback to PDF
producers by pointing out these mistakes, and thus improve
them. Also, a new normalization stage could be developped
to clean up these inconsistencies.

Versions of the format. Some type constraints of the spec-
ification are related to the PDF version that is used, because
new features were added and others were deprecated over
time. We did not perform these checks, because they add a
lot of complexity to the analysis and current PDF readers
usually implement the features without strictly checking that
they are allowed in the announced version.

6.5. Graph checking

Of interest, 2 files contained errors at graph level. These
errors were related to their outline structure.

In one case, all nodes of the outline tree referred to the
root as their /Parent attribute, instead of their respective
parents. In the other case, the linked-list was only singly
linked, i.e. nodes specified a /Next link but the /Prev
link counterpart was missing.

Filter
Proportion
of the files

Supported
by CARADOC

/FlateDecode 98.2% yes

/DCTDecode 49.5% no

/CCITTFaxDecode 14.2% no

/ASCII85Decode 5.4% no

/LZWDecode 3.5% no

/JBIG2Decode 2.7% no

/JPXDecode 2.6% no

/ASCIIHexDecode 1.0% no

/RunLengthDecode 0.1% no

Figure 20. Stream filters used in practice (8993 files).

7. Future work

Although our approach provides a reliable basis at the
structural level, there remains a few limitations for a com-
prehensive validation of PDF files. The format is inherently
complex, because it allows to include various forms of
elaborated objects. Let alone JavaScript code, that by itself
turns PDF into a Turing-complete format, one can include
images, videos, fonts, etc. Some of them are essential to
a document format and should be validated as a priority:
vector graphics, fonts and images.

7.1. Streams

Streams can be encoded with a wide range of filters
(Fig. 20). Currently, we do not check most of them because
the inherent complexity of compression formats goes beyond
the scope of our work.

Thanks to a library, we support the /FlateDecode
filter, that corresponds to the ZLIB algorithm, because it is
often used in object streams, that we needed to decode in
the normalization process.

However, badly encoded streams with uncommon fil-
ters – such as /JBIG2Decode – have been used in practice
by malware creators to further obfuscate malicious pay-
loads [12], [31]. Thus, checking the proper encoding of
streams is essential for the validation process of PDF files.

7.2. Content streams

The graphical content of each page is encoded as a
sequence of commands wrapped inside a content stream.
These commands encode geometrical primitives and follow
a specific grammar that should be validated as well. Since
our type checker already provides the list of objects that are
content streams, a new validation module for them would
fit well within our workflow.

7.3. Higher-level features

To fully validate PDF files, we also need to check the
consistency of embedded images and fonts. Recent vulnera-

137137137



bilities have been uncovered in the parsing of fonts, notably
on WINDOWS for which this is done in kernel space [16],
[24]. PDF files with embedded fonts are another channel to
deliver malicious content.

Likewise, existing analyses on JavaScript content could
benefit from our reliable parser and type checker. In fact,
JavaScript code can be embedded in many locations: in the
catalog, in pages, in an embedded XML file, etc. Contrary to
previous approaches that only target a blacklist of locations
that may not be exhaustive, a type error will be reported in
our framework if we forget to implement one of these types,
which hinders the risks of evasion.

7.4. Prospects

Our proposition helps improving PDF-manipulating
software at two levels.

First, at generation level, our formal grammar can be
leveraged to ensure that produced documents can be unam-
biguously parsed. Generators could rely on it to increase the
portability of their tools, because errors can be spotted in
advance, directly at the development step.

Second, at parsing level, CARADOC provides a reliable
parsing of documents that can serve many purposes, not
restricted to the security goal. Since any unsupported feature
can be reported as an error, tools that use it are safer and
more reliable. Objects can also be extracted from a PDF file
and provided to third-party tools for further investigation.
This allows to validate a wider range of content without
integrating them directly within CARADOC.

8. Related work

8.1. PDF validation

Some existing tools were written to validate PDF files.
The JHOVE framework [14] is a Java application intended
to validate conformance of files to various formats, among
which JPEG, GIF or XML. Validation of PDF files is also
supported through the PDF-HUL module [15]. Files are
checked for well-formedness at a syntactic level and for
validity of some criteria at document level, including some
tree structures. However, the performed checks are not com-
prehensive and follow a blacklist approach: non-supported
structures are considered valid by default. For example, we
were able to create an ill-formed file that caused a crash on
some readers but was nevertheless reported as “well-formed
and valid” by PDF-HUL. On the contrary, we believe that
our approach provides stronger guarantees, because at type
checking level, we flag non-supported types as suspicious
by default. Our syntax restrictions are also easier to verify.

Apart from that, many tools exist to validate confor-
mance of files to the PDF/A standard. This subformat of
PDF is intended for long-term archival of documents and
requires additional properties, such as mandatory embedding
of fonts inside the file. For example, the VERAPDF project6

6. http://verapdf.org/

is expected to provide an open-source PDF/A validator in a
near future. However, the PDF/A standard mostly enforces
properties at feature level and these validators do not really
take the syntax nor the structure of the file into account.

8.2. PDF analysis

Other tools were written to inspect, modify and ma-
nipulate PDF files, such as ORIGAMI [28], PEEPDF [8],
PDFTK [26], PDFMINER [32], PDFBOX [20] or PDF
TOOLS [34]. They are useful to handle valid files, but they
chose to implement custom parsing code and to attempt to
cope with syntax errors. As a matter of fact, most of these
parsers mix input data checks with processing logic that do
not belong to the validation process, which is a well-known
anti-pattern leading to security vulnerabilities [25]. In these
so-called shotgun parsers, the data and parser computations
are intricated and become very context-sensitive, which
leads to a drastic increase of reachable states inside the
program, including unwanted or dangerous ones.

As we showed earlier in this paper, such parsers could
be tricked by targeted syntactic errors due to their internal
discrepancies. Objects could be misinterpreted or worse,
silently ignored, which is conducive to evading the vali-
dation step where object internals are checked. With limited
guarantee at syntax level, these tools are therefore unsuitable
for validation and analyses built on top of them are not
reliable from a security point of view.

To overcome these limitations, adding more validation
logic to their parsing code would make the analysis of all the
computation paths untenable, with detrimental results due
to the increased complexity. On the contrary, our approach
offers a generic way to transform the grammar into a parser
that can be used for validation of files but also for extraction
purposes. Thus, CARADOC could be used as a building
block for more complex analyses.

9. Conclusion

In this article, we have studied the low-level structure of
PDF files, to analyze how the parsing step might go wrong
when interpreting a document. We first crafted invalid or
ambiguous files to test existing libraries and viewers, which
led us to uncover several bugs – currently under review –
in these implementations. Then, we proposed a set of rules
that define a restriction of the original PDF specification,
to reduce ambiguities at the structural level. Finally, we
implemented CARADOC, a validation tool to check our rules
in a real-world context.

The first obtained results are promising, since our tools
could validate a significant part of our corpus. While we
already identified areas for improvement, we also found
several cases where rejection was the correct verdict. More-
over, we are convinced that providing a robust parser is the
required first step to allow for higher-level analyses as those
already existing.

Contrary to previous studies, that usually started with a
parsed abstract syntax tree, we do not consider the parsing
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step as a simple and straightforward process, but as a
possible source of ambiguities and discrepancies among im-
plementations (which usually accommodate with malformed
files for compatibility’s sake). For all these reasons, parsing
a PDF in a reliable and generally acceptable way is nearly
impossible. Our proposal essentially identifies possible im-
provements to fill in the gap between the current state of
the standard and a simple and reproducible parsing process.

During our study, we found a lot of inconsistent or
vague requirements, leading us to add restrictions; we also
encountered requirements that were very hard to validate
whereas an adaptation of the rules would be trivial to check.
We thus believe that our work (our test cases, the formal
grammar and rules, and our implementation) could be a
relevant input for a specification update, be it the new
PDF 2.0 standard under definition, or a new restricted PDF
dialect, which could be called PDF/R, similarly to PDF/A
for archiving purpose.

Finally, our approach can be generalized to other formats
to propose tools and/or specification updates to improve the
state of software security. This work naturally falls within
the LangSec – language-theoretic security – philosophy,
which prones to ban ad hoc input handling and instead
use well-known and well-studied formal – yet simple –
methods, for example decidable grammars or type-checking
algorithms. We strongly believe that developing this state of
mind is necessary to counter the growing complexity of our
systems and help us secure them in the long term.
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