

LINEBACKER: LINE-speed Bio-inspired Analysis

and Characterization for Event Recognition

Christopher S. Oehmen, Paul J. Bruillard, Brett D. Matzke, Aaron R. Phillips, Keith T. Star, Jeffrey L. Jensen, Doug

Nordwall, Seth Thompson, Elena S. Peterson

Pacific Northwest National Laboratory

Richland, WA USA

Abstract—The cyber world is a complex domain, with digital

systems mediating a wide spectrum of human and machine
behaviors. While this is enabling a revolution in the way humans
interact with each other and data, it also is exposing previously
unreachable infrastructure to a worldwide set of actors. Existing
solutions for intrusion detection and prevention that are
signature-focused typically seek to detect anomalous and/or
malicious activity for the sake of preventing or mitigating
negative impacts. But a growing interest in behavior-based
detection is driving new forms of analysis that move the emphasis
from static indicators (e.g. rule-based alarms or tripwires) to
behavioral indicators that accommodate a wider contextual
perspective. Similar to cyber systems, biosystems have always
existed in resource-constrained hostile environments where
behaviors are tuned by context. So we look to biosystems as an
inspiration for addressing behavior-based cyber challenges. In
this paper, we introduce LINEBACKER, a behavior-model
based approach to recognizing anomalous events in network
traffic and present the design of this approach of bio-inspired
and statistical models working in tandem to produce
individualized alerting for a collection of systems. Preliminary
results of these models operating on historic data are presented
along with a plugin to support real-world cyber operations.

Keywords— biosequence model, cybersecurity, leaky buckets;

I. INTRODUCTION AND RELATED WORK

Network traffic facilitates a wide range of intended uses

across a globally distributed set of endpoints. This traffic

embodies behaviors that span the needs of users and systems.

As a result, network traffic contains attributes that can form

the basis of models of behavior that can be used to distinguish

various usage types. The driving force behind line speed bio –

inspired analysis and characterization for event recognition

(LINEBACKER) is the assertion that behavior models can

help distinguish user-consistent behavior from inconsistent

behavior (anomalies) such as communicating with malicious

websites, large data exfiltration, or a number of other attacks.

Ultimately, to be of practical value, behavior models should

support decision-making by humans or automated processes.

There is a great deal of prior research in behavior-based

network intrusion prevention and detection. For some reviews,

see [1-5]. Some of these methods are probabilistic in nature

[6], while others are built on data mining and fusion

techniques [7, 8]. In such a data-rich environment, machine

learning approaches have also been shown to hold great

promise [9-13], in some cases leveraging multi-processor

environments to accommodate the needs of large scale data

analysis [14]. In addition to conventional desktop IT systems,

behavioral approaches have been proposed for cyber physical

systems, [15] and wireless systems [16, 17]. LINEBACKER

has been introduced at a high level in a prior paper [18], but in

the current work the authors present much more detail about

how the method is implemented, and include case studies of

how it is being used operationally.

In the present work, the emphasis is on sequence-based

models of behavior. Because many aspects of computers and

complex networks have sequential features, sequence models

have been used to model cyber behaviors. For example, packet

train models have been used to optimize network architectural

features [19]. Document access sequence models have been

used to optimize caching of web content to enhance speed of

access [20]. Many applications in anomaly detection rely on

sequence models [21]. LINEBACKER employs two specific

sequence models—sequence alignment, which is drawn from

biological sciences, and leaky buckets, which was originally

designed for network traffic control.

Sequence alignment is a general-purpose technique for

finding an optimal alignment between strings of text given a

reward/penalty system [22, 23]. BLAST is a particular

implementation of sequence alignment, tuned for

biosequences, specifically protein sequences and DNA

sequences [24, 25]. BLAST focuses on finding local
alignments, or substrings that align, rather than global
alignments, in which entire strings are forced to align.

ScalaBLAST is a high performance implementation of

BLAST that has been used previously to enable processing of

very large datasets such as are commonly found in multi-

genome scale biology and cybersecurity [26, 27]. More

recently, BLAST has been refactored to be used on data sets

for applications outside biology [28] and the feasibility of this

This material is based on research sponsored by the Department of

Homeland Security (DHS) Science and Technology Directorate, Homeland
Security Advanced Research Projects Agency (HSARPA), Cyber Security

Division (DHS S&T/HSARPA/CSD), via Interagency agreement, number

HSHQPM-12-X-00097, and by the Signature Discovery Initiative, Laboratory
Directed Research and Development program at Pacific Northwest National

Laboratory, operated for the DOE by Battelle under contract DE-AC06-

76RLO-1830.

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Christopher S. Oehmen. Under license to IEEE.

DOI 10.1109/SPW.2016.44

88

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Christopher S. Oehmen. Under license to IEEE.

DOI 10.1109/SPW.2016.44

88

2016 IEEE Security and Privacy Workshops

© 2016, Christopher S. Oehmen. Under license to IEEE.

DOI 10.1109/SPW.2016.44

88

method for non-biological cybersecurity applications has been

demonstrated [29, 30].

The leaky bucket algorithm has been used as a method for

preventing congestion in networks with variable sequences of

utilization such as ATM [31] and packet switch networks [32].

Leaky buckets use a virtual bucket having fixed “volume”,

allowing requests or traffic to accumulate in a reserve queue,

and drain this queue at a constant rate. The constant drain

modulates the flow of traffic from the bucket, preventing

downstream congestion without losing data until the bucket

overflows. This method was adapted in the current work as a

behavior model by learning the bucket volume and flow rate

for bursty traffic from a collection of systems. Each system’s

volume and rate constitute a simplistic behavior model, and

alarms can be raised when a user’s bucket overflows, or runs

empty for a given behavior type. This has a damping effect on

the otherwise highly variable distribution of traffic, while still

allowing for a high-level characterization of the overall

behavior.

Motivated by prior work in sequence models for other

applications, the authors investigated the suitability of

sequence-based approaches for use in network traffic analysis.

This investigation focused on three key research questions:

� At what level of granularity of network traffic is a

sequence-based model most useful?

� Is there a collection of basic types of network traffic

events that has a determinstic, quantitative mapping from raw

or processed traffic records that preserves the ability to

recognize anomalous events? If so, how many features are

needed to resolve the difference between these basic types?

� What aspects of the biosequence representation can be

used to construct models that capture meaningful behaviors in

network traffic data?

This paper reports on the results of research with emphasis

on three novel contributions. First, network traffic flow (which

is summary information about the data exchanged between

systems) proved to be the most promising level of granularity

for developing sequence-based models. Second, the space of

network flows for the datasets used in this study can be

characterized by fewer than 8 principal components, though in

the general case this is expected to depend heavily on the

location of monitoring and what type of filtering is used. As a

result, there is a natural mapping from network flow records to

a manageable number of labeled clusters that allow for

network traffic to be represented as sequences and analyzed

using biosequence analysis. Third, it was observed that 1)

systems typically exhibit a small number of behavior types,

leading to biosequence representations having low

complexity; and 2) the volume of flows associated with

systems was bursty, but these bursts still had characteristics on

which models of anomalous behavior could be based. So

behavior models in LINEBACKER were developed using a

combination of two features: complexity of biosequences to

detect changes in the types of network flows associated with

systems, and leaky buckets to detect changes in the bursty

properties of each system’s network traffic. This set of models

was operationalized and examples of novel detections enabled

by them are presented.

The remaining sections in this manuscript are organized as

follows: Section II describes the data used and methods for

constructing the biosequence complexity and leaky buckets

models. Section III contains the results of applying these

models to synthetic and live data. Section IV provides some

case studies including examples of unusual traffic that was

detected using LINEBACKER. Section V is a discussion on

aspects of LINEBACKER performance. Section VI concludes

the manuscript with a summary of contributions and impact of

the work.

II. METHODS

The key for LINEBACKER models is converting network

flow traffic to a sequence of individual events. For the

biosequence model, this conversion process makes it possible

to represent the raw traffic in a way that can be clustered

where each cluster can be assigned a letter. After learning this

labelling for network traffic, the cluster labels on arbitrary

network data are used to convert each traffic record into a

character of text by finding its nearest labeled cluster. A

sequence of labels then becomes the character sequence that is

used in biosequence analysis (see Figure 1). The raw vector

form can also be used for additional behavior models such as

leaky bucket analysis.

A. Converting network traffic to behavior models
This approach utilizes network flows, which contain

descriptions of the attributes of communications between

systems. Flow data contains IP addresses, ports, and protocols

for the source and destination systems, as well as data about

the number of exchanges and amount of data passed between

the systems but not the actual information being exchanged.

Specifically, the method presented here uses bidirectional
flows, which resolve multiple one-way communications

between systems into longer “sessions” of communications

that can go in either direction between the systems.

To map network flow records to characters of text,
bidirectional flow data was converted to numerical vectors of
fixed length describing each flow session where each feature
was determined from one of the fields available from standard
network flow tools. First, the field indicating which transport
protocol was being used served as a filter to restrict the
analysis to TCP protocol, but the method could be applied to
other protocols as well. Of the remaining standard bidirectional
flow fields, the following were used as features in the fixed
length vector representation of a network session: duration,
number of bytes sent from source, number of bytes sent from
destination, number of packets from source, and number of
packets from destination. For each of these fields, the value
from the records was augmented by 1, and the log10 value was
used to prevent vastly different counts from creating ill-
conditioned datasets. Additionally, the source and destination
ports were represented in the feature vectors by a “1” if the

898989

respective port was one of {21, 22, 25, 80, 443, 445}, which
are the commonly allowed ports for TCP traffic. The port fields
were assigned a value of “0” if the respective port was not a
member of the list. A final vector element was included for
source and destination ports that had a value of “1” if the
respective port was larger than 1024, and a value of “0”
otherwise. Ports above 1024 are registered and often used by
particular applications. Though other data are available that
could be used to determine the vector form of network flows,
the data chosen for this vector form is commonly available
from network collectors so that LINEBACKER would be most
widely deployable in operational environments.

Figure 1. Process for converting network flow traffic to
sequences for analysis

Characterizing the space of session records was the next
step. Multiple clustering techniques were applied to this data.
K-means was selected because the clusters were found to be
fairly robust with respect to the clustering method and
parameters chosen (results not shown). K-means clusters were
built on vector representations of bidirectional flow records for
a large collection of data (roughly 6 million records), which
revealed that there are optimally 7 clusters present. For
representing network flows in vector form, this means only 7
unique characters are needed in the alphabet used to describe
the sequence of network flows emanating from a single system
or between a pair of systems. Figure 2 illustrates the
justification for the assertion that on the data under study, this
low number of characters forms a sufficient alphabet. In Figure
2, the number of clusters in K-means clustering is varied and
the measure of variance within each cluster (the “withinss”
value”) is plotted. The “withinss” value should drop when
increasing the number of clusters if using this higher number
results in centroids that truly represent distinct Gaussian
clusters. At some point, the value of “withinss” ceases to drop
as a function of adding clusters, suggesting that the additional
clusters no longer capture true divisions in the data. As a result,
the “elbow” of such a plot is a good measure of the optimal
number of clusters.

Principal component analysis (PCA) was also performed on
this data as another method to determine the number of sub
behaviors that could be used to convert raw records to letters of
text for biosequence analysis. Supporting the K-means
clustering results, PCA confirmed that 8 principal components
accounts for 96.8% of the variance in the data (results not
shown).

 Figure 2. Analysis of clustering on network traffic

B. Biosequence Complexity Model
As noted above, network flow data was translated into a

vector form, making it possible to cluster a collection of traffic

records. The above analysis suggests the proper number of

clusters for the data is 7. So 7 clusters were generated from a

historical dataset and their centroids were each labeled with a

single character. Biosequences of network traffic were

generated from those letters by assigning the letter of the

nearest centroid for each flow record in a sequence of network

traffic sessions for a given source system. Sequences could be

generated that represent the behavior of the originating IP

address for a period of time, or that of the destination IP

address, or of the conversation between 2 IP addresses.

Biosequences generated from a large collection of systems

revealed that each system exhibits remarkably low

complexity. Though there were 7 labeled clusters and hence 7

characters in the sequence alphabet, most systems were highly

biased to exhibiting only 2 or 3 characters in particular

distributions. This led to the use of sequence complexity, as

opposed to the actual sequence, as the basis for the model.

Biosequence complexity models are an essential

component of sequence analysis tools such as BLAST, which

must limit the search space over which to explore text

alignments using an underlying statistical model. Masking low

complexity subsequences is a key step in BLAST because low

complexity sequence regions violate the assumptions of its

underlying statistical model. SEG [33] is a complexity model

for proteins having a base alphabet size of 20 characters, again

with a few additional characters used to capture uncertainty in

the character sequence. Improvements in accuracy over SEG

for larger alphabets are possible by introducing more complex

techniques such as machine learning [34], but this degree of

computing is unnecessary for our purposes, so for the current

work, a simplified version of the SEG algorithm was adapted

for use in LINEBACKER.

909090

This sequence complexity model is a sliding window of 50

characters in length over the biosequence representation of

network flow sequences. For each window, the complexity is

calculated as the entropy, expressed in terms of a discrete set

of background probabilities pi of seeing each character of the

alphabet so that entropy H as a function of characters xi over

alphabet size n is given by the standard information theory

definition [35]. The size of the sliding window was

determined through previous experience with these types of

sequences and some trial and error (method not reported).

Alarms are generated from the complexity model output

by calculating the deviation for a given window, defined as

the absolute value of the difference between the maximum

value of window-entropy and the average from previous

sequences on the same system. For a given time of the

sequence, the overall deviation score is the maximum

deviation score across all window deviation scores, and is

selected and associated with the beginning of the sequence.

C. Leaky Buckets Model
Leaky buckets are a technique for controlling flow of

bursty events, such as are common in cyber datasets. They

control flow by establishing a “bucket” to queue the events,

and a constant “leak” rate. When the bucket is not empty, the

leak rate will allow the events to leave the bucket queue at a

constant rate, draining the bucket. There are two key tuning

steps in developing a leaky bucket model: 1) giving each

bucket a finite capacity that is reasonable for each system, and

2) choosing the rate of leak from each bucket. The first

mechanism allows the bucket to overflow in abnormal

situations where too many of the same event are being

collected in a given bucket. The second mechanism makes it

possible to quantify whether network events filling the bucket

are increasing or decreasing without the need for a statistically

anomalous event to occur.

For LINEBACKER, the attributes of bucket volume and

leak rate were used to tune each system with a behavior model

of its own. For each system, these parameters were trained

from prior behavior, capturing essential past performance

features of each system. Using a decaying sliding window,

each model was continually updated to accommodate newly

observed behaviors. To apply this model to real systems,

models were created by creating two buckets for each system

of interest, one for bytes of data sent from the system as a

source, and one for bytes of data sent to the system as a

destination. For each system, mean and standard deviation

source and destination byte counts were calculated using the

traffic from training periods. The mean byte count was used

for each system’s buckets as the leak rate. Then for each

system, the same traffic was played back into the bucket and

means and standard deviations in bucket “fill level” were

calculated. The mean and standard deviation of all non-zero

data entering each bucket and maximum amount (maximum

burst) entering a bucket per unit time were also calculated.

Bucket capacity for each model was assigned to be maximum

burst size plus the mean bucket level plus 6 standard

deviations of the bucket level plus six standard deviations of

the burst size. This ensured that no bucket would overflow on

the first day, and that for a bucket to overflow on any

subsequent day, the address’s behavior would have to be

significantly different than that from the first day.

III. MODEL DEPLOYMENT

Though exhaustive validation has not yet been done on
these models, early results are reported here suggesting that the
models can be used to detect anomalous behaviors and that the
alert output provided by a security information and event
management (SIEM) solution could streamline the processes of
getting new behavior models into an operational setting.

LINEBACKER is currently deployed in an operational
environment to support evaluation of the interface and
behavior models by cyber defenders. Approved bidirectional
network flow data is captured on a machine running the
LINEBACKER tool suite at a rate of ~25 million flows every 5
minutes. A script checks for incoming network flow
approximately every 15 minutes, and passes the network flow
records to both the complexity and leaky bucket models. For
the sequence complexity model, the data is first passed through
a converter that applies labeled cluster nearest distance
measures to the new data and produces biosequence-formatted
representation for each system. For the leaky bucket model, the
raw data is passed to a python implementation of the leaky
bucket algorithm. Deviations in the sequence complexity
models are detected by calculating rolling averages and
standard deviations for each system against these averages. The
model code writes time stamped alarms for each violating
system to log files when a predefined number of standard
deviations is exceeded for that system with respect to the
rolling baseline model. These log files are forwarded to the
cyber defenders’ SIEM, are parsed, and presented in graphical
format to the analyst. This flow of data within the collection
and analysis system is illustrated in Figure 3.

Figure 3. LINEBACKER analysis pipeline

A dashboard has been developed and configured to monitor
the behavior model log files in real time. As log information is
written to the log files, the SIEM indexes the data and the
dashboard view is updated. There are five provided panels
based on queries to the indexed log data, as illustrated in Figure
4. Each bar refers to the model output from a single system. So
the collection of bar charts is a collection of output from the
worst offending systems over the collection and analysis time
window.

919191

Figure 4. Dashboard view of LINEBACKER showing the most anomalous IP addresses according to the biosequence and
leaky buckets models.

From the top left in Figure 4 and progressing left to right:
Panel 1 (total count) shows the number of times an alarm has
occurred for each of the top offending systems for both the
sequence complexity model and leaky bucket model. The
length of the line indicates the number of times the alarm was
detected. From this view, it is easy for defenders to recognize
highly anomalous systems. Panel 2 (max sigma FASTA)
shows the highest alarm value seen for each of the top
offending systems for the sequence complexity model. In this
case the length of the line indicates severity of the worst
deviation in over a fixed time window. The time window over
which this maximum deviation is recorded can be varied.
Similar to the “total count” panel, this view highlights systems
that are highly anomalous, but in terms of the severity of their
anomaly, not the number of anomalous events detected. Panel
3 (max sigma DRIPPY) is similar to the previous panel, but it
shows the highest alarm value seen for each of the top
offending systems for the leaky bucket model over the
configurable time window. Panel 4 (counts and sigma FASTA
by IP) overlays panels 1 and 2, and shows the number of times
an alarm has occurred and the maximum observed value of the
alarm for each of the top offending systems for the sequence
complexity model. Panel 5 (counts and sigma DRIPPY by IP)
combines panels 1 and 3, showing the number of times an
alarm has occurred and the maximum observed value of the
alarm for each of the top offending systems for the leaky
bucket model.

IV. CASE STUDIES

 Since LINEBACKER has been deployed on live data there
have been several instances of anomalous activity that have
been identified. This includes examples where LINEBACKER

assessments were corroborated using more conventional tools.
It also includes examples where LINEBACKER was the only
tool to detect an anomaly. In some cases the anomalies were
associated with malicious behavior, and in some cases the
anomalies were just unusual events, but the cybersecurity
defenders were glad to be alerted to the strange behavior. A
collection of these anecdotal examples is included here to
underscore the potential value of using these models to
augment existing anomaly detection tools.

A. LINEBACKER on a known bad event
 To evaluate the LINEBACKER models on real network
data, a collection of network flow records was obtained for a
system on a live network that was found to be communicating
with a known “bad” IP address (from a current blacklist).
Results for the sequence complexity model and leaky bucket
models on this data are illustrated in Figure 5. Because the
sequence complexity model is event-based and the leaky
bucket model is time-based, events are not aligned on their
horizontal axes. However, correlating the time points in the
model records revealed that both models alarmed around the
time of known communication of the system with a known bad
IP. It is interesting to note that both models detected anomalies
on the system, but these detections have different features. The
biosequence model showed greater response during phase 1,
and the leaky bucket model showed a greater response during
phase 2.

B. Events that were not detected using conventional tools
The biosequence model on its own detects some events not

recognized using conventional tools or the leaky buckets
model. A single day of operational data was selected at

929292

Figure 5. LINEBACKER behavior models for sequence complexity (top) and leaky bucket (bottom) for a system on a live
network involved in communications with a known bad IP address over the span of several days.

random and reviewed by a member of our operations staff. By
only looking at the top offenders in the biosequence model
logs, the analyst found a system that had been infected that
none of the other tools identified and which did not rise to the
top of the leaky bucket model alert list. This system had large
spikes in web traffic to an IP address that has been associated
with malware and malicious domains.

Similarly, the leaky bucket algorithm on its own
sometimes identifies anomalous systems that are missed by
conventional tools and the biosequence model. As an example,
in the same full day dataset used in the prior example, the
most anomalous system identified using the leaky bucket
model was determined to be a true positive. In this case, the
anomalous system was the target of a failed attack. Many of
the incoming packets were blocked and associated with many
other alerts (blocked TCP and ICMP scans, NTP attacks, RPC,
and MS-SQL exploits.) This would be an ideal system to
monitor for future suspicious activity and alert at a lower
threshold.

 In some cases, finding systems that have lower alerts, but
that appear anomalous from both model perspectives is useful.
For the same day of operational data in the prior two examples,
six systems raised alarms in both the biosequence and leaky
bucket models. One of these systems was found to have been
associated with a “strange” file transfer behavior that turned
out to be benign. A second address was found to be involved in
a vulnerability scan. Neither of these events was detected by
existing tools and both were considered anomalous. Taken

together, these case studies illustrate the value of combining
multiple behavior models to detect cyber anomalies.

V. DISCUSSION AND FUTURE DIRECTIONS

A. Additional models
The LINEBACKER system could be used with additional

behavior models than those presented in this work. The current
version has two relatively simplistic models implemented, but
the combination of them is potentially more meaningful than
either model on its own. As a result, in addition to being an
operational tool, LINEBACKER could be a powerful research
tool to allow for rapid deployment of new models that produce
summarized alert output in a format that is readily usable by
network defenders and decision makers. In future work the
authors anticipate engaging a wide community of behavior
model researchers to expand the functionality of
LINEBACKER and to provide a means to test and evaluate
new models.

B. Scalability
The deployed LINEBACKER system was benchmarked

with respect to its ability to keep up with large enterprises. The
current implementation has demonstrated the ability to convert
network traffic records into the biosequence model description
at a rate correlating to dozens of national laboratory-sized sites
simultaneously. Running the models on this dataset has only
been benchmarked at the scale of a single site’s raw data (~5

Record Number

Time (minutes)

 50 100 150

50 100 150

939393

million flows/minute), but no bottlenecks in performance have
yet been observed at this scale. In future work the scalability of
LINEBACKER models applied to larger system sizes will be
explored.

More extensive validation will also be performed using a
combination of publically available test datasets and live data
from deployed instances of LINEBACKER to further test the
performance of the tool and its behavior models.

C. Behavior models to support cross-site data sharing
One of the benefits of using behavior models as a means to

capture, analyze, and describe network activity is that model

results themselves can be shared between sites without

divulging the raw data that comprised the model. In effect,

models become an intermediate language that could be

communicated between sites that do not wish to share or are

legally or otherwise compelled to not share raw data. In this

view, each site already has its own data collection

permissions, policy, and tools. LINEBACKER operating at

each site would convert site-specific network flow data into

model results that indicate types of anomalous behavior.

Anomalies detected from the behavior models could be

directly communicated between sites without the need for

exchanging raw data or other site-specific details.

Additionally, LINEBACKER could function as an enabler for

neutral information sharing and analysis centers (ISACs), such

as those created for each of the U.S. critical infrastructure

areas. In this view, data from participating partners could be

operated on by LINEBACKER either at the endpoints, or after

collection by the ISAC. Alerts could be expressed in terms of

model deviations and shared without reference to the specific

underlying data that led to the alert. Sites having instances of

the anomalous alerting behavior could carry out their own

responses and would have access to their own detailed data for

further situational awareness and support for decision-making.

D. Applying sequence analysis to other network data
In prior network-specific work, the use of biosequence

analysis techniques has been demonstrated on analysis of full
packets which is the complete content of web pages and other

network traffic, and URL’s, which are the text strings used in

web browsers to locate web sites [36]. URLs tend to be

relatively short and the matching subsequences may be

detectable using more simplistic regular expressions.

Additionally, the lexical content of URLs is inconsistent.

Some URLs have natural language expressions in them, and

some are gibberish when read by a human, so interpreting

similarities in URLs is difficult. For full packets, the sequence

similarity method was able to detect pages that have similar

content in the same order, even when some content was not

identical. But the value of finding similar information content

is not compelling for cyber defenders because the information

being exchanged is too low-level in many cases to associate it

with malicious or benign behaviors or intent.

LINEBACKER results presented in this paper are all based

on models built using network flow data. This was found to be

the optimal level for these models to operate because it is an

intermediate level of granularity between the very coarse level

of URL analysis and the very fine-grained level of full packet

analysis. This allows LINEBACKER to not be overly focused

on the details of what information is exchanged between

computers, and simultaneously not so general as to miss the

more complex behavioral indicators, as is the risk with URL

analysis.

VI. CONCLUSIONS

This study focused on exploring how biosequence and

other models could be used to capture essential features of

network traffic for the purpose of identifying anomalies. To

that end, three key contributions are presented herein.

First, after exploring the use of biosequence analysis at

various levels including URL’s, network flows, and full

packets, it was observed that network flow had enough content

to form the basis of a model without being too voluminous or

detailed, as full packets are. This allowed the team to explore

specific implementations of biosequence and leaky buckets

models on network flow data.

The second major contribution of this work is the finding

that network traffic represented as bidirectional network flows

is conducive to being mapped to character sequences using an

alphabet of seven characters. This captures most of the

essential variance in the flows and utilizes a natural partition

of the network flow characteristics into a small number of

dimensions. Translating sequences of network traffic into a

biosequence representation allowed for exploration of system

behaviors using traditional biosequence analysis tools with the

goal of identifying common subsequences, or motifs in

biological parlance, that are indicators or health or

compromise.

Using these methods revealed a very low complexity

behavior for most systems. While this is typically not useful in

biological analysis, it provided the basis for the second bio-

inspired aspect that was developed—that of sequence

complexity as the basis for a behavioral model, which is the

third main contribution of this study. The discovery of low

complexity in the system sequences was leveraged to

construct system-specific models that can differentiate

between normal and abnormal behavior. Taken from the same

roots as the low complexity masking algorithms in traditional

biosequence analysis, this complexity model gives a novel

view into system behavior using insight gained from bio-

inspired analysis of the cyber systems.

When combined with a more traditional network traffic

model and applied to live traffic, the resulting analysis

detected examples of verified anomalous behavior,

corroborated by existing tools in some cases, and in some

cases discovering otherwise undetected anomalous behavior.

ACKNOWLEDGMENT

949494

The authors would like to thank PNNL operations management
and cyber defense teams for their willingness to evaluate
LINEBACKER on live data and provide examples for case
studies.

REFERENCES

[1] Anderson, E. and J. Choobineh, Enterprise information security
strategies. Computers and Security, 2008. 27: p. 22-29.

[2] Sperotto, G., et al., An Overview of IP Flow-Based Intrusion Detection.
IEEE Communications Surveys & Tutorials, 2010. 12(3): p. 343-356.

[3] Garcia-Teodoro, P., et al., Anomaly-based network intrusion detection:
Techniques, systems and challenges. Computers and Security, 2009.

28: p. 18-28.

[4] Modi, C., et al., A survey of intrusion detection techniques in the cloud.
J. Network and Computer Applications, 2013. 36: p. 42-57.

[5] Zhou, C., C. Leckie, and S. Karunasakera, A survey of coordinated
attacks and collaborative intrusion detection. Computers and Security,
2010. 29: p. 124-140.

[6] Su, C.-C., et al., The new intrusion prevention and detection approachs
for clustering-based sensor networks, in Wireless Communications and
Networking Conference 2005. 2005. p. 1927-1932.

[7] Bass, T., Intrusion Detection Systems and Multisensor Data Fusion.
Communications of the ACM, 2000. 43(4): p. 99-105.

[8] Ertoz, L., et al., MINDS-minnesota intrusion detectoin system, in Next-
Generation Data Mining. 2004. p. 199-218.

[9] Bivens, A., et al., Network-Based Intrusion Detection Using Neural
Networks, in Intelligent Engineering Systems through Artificial Neural
Networks (ANNIE-2002). 2002, ASME Press: St. Louis, MO. p. 579-
584.

[10] Deng, H., Q.-A. Zeng, and D. Agrawal, SVM-based Intrustion
Detection System for Wireless Ad Hoc Networks, in Vehicular
Technology Conference, 2003. VTC 2003-Fall. 2003. p. 2147-2151.

[11] Li, W., Using Genetic Algorithm for Network Intrusion Detection, in

Proceedings of the United States Department of Energy Cyber Security
Group. 2004. p. 1-8.

[12] Zhang, J., M. Zulkernine, and A. Haque, Random-Forests-Based
Network Intrusion Detection Systems. IEEE Trans. Systems, Man, and
Cybernetics-- Part C: Applications and Reviews, 2008. 38(5): p. 649-

659.

[13] Zhang, J. and M. Zulkernine, Anomaly Based Nework Intrusion
Detection with Unsupervised Outlier Detection, in IEEE International
Conference on Communications, 2006, ICC'06. 2006. p. 2388-2393.

[14] Paxson, V., R. Sommer, and N. Weaver, An Architecture for Exploiting
Multi-Core Processors to Parallelize Network Intrusion Prevention, in

IEEE Sarnoff Symposium, 2007. 2007. p. 1-7.

[15] Cheung, S., et al., Using Model-based Intrusion Detection for SCADA
Networks, in SCADA Security Scientific Symposium. 2007. p. 1-12.

[16] Mishra, A., K. Nadkarni, and A. Patcha, Intrusion Detection in
Wireless Ad Hoc Networks. IEEE Wireless Communications, 2004: p.
48-60.

[17] Zhang, Y. and W. Lee, Intrusion Detection in Wireless Ad-Hoc
Networks, in 6th Annual International Conference on Mobile
Computing and Networking, (MOBICOM) 2000. 2000, ACM: Boston,

MA. p. 275-283.

[18] Oehmen, C., E. Peterson, and B. Cox, Behavior Models to Express and
Share Threat Information. IT Professional, 2015. 17(5): p. 12-14.

[19] Jain R and S. Routhier, Packet Trains-Measurements and a New Model
for Computer Network Traffic IEEE J. on Selectec Areas in
Communications, 1986. SAC-4(6): p. 986-995.

[20] Yang, Q., H. Zhang, and T. Li, Mining Web Logs for Prediction
Models in WWW Caching and Prefetching, in KDD '01 Proceedings of
the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining. 2001, ACM: San Francisco, CA. p. 473-

478.
[21] Chandola, V., A. Banerjee, and V. Kumar, Anomaly Detection for

Discrete Sequences: A Survey. IEEE Trans. Knowledge and Data

Engineering, 2012. 24(5): p. 823-839.
[22] Needleman, S. and C. Wunsch, A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J.

Mol. Biol., 1970. 48(3): p. 443-453.
[23] Smith, T., M. Waterman, and C. Burks, The statistical distribution of

nucleic acid similarities. Nucleic Acids Res., 1985. 13(2): p. 645-656.

[24] Altschul, S., et al., Basic local alignment search tool. J. Mol. Biol.,
1990. 215(3): p. 403-410.

[25] Altschul, S., et al., Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res., 1997.
25(17): p. 3389-3402.

[26] Oehmen, C. and D. Baxter, ScalaBLAST 2.0: Rapid and Robust BLAST
Calculations on Multiprocessor Systems. Bioinformatics, 2013. 29(6):
p. 797-798.

[27] Oehmen, C. and J. Nieplocha, ScalaBLAST: A scalable implementation
of BLAST for high-performance data-intensive bioinformatics analysis.
Trans. Parallel Distributed Sys., 2006. 17(8): p. 740-749.

[28] Peterson, E., et al., Novel Visual and Analytical Methods in
Repurposing Legacy Scientific Code- A Case Study, in 2013
International Conference on Software Engineering Research and
Practice. 2013.

[29] Oehmen, C., E. Peterson, and S. Dowson, An organic model for
detecting cyber events, in Proc. Sixth Annual Workshop on Cyber
Security and Information Intelligence Research, F. Sheldon, et al.,
Editors. 2010, ACM: Oak Ridge, TN.

[30] Oehmen, C., E. Peterson, and J. Teuton, Evolutionary Drift Models for
Moving Target Defense, in Eighth Annual Cyber Security and
Information Intelligence Research Workshop (CSIIRW '13), F.

Sheldon, et al., Editors. 2013, ACM: Oak Ridge, TN. p. Article No. 37.

[31] Butto, M., E. Cavallero, and A. Tonietti, Effectiveness of the "Leaky
Bucket" Policing Mechanism in ATM Networks. IEEE J. Selected

Areas in Communications, 1991. 9(3): p. 335-342.

[32] de Veciana, G., Leaky Buckets and Optimal Self-tuning Rate Control,
in Global Telecommunications Conference, 1994. 1994, IEEE. p.

1207-1211.

[33] Wooten, C. and S. Federhen, Statistic of local complexity in amino acid
sequences and sequence databases. Computers and Chemistry, 1993.

17(2): p. 149-163.

[34] Barber, C. and C. Oehmen, An Efficient Machine Learning Approach
to Low-Complexity Filtering in Biological Sequences, in

Computational Intelligence in Bioinformatics and Computational
Biology (CIBCB). 2012: San Diego, CA. p. 237-243.

[35] Shannon, C. and W. Waver, The Mathematical Theory of
Communiation. 1963, Urbana, IL: University of Illinois Press.

[36] Teuton, J., et al., LINEBACkER: Bio-inspired Data Reduction Toward
Real Time Network Traffic Anomaly Detection, in 1st International
Symposium on Resilient Cyber Systems. 2013: San Francisco, CA.

959595

