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Abstract— For many applications, it is desirable to have a 

process for recognizing when software binaries are closely 
related without relying on them to be identical or have identical 
segments. But doing so in a dynamic environment is a nontrivial 
task because most approaches to software similarity require 
extensive and time-consuming analysis of a binary, or they fail to 
recognize executables that are similar but not identical. 
Presented herein is a novel biosequence-based method for 
quantifying similarity of executable binaries. Using this method, 
we show in an example application on large-scale multi-author 
codes that 1) the biosequence-based method has a statistical 
performance in recognizing and distinguishing between a 
collection of real-world high performance computing 
applications better than 90% of ideal; and 2) an example of using 
family-tree analysis to tune identification for a code subfamily 
can achieve better than 99% of ideal performance.  

Keywords—software analysis, sequence analysis, cyber security 

I. INTRODUCTION 

The organic variation in the population of binaries 

motivates an approach for recognizing “families and variants” 

of software binaries as opposed to “individuals”. The ability to 

recognize related but distinct variants is essential for several 

practical applications, such as maintaining a large repository 

of software (such as the NIST repository) in which one would 

not want many redundant copies of closely related binaries, 

detecting the presence of freeware or other licensed code 

within a developing codebase, and ensuring that only certain 

applications are used in restricted environments (whitelisting), 

to name a few. For such applications, instead of traditional 

code analysis, which can require extensive computational 

power and far more detailed than necessary, there is a need to 

draw from techniques in other domains such as biological 

sciences that are more amenable to recognizing families and 

variants. 

In this paper, a novel bio-inspired method for recognizing 

similar software is presented. This method is demonstrated to 

be a suitable algorithm core for the problem of executable 

binary whitelisting via verifying software identity against 

known examples of the software. In active environments, 

many slight variants of software may exist. It is unreasonable 

to expect that each executing individual is an exact match to 

any previously reported software individual. So biosequence 

analysis is an ideal technique to quantify the extent to which 

the new software matches a sequence-based model of 

software.  

For bio-inspired software identity verification, a collection 

of software variants from the same code family is thought of 

as a “family” and each time a user wants to execute a code, 

that “individual” is checked to make sure it is truly a member 

of the family. As a simple example, the linear algebra 

application LINPACK is a different family than the 

computational chemistry code ADF. LINPACK versions 1.2 

and 2.3 are different individuals within the same family. If a 

user of a multi-user platform wanted to run a modified version 

of LINPACK using a batch submit script, the process of 

software identity verification would analyze the binary before 

allowing the job to run to ensure that the executable being 

submitted is, in fact, a member of the LINPACK family by 

comparing it to a model of LINPACK family members.  This 

approach to family analysis is a special case of a larger field of 

general software analysis, which has many different 

algorithmic approaches. 

A. Existing Approaches to Software Analysis 
Clone detection is an existing software analysis approach 

that could potentially be used to recognize highly similar 

variants of a binary family. Applications of clone detection are 

generally applied to large-scale code base software for the 

purpose of 1) finding and eliminating cut-and-paste segments 

in a large software projects because these are especially prone 

to introduce complexity and bugs, 2) identifying instances of 

software plagiarism, or 3) for making sure licensed code is 

free of open source code fragments or other software that 

would jeopardize a commercial license.  

Clone detection is typically done either by analyzing 

source code, or by operating on the disassembled binary (i.e. 
the assembly instructions). With our method, the emphasis is 

on the binary itself, because detailed analysis of source code is 

unnecessary for the purpose of identifying similar binaries. 
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Also, for speed and efficiency reasons, linear transformations 

of executable binaries are preferred. The goal of the current 

work is to not rely on higher dimensional information that 

captures relationships between code segments within a binary 

to discover binary similarity. 

Detecting similar binaries directly is the target of many 

commercial offerings and research projects, most of which are 

focused on malware detection, and are based on code 

signatures. Typically these signatures are built from 

checksums or other transformations of the binary sequence 

into numerical representations where finding a match is 

equivalent to finding an equal checksum. There are many 

variations on this theme including simplistic approaches 

where checksums are calculated for binaries [1] or sections of 

binaries like functions or functional blocks. Such exact-

matching methods are not suitable for recognizing binaries in 

a dynamic environment, as the binaries should not be exact 

matches. Exact-match based approaches fail because even 

small modifications of code results in an entirely unrelated 

checksum value. To mitigate this issue some have used a 

locality-preserving hash value [2], but such methods presume 

one has already transformed raw data into a feature vector 

representation. The goal for our research is to operate on the 

binaries themselves.  

Some approaches use sequences of disassembled 

instructions to identify clones [3, 4]. In our approach, 

instructions are resolved and exact matches are made more 

flexible by allowing insertions or mismatches that occur under 

a threshold. In more sophisticated approaches, disassembly is 

used as a preprocessing step to identify code segments such as 

functions that generate check-sum signatures [5-7]. This is a 

very promising approach, and has been shown to eliminate 

many duplicates or near duplicates from a corpus of known 

malicious software. But these methods are not readily 

available and their performance for whitelisting diverse 

families of large binaries is unreported. Other variants use 

techniques like using disassembly to identify the entry point of 

a binary as the starting point for an assembly stream signature. 

The main limitation of these approaches is the static nature of 

the signature itself. Though signatures do allow for some 

flexibility in binary recognition, a method is needed to 

“discover” the most reliable indicators of particular code 

families. 

Taking this one step further, it has been shown that highly 

similar regions of a binary can be identified using 

disassembled, normalized sequences combined with locality 

sensitive hashing (a relaxed form of locality preserving 

hashing) [8]. Including dynamic analysis with normalized 

instruction sequences has been shown to increase sensitivity 

when program behaviors are correlated with static analysis 

[9], but dynamic analysis is unnecessary and too costly to 

perform on a regular basis.  

Herein, two methods are introduced: instruction frequency 
vector and bioinformatics-based similarity analysis. These are 

two alternative approaches for software identity verification 

that are demonstrated to surpass the limitation of hash-based 

approaches (which would trivially fail to identify any similar 

but non-identical software artifacts). The bioinformatics-based 

approach has been demonstrated as a powerful tool when 

operating on Abstract Syntax Trees (AST) [10, 11]. The 

method presented uses a similar approach, but instead of using 

the AST, it only relies on disassembly of a binary. These 

methods do not rely on presence of source code, nor do they 

analyze complex lexical features or structures within the 

binaries and so operate on raw binaries quickly. They rely 

only on analysis of disassembled instructions. The motivation 

and features of these two approaches are described in greater 

detail in the following sections. 

B. Instruction Frequency Vector Similarity 
Instruction frequency vector-based similarity analysis tests 

the degree to which a global, frequency-based representation 

of a software binary’s disassembled instructions can detect 

similar software instances, even when those binaries are non-

identical. Vectorization is a “global” approach in that a single 

feature vector describes an entire code instance and therefore 

would be most useful in identifying when one entire instance 

is similar to another entire instance. This method would not be 

useful in detecting the similarity of individual parts. For the 

application of software identification verification, this whole 

code approach may be reasonable in many cases because one 

seeks to answer the question “is there enough evidence that a 

test binary is indeed a member of a predetermined binary 

family?” Global binary similarity methods such as this are not 

expected to work as well in large or highly variant families or 

subfamilies, but represent a simplistic starting point for rapid 

software identification verification and is included for 

comparison. Feature vector approaches make a simplifying 

assumption that the order of instructions is not important in 

distinguishing between binary families. As a consequence, 

feature vector-based approaches are computationally simpler 

than more complex analysis (such as bioinformatics-based), 

but are not expected to have the same statistical performance 

in identifying members of highly variant binary families. 

C. Bioinformatics-based Similarity 
Biosequence analysis provides an alternative to the 

limitations of hash-based and graph-based methods for binary 

analysis. Biosequences are chemical chains from a fixed 

number of subunits (4 subunit types for DNA and RNA, and 

20 subunit types for proteins). Since DNA is inherited and 

modified from one generation to the next, similarities in DNA 

sequence (or in protein sequence which is related to DNA 

sequence) appear in organisms that share ancestors. 

Computational methods for discovering sequence similarity in 

biosequences have been developed and refined for decades 

[12, 13]. These methods are variations on dynamic 

programming approaches to map strings that represent 

biomolecules onto one another—a process called alignment. 
Alignment also results in a similarity score that can be used as 

a proximity metric.  
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The bioinformatics-based method presented here is based 

on the computational algorithm BLAST [14, 15], which is a 

statistical method for comparing text strings that represent 

biological chemical subunits. In BLAST, performing string 

alignment finds regions of commonality that exceed a 

statistical expectation, and is highly tolerant to mismatches, 

insertions and deletions. BLAST applied to binary analysis is 

an attractive alternative to hash-based methods because it 

tolerates a high degree of dissimilarity and it also has the 

ability to identify sub-regions of binaries that are highly 

similar. String matching in BLAST is more flexible than 

regular expressions, edit distance, and other traditional 

computational methods. BLAST compares a test string against 

a collection of reference strings to quantify the extent to which 

the test string is related to any of the reference strings. This is 

reported as a score as well as a statistical confidence measure 

for each test/reference pair having a score that beats a user-

defined threshold. The calculated alignment between the 

strings is also reported. Fig. 1 illustrates how an alignment 

between two strings is reported in BLAST.  

 

Because BLAST does not operate on higher-level 

structure, it does not incur the overhead of determining 

abstract syntax tree (AST) or program dependence graph 

(PDG) information from a binary, but has the potential to be 

more specific than frequency-based feature vector 

representations of code because key patterns in the sequence 

of instructions are preserved.  

There are two main phases in this approach. In the first 

phase, members of a software family are disassembled, 

converted to sequences and analyzed using a high 

performance implementation of sequence analysis software. 

This newly developed tool called MADBlast, is a 

multiprocessor implementation of the BLAST sequence 

alignment method and was developed by the authors for 

related research. MADBlast allows for a more generalized 

alphabet than standard BLAST, and more efficiently utilizes 

nodes during task execution. In the second phase, a model of a 

code class (software family) is constructed using the results 

from the first phase for the purposes of comparing to new 

binaries. For simplicity, trivial family models are used, 

comprising a single code individual. Even this simplistic 

model achieves statistically significant results in identifying 

other members of the family, but for other applications the 

family model could be more sophisticated, further improving 

performance. Comparing a submitted executable to a library 

of acceptable code models in this second phase would not 

require HPC, but would still execute very rapidly. 

II. METHODS 

A. Converting Executable Binaries and Normalization 
Converting binaries to string representation begins with 

disassembly. In general the process of disassembly converts 

an executable binary into functional blocks of assembly 

instructions with their associated arguments. For example, a 

single addition operation in source code would be converted to 

a pair of “mov” operations to retrieve values from memory 

and place them in an arithmetic unit, a second operation to 

“add” the values, and another “mov” operation to place the 

result of the add operation into a new location in memory. 

The disassembly method used here is based on a GNU 

GPL licensed project named Objconv that is distributed with 

most Linux operating systems.  The disassembly produced by 

Objconv  is of very high quality and comparable to that of 

IDA Pro [16], considered by many to be the de facto 

disassembly tool. Several other applications for disassembly 

including GNU Binutils Objdump utility, Ida Pro and ROSE 

[17] were also evaluated. In the case of Ida Pro and ROSE, 

sophisticated disassembly is achievable, but at a higher 

computational cost (in both memory and time to solution). 

Both applications maintain detailed information about many 

aspects of binary structure and functional layout that are not 

necessary for high-level characterization. Since the goal of 

sequence analysis is to quickly assess when binaries are more 

like each other than what one would expect by chance, data 

flow and other information is not necessary. On the other 

hand, the Unix utility Objdump was very fast but produced 

inaccurate disassembly of PE (Windows binaries) in some 

cases. Objconv provides an excellent balance of accurate 

disassembly and speed.  

To automate the disassembly process into creation of files 

properly formatted for sequence analysis, Objconv was 

extended with a custom application called Disfast, which is a 

simple wrapper in either C++ or Python that allows users to 

control inputs to and process outputs from Objconv. Disfast 

also provides the conversion of Objconv output to a protein 

representation using the tokenization mentioned above. This 

format is called FASTA format (the format to which BLAST 

analysis can be applied), eliminating the need to post process 

files for alignment analysis.  

Two types of normalization occurred to develop the 

mapping from raw binaries to frequency vector or biosequence 

representations. The first normalization step was to discard all 

arguments to the assembly instructions. The second 

normalization step filtered out both highly frequent and very 

>Converted Code 1: Test sequence 
PLYFRSADNFIOANEQKWINWAKLNFWAIFNCAOWLNK 

>Converted Code A: Reference sequence 
LOMKRSNFIOANELWWINAKLNFJRWAIFNCAOWLNKE 

ALIGNMENT REGION: 

RSADNFIOANEQKWINWAKLNF--WAIFNCAOWLNKE 
RS--NFIOANELWWIN-AKLNFJRWAIFNCAOWLNKE 

Figure 1. Alignment of protein representations of software 

showing (top panels) string representations of two code 

individuals and (bottom) the alignment between them. Dashes 

indicate places where one code contains inserted instructions 

not found in the other code. Bold characters denote mismatches 

between the individuals that are in the alignment region. 
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infrequently occurring instructions. The top frequently 

occurring instructions were ignored as they occur so 

frequently they would dominate any representation of the 

binaries. This resulted in 27 groups of instructions that 

covered the majority of instructions in the corpus by 

occurrence. All of the remaining less-frequently occurring 

instructions were ignored. This filtering step is done to 

maximize the information content of both the vector and 

biosequence binary forms by not reserving space or characters 

for highly infrequent instructions.  

B. Instruction Frequency Vector Method 
Each normalized binary sequence was represented as a 

feature vector having 27 elements, the value of each element 

being the relative abundance of a particular instruction in the 

binary. This obscured any effect that length of the binary 

might have. To generate a distance measure between the ith 

and jth binaries, the Euclidean distance (Dij) between their 

frequency vectors was calculated. Since the vectors were 

normalized to the positive hypersphere, a simple similarity 

measure of 1- Dij was calculated between all pairs of binaries.  

C. Bioinformatics-based Similarity Method 
Applying biological sequence analysis to software binaries 

is a several step process. First, instruction sequences were 

filtered as described above and binaries were transformed into 

the protein representation to be used by the BLAST algorithm 

implemented in the MADBlast tool.  MADBlast was used to 

perform sequence alignment to find related subsequences. 

MADBlast takes as input text strings, a scoring matrix that 

contains reward values for text alignment and misalignment 

events, and scoring parameters such as the gap opening and 

gap extension penalties. This method has been generalized in 

prior work to be applicable to string alphabets beyond just the 

standard 20 amino acid characters expected by biological 

BLAST codes. A scoring matrix was also developed that is 

specific for binary analysis. Some of the details about 

refactoring this code are included here, but for a more 

complete description, please see [18]. These steps are 

described in more detail in the following sections. 

1) Generating Similarity Scores for Sequences 
MADBlast was used to compare each of the sequences 

disassembled from a corpus of HPC binaries to each of the 

other sequences from this corpus. This produced a BLAST 

output file with a record of the sequences that significantly 

aligned with each functional block from each binary with all 

of the functions from all of the other binaries in the corpus. 

The resulting MADBlast scores were the basis for using 

individual sequences as binary models to discover other 

similar binaries. These scores were also used as distance 

measures for family tree analysis using the hierarchical 

clustering tool WEKA [19] with Euclidean distance as the 

distance measure. 

Two different stringency levels were tested for a positive 

“hit” between sequences. A less stringent cutoff was defined 

by sequences sharing an alignment of at least 10 characters 

with at least 50% identity (Len 10, Id 50%). A more stringent 

cutoff was defined when a pair had a BLAST alignment of 

length 50 with 80% identity or better (Len 50, Id 80%). These 

scores were chosen based on the authors’ previous experience 

with MADBlast, and multiple scores were chosen to avoid 

sensitivity to any one set of cutoffs. Because the BLAST 

algorithm masks low complexity sequences, many functions 

did not match even themselves. Failure to self-match was used 

as a functional filter to eliminate sequences that exhibit low 

complexity.  

Binaries are composed of many functions, each treated as 

individual sequences. To aggregate the results of function-

level similarity to a score of similarity of two binaries, 

denoted as A and B below, results are reported as a fraction 

where the denominator is the number of sequences for binary 

A that had any alignment above the chosen stringency level. 

The numerator for each similarity is the number of sequences 

in A that matched any function in B at the given stringency 

level. A perfect score of 1.0 indicates that all of the functions 

that had any alignment matched A to B. A poor score of 0.5 

means that only ½ of the functions from A matched a 

sequence in B, and ½ matched other targets. 

2) Reimplementing Serial BLAST 
To ensure that biological assumptions were not being 

imposed on non-biological datasets, and to enhance reuse of 

the BLAST algorithmic core, the authors developed a BLAST 

implementation that is free of biological assumptions called 

MADBlast. Both the algorithmic redesign and the parallel 

driver that accompanies it are described below. 

BLAST supports many different modes of running (e.g. 
DNA vs. DNA comparisons and protein vs. protein 

comparisons). But for the purposes of analyzing executable 

binaries, the only functionality required was the ability to 

compare protein sequences—the blastp operating mode. 

Several code features were essential for this refactored 

BLAST implementation: 

� Memory is allocated for the dynamic programming 

calculations (key alignment algorithm) once up front 

and reused for each alignment.  

� Large sequences are split, based on the amount of 

memory available and processed in pieces and 

reassembled as needed.  

� Arbitrary alphabets up to about 80 characters are 

supported, using standard ASCII characters, with 

several restrictions caused by file format constraints. 

� User-specified scoring matrices are selected at run-

time, as well as a few other “tuning” variables that are 

now easily configurable and no longer hard-coded.   

3) Making Serial BLAST Parallel 
A key feature of MADBlast that enables the analysis 

described in this paper is parallelization using ZeroMQ [20]. 

This allows large corpuses of binaries to be analyzed quickly 

using a cluster. Note that this is only necessary when 
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performing the initial similarity score generation. During 

normal operation a single core is sufficient to compare 

unknown binaries to groups of known binaries. 

D. Data 
The binaries used in the example application of this binary 

similarity method come from the Pacific Northwest National 

Laboratory Molecular Science Computing Facility, a 

production computing HPC center that focuses on 

environmental and molecular science calculations. This center 

supports many users who develop and run a variety of 

computational chemistry and other codes. To simulate a 

whitelisting application, a sample of the executable binaries 

compiled for this system was obtained and analyzed to 

quantify the extent to which binaries known to be similar were 

found to be similar using the two methods presented. This 

collection of binaries had five different computational 

chemistry codes, each having a different number of variants, 

and one instance of a bioinformatics application. The largest 

family was the computational chemistry package, Amsterdam 

Density Functional (ADF) [21], having 22 different versions 

on the system. Because of this large number of versions, ADF 

was the family of interest in this study. Other codes were 

treated as “out groups” and included Amber [22], CP2K [23], 

VASP [24], Lammps [25], and ScalaBLAST [26, 27]. Table 1 

contains a summary of code types and number of variants.  

Table 1. Description of Software Binaries 

Code Family # Variants Code Type 

ADF 22 Chemistry 

Amber 8 Chemistry 

CP2K 3 Chemistry 

VASP 2 Chemistry 

Lammps 2 Chemistry 

ScalaBLAST 1 Biology 

 

After disassembly, there were 520,060 functional blocks 

across the code corpus represented as distinct biosequences. 

Table 2 contains the number of sequences that remained in 

this dataset after using various pre-BLAST length filters (# 

Seq.), the number that exhibited enough complexity to be 

aligned (# Cplx), and the numbers of sequences that had any 

alignment at either the less or more stringent alignment levels. 

Table 2. Alignments from Sequences of Varying Lengths 

Pre-
BLAST 
cutoff 

# Seq. # Cplx 
Len 10 

Id 50% 

Len 50 

Id 80% 

10 377907 129999 129060 68887 

50 204557 112637 111976 69218 

100 153110 99559 98955 64521 

E. Assessing Statistical Performance
Using each binary as a classifier, the Receiver Operator 

Characteristic (ROC, which is a plot of true positive vs. false 

negative as similarity cutoff varies from 1 to 0) was calculated 

by sorting the similarity scores for that binary against all 

binaries in a test set. Area under the ROC curve (AUC) was 

used as a measure of statistical performance, with 1.0 being a 

perfect score. The similarity threshold required to correctly 

identify 90% of the true members of a family (T90) was 

calculated by using the sorted similarity list for each binary 

and locating the similarity value at which at least 90% of true 

positives had been identified. Because ADF was the largest 

code family, having 22 different members, ADF was treated 

as the positive group, and all non-ADF instances were treated 

as the negative group.  

Statistical significance of AUC and T90 results for feature 

vector and bio-based techniques were tested using one-way 

analysis of variance (ANOVA) to identify which families and 

subfamilies had statistical performance differences. For 

families or subfamilies determined by ANOVA to have 

statistically significant differences, Tukey’s honest significant 

difference (HSD) method was used to identify which 

technique pairs produced the statistically significant 

differences. For both ANOVA and Tukey’s HSD test, 

significance value of 0.05 was used. 

III. RESULTS 

Applying hierarchical clustering to the MADBlast output 

revealed that there is a strong family similarity within three 

subgroups of ADF individuals. Figure 2 illustrates the results 

of this family tree with all ADF family members in grey or 

black, and all non-ADF individuals in white.  

 

14 dftb 
14 dftb* 
13 dftb 
14 band 
13 band 
14 nao 
14 nao* 
13 nao 
14 adf* 
13 adf 

14 dirac 
14 dirac* 
14 adfnbo 
14 adfnbo* 
14 sgf 
14 sgf* 
14 runadf 
14 runadf* 
13 dirac 
13 adfnbo 
13 sgf 

13 runadf 

Figure 2. Dendrogram of code families by sequence similarity. 

Black and dark grey are strong subfamilies, each having only ADF 

instances (ADF family 2 and ADF family 3, respectively). Light 

grey are outlier ADF instances, and white are non-ADF codes.  
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The first ADF group is a collection of versions from the 

year 2013 identified by the software maintainers as “dirac”, 

“adfnbo”, “sgf”, and “runadf”. This group is the outlier ADF 

group, shown in light gray in Figure 2 and does not have a 

strong family substructure. The second group (ADF subfamily 

2) has 10 members, each with one or two versions from 2014 

and one version from 2013 (labeled as “14”, “14*”, or “13”) 

and codes identified as “dftb”, “band”, “nao”, and “adf”. ADF 

Family 2 is marked in Figure 2 with black. The third group, 

shown in dark gray in Figure 3 (ADF subfamily 3), contains 

only versions of ADF from 2014, each with two different 

instances of “dirac”, “adfnbo”, “sgf”, and “runadf”. Both bio-

based (shown) and vector based (results not shown) family 

trees yielded identical ADF families 2 and 3, and the same 

ADF outliers, and all non-ADF codes are outside the ADF 

subfamily structure. All of the non-ADF codes grouped into 

correct smaller families with only 2 exceptions—Vasp 4 and 5 

are very different according to this analysis, and CP2K 2.4 

versions are similar to each other, but very different than 

CP2K 2.5. 

AUC for ROC curves was produced by comparing each 

ADF member with respect to the full ADF family, and within 

the combination of subfamilies 2+3, and for subfamilies 2 and 

3 alone. The AUC for these are illustrated in Figure 3.  

 

When all ADF members from disparate subfamilies are 

combined (ADF all results), the mean AUC for using any 

member of this family to identify all other members is above 

0.9 using the bioinformatics-based method, regardless of 

whether stringent alignment (Len 50, Id 80) or less stringent 

alignment criteria (Len 10, Id 50) were used. By comparison, 

the feature vector based approach yielded a worse 

performance that is statistically significant when compared to 

either bio-based stringency classifier. To explore the effects of 

refining the family definition using the family tree results, the 

performance of both biosequence-based stringency levels and 

the feature vector approach were assessed on a combination of 

ADF family 2 and family 3. This is a more tuned family that 

does not contain the 4 ADF outliers. The results in Figure 3 

for combining ADF families 2 and 3 (ADF f2+3) show that 

the stringent bio-based approach performed better than the 

feature vector based approach at a level achieving statistical 

significance. However, when we limited the analysis to only 

ADF family 2 (ADF f2), the feature vector approach 

statistically outperformed both the biosequence-based 

stringency levels. When the analysis was restricted to only 

ADF family 3 (ADF f3), all three methods performed nearly 

perfectly, and there was no statistically significant difference 

between them.  

Another measure for family classifiers to identify members 

in a highly varied family is T90. In general, a method that 

identifies most of its family members with a higher degree of 

similarity may fail to find new distant relatives of an 

established family. Figure 4 illustrates the relative T90 values 

for both biosequence-based stringency levels and the feature 

vector based approach.  

 

When identifying all ADF members together, (ADF all, 

where the biosequence methods both outperformed the 

feature-vector based method as assessed by AUC), the feature 

vector T90 was statistically significantly higher than that for 

both the biosequence-based methods. Reducing heterogeneity 

in the family by excluding the ADF outliers (ADF f2+3) 

reduced the difference between T90 for the feature vector 

approach and the biosequence-based approach, but the 

difference was still statistically significant. Considering the 

next more homogeneous families (ADF f2 and ADF f3), the 

difference inT90 between the feature vector and biosequence-

based similarity measures decreased further, but in both cases 

still achieved statistical significance. The authors interpret 

these results to suggest that although the feature vector 

Figure 4. Mean T90 values for classifying all ADF instances 

(ADF all), ADF instances from two combined subfamilies 

(ADF f2+3) and individual subfamilies (ADF f2 and ADF f3) 

using the vector method, and the bioinformatics-based method 

with different filtering parameters. Statistically significant 

difference between vector and both bio-based methods is 

indicated by **. Statistically significant difference between all 

three methods is indicated by ***. 

Figure 3. Mean AUC values for classifying all ADF instances 

(ADF all), ADF instances from two combined subfamilies (ADF 

f2+3) and individual subfamilies (ADF f2 and ADF f3) using 

the vector method, and the bioinformatics-based method with 

different filtering parameters. Statistically significant difference 

between vector and one bio-based method is indicated by *. 

Statistically significant difference between vector and both bio-

based methods is indicated by **.
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method may sometimes outperform the biosequence-based 

method for highly tuned subfamilies of binaries, the 

biosequence-based approach in general is more flexible in 

identifying members in variant families.  

IV. DISCUSSION AND FUTURE DIRECTIONS 

In this paper, a pair of algorithm designs is presented for 

identifying similar binary executables, and these methods are 

demonstrated in an application of finding similar binaries in 

multi-user architectures such as HPC centers or cloud 

platforms. One method is based on feature vectors of 

disassembled instructions and the other is based on a 

biosequence-based approach. The feasibility of these methods 

was demonstrated by applying the methods to the challenge of 

identifying variants of a computational chemistry code in a 

collection of real-world software from an operational HPC 

system that included other chemistry binaries of the same 

family and from other families as well as a biology code. 

This is a significant deviation from most clone detection 

methods because much of the syntactic and structural 

information is deliberately ignored from the original binaries. 

Instead, the clone detection problem is turned on its head to 

answer, “Are there highly conserved patterns between two 

binary streams that are more likely than one would expect by 

chance?” The answer to this question yields information about 

commonalities that may be meaningful within software 

families and signatures of these families. Sequence analysis 

for binaries lends itself directly to these types of analysis 

because they are well-studied problems for protein systems. 

This is where the mapping from binary analysis to protein 

sequence analysis provides value—family-based analysis 

techniques and motif-finding (a single representation of a 

family) capabilities are immediately applicable as a 

consequence of using mature bioinformatics approaches. 

Analysis presented here shows that using the 

bioinformatics-based method to create classifiers using known 

instances of a binary can reliably identify many variants of the 

binary, even when those variants are built with different 

functionality. Using family tree analysis on the binary family 

gave insight into subgroups that were treated as subfamilies, 

and similar classification results were obtained when the 

subfamilies had members of varying composition. 

The three most significant findings are 1) bioinformatics-

based method statistically outperforms the feature-vector-

based method when the family of code is larger and more 

variant; 2) the similarity measure from both the feature vector 

and biosequence-based approaches yield nearly identical 

family trees for an example binary corpus; and 3) using the 

family tree to refine the family definition can improve the 

performance of either the biosequence-based or feature vector-

based identification method, in some cases to near-perfect 

statistical performance.  

For the ADF example, the biosequence-based approach is 

statistically better in the general case when the subfamily 

structure is not known a priori. When this structure is known, 

it is possible to tune the performance of some subfamilies, 

potentially opening the door for a vector-based identification. 

However, because in the more general case of large, complex 

code families the biosequence-based approach is more 

flexible, for many other applications this would be the 

preferred method. 

Using the biosequence-based similarity measure to analyze 

subfamilies, three interesting partitions were found in the 

collection of ADF binaries and one orphan variant of ADF 

existed in the binary collection. A set of code that does not fall 

into a family is considered an orphan. After talking with the 

maintainers of ADF on this system, the orphan was identified 

as an older driver code that was not surprisingly different than 

the others. The other differences in subfamily composition 

could be generally explained by differences in code version, or 

by functionality of the binary versions. The authors are in the 

process of investigating further into the possible meaning of 

the subfamilies identified via hierarchical clustering. 

The statistical performance of the biosequence-based 

method on families and subfamilies is illustrative of the 

flexible but accurate ability of biological similarity algorithms 

to recognize familial variants. The presented application of 

identifying similar binaries in a production HPC environment 

is just one example of how the method could be used. 

The authors plan to explore the use of the biosequence-

based method on a variety of other applications including 

machine utilization measures during run-time. Though this 

would not be able to block inappropriate binaries from 

running, it should be able to detect inappropriate utilization of 

resources. It may be that users are running acceptable binaries 

in unacceptable ways, resulting in lower overall machine 

utilization or creating other resource bottlenecks. 

Characterizing the behavior of software with respect to 

hardware utilization may provide an alternative to the 

presented static binary analysis with an analogue of dynamic 

analysis. 

The authors have shown in prior work that this method can 

be applied to applications that are most suited for blacklisting 

[28]. For example, a similar technique might be used for 

identifying binaries (or binary fragments) that should not be 

used on a system. In this case the signature is for a functional 

block, not for an entire binary. The bioinformatics approach is 

particularly well suited for this application because having 

models of disallowed binaries would make it possible to 

identify binaries being used that contain that disallowed 

functionality, even when it is embedded in a larger, seemingly 

acceptable application.   

V. CONCLUSION 

Presented herein is an example of a novel biosequence-

based approach producing a reliable, flexible matching 

methodology for identifying similar executable binaries. This 

method was demonstrated on an example of a whitelisting 

application for verifying the identity of executable binaries 

using data from a live topical HPC system with a corpus of 6 
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different scientific codes, most having multiple versions on 

the system. Emphasis was placed on recognizing members of 

the largest family using other members of the family as an 

exemplar to assess the ability of this method to operate on 

highly complex, dynamic codes. For this application, the 

biosequence method statistically outperformed a simpler 

feature-vector based method for the binary family under study, 

and when two of the subfamilies were combined into a single 

classifier. One subfamily was well recognized by both the 

biosequence and feature vector methods, and for another 

subfamily the vector method outperformed the biosequence 

method. In all cases the threshold score required to detect 90% 

of the family members was higher (more strict) when using 

the feature vector based method, suggesting that regardless of 

false positive rate, the biosequence method was able to 

correctly find true positives using a more relaxed similarity 

threshold. Using the HPC implementation of this biosequence-

based process, the structure of this family was rapidly learned 

to guide tuning of the identification process, resulting in a 

highly accurate and sensitive identification of software family 

members. Ultimately, this technique could be applied to a 

wide variety of applications in executable binary 

characterization and identification.   
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