
Polymorphic Malware Detection Using Sequence
Classification Methods

Jake Drew∗, Tyler Moore†, Michael Hahsler∗
∗Computer Science and Engineering Department

Southern Methodist University

{jdrew, mhahsler}@smu.edu
†Tandy School of Computer Science

University of Tulsa

{tyler-moore}@utulsa.edu

Abstract—Polymorphic malware detection is challenging due
to the continual mutations miscreants introduce to successive
instances of a particular virus. Such changes are akin to muta-
tions in biological sequences. Recently, high-throughput methods
for gene sequence classification have been developed by the
bioinformatics and computational biology communities. In this
paper, we argue that these methods can be usefully applied to
malware detection. Unfortunately, gene classification tools are
usually optimized for and restricted to an alphabet of four letters
(nucleic acids). Consequently, we have selected the Strand gene
sequence classifier, which offers a robust classification strategy
that can easily accommodate unstructured data with any alphabet
including source code or compiled machine code. To demonstrate
Stand’s suitability for classifying malware, we execute it on
approximately 500GB of malware data provided by the Kaggle
Microsoft Malware Classification Challenge (BIG 2015) used for
predicting 9 classes of polymorphic malware. Experiments show
that, with minimal adaptation, the method achieves accuracy
levels well above 95% requiring only a fraction of the training
times used by the winning team’s method.

I. INTRODUCTION

The analogy between information security and biology has

long been appreciated, since Cohen coined the term “computer

virus” [4]. Modern malware frequently takes the form of a

software program that is downloaded and executed by an un-

suspecting Internet user. “Infection” can be achieved through

compromising many thousands of websites en masse [15],

social engineering, or by exploiting vulnerabilities on end-

user systems. Regardless of how the infection occurs, cyber-

criminals have also undertaken considerable efforts to evade

detection by antivirus software [16], [17].

Developers of such polymorphic malware attempt to avoid

the detection of their malicious software by constantly chang-

ing the program’s appearance while keeping the functionality

the same. This can be achieved by manipulating the code

using multiple forms of obfuscation. Techniques include: en-

cryption of malicious payloads, obfuscating variable names

using character code shifts, equivalent code replacements,

register reassignments, and removal of white space or code

minification [3], [6], [22]. Individual instances of polymorphic

malware can maintain the same general functionality while

displaying many unique source code characteristics. For exam-

ple, the computer worm Agobot or Gaobot was first identified

around 2002 [27]. Over 580 variations of this malware were

subsequently identified [2]. Today, each malware category can

spawn many thousands of mutations, adding up to as much

as one million new “signatures” per day [23]. In some cases,

variations between malware instances occur simply to avoid

detection. In others, new functionality emerges over time. Such

changes require a robust form of malware classification which

is less influenced by generational variation.

Gradual changes in polymorphic malware can be seen as

mutations to the code. Thus, these changes are similar to

mutation of biological sequences which occur over successive

generations.

Recently, significant advances have been made in gene

sequence classification in terms of classification accuracy

and processing speed. Originally, classification was based

on expensive sequence alignment tools like BLAST [1] for

comparing sample sequences to other sequences from known

taxonomies. Many newer sequence classification tools claim

to be faster and/or more accurate. Examples are BLAT [13],

the Ribosomal Database Project (RDP) naive Bayes classi-

fier [26], UBLAST/USEARCH [7], Strand [5], Kraken [28],

and CLARK [18].

Given the similarities between mutations in malware and in

gene sequences, it stands to reason that the tools developed for

gene sequence classification hold the potential to be applied to

polymorphic malware detection. Consequently, in this paper

we set out to apply one such classifier, called Strand (The

Super Threaded Reference-Free Alignment-Free Nsequence

Decoder) [5], to performing classification of polymorphic

malware data. We selected Strand because, unlike the afore-

mentioned gene sequence classifiers, it can process sequences

of arbitrary alphabets. While BLAST has been adapted by

researchers to process non-biological sequences [19], Strand

can be used on general sequences “out of the box” and

performs more efficiently than BLAST. We then use Strand

to classify the malware dataset used in the Kaggle Microsoft

Malware Classification Challenge (BIG 2015) [10]. We show

how the application achieves comparable accuracy to the

winning team’s malware classification techniques using only

a fraction of the time required to generate the Strand training

model.

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Jake Drew. Under license to IEEE.

DOI 10.1109/SPW.2016.30

81

2016 IEEE Symposium on Security and Privacy Workshops

© 2016, Jake Drew. Under license to IEEE.

DOI 10.1109/SPW.2016.30

81

2016 IEEE Security and Privacy Workshops

© 2016, Jake Drew. Under license to IEEE.

DOI 10.1109/SPW.2016.30

81

Fig. 1. Strand Map Reduction Aggregation Processing for a Single Training or Classification Worker Process.

II. BACKGROUND

Here we give a very short overview of word-based gene

sequence classification which is typically done using word

matching. Words are extracted from individual gene sequences

and used for similarity estimations between two or more gene

sequences [24]. Gene sequence words are sub-sequences of a

given length. In addition to words they are often also referred

to as k-mers or n-grams, where k and n represent the word

length. The general concept of k-mers or words was originally

defined as n-grams during 1948 in an information theoretic

context [21] as a subsequence of n consecutive symbols. We

will use the terms words or k-mers in this paper to refer

to n-grams created from a gene sequence or other forms of

unstructured input data. Over the past twenty years, numerous

methods utilizing words for gene sequence comparison and

classification have been presented [24].

Methods like BLAST [1] were developed for searching

large sequence databases. Such methods search for seed words

first and then expand matches. These so called alignment-free

methods [24] are based on gene sequence word counts and

have become increasingly popular since the computationally

expensive sequence alignment method is avoided. The most

common method for word extraction uses a sliding window

of a fixed size. Once the word length k is defined, the sliding

window moves from left to right across the gene sequence

data producing each word by capturing k consecutive bases

from the sequence.

The RDP classier [26] utilizes a fixed word length of only 8

bases to perform its taxonomy classification processing mak-

ing the total possible number of unique words (i.e., features

for the classier) only 48 = 65, 536 words. Unfortunately, such

a small feature space makes distinguishing between many

sequence classes challenging as the probability for finding

duplicate sequence words greatly increases when compared

to the longer 30 base word length.

Rapid abundance estimation and sequence classification

tools [18], [28] use longer words and derive a large speed

advantage by utilizing an exact-match between the words

extracted from sequence data to identify the similarity between

two sequences. However, this approach comes at the cost

of storing a very large number of sequence words to make

accurate classifications when the value for k results in a very

long word. For example, the extraction of k = 30 base words

results in 430 ≈ 1018 unique word possibilities within the

training data feature space when an alphabet of 4 symbols

(A,C,G, T) is considered. Other sequence classifiers avoid

storing large volumes of words by reducing the value for k
and the total possible feature space size for the training data

structure.

The issues with the need to store a large number of words

becomes even more problematic when the size of the alphabet

increases. This is clearly the case when we consider compiled

code or source code. Strand addresses this problem by utilizing

a form of lossy compression called Minhashing [8] which

still supports sequence comparison, but with a much reduced

memory footprint.

III. STRAND

Next, we give a very short overview of the Strand classifi-

cation process (see [5] for more details).

Strand uses the map reduction aggregation process shown in

Figure 1 to rapidly prepare and process input data in parallel

during training or classification. Map reduction aggregation

executes using shared memory during all stages within each

Strand worker process. When multiple worker processes are

used in a cluster, a single master process combines the outputs

from each of the self-contained workers as they complete.

During stage 1 of map reduction aggregation, multiple

threads extract words and associated classes from the gene

sequence data in parallel. Simultaneously, a stage 2 combiner

process minhashes each extracted word eventually creating a

828282

minhash signature for each input sequence provided. Finally,

the unique minhash keys within each minhash signature are

summarized by class during the reduce stage. During training,

the reduce step adds minhash values into the training data

structure, and during classification, minhash values are looked

up within the training data structure and minhash intersections

for each class are tabulated to determine one or more class

similarity estimates.

A. Minhashing during Map Reduction Aggregation

Minhashing [8] is utilized within Strand to drastically

reduce the amount of storage required for high capacity map

reduction aggregation and classification function operations.

Map reduction aggregation requires multiple pipeline stages

when lossy compression via minhashing is deployed.

In Figure 1, Strand uses a map reduction aggregation

pipeline including an additional combiner step to facilitate

minhashing. This process also represents a more accurate

method for Jaccard approximation than mere random selection

of words. Minhashing is a form of lossy data compression used

to remove a majority of the gene sequence words produced

during stage one mapping by compressing all words into a

much smaller minhash signature.

During stage one of the map reduction aggregation method

shown in Figure 1, transitional sequence word outputs are

placed into centralized, thread-safe storage areas accessible

to minhash operation workers. In stage 2, a pre-determined

number of distinct hashing functions are then used to hash

each unique key produced during the stage one map operation

one time each. As the transitional keys are repeatedly hashed,

only one minimum hash value for each of the distinct hash

functions are retained across all keys. When the process is

completed only one minimum hash value for each of the dis-

tinct hash functions remains in a collection of minhash values

which represent the unique characteristics of the learning or

classification input data within a minhash signature.

To further enhance minhashing performance, only a single

hash function can be used to generate a minhash signature.

This eliminates the overhead of hashing words multiple times

to support the family of multiple hashing functions tradition-

ally used to create a minhash signature. In this scenario, all

words are hashed by a single hashing function and n minimum

hash values are selected to make up the minhash signature.

These minimum values represent a random permutation of all

words contained within the target sequence.

The minhash signature is further reduced by storing each

minhash value in a partitioned collection of nested categorical

key-value pairs. The training data structure illustrated in Fig-

ure 2 is designed in this manner. The training data structure’s

nested key-value pairs are partitioned or sharded by each

distinct hash function used. For example, when the minhashing

process uses 100 distinct hash functions to create minhash

signatures, the training data structure is divided into 100

partitions. All unique minhash keys created by hash function

0 are stored within partition 0 of the training data structure.

Likewise, all unique minhash keys created by hash function

Fig. 2. The Strand Partitioned Training Data Structure.

99 are stored in partition 99. However, when only a single

hash function is used, no partitions are required.

The partitioned training data structure shown in Figure 2

includes minimum hash values which act as the key in the

nested categorical key-value pair collection. Each minhash

key contains as it value a collection of the classes which

are associated with that key in the system. This collection

of classes represents the nested categorical key-value pairs

collection. Each nested categorical key-value pair contains a

known class as its key and an optional frequency, weight, or

any other numerical value which represents the importance

of the association between a particular class and the minhash

value key.

IV. CLASSIFICATION FUNCTION PROCESSING

Using a single training data structure, multiple classification

scores are supported. Jaccard Similarity is calculated using the

intersection divided by the union between the two sets. No

frequency values are required for this similarity measure. For

example, the Jaccard similarity between two sets S1 and S2
is defined as SJ(S1,S2), where:

SJ(S1,S2) = |S1 ∩ S2|
|S1 ∪ S2|

Weighted Jaccard Similarity is also supported when the

class frequency for unique minhash values are retained in

the nested categorical key-value pair collection and taken into

consideration [9]. The Weighted Jaccard similarity between

two sets S1 and S2 is defined as SWJ(S1,S2), where:

SWJ(S1,S2) =
∑

i min(S1i ,S2i)∑
i max(S1i ,S2i)

In Strand, Jaccard similarity is approximated by intersect-

ing two sets of minhash signatures where longer signatures

provide more accurate Jaccard similarity or distance approx-

imations [20]. Class frequencies may be used to produce

other Jaccard Index variations such as the Weighted Jaccard

838383

Similarity [9] shown above. However, large performance gains

are achieved in Strand by using binary classification techniques

where no nested categorical frequency values or log based

calculations are required during classification function opera-

tions. In the binary minhash classification approach, minhash

signature keys are simply intersected with the minhash keys

of known classes to calculate the similarity between a query

sequence and a known class.

After minhashing gene sequence words, we only have the

sequence minhash signaturesM1 = minhash(S1) andM2 =
minhash(S2) representing the two sequences. Fortunately,

minhashing [20] allows us to efficiently estimate the Jaccard

index using only the minhash signatures:

SJ(S1,S2) ≈ |minhash(S1) ∩minhash(S2)|
k

,

where the intersection is taken hash-wise, i.e., how many

minhash values agree between the two signatures.

Next, we discuss scoring the similarity between a sequence

minhash signature and the category minhash signatures used

for classification. Category signatures are not restricted to k
values since they are created using the unique minhash values

of all sequence minhash signatures belonging to the category.

This is why we do not directly estimate the Jaccard index, but

define a similarity measure based on the number of collisions

between the minhash values in the sequence signature and the

category signature.

Definition 1 (Minhash Category Collision): We define the

Minhash Category Collision between a sequence S represented

by the minhash signature M and a category signature C as:

MCC(M, C) = |M ∩ C|,
where the intersection is calculated for each minhash hash-

ing function separately.

We calculate MCC for each category and classify the

sequence to the category resulting in the largest category

collision count.

Many other more sophisticated approaches to score se-

quences are possible. These are left for future research.

V. APPLYING STRAND TO MALWARE CLASSIFICATION

The Kaggle Microsoft Malware Classification Challenge

(Big 2015) [10] simulates the file input data processed by

Microsoft’s real-time detection anti-malware products which

are installed on over 160M computers and inspect over

700M computers each month [10]. The goal of the Microsoft

Malware Classification Challenge is to group polymorphic

malware at a high level into 9 different classes of malicious

programs.

A. The Training and Classification Input Data

Microsoft provided almost a half terabyte of training and

classification input data which included:

1) Bytes Files: 10,868 training and 10,873 test .bytes

files containing the raw hexadecimal representation of

the file’s binary content with the executable headers

removed.

2) Asm Files: 10,868 training and 10,873 test .asm files

containing a metadata manifest including data extracted

by the IDA disassembler tool. This information includes

things such as function calls, strings, assembly command

sequences and more.

3) Training Labels: Each training and test file name is a

MD5 hash of the actual program. The training labels file

contains each MD5 hash and the malware class which it

maps to. No labels were provided for the test data input

files.

B. Challenge Evaluation, Competitors, and Results

Kaggle challenge participants were evaluated using a multi-

class logarithmic loss score. Each test file submission made re-

quired not only the predicted malware class, but the estimated

probabilities for the file belonging to each of the 9 classes.

Each submission record included the file hash and 9 additional

comma-delimited fields containing values for the predicted

probability that a given file belongs a particular class. The

function logarithmic loss is defined as:

log-loss = − 1

N

N∑

i=1

M∑

j=1

yij log (pij)

Where N is the number of test set files and M is the

number of classes. The variable yij = 1 when file i is a

member of class j and zero for all other classes. The predicted

probability that observation i belongs to class j is given by

the variable pij . The submitted probabilities are rescaled by

pij = max (min (pij , 1− 10−15), 10−15) prior to scoring in

order to avoid extremes in the log function [12].

There were 377 international teams competing in the contest

with $16,000 in available prize money. The winning team

achieved a logarithmic loss ratio score of 0.002833228 where

a value of zero represents a perfect score. The winning team

reported that their model produced an accuracy level greater

than 99% during 10-fold cross-validation [11]. Their process

was highly specialized and tailored specifically to the task and

available data for detecting the 9 classes of malware presented

in the challenge. Alternatively, we present here the results of a

more general and performance oriented approach which should

work well on many forms of input data where generational

polymorphism occurs.

The winning team’s final submission used a highly complex

ensemble of models [25] using a combination of features

including: byte 4-gram instruction counts, function names

and derived assembly features, assembly op-code n-grams,

disassembled code segment counts, and disassembled code

file pixel intensity. Generating these features required 500GB

of disk space for the original training data and an additional

200GB for engineered features. While the final features used

for the model required only 4GB, both feature engineering and

generating the top performing model takes around 48 hours.

Furthermore, it takes an additional 24 hours to generate the

848484

00401000 56 8D 44 24 08 50 8B F1 E8 1C 1B 00 00 C7 06 08
00401010 BB 42 00 8B C6 5E C2 04 00 CC CC CC CC CC CC CC
00401020 C7 01 08 BB 42 00 E9 26 1C 00 00 CC CC CC CC CC
00401030 56 8B F1 C7 06 08 BB 42 00 E8 13 1C 00 00 F6 44
00401040 24 08 01 74 09 56 E8 6C 1E 00 00 83 C4 04 8B C6
00401050 5E C2 04 00 CC CC CC CC CC CC CC CC CC CC CC CC
00401060 8B 44 24 08 8A 08 8B 54 24 04 88 0A C3 CC CC CC
00401070 8B 44 24 04 8D 50 01 8A 08 40 84 C9 75 F9 2B C2
00401080 C3 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC
00401090 8B 44 24 10 8B 4C 24 0C 8B 54 24 08 56 8B 74 24
004010A0 08 50 51 52 56 E8 18 1E 00 00 83 C4 10 8B C6 5E
004010B0 C3 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC
0042A800 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

Fig. 3. Malware .bytes hex data file content.

best model ensemble which produced the winning score [25].

In short, the winning submission takes 72 hours to produce.

C. Applying Strand to Microsoft Malware Classification Chal-
lenge

While Strand was originally designed to process FASTA

format gene sequence files, only minor changes were required

to accommodate for reading and processing the malware files

as input. This is possible since unlike many other sequence

classifiers and k-mer counters [14], [18], [28], Strand uses no

special encoding of sequence data and supports any Unicode

character within the sequences.

During gene sequence classification, the short reads of

sequence data commonly generated by modern sequencers can

be in either forward or reverse-complement order. As a result

of this limitation, classification searches on sequence data must

be made using each input sequence’s forward and reverse-

complement effectively doubling the number of classification

searches required. This particular feature of Strand is gene

sequence specific and was irrelevant for malware classification.

After turning off the reverse-complement search and modify-

ing the sequence file parsing routine, Strand was able train

and classify against malware data with no other changes.

D. Developing Malware Features for Strand

All of the malware feature engineering required to convert

malware program data into Strand sequences, fits into just a

few lines of code. First, the disassembled code files (.asm

files) were not used to produce the score and accuracy results

presented later in Tables I and II. The disassembled code files

were eliminated since they did not increase the accuracy score

when using them in combination with the binary content of

the malware (.bytes files). In the future, a two model ensemble

could be created which classifies each malware file in Strand

based on combining the individual scores from dual .bytes and

.asm model predictions.

Figure 3 illustrates the typical content encountered within

the .bytes hex data files provided by Microsoft. The first 8

characters of each line contain a line number, and the last line

shows how some hex content is unavailable and displayed as

“??”. Both the line numbers and “??” symbols are removed

during Strand processing.

StringBuilder currSeqText = new StringBuilder();

foreach (var line in File.ReadLines(FnaFileMap.FilePath))
{

//Remove the carriage returns, line number
// , spaces, and ??
//values from each line of hex in the .bytes file.
currSeqText.Append(line.Substring(9)

.Replace(" ", string.Empty)

.Replace("?", string.Empty)
);

}

Fig. 4. Strand C# code used to process malware .bytes hex data files.

When reading each .bytes file, Strand uses the code shown

in Figure 4 to convert the .bytes malware files into a Strand

sequence. During processing each carriage return, space, and

“?” character are removed. This produces a single string or

Strand sequence containing all hex content read from the

malware file. Once the malware hex data is cleaned, sequence

words of length k or k-mers are generated by Strand as

previously described.

E. Malware Classification Results Using Strand

While we did not produce a winning logarithmic loss score

for the Kaggle Microsoft Malware Classification Challenge

(BIG 2015) [10], we were able achieve a score of 0.452784

when using a 32-bit minhashing configuration and a score of

0.222864 when using a 64-bit minhashing configuration with

Strand. We used a word length of 10 characters and 2400

minhash values within the Strand minhash signature to achieve

this result. The primary benefit of using Strand was achieving

an acceptable degree of accuracy within a short period of time.

Training and classification times were both under 7 hours for

processing 224GB of training data and 189GB of test data.

Table I shows ten-fold cross-validation results for the Mal-

ware Classification Challenge training data. Strand averaged

91.88% accuracy across the ten folds predicted using only 32-

bit hashing functions. When using 64-bit hashing functions,

we were able to drastically reduce the logarithmic loss score

produced from 0.452784 to 0.222864. Table II shows ten-

fold cross-validation results for the version of Strand using

64-bit hash codes. Strand averaged 97.41% accuracy across

the ten folds. While memory consumption increased slightly,

there was no large degradation in training or classification

performance.

The training times in Tables I and II represent the time

required to train on 90% of the 10,868 Malware Classification

Challenge training data records (9,782 training records). The

classification times in both tables reflect the time required to

classify the number of records reflected in the "Classified"

column which represent 10% of the training data for each

fold. The 32-bit and 64-bit versions of Strand required 5.482

and 5.483 total hours respectively to classify all of the 10,868

training records during ten-fold cross validation.

The 64-bit model takes up approximately 5GB in memory

and 436MB compressed on disk while the 32-bit version takes

up approximately 3GB in memory and 255MB compressed on

858585

10-Fold Cross-validation Results

Fold Classified Correct Accuracy Train Time Classification Time

Fold 1 1087 979 90.06% 06:46:31 00:30:38

Fold 2 1087 998 91.81% 06:25:38 00:30:26

Fold 3 1087 1011 93.01% 06:35:01 00:31:50

Fold 4 1087 995 91.54% 06:34:53 00:33:53

Fold 5 1087 1004 92.36% 06:21:12 00:28:12

Fold 6 1087 1003 92.27% 06:27:41 00:28:13

Fold 7 1087 1006 92.55% 06:49:04 00:33:34

Fold 8 1087 993 91.35% 06:32:48 00:31:45

Fold 9 1086 1001 92.17% 06:26:36 00:33:26

Fold 10 1086 995 91.62% 06:51:28 00:29:05

TABLE I
TEN-FOLD CROSS-VALIDATION RESULTS WHEN USING STRAND TO PREDICT 10 FOLDS FROM THE MICROSOFT MALWARE TRAINING DATA.

10-Fold Cross-validation Results

Fold Classified Correct Accuracy Train Time Classification Time

Fold 1 1087 1053 96.87% 06:42:54 00:33:22

Fold 2 1087 1054 96.96% 05:53:21 00:31:36

Fold 3 1087 1069 98.34% 06:50:26 00:34:12

Fold 4 1087 1052 96.78% 06:32:24 00:35:00

Fold 5 1087 1065 97.98% 06:50:25 00:32:50

Fold 6 1087 1061 97.61% 06:36:49 00:35:21

Fold 7 1087 1063 97.79% 06:50:02 00:34:48

Fold 8 1087 1053 96.87% 06:33:02 00:33:30

Fold 9 1086 1059 97.51% 06:28:38 00:30:58

Fold 10 1086 1058 97.42% 06:35:53 00:27:17

TABLE II
TEN-FOLD CROSS-VALIDATION RESULTS WHEN USING STRAND WITH 64-BIT HASH CODES TO PREDICT 10 FOLDS FROM THE MICROSOFT MALWARE

TRAINING DATA.

disk. Due to the small size of the model, multiple copies can

be loaded into memory for multiple worker processes to take

advantage of process level parallelism when classifying large

volumes of data. For example, fifteen classification workers

were used to process the test files provided by Microsoft.

VI. CONCLUSION

In this paper we have demonstrated how modern gene

sequence classification tools can be applied to large-scale

malware detection. In this first study, we have shown how

the gene sequence classifier Strand can be used to predict

multiple classes of polymorphic malware using data provided

by the Kaggle Microsoft Malware Classification Challenge

(Big 2015). While the approach, using only minimal adap-

tation, did not best the accuracy scores achieved by the highly

tailored approach that won the competition, we did achieve

classification accuracy levels exceeding 95% while making

predictions in less than 10% of the training times required

by the winning team.

From the success of this demonstration, we conclude that

gene sequence classifiers in general, and Strand in particular,

hold great promise in their application to security datasets.

In addition to polymorphic malware, we anticipate that these

classifiers can be used anywhere data sequences are used, such

as in network traces of attacks.

REFERENCES

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403–
410, 1990.

[2] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario. Automated classification and analysis of internet malware. In
Recent advances in intrusion detection, pages 178–197. Springer, 2007.

[3] M. Christodorescu, S. Jha, S. Seshia, D. Song, R. E. Bryant, et al.
Semantics-aware malware detection. In Security and Privacy, 2005 IEEE
Symposium on, pages 32–46. IEEE, 2005.

[4] F. Cohen. Computer viruses. Comput. Secur., 6(1):22–35, Feb. 1987.
[5] J. Drew and M. Hahsler. Strand: fast sequence comparison using

mapreduce and locality sensitive hashing. In Proceedings of the 5th
ACM Conference on Bioinformatics, Computational Biology, and Health
Informatics, pages 506–513. ACM, 2014.

[6] J. M. Drew. Mass compromise of iis shared web hosting for blackhat
seo: A case study, 2014. http://blog.jakemdrew.com/2015/03/10/
mass-compromise-of-iis-shared-web-hosting-for-blackhat-seo-a-case-study/
;AccessedOn:01/06/2016.

[7] R. C. Edgar. Search and clustering orders of magnitude faster than blast.
Bioinformatics, 26(19):2460–2461, 2010.

[8] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high
dimensions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[9] S. Ioffe. Improved consistent sampling, weighted minhash and l1
sketching. In Data Mining (ICDM), 2010 IEEE 10th International
Conference on, pages 246–255. IEEE, 2010.

868686

[10] Kaggle. Microsoft malware classification challenge (big 2015), 2015.
https://www.kaggle.com/c/malware-classification;Accessed:2015-11-04.

[11] Kaggle. Microsoft malware winners’ interview: 1st place,
“no to overfitting”, 2015. http://blog.kaggle.com/2015/05/26/
microsoft-malware-winners-interview-1st-place-no-to-overfitting/
;Accessed:2015-11-02.

[12] Kaggle. Evaluation, 2016. https://www.kaggle.com/c/
malware-classification/details/evaluation;AccessedOn:01/14/2016.

[13] W. J. Kent. Blat-the blast-like alignment tool. Genome research,
12(4):656–664, 2002.

[14] G. Marcais and C. Kingsford. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–
770, 2011.

[15] N. P. P. Mavrommatis and M. A. R. F. Monrose. All your iframes point
to us. In USENIX Security Symposium, pages 1–16, 2008.

[16] McAfee. For consumers, 2014. https://www.mcafee.com/consumer/
en-us/store/m0/index.html;AccessedOn:01/06/2016.

[17] Norton. Norton anti, 2014. http://us.norton.com/;AccessedOn:01/06/
2016.

[18] R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi. Clark: fast and
accurate classification of metagenomic and genomic sequences using
discriminative k-mers. BMC genomics, 16(1):236, 2015.

[19] E. Peterson, D. Curtis, A. Phillips, J. Teuton, and C. Oehmen. A gen-
eralized bio-inspired method for discovering sequence-based signatures.
In Intelligence and Security Informatics (ISI), 2013 IEEE International
Conference on, pages 330–332, June 2013.

[20] A. Rajaraman and J. Ullman. Mining of Massive Datasets. Mining of
Massive Datasets. Cambridge University Press, 2012.

[21] C. E. Shannon. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review, 5(1):3–
55, 2001.

[22] P. Ször and P. Ferrie. Hunting for metamorphic. In Virus Bulletin
Conference, 2001.

[23] V. Total. File statistics during last 7 days. https://www.virustotal.com/
en/statistics/. Last retrieved 2015-01-15.

[24] S. Vinga and J. Almeida. Alignment-free sequence comparison — A
review. Bioinformatics, 19(4):513–523, 2003.

[25] L. Wang. Microsoft malware classification challenge
(big 2015) first place team: Say no to overfitting, 2015.
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/
master/Saynotooverfitting.pdf;Accessed:2015-11-02.

[26] Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole. Naive bayesian
classifier for rapid assignment of RNA sequences into the new bacterial
taxonomy. Applied and Environmental Microbiology, 73(16):5261–5267,
2007.

[27] Wikipedia. Agobot, 2014. https://en.wikipedia.org/wiki/Agobot;
AccessedOn:01/06/2016.

[28] D. E. Wood and S. L. Salzberg. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol, 15(3):R46, 2014.

878787

