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Abstract—The cyber world is a complex domain, with digital 

systems mediating a wide spectrum of human and machine 
behaviors. While this is enabling a revolution in the way humans 
interact with each other and data, it also is exposing previously 
unreachable infrastructure to a worldwide set of actors. Existing 
solutions for intrusion detection and prevention that are 
signature-focused typically seek to detect anomalous and/or 
malicious activity for the sake of preventing or mitigating 
negative impacts. But a growing interest in behavior-based 
detection is driving new forms of analysis that move the emphasis 
from static indicators (e.g. rule-based alarms or tripwires) to 
behavioral indicators that accommodate a wider contextual 
perspective. Similar to cyber systems, biosystems have always 
existed in resource-constrained hostile environments where 
behaviors are tuned by context. So we look to biosystems as an 
inspiration for addressing behavior-based cyber challenges. In 
this paper, we introduce LINEBACKER, a behavior-model 
based approach to recognizing anomalous events in network 
traffic and present the design of this approach of bio-inspired 
and statistical models working in tandem to produce 
individualized alerting for a collection of systems. Preliminary 
results of these models operating on historic data are presented 
along with a plugin to support real-world cyber operations. 
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I. INTRODUCTION AND RELATED WORK 

Network traffic facilitates a wide range of intended uses 

across a globally distributed set of endpoints. This traffic 

embodies behaviors that span the needs of users and systems. 

As a result, network traffic contains attributes that can form 

the basis of models of behavior that can be used to distinguish 

various usage types. The driving force behind line speed bio –

inspired analysis and characterization for event recognition 

(LINEBACKER) is the assertion that behavior models can 

help distinguish user-consistent behavior from inconsistent 

behavior (anomalies) such as communicating with malicious 

websites, large data exfiltration, or a number of other attacks. 

Ultimately, to be of practical value, behavior models should 

support decision-making by humans or automated processes. 

There is a great deal of prior research in behavior-based 

network intrusion prevention and detection. For some reviews, 

see [1-5]. Some of these methods are probabilistic in nature 

[6], while others are built on data mining and fusion 

techniques [7, 8]. In such a data-rich environment, machine 

learning approaches have also been shown to hold great 

promise [9-13], in some cases leveraging multi-processor 

environments to accommodate the needs of large scale data 

analysis [14]. In addition to conventional desktop IT systems, 

behavioral approaches have been proposed for cyber physical 

systems, [15] and wireless systems [16, 17]. LINEBACKER 

has been introduced at a high level in a prior paper [18], but in 

the current work the authors present much more detail about 

how the method is implemented, and include case studies of 

how it is being used operationally. 

In the present work, the emphasis is on sequence-based 

models of behavior. Because many aspects of computers and 

complex networks have sequential features, sequence models 

have been used to model cyber behaviors. For example, packet 

train models have been used to optimize network architectural 

features [19]. Document access sequence models have been 

used to optimize caching of web content to enhance speed of 

access [20]. Many applications in anomaly detection rely on 

sequence models [21]. LINEBACKER employs two specific 

sequence models—sequence alignment, which is drawn from 

biological sciences, and leaky buckets, which was originally 

designed for network traffic control.  

Sequence alignment is a general-purpose technique for 

finding an optimal alignment between strings of text given a 

reward/penalty system [22, 23]. BLAST is a particular 

implementation of sequence alignment, tuned for 

biosequences, specifically protein sequences and DNA 

sequences [24, 25]. BLAST focuses on finding local 
alignments, or substrings that align, rather than global 
alignments, in which entire strings are forced to align. 

ScalaBLAST is a high performance implementation of 

BLAST that has been used previously to enable processing of 

very large datasets such as are commonly found in multi-

genome scale biology and cybersecurity [26, 27]. More 

recently, BLAST has been refactored to be used on data sets 

for applications outside biology [28] and the feasibility of this 

This material is based on research sponsored by the Department of 

Homeland Security (DHS) Science and Technology Directorate, Homeland 
Security Advanced Research Projects Agency (HSARPA), Cyber Security 

Division (DHS S&T/HSARPA/CSD), via Interagency agreement, number 

HSHQPM-12-X-00097, and by the Signature Discovery Initiative, Laboratory 
Directed Research and Development program at Pacific Northwest National 

Laboratory, operated for the DOE by Battelle under contract DE-AC06-

76RLO-1830. 

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Christopher S. Oehmen. Under license to IEEE.

DOI 10.1109/SPW.2016.44

88

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Christopher S. Oehmen. Under license to IEEE.

DOI 10.1109/SPW.2016.44

88

2016 IEEE Security and Privacy Workshops

© 2016, Christopher S. Oehmen. Under license to IEEE.

DOI 10.1109/SPW.2016.44

88



 

method for non-biological cybersecurity applications has been 

demonstrated [29, 30].  

The leaky bucket algorithm has been used as a method for 

preventing congestion in networks with variable sequences of 

utilization such as ATM [31] and packet switch networks [32]. 

Leaky buckets use a virtual bucket having fixed “volume”, 

allowing requests or traffic to accumulate in a reserve queue, 

and drain this queue at a constant rate. The constant drain 

modulates the flow of traffic from the bucket, preventing 

downstream congestion without losing data until the bucket 

overflows. This method was adapted in the current work as a 

behavior model by learning the bucket volume and flow rate 

for bursty traffic from a collection of systems. Each system’s 

volume and rate constitute a simplistic behavior model, and 

alarms can be raised when a user’s bucket overflows, or runs 

empty for a given behavior type. This has a damping effect on 

the otherwise highly variable distribution of traffic, while still 

allowing for a high-level characterization of the overall 

behavior. 

Motivated by prior work in sequence models for other 

applications, the authors investigated the suitability of 

sequence-based approaches for use in network traffic analysis. 

This investigation focused on three key research questions: 

� At what level of granularity of network traffic is a 

sequence-based model most useful? 

� Is there a collection of basic types of network traffic 

events that has a determinstic, quantitative mapping from raw 

or processed traffic records that preserves the ability to 

recognize anomalous events? If so, how many features are 

needed to resolve the difference between these basic types? 

� What aspects of the biosequence representation can be 

used to construct models that capture meaningful behaviors in 

network traffic data?  

This paper reports on the results of research with emphasis 

on three novel contributions. First, network traffic flow (which 

is summary information about the data exchanged between 

systems) proved to be the most promising level of granularity 

for developing sequence-based models. Second, the space of 

network flows for the datasets used in this study can be 

characterized by fewer than 8 principal components, though in 

the general case this is expected to depend heavily on the 

location of monitoring and what type of filtering is used. As a 

result, there is a natural mapping from network flow records to 

a manageable number of labeled clusters that allow for 

network traffic to be represented as sequences and analyzed 

using biosequence analysis. Third, it was observed that 1) 

systems typically exhibit a small number of behavior types, 

leading to biosequence representations having low 

complexity; and 2) the volume of flows associated with 

systems was bursty, but these bursts still had characteristics on 

which models of anomalous behavior could be based. So 

behavior models in LINEBACKER were developed using a 

combination of two features: complexity of biosequences to 

detect changes in the types of network flows associated with 

systems, and leaky buckets to detect changes in the bursty 

properties of each system’s network traffic. This set of models 

was operationalized and examples of novel detections enabled 

by them are presented. 

The remaining sections in this manuscript are organized as 

follows: Section II describes the data used and methods for 

constructing the biosequence complexity and leaky buckets 

models. Section III contains the results of applying these 

models to synthetic and live data. Section IV provides some 

case studies including examples of unusual traffic that was 

detected using LINEBACKER. Section V is a discussion on 

aspects of LINEBACKER performance. Section VI concludes 

the manuscript with a summary of contributions and impact of 

the work. 

II. METHODS 

The key for LINEBACKER models is converting network 

flow traffic to a sequence of individual events. For the 

biosequence model, this conversion process makes it possible 

to represent the raw traffic in a way that can be clustered 

where each cluster can be assigned a letter. After learning this 

labelling for network traffic, the cluster labels on arbitrary 

network data are used to convert each traffic record into a 

character of text by finding its nearest labeled cluster. A 

sequence of labels then becomes the character sequence that is 

used in biosequence analysis (see Figure 1). The raw vector 

form can also be used for additional behavior models such as 

leaky bucket analysis. 

A. Converting network traffic to behavior models 
This approach utilizes network flows, which contain 

descriptions of the attributes of communications between 

systems. Flow data contains IP addresses, ports, and protocols 

for the source and destination systems, as well as data about 

the number of exchanges and amount of data passed between 

the systems but not the actual information being exchanged. 

Specifically, the method presented here uses bidirectional 
flows, which resolve multiple one-way communications 

between systems into longer “sessions” of communications 

that can go in either direction between the systems. 

To map network flow records to characters of text, 
bidirectional flow data was converted to numerical vectors of 
fixed length describing each flow session where each feature 
was determined from one of the fields available from standard 
network flow tools. First, the field indicating which transport 
protocol was being used served as a filter to restrict the 
analysis to TCP protocol, but the method could be applied to 
other protocols as well. Of the remaining standard bidirectional 
flow fields, the following were used as features in the fixed 
length vector representation of a network session: duration, 
number of bytes sent from source, number of bytes sent from 
destination, number of packets from source, and number of 
packets from destination. For each of these fields, the value 
from the records was augmented by 1, and the log10 value was 
used to prevent vastly different counts from creating ill-
conditioned datasets. Additionally, the source and destination 
ports were represented in the feature vectors by a “1” if the 
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respective port was one of {21, 22, 25, 80, 443, 445}, which 
are the commonly allowed ports for TCP traffic. The port fields 
were assigned a value of “0” if the respective port was not a 
member of the list. A final vector element was included for 
source and destination ports that had a value of “1” if the 
respective port was larger than 1024, and a value of “0” 
otherwise. Ports above 1024 are registered and often used by 
particular applications. Though other data are available that 
could be used to determine the vector form of network flows, 
the data chosen for this vector form is commonly available 
from network collectors so that LINEBACKER would be most 
widely deployable in operational environments.  

 

Figure 1. Process for converting network flow traffic to 
sequences for analysis 

 

Characterizing the space of session records was the next 
step. Multiple clustering techniques were applied to this data. 
K-means was selected because the clusters were found to be 
fairly robust with respect to the clustering method and 
parameters chosen (results not shown). K-means clusters were 
built on vector representations of bidirectional flow records for 
a large collection of data (roughly 6 million records), which 
revealed that there are optimally 7 clusters present. For 
representing network flows in vector form, this means only 7 
unique characters are needed in the alphabet used to describe 
the sequence of network flows emanating from a single system 
or between a pair of systems. Figure 2 illustrates the 
justification for the assertion that on the data under study, this 
low number of characters forms a sufficient alphabet. In Figure 
2, the number of clusters in K-means clustering is varied and 
the measure of variance within each cluster (the “withinss” 
value”) is plotted. The “withinss” value should drop when 
increasing the number of clusters if using this higher number 
results in centroids that truly represent distinct Gaussian 
clusters. At some point, the value of “withinss” ceases to drop 
as a function of adding clusters, suggesting that the additional 
clusters no longer capture true divisions in the data. As a result, 
the “elbow” of such a plot is a good measure of the optimal 
number of clusters.  

Principal component analysis (PCA) was also performed on 
this data as another method to determine the number of sub 
behaviors that could be used to convert raw records to letters of 
text for biosequence analysis. Supporting the K-means 
clustering results, PCA confirmed that 8 principal components 
accounts for 96.8% of the variance in the data (results not 
shown). 

 

 Figure 2. Analysis of clustering on network traffic 

B. Biosequence Complexity Model 
As noted above, network flow data was translated into a 

vector form, making it possible to cluster a collection of traffic 

records. The above analysis suggests the proper number of 

clusters for the data is 7. So 7 clusters were generated from a 

historical dataset and their centroids were each labeled with a 

single character. Biosequences of network traffic were 

generated from those letters by assigning the letter of the 

nearest centroid for each flow record in a sequence of network 

traffic sessions for a given source system. Sequences could be 

generated that represent the behavior of the originating IP 

address for a period of time, or that of the destination IP 

address, or of the conversation between 2 IP addresses.  

Biosequences generated from a large collection of systems 

revealed that each system exhibits remarkably low 

complexity. Though there were 7 labeled clusters and hence 7 

characters in the sequence alphabet, most systems were highly 

biased to exhibiting only 2 or 3 characters in particular 

distributions. This led to the use of sequence complexity, as 

opposed to the actual sequence, as the basis for the model.  

Biosequence complexity models are an essential 

component of sequence analysis tools such as BLAST, which 

must limit the search space over which to explore text 

alignments using an underlying statistical model. Masking low 

complexity subsequences is a key step in BLAST because low 

complexity sequence regions violate the assumptions of its 

underlying statistical model.  SEG [33] is a complexity model 

for proteins having a base alphabet size of 20 characters, again 

with a few additional characters used to capture uncertainty in 

the character sequence. Improvements in accuracy over SEG 

for larger alphabets are possible by introducing more complex 

techniques such as machine learning [34], but this degree of 

computing is unnecessary for our purposes, so for the current 

work, a simplified version of the SEG algorithm was adapted 

for use in LINEBACKER. 
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This sequence complexity model is a sliding window of 50 

characters in length over the biosequence representation of 

network flow sequences. For each window, the complexity is 

calculated as the entropy, expressed in terms of a discrete set 

of background probabilities pi of seeing each character of the 

alphabet so that entropy H as a function of characters xi over 

alphabet size n is given by the standard information theory 

definition [35]. The size of the sliding window was 

determined through previous experience with these types of 

sequences and some trial and error (method not reported). 

Alarms are generated from the complexity model output 

by calculating the deviation for a given window, defined as 

the absolute value of the difference between the maximum 

value of window-entropy and the average from previous 

sequences on the same system. For a given time of the 

sequence, the overall deviation score is the maximum 

deviation score across all window deviation scores, and is 

selected and associated with the beginning of the sequence. 

C. Leaky Buckets Model 
Leaky buckets are a technique for controlling flow of 

bursty events, such as are common in cyber datasets. They 

control flow by establishing a “bucket” to queue the events, 

and a constant “leak” rate. When the bucket is not empty, the 

leak rate will allow the events to leave the bucket queue at a 

constant rate, draining the bucket. There are two key tuning 

steps in developing a leaky bucket model: 1) giving each 

bucket a finite capacity that is reasonable for each system, and 

2) choosing the rate of leak from each bucket. The first 

mechanism allows the bucket to overflow in abnormal 

situations where too many of the same event are being 

collected in a given bucket. The second mechanism makes it 

possible to quantify whether network events filling the bucket 

are increasing or decreasing without the need for a statistically 

anomalous event to occur.  

For LINEBACKER, the attributes of bucket volume and 

leak rate were used to tune each system with a behavior model 

of its own. For each system, these parameters were trained 

from prior behavior, capturing essential past performance 

features of each system. Using a decaying sliding window, 

each model was continually updated to accommodate newly 

observed behaviors. To apply this model to real systems, 

models were created by creating two buckets for each system 

of interest, one for bytes of data sent from the system as a 

source, and one for bytes of data sent to the system as a 

destination. For each system, mean and standard deviation 

source and destination byte counts were calculated using the 

traffic from training periods. The mean byte count was used 

for each system’s buckets as the leak rate. Then for each 

system, the same traffic was played back into the bucket and 

means and standard deviations in bucket “fill level” were 

calculated. The mean and standard deviation of all non-zero 

data entering each bucket and maximum amount (maximum 

burst) entering a bucket per unit time were also calculated. 

Bucket capacity for each model was assigned to be maximum 

burst size plus the mean bucket level plus 6 standard 

deviations of the bucket level plus six standard deviations of 

the burst size. This ensured that no bucket would overflow on 

the first day, and that for a bucket to overflow on any 

subsequent day, the address’s behavior would have to be 

significantly different than that from the first day. 

III. MODEL DEPLOYMENT 

Though exhaustive validation has not yet been done on 
these models, early results are reported here suggesting that the 
models can be used to detect anomalous behaviors and that the 
alert output provided by a security information and event 
management (SIEM) solution could streamline the processes of 
getting new behavior models into an operational setting. 

LINEBACKER is currently deployed in an operational 
environment to support evaluation of the interface and 
behavior models by cyber defenders. Approved bidirectional 
network flow data is captured on a machine running the 
LINEBACKER tool suite at a rate of ~25 million flows every 5 
minutes. A script checks for incoming network flow 
approximately every 15 minutes, and passes the network flow 
records to both the complexity and leaky bucket models. For 
the sequence complexity model, the data is first passed through 
a converter that applies labeled cluster nearest distance 
measures to the new data and produces biosequence-formatted 
representation for each system. For the leaky bucket model, the 
raw data is passed to a python implementation of the leaky 
bucket algorithm. Deviations in the sequence complexity 
models are detected by calculating rolling averages and 
standard deviations for each system against these averages. The 
model code writes time stamped alarms for each violating 
system to log files when a predefined number of standard 
deviations is exceeded for that system with respect to the 
rolling baseline model. These log files are forwarded to the 
cyber defenders’ SIEM, are parsed, and presented in graphical 
format to the analyst. This flow of data within the collection 
and analysis system is illustrated in Figure 3. 

 

Figure 3. LINEBACKER analysis pipeline 

A dashboard has been developed and configured to monitor 
the behavior model log files in real time. As log information is 
written to the log files, the SIEM indexes the data and the 
dashboard view is updated. There are five provided panels 
based on queries to the indexed log data, as illustrated in Figure 
4. Each bar refers to the model output from a single system. So 
the collection of bar charts is a collection of output from the 
worst offending systems over the collection and analysis time 
window.  
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Figure 4. Dashboard view of LINEBACKER showing the most anomalous IP addresses according to the biosequence and 
leaky buckets models. 

From the top left in Figure 4 and progressing left to right:  
Panel 1 (total count) shows the number of times an alarm has 
occurred for each of the top offending systems for both the 
sequence complexity model and leaky bucket model. The 
length of the line indicates the number of times the alarm was 
detected. From this view, it is easy for defenders to recognize 
highly anomalous systems. Panel 2 (max sigma FASTA) 
shows the highest alarm value seen for each of the top 
offending systems for the sequence complexity model. In this 
case the length of the line indicates severity of the worst 
deviation in over a fixed time window. The time window over 
which this maximum deviation is recorded can be varied. 
Similar to the “total count” panel, this view highlights systems 
that are highly anomalous, but in terms of the severity of their 
anomaly, not the number of anomalous events detected. Panel 
3 (max sigma DRIPPY) is similar to the previous panel, but it 
shows the highest alarm value seen for each of the top 
offending systems for the leaky bucket model over the 
configurable time window. Panel 4 (counts and sigma FASTA 
by IP) overlays panels 1 and 2, and shows the number of times 
an alarm has occurred and the maximum observed value of the 
alarm for each of the top offending systems for the sequence 
complexity model. Panel 5 (counts and sigma DRIPPY by IP) 
combines panels 1 and 3, showing the number of times an 
alarm has occurred and the maximum observed value of the 
alarm for each of the top offending systems for the leaky 
bucket model. 

IV. CASE STUDIES 

 Since LINEBACKER has been deployed on live data there 
have been several instances of anomalous activity that have 
been identified. This includes examples where LINEBACKER 

assessments were corroborated using more conventional tools. 
It also includes examples where LINEBACKER was the only 
tool to detect an anomaly. In some cases the anomalies were 
associated with malicious behavior, and in some cases the 
anomalies were just unusual events, but the cybersecurity 
defenders were glad to be alerted to the strange behavior. A 
collection of these anecdotal examples is included here to 
underscore the potential value of using these models to 
augment existing anomaly detection tools. 

A. LINEBACKER on a known bad event 
 To evaluate the LINEBACKER models on real network 
data, a collection of network flow records was obtained for a 
system on a live network that was found to be communicating 
with a known “bad” IP address (from a current blacklist). 
Results for the sequence complexity model and leaky bucket 
models on this data are illustrated in Figure 5. Because the 
sequence complexity model is event-based and the leaky 
bucket model is time-based, events are not aligned on their 
horizontal axes. However, correlating the time points in the 
model records revealed that both models alarmed around the 
time of known communication of the system with a known bad 
IP. It is interesting to note that both models detected anomalies 
on the system, but these detections have different features. The 
biosequence model showed greater response during phase 1, 
and the leaky bucket model showed a greater response during 
phase 2.  

B. Events that were not detected using conventional tools 
The biosequence model on its own detects some events not 

recognized using conventional tools or the leaky buckets 
model. A single day of operational data was selected at  

929292



 
Figure 5. LINEBACKER behavior models for sequence complexity (top) and leaky bucket (bottom) for a system on a live 
network involved in communications with a known bad IP address over the span of several days.  

random and reviewed by a member of our operations staff. By 
only looking at the top offenders in the biosequence model 
logs, the analyst found a system that had been infected that 
none of the other tools identified and which did not rise to the 
top of the leaky bucket model alert list. This system had large 
spikes in web traffic to an IP address that has been associated 
with malware and malicious domains.  

Similarly, the leaky bucket algorithm on its own 
sometimes identifies anomalous systems that are missed by 
conventional tools and the biosequence model. As an example, 
in the same full day dataset used in the prior example, the 
most anomalous system identified using the leaky bucket 
model was determined to be a true positive. In this case, the 
anomalous system was the target of a failed attack. Many of 
the incoming packets were blocked and associated with many 
other alerts (blocked TCP and ICMP scans, NTP attacks, RPC, 
and MS-SQL exploits.) This would be an ideal system to 
monitor for future suspicious activity and alert at a lower 
threshold. 

 In some cases, finding systems that have lower alerts, but 
that appear anomalous from both model perspectives is useful. 
For the same day of operational data in the prior two examples, 
six systems raised alarms in both the biosequence and leaky 
bucket models. One of these systems was found to have been 
associated with a “strange” file transfer behavior that turned 
out to be benign. A second address was found to be involved in 
a vulnerability scan. Neither of these events was detected by 
existing tools and both were considered anomalous. Taken 

together, these case studies illustrate the value of combining 
multiple behavior models to detect cyber anomalies. 

V. DISCUSSION AND FUTURE DIRECTIONS 

A. Additional models 
The LINEBACKER system could be used with additional 

behavior models than those presented in this work. The current 
version has two relatively simplistic models implemented, but 
the combination of them is potentially more meaningful than 
either model on its own. As a result, in addition to being an 
operational tool, LINEBACKER could be a powerful research 
tool to allow for rapid deployment of new models that produce 
summarized alert output in a format that is readily usable by 
network defenders and decision makers. In future work the 
authors anticipate engaging a wide community of behavior 
model researchers to expand the functionality of 
LINEBACKER and to provide a means to test and evaluate 
new models. 

B. Scalability 
The deployed LINEBACKER system was benchmarked 

with respect to its ability to keep up with large enterprises. The 
current implementation has demonstrated the ability to convert 
network traffic records into the biosequence model description 
at a rate correlating to dozens of national laboratory-sized sites 
simultaneously. Running the models on this dataset has only 
been benchmarked at the scale of a single site’s raw data (~5 

Record Number 

Time (minutes) 

        50        100     150 

50   100      150 

939393



million flows/minute), but no bottlenecks in performance have 
yet been observed at this scale. In future work the scalability of 
LINEBACKER models applied to larger system sizes will be 
explored.  

More extensive validation will also be performed using a 
combination of publically available test datasets and live data 
from deployed instances of LINEBACKER to further test the 
performance of the tool and its behavior models. 

C. Behavior models to support cross-site data sharing 
One of the benefits of using behavior models as a means to 

capture, analyze, and describe network activity is that model 

results themselves can be shared between sites without 

divulging the raw data that comprised the model. In effect, 

models become an intermediate language that could be 

communicated between sites that do not wish to share or are 

legally or otherwise compelled to not share raw data. In this 

view, each site already has its own data collection 

permissions, policy, and tools. LINEBACKER operating at 

each site would convert site-specific network flow data into 

model results that indicate types of anomalous behavior. 

Anomalies detected from the behavior models could be 

directly communicated between sites without the need for 

exchanging raw data or other site-specific details. 

Additionally, LINEBACKER could function as an enabler for 

neutral information sharing and analysis centers (ISACs), such 

as those created for each of the U.S. critical infrastructure 

areas. In this view, data from participating partners could be 

operated on by LINEBACKER either at the endpoints, or after 

collection by the ISAC. Alerts could be expressed in terms of 

model deviations and shared without reference to the specific 

underlying data that led to the alert. Sites having instances of 

the anomalous alerting behavior could carry out their own 

responses and would have access to their own detailed data for 

further situational awareness and support for decision-making. 

D. Applying sequence analysis to other network data 
In prior network-specific work, the use of biosequence 

analysis techniques has been demonstrated on analysis of full 
packets which is the complete content of web pages and other 

network traffic, and URL’s, which are the text strings used in 

web browsers to locate web sites [36]. URLs tend to be 

relatively short and the matching subsequences may be 

detectable using more simplistic regular expressions. 

Additionally, the lexical content of URLs is inconsistent. 

Some URLs have natural language expressions in them, and 

some are gibberish when read by a human, so interpreting 

similarities in URLs is difficult. For full packets, the sequence 

similarity method was able to detect pages that have similar 

content in the same order, even when some content was not 

identical. But the value of finding similar information content 

is not compelling for cyber defenders because the information 

being exchanged is too low-level in many cases to associate it 

with malicious or benign behaviors or intent. 

LINEBACKER results presented in this paper are all based 

on models built using network flow data. This was found to be 

the optimal level for these models to operate because it is an 

intermediate level of granularity between the very coarse level 

of URL analysis and the very fine-grained level of full packet 

analysis. This allows LINEBACKER to not be overly focused 

on the details of what information is exchanged between 

computers, and simultaneously not so general as to miss the 

more complex behavioral indicators, as is the risk with URL 

analysis. 

VI. CONCLUSIONS 

This study focused on exploring how biosequence and 

other models could be used to capture essential features of 

network traffic for the purpose of identifying anomalies. To 

that end, three key contributions are presented herein.  

First, after exploring the use of biosequence analysis at 

various levels including URL’s, network flows, and full 

packets, it was observed that network flow had enough content 

to form the basis of a model without being too voluminous or 

detailed, as full packets are. This allowed the team to explore 

specific implementations of biosequence and leaky buckets 

models on network flow data.  

The second major contribution of this work is the finding 

that network traffic represented as bidirectional network flows 

is conducive to being mapped to character sequences using an 

alphabet of seven characters. This captures most of the 

essential variance in the flows and utilizes a natural partition 

of the network flow characteristics into a small number of 

dimensions. Translating sequences of network traffic into a 

biosequence representation allowed for exploration of system 

behaviors using traditional biosequence analysis tools with the 

goal of identifying common subsequences, or motifs in 

biological parlance, that are indicators or health or 

compromise.  

Using these methods revealed a very low complexity 

behavior for most systems. While this is typically not useful in 

biological analysis, it provided the basis for the second bio-

inspired aspect that was developed—that of sequence 

complexity as the basis for a behavioral model, which is the 

third main contribution of this study. The discovery of low 

complexity in the system sequences was leveraged to 

construct system-specific models that can differentiate 

between normal and abnormal behavior. Taken from the same 

roots as the low complexity masking algorithms in traditional 

biosequence analysis, this complexity model gives a novel 

view into system behavior using insight gained from bio-

inspired analysis of the cyber systems.  

When combined with a more traditional network traffic 

model and applied to live traffic, the resulting analysis 

detected examples of verified anomalous behavior, 

corroborated by existing tools in some cases, and in some 

cases discovering otherwise undetected anomalous behavior.  
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