

MIGRATE: Towards a Lightweight Moving-target Defense against Cloud Side-
Channels

Mohamed Azab1 Mohamed Eltoweissy
 The City of Scientific Research and Technological

Applications, Alexandria, Egypt
ACIS , Electrical and Computer Engineering Department,

University of Florida, Gainesville, USA
mazab@vt.edu

Department of Computer and Information Sciences
Virginia Military Institute, USA

The Bradley Department of Electrical and Computer
Engineering, Virginia Tech ,USA

eltoweissymy@vmi.edu

Abstract—Recent research has demonstrated the severity of co-
residency side-channel attacks on computing clouds. These
attacks have been successfully employed by malicious tenants to
extract sensitive private information from selected neighboring
tenants. Solutions towards addressing such attacks have
presented customized solutions for specific variants of these
attacks that often require significant modifications to the
hardware, client virtual machines (VM), or hypervisors. These
solutions are not generic and will not succeed with mutating
versions of these attacks. Except for the impractical, resource
inefficient, and costly single tenant solutions, co-residency will
always be an issue to cloud service providers. In this paper,
inspired from the camouflaging process of the sea chameleons
evading predators, we present MIGRATE. MIGRATE is a
container management framework that employs resource-
efficient, scalable, real-time moving target defense to obfuscate
the container execution behavior complicating the attacker’s task
to locate their targets. MIGRATE, offers generic defense against
side-channel attacks and employs efficient real-time probabilistic
random migrations of cloud tenants’ applications contained in
Linux containers between different hosts. To minimize the
probability of attacker-victim co-residency on the same host.
Eliminating the stable co-residency issue eliminates most of the
side-channel attacks that face such a platform. Given the current
implementation of MIGRATE tested on VMware V-Sphere
Cloud, results showed that it can induce high frequency
migrations with almost no effect on the enclosed applications
making it suitable for mission-critical applications and as a
mitigation against fast side-channel attacks.

 Index Terms - Cloud computing; Cross-VM side-channel
attacks; VM migration, Linux containers.

I. INTRODUCTION

 Public clouds are offering a much more feasible, cost-
efficient, reliable on-demand scalable replacement to the
conventional isolated data centers. To effect that, cloud
providers share physical resources to support multi-tenancy of
cloud platforms. However, the possibility of sharing the same
hardware, software, libraries, or filesystem space poses a
serious threat unless isolation boundaries are professionally
set. Current service providers employ various isolation
techniques to set such boundaries. Runtime-based isolation,

User-based isolation, Container-based isolation, and VM-
based isolation are examples of such techniques [5]. Among
this list, VM and container isolation perform the best, offering
enough isolation to block many attacks that other techniques
cannot mitigate.
Unfortunately, researchers in [5, 7, 8] proved that even VM-
and container-based isolation cannot offer enough protection
against side channel attacks. Containers and VMs executing on
the same physical machine share a range of hardware and
software resources. Even when solid logical isolation is
deployed by the hypervisor and hosting OS against abuse of
explicit logical channels, shared resources open the door to
side-channel attacks. When tested on public and private
clouds [5] employing various isolation techniques, side-
channel attacks were largely successful.
In this paper, we focus on side-channels: cross-VM/container
information leakage due to the sharing of physical resources
with malicious “same host” neighbors (e.g., the CPU’s data
caches). These are among the most devastating attacks facing
cloud computing service providers. To avoid such type of
attacks, enterprises with sensitive date, often demand physical
isolation for their cloud deployments. However, cloud
providers cannot guarantee all-time physical isolation [15]
even if at a much higher cost than the logically isolated
resources. In the multi-process environment, such attacks have
been shown to enable extraction of RSA [16, 17] and AES
[16 , 18] secret keys. That attack depends on the attacker
ability to place its malicious container on the same host with
the victim. That attack requires two main steps: placement and
extraction. Placement refers to the adversary arranging to
place their malicious VM on the same physical machine as that
of a target customer. Recent studies [16] showed that in some
attack scenarios, just a few dollars invested in launching VMs
can produce a 40% chance of placing a malicious VM on the
same physical server as a target customer.
In this paper, we target the placement vector. Inspired by
previous work [19,20], our main objective is to excessively
complicate the attacker process in successfully place his
VM/Container within the same host with his victim for the
entire time of the attack. We introduce MIGRATE, a
VM/container management framework that offers periodic
non-deterministic runtime live-migration for operating
VM/containers between various physical hosts inducing
enough obfuscation to disable the attacker mission in placing
his VMs/containers in the same host with his victim and
maintain its placement for the entire time of the attack.

 1 The author is also affiliated with the Smart CI Research
Center of Excellence, Alexandria University, Alex, Egypt

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Mohamed Azab. Under license to IEEE.

DOI 10.1109/SPW.2016.28

96

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Mohamed Azab. Under license to IEEE.

DOI 10.1109/SPW.2016.28

96

2016 IEEE Security and Privacy Workshops

© 2016, Mohamed Azab. Under license to IEEE.

DOI 10.1109/SPW.2016.28

96

Due to the small footprint and fast instantiation, Linux
containers are more preferred than VMs by most of the
modern clouds. Linux-containers have been presented in many
implantations such Linux-VServer (linux-vserver.org), Docker
[21], and LXC [22], and OpenVZ [23]. Generally, Docker
seems to be the most promising implementation adopted by
many commercial clouds as It offers a much faster
instantiation and stable operation than the other techniques.
MIGRATE was tested on our local test-bed built on a local
VMware V-Sphere cloud. Multi-tenancy was offered by
employing Docker-based container isolation. We believe that
the same approach can be employed on other types of
container implementations and VMs. However, in this paper
we will present our framework managing that Docker-based
infrastructure trying to obfuscate the placement and the
operational aspects of the working containers to evade side-
channel attacks.
 The paper’s contribution can be summarized as follows:

1- Container management framework enabling live
container migration; and

2- Efficient migration management mechanism to evade
attackers with minimal overhead.

The remaining part of the paper is organized as follows:
Section II presents a literature review, Section III shows the
threat model, Section IV describes the system architecture
while Section V discusses the security evaluation, and finally
Section VI concludes the paper and outlines future work.

II. RELATED WORK

Cloud computing changed the conventional service delivery
model with single tenancy approach to a more resource- and
cost-efficient multi-tenancy model with extensive resource
sharing. Cloud computing offers shared hardware resources
hosting multiple user applications contained in a vitalization
capsule. The capsule can extend to a full virtual machine or
shrink to include only the needed libraries as in containers [1,
2]. Regardless of the virtualization technology and the
employed level of sharing, such sharing exposes hosted tenants
to many risks and attacks launched by their neighboring
tenants [3, 4].
Cross-side/Covert channel attack is one of the major threats
that can be classified under such category. The cryptographic
implementations inside virtual machines can be exploited due
to its weakness.
Zhang et al [5] presented a cross virtual machine side-channel
attack with sufficient granularity to extract some secret keys
from the victim. Their technique is a more evolved version of
the work presented in [6]. The presented attack enables
leveraging the processor caches to observe the victim
application execution behavior to allocate the critical values
used by the application such as the PRG used to device
encryption keys.
Flush+Relod attack is a form of cache-based side-channel
attack, which employs a monitoring process. That works in
three stages “flushing stage, target accessing stage, and
reloading stage”.

Irazoqu et al [7] developed a technique to recover
cryptographic keys by employing the Flush+Reload technique
across the virtual machines that is used to discover if specific
cache lines have been accessed or not by observing the code
under attack. Using the clflush command, the attacker can
flush the desired (shared) memory lines from all the caches of
all the (shared) cores in the machine. Yarom et.al [8] stated
that the severity of the Flush+Reload attack is based on two
properties. First if the attack was successful to exploit memory
lines then it will leverage secret data. Second it can access the
furthest level of cache from the processors core to reach the
LLC.
Zhang et.al [9] proposed a framework that uses Flush-Reload
attack in PaaS public clouds. They extended the work
presented in [10] employing an automaton-driven strategy for
tracing a victim’s execution. The framework aims to confirm
the tenant co-location and then extract secrets across tenant
boundaries.
All these attacks rely mainly on the ability of the attacker to
deploy his machine on the same hardware that his victim uses.
That can be achieved by employing one of the Co-residency
attacks.
Co-residency attack is a placement attack where the attacker
tries to identify the victim’s machine host and deploy his own
machine side by side to the victim on the same host.
Varadarajan et.al [12] proposed a framework that evaluates
public clouds vulnerabilities. They showed that three popular
public cloud providers (amazon ec2, google cloud, Microsoft
azure) are vulnerable to co-location attack. Moreover they
revisited the placement issues, and ran some experiments that
showed how easy it is for an attacker to control the his
malicious VM deployment on the same host that hosts his
victim’s VM.
Adam et.al [11] have proposed an attack technique based on
injecting a watermark signature into the network flow of a
target instance. It can be used to ex-filtrate and broadcast co-
residency data from the physical machine, compromising
isolation without reliance on internal side channels.
Researchers tried to present a set of mechanism and techniques
to mitigate the side channel attacks or the co-residency
problem. Most of these solutions aimed to complicate the
targeted placement procedure to obfuscate the sensitive data in
the shared memory.
Taesoo et al [13] developed a system-level protection
mechanism against cache-based side channel attacks in the
cloud called STEALTHMEM. The system can modify popular
encryption schemes such as AES, DES and Blowfish. The
system aims to lock the pages of a virtual machine in the
shared cache to block attacker access.
Stephen [14] proposed a technique to protect running VMs
against cache side-channel attacks by diversifying the
execution characteristics of the victim application mainly by
reloading the cache on random context switches and rewriting
encryption routines to avoid optimized lookup tables. The
main disadvantage of their work was the sever user
involvement and application customization needed to enable
their technique.

979797

Figure 1. MIGRATE-enabled Architecture

Soo et al [15] proposed a defence system against side-channel
attacks, named NOMAD. NOMAD aimed to coordinate the
placement and migrating of the virtual machines, to avoid
attacker co-residency. NOMAD used a detection tool to
allocate information leakage or attacker attempts to cross the
boundaries of his VM. In response to that they used provider
assisted migration mechanism to move the victim VM away
from the attacker. NOMAD is the closest approach to
MIGRATE. However, NOMAD is a pure reactive approach
that comes with a major cost in terms of application downtime.
The migration process for an entire VM is slow and consumes
too much resources. That is why the authors acknowledged
that their mechanism will not work for mission critical
applications, or fast side channel attacks. On the other hand,
our MIGRATE relying on containers as a virtualization
capsule with the migration mechanism used, it can offer fast
and high frequency migration to mitigate fast side-channel
attacks with almost zero downtime. Such features enable
MIGRATE to operate on containers handling mission-critical
applications that cannot tolerate long downtimes.

III. THE THREAT MODEL

We use the following threat model and use it to evaluate
MIGRATE performance in evading cross-side channel attacks.
Assuming that each cloud client (victim) has some private
information valid for a certain amount of time. The goal of the
adversary is to extract as much information as possible. The
attacker operates based on a powerful adversary model with
the following characteristics. The adversary is capable of
launching a wide spectrum (of possibly unknown) side-channel
attacks against other co-resident containers. We also assume
that the adversary can determine if/when the target client of

interest is co-resident with a VM it owns. The adversary has
free control on their containers and has the needed tools to
collect data from the shared resources, assemble into
meaningful information for their own benefit. We also assume
that the information has an expiry date that defines its value. If
the adversary managed to collect all the data needed within
this lifetime, we call it a success; if not then they will have to
start the collection process from the beginning. We did not
consider the case were the information has no expiry date or it
is valid for long time, “Ex. PGP key, it may be valid for
years”. In this case MIGRATE will not block the attack.
However, it will substantially increase the time needed for a
successful attack. Such increase will raise the attacker cost and
the chance of detecting his attempts.
Finally, we assume that the adversary does not have explicit
control on the cloud management platform to enable them to
control the placement of the running virtual machine or
containers in the cloud.

IV. THE MIGRATE SYSTEM

MIGRATE was built to be as generic as possible with minimal
application customization. The main advantage of using
generic tools is to give the user/system administrator the
chance to select the most appropriate tools and applications
that suits their needs with no constraints or limitations.
MIGRATE manages general purpose Linux containers used as
a lightweight operating system virtualization technology. We
used Docker [2] , an LXC-based container management tool
hosted on Linux operating systems to sandbox the users’
applications. Docker employs the resource isolation features of
the Linux kernel to allow independent containers to run in total
isolation from each other and the underlying host. The host
kernel isolates the container and the contained applications

989898

views of the operating environment within a single Linux
instance including process trees, network, user IDs and
mounted file systems, while the (Control Groups) cgroups
provide resource isolation, including CPU, memory, block I/O
and network.
MIGRATE moves running containers between multiple
physical hosts. The migration process starts by check-pointing
the running container to save whatever work being done inside
the container. This feature is not enabled by default by the
current hypervisors. To enable check-pointing of running
application, we used a check-pointing tool named CRIU [24]
to momentarily freeze the running container and its enclosed
applications taking a live snapshot of the memory content and
any used files. The dumped images are stored in a persistent
migrate-able state. The details of this process will be discussed
later.
Figure 1 shows MIGRATE-enabled system architecture.
Migrate operates with two cooperating agents, one running
inside the VM (container host) and another one running either
as an external agent managing MIGRATE-operated containers,
or as a part of the cloud management platform. The current
implementation of MIGRATE presented in this paper realizes
the first approach. Further work is needed to build a set of
APIs that enable direct communication between MIGRATE
control modules and the underlying cloud management
platform.
The entire control structure of MIGRATE where the
networking, container instantiation, check-point/migrate
modules, and the data repository works are hosted in a VM on
the cloud managing the other VMs and containers . The task
of each module will be described in the next subsections.
Figure 2 highlights the abstract architecture of MIGRATE.

Figure 2. MIGRATE Architecture

A. Application encapsulation
As mentioned before, Users will prepare their containers either
manually, or using an automated script. These containers will

hold the user application, and all the needed files for that
application to run.
Once the container is ready with the tenant application inside,
MIGRATE uses an integrated export tool to dump the
customized container into a set of files that can be executed
independently from the Docker management demon service.
Doing so enabled us to execute the container in an
unprivileged mode in the user space for easier management
and better protection against privilege-escalation attempts.

B. Container networking
Linux containers are a software construct that can host an
application and its dependencies as an isolated process on a
Linux kernel. It allows containerized applications to share that
kernel with other containers. The basic network primitive in
Docker is a virtual bridge called docker0. When Docker boots
up on a Linux server, it creates a default docker0 bridge inside
the Linux kernel, and docker0 creates a virtual subnet on the
Docker host so it can pass packets back and forth between
containers on the same host. Docker also creates a pair of
virtual interfaces on each container, randomly assigning them
an IP address and a subnet from a private address range not
already used by the host machine.

Figure 3. Container Networking

The Container intercommunication network architecture is
shown in Figure 3. We prefer using a virtual network interface
with a dedicated IP address for each container to facilitate
runtime migration and to enhance the achieved isolation.
MIGRATE will handle the runtime mapping by local or
network wide mapping of interfaces and IPs. In order to
MIGRATE from Docker engine network management and
enable such direct association we had to launch that container
as an independent process without losing the isolation feature
that Docker provides. MIGRATE uses an integrated export
tool to dump the configured container into a set of image files.
MIGRATE uses runC [25], a tiny tool for spawning and
running containers according to the Open Container Protocol
specification, to execute the container as a sub-process of
runC.

999999

Figure 4. Container migration Process.

C. Container checkpoint/restore and live migration
Our primary goal is to avoid any customization or
administrator or the programmer involvement, we leveraged
the encapsulation state of the application and used CRIU to
dump the container memory into persistent set of files easy to
share and recover. CRIU is used only on state-full applications
based containers, we prefer not to use it on stateless type as the
memory content and the executed states are not important for
container restoration. However, to offer a seamless migration
process for both stateless and state-full applications, we can
follow the same approach.
 CRIU is a tool to checkpoint/restore running tasks in user
space. CRIU momentarily freezes the running (container) runC
process and all its sub-processes (user apps) and checkpoint it
to a collection of image files that can be used to restore the
container to the exact state later. Between these dump events,
containers uses the host memory to operate to maximize the
application response rate
 The container image files is usually large in terms of space. In
our experiments, containers with full database server can be as
large as 500 MB. However, the memory dump is usually less
than 10 MB. The migration process for stateless type is much
easier, we replicate the container on the destination server,
then make a quick network switching between the source and
destination. The replication process and container instantiation
time is totally negligible as the original container will still be
running. The migration process is entirely logical as the
network connections are the only thing that is going to migrate.

MIGRATE adjust the ARP table for the NAT to point to the
new server instead of the old one. For faster instantiation,
quick recovery, and easy container migration, MIGRATE uses
a remote shared storage as a container repository to store runC
containers. Running the container from a remote storage gives
instant access to multiple remote servers to instantiate such
containers. Using remote repositories to host the base image of
the container, massively reduced the time needed to move all
the files between hosts in case of failure or live migration. The
only files that have to be synchronized between the source and
destination servers are the memory dump which are so small
and synchronize momentarily.
MIGRATE can operate either on the cloud management layer
or over it forming cloud on the cloud. In this paper, we present
the later as shown in Figure 4. A set of applications hosted by
MIGRATE-managed containers operating on Linux virtual
servers running on a conventional cloud.

D. Live migrations process
For MIGRATE to work, the participating servers must run a
Linux operating system customized kernel to enable some
features [24] that are necessary for the checkpointing process
to work. Once the server is up and running, MIGRATE mount
the remote shared storage and start launching the selected
container with the attached applications enclosed. As
mentioned before, MIGRATE will dedicate a virtual network
interface from the host server for each application.
Checkpointing can occur either on a timely manner, or upon
certain event triggers. On each checkpoint event, the

100100100

checkpoint process starts by stalling the container dumping the
files on the shared storage with a unique timestamp tag. The
migration process starts by checkpointing the container, killing
the process on the original host, make an ARP update to
change the MAC/IP assignment of the old server network
interface to match the new one while mainlining the IP value ,
and restore the container and all enclosed applications on the
destination server. The entire process occurs in matter of
milliseconds. Figure 5 lists the main algorithmic steps for the
migration process.

Figure 5 the main algorithmic steps for the migration process.

V. SECURITY EVALUATION
The main purpose of this preliminary security evaluation is to
show the effect of MIGRATE in increasing the level of attack
complexity and the effort invested by attackers to allocate their
targeted containers. The induced number of dynamic changes
in the operational pattern of the operating containers can
represent how hard it is to allocate a certain container in the
network [19]. We devised a simple model that uses a set of
random distributions to create the different system events.
In order to devise the mathematical representation of the
migration process, we assume that the network behavior is a
matrix (n*m) where each point in the matrix represents a
Container (Y) as an entry in the (n, m) plan. Each (Y) entry in
the (n, m) plan has a value (H) representing the id of the
current host hosting this container.
MIGRATE’s spatial migration is concerned with manipulating
the location for each container in the matrix. We use Poisson
distribution to calculate the time between two consecutive
spatial shuffling events. At each event t, each container follows
a uniform distribution to determine the new location that such
container will migrate to.

H ∈ {0,1,…a}, I ∈ {0,1,…n}, J ∈ {0,1,…m}

∆t=f_p (q), ∆t≠0, q>=0

tx+1=∆t+tx

Where f_p is the function that we use to generate the
distribution controlling t. ∆t is the time interval between
shuffling events, MIGRATE determines the value of q
controlling the shuffling frequency randomly at this stage of
development. A more controlled/supervised estimation that
takes into consideration the host, container, and network
interest will be presented in our sequel paper.

 ix+1=f_in (z) ,

jx+1=f_jn (z)

Where f_n is the function used to generate a new location (i,j)
for the Container to migrate-to in the (n,m) plan, and z is a
random seed set to insure that the output range of i, and j
ranges from 0 to (n,m) respectively
Assuming that f_n is a normal distribution, it will be calculated
as follows

Simulator design
We used the aforementioned model to build a simulator and a
set of experiments to evaluate the level of behavior change due
to spatial migration. Evaluating that change reflects the level
of complexity that the attacker shall face in attempting to
attach the controller hosts. The level of complexity should be
even much higher when we introduce the ability to switch
between heterogeneously configured hosts. We did not
evaluate that dimension as it was not tested yet on our testbed.
 Table 1 shows the main parameters used in the simulation.
The network parameters are mainly static parameters used to

Deployment procedure
� Instantiate Container using Docker file
� Export Container into RunC Image
� Create Virtual Network Interface for the Image
� Copy Container Image To MIGRATE managed

Shared Storage
� Instantiate MIGRATE ready VM with type X on a

Random Host
� Mount the Shared Storage as a Local Drive
� Connect Container Network to the Host Network
� Start Container

At each time To Start Migration procedure
� Select random destination host different than

the source
� Instantiate MIGRATE ready VM with type X on a

Random Host
� Mount the Shared Storage (local shared or

remote shared in case of multiple data centers)
as a Local Drive

� On the source VM, Call MIGRATE (Checkpoint)
dump images to shared storage folder

� Connect Container Network to the Host Network
� Migration within the same network (data center)

protocol
o make ARP change request point to the

new network interface replacing the old
one (same IP address)

� Migration within different networks (data center)
protocol (addressing using Domain Names)

o make DNS change to point to the new
real IP of the destination network

o assign a virtual IP to match the source
virtual IP to bidirectional forward
requests to that IP

� On the Destination VM call MIGRATE (Restore)
from the dump images

101101101

setup the experiments, except for the deployment of fresh Cells
in the network. The dynamic part depends on a set of
distributions mentioned in the column named “Generator “.
Through the experiment we are simulating the case that all the
hosts have average capabilities and we assumed that a host
would not refuse relocation requests. With that assumption, it
is closer to a population description; which makes the normal
distribution a good distribution to describe the location of the
next event. While the rate of change, or inter-arrival time " the
time frame between consecutive events" is best represented as
a Poisson distribution.
The shuffling event parameters represent the spatial
distribution of shuffling commands to induce obfuscation
while the attack/failure parameters show the spatial
distribution of attack events
All experiments had the same time period of 6 hours with a
sample rate of 6 minutes giving us 60 samples of events of
changes within the network of containers.

Table 1 Simulation parameters

The presented study simulated the simple action of a moving
target defense we did not separate between attacker and victim
containers. We modeled it as a game where attacker succeeds
only if he manages to keep the target sharing the same host
with his containers for the entire time of the attack. This
scenario will be tested in a large scale network in our sequel
papers with a comparison between this simulated readings and
actual measurements collected from our testbed.
Figure 6 shows the system automated response to the increase
of number of migrations in the chance of successful attack.
The system was adjusted to autonomously increase the
shuffling speed, and widening the shuffling scope to mitigate
increase of the chance of attack (deploying more attacker
containers). Results reflected that increasing the frequency of
shuffling makes it too hard for the attacker to maintain

residency with his victim on the same host for the entire time
of the attack. We assumed in this study that we cannot identify
the attacker containers and the main goal was to minimize the
chance of sharing the same host with any untrusted container.

Figure 6: The effect of increasing the shuffling frequency in mitigating
coresidencey based attacks.

VI. CONCLUSION
VM migration was proposed as a solution to side-channel
attacks in clouds with co-residency. The induced downtimes
due to frequent migrations were the main challenge facing
such solution. In this paper we introduced a lightweight
migration mechanism that employs Linux containers as
virtualization capsules. Our approach was tested on a testbed
and showed near zero downtime and extremely low resource-
consumption overhead when compared to a full VM migration.
A preliminary security evaluation was presented to illustrate
the effect of increasing the number of migrations in mitigating
side-channel attacks even with no prior knowledge of the
attacker-container locations. Our future work includes smarter
manipulations of the operational characteristics of the working
containers, comprehensive evaluation of the system on our
testbed, and enabling live migration of containers between
heterogeneously-configured hosts to mitigate host-based
attacks.

 Acknowledgments
 The authors wish to thank Eng. Ahmed Neil from Mansoura
University Information and Network Department, for his help
through the course of this wok. Ahmed conducted extensive
literature survey reflecting the latest cross-side channel attack
avoidance solutions, their benefits and limitations.

REFERENCES
[1] Twinkle Garg, Rajender Kumar, and Jagtar Singh "A way to cloud

computing basic to multitenant environment" International Journal of
Advanced Research in Computer and Communication Engineering, vol.
2, issue 6, June 2013, pp: 2394-2399

102102102

[2] M.Saraswathi and Dr.T.Bhuvaneswari " Multitenancy in Cloud Software
as a Service Application" International Journal of Advanced Research in
Computer Science and Software Engineering, vol.3, issue 11, November
2013, pp: 159-162

[3] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.” Hey, you, get off
of my cloud: Exploring information leakage in third-party compute
clouds”. In Proceedings of the 16th ACM conference on Computer and
communications security, pp: 199–212, 2009.

[4] Z. Wu, Z. Xu, and H. Wang.” Whispers in the hyper-space: Highspeed
covert channel attacks in the cloud”. In USENIX Security symposium,
pp: 159–173, 2012.

[5] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.,"
Cross-VM Side Channels and Their Use to Extract Private Keys", In
Proceedings of the ACM conference on Computer and communications
security (CCS '12),pp: 305-316, 2012.

[6] Dag Arne Osvik, Adi Shamir, and Eran Tromer. "Cache attacks and
countermeasures: The case of AES”. In Proceedings of The
Cryptographers’ Track at the RSA Conference on Topics in Cryptology
pp: 1–20, 2006.

[7] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar, "Wait a Minute! A fast, Cross-VM Attack on AES", In RAID, pp:
299–319, 2014

[8] Yuval Yarom, and Katrina Falkner,” FLUSH+RELOAD: a High
Resolution, Low Noise,L3 Cache Side-Channel Attack". In USENIX
Security symposium, pp: 719–732, 2014.

[9] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart,"
Cross-Tenant Side-Channel Attacks in PaaS Clouds", In Proceedings of
the ACM SIGSAC Conference on Computer and Communications
Security (CCS '14), pp: 990-1003, 2014

[10] Endre Bangerter, David Gullasch, and Stephan Krenn. "Cache games–
bringing access-based cache attacks on AES to practice", In IEEE
Symposium on Security &Privacy, pp: 490–505, 2011

[11] Adam Bates, Benjamin Mood, Joe Pletcher, Hannah Pruse, Masoud
Valafar, and Kevin Butler, “Detecting co-residency with active traffic
analysis techniques”, In Proceedings of the 2012 ACM Workshop on
Cloud computing security workshop (CCSW '12), pp:1-12, 2012.

[12] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift "A Placement Vulnerability Study in Multi-Tenant Public
Clouds", In Proceedings of the 24th USENIX Security Symposium,
August 2015, pp: 913-928

[13] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz:
“STEALTHMEM: system-level protection against cache-based side
channel attacks in the cloud”, In Proceedings of the 21st USENIX
conference on Security symposium (Security'12) pp: 1-16, 2012.

[14] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and
Michael Franz, “Thwarting Cache Side-Channel Attacks Through
Dynamic Software Diversity”, 22nd Annual Network and Distributed
System Security Symposium, pp: 1-14, 2014

[15] Yinqian Zhang , Ari Juels , Alina Oprea , Michael K. Reiter,
“HomeAlone: Co-residency Detection in the Cloud via Side-Channel
Analysis”, Proceedings of the 2011 IEEE Symposium on Security and
Privacy, p.313-328,2011

[16] Thomas Ristenpart , Eran Tromer , Hovav Shacham , Stefan Savage,”
Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds”, Proceedings of the 16th ACM conference on
Computer and communications security, November 09-13, 2009

[17] Paul C. Kocher, “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems”, Proceedings of the 16th
Annual International Cryptology Conference on Advances in
Cryptology, p.104-113, August 18-22, 1996

[18] Tal Garfinkel , Ben Pfaff , Jim Chow , Mendel Rosenblum , Dan Boneh,
Terra, ”a virtual machine-based platform for trusted computing”,
Proceedings of the nineteenth ACM symposium on Operating systems
principles, October 19-22, 2003,

[19] M.Azab, R.Hassan and M.Eltoweissy, "ChameleonSoft: A Moving
Target Defense System," 7th International Conference on
Collaborative Computing, 2011.

[20] M Azab, M Eltoweissy , “ChameleonSoft: Software behavior
encryption for moving target defense”, Mobile Networks and
Applications ,2013 18 (2), 271-292

[21] “Docker - Build, Ship, and Run Any App, Anywhere.” [Online].
Available: https://www.docker.com/. [Accessed: 16-Nov-2015].

[22] “Linux Containers.” [Online]. Available: https://linuxcontainers.org/.
[Accessed: 16-Nov-2015].

[23] “OpenVZ Virtuozzo Containers Wiki.” [Online]. Available:
https://openvz.org/Main_Page. [Accessed: 16-Nov-2015].

[24] “CRIU.” [Online]. Available: https://criu.org/Main_Page. [Accessed:
16-Nov-2015].

[25] “Open Container Project.” [Online]. Available: https://runc.io/.
[Accessed: 16-Nov-2015].

[26] Mohamed Azab and Mohamed Eltoweissy,"CyberX: A Biologically-
inspired Platform for Cyber Trust Management,” 8th International
Conference on Collaborative Computing, USA, 2012

103103103

