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Abstract—In the last few years, the number of mobile devices
such as smartphones and tablets, in circulation, has increased
dramatically. The primary and often only protection mechanism
in these devices is authentication using a password or a Personal
Identification Number (PIN). Passwords are notoriously known
to be a weak authentication mechanism, no matter how complex
the underlying format is. A more secure alternative option which
has gained interest recently is extracting keystroke dynamic
biometrics from supplied passwords for mobile authentication.
In this paper, we show that using random forests classifier,
improved accuracy performance can be achieved for mobile
keystroke dynamic biometric authentication. We also propose
a new algorithm for handling typos, which is an essential
step in improving usability. We study both timing features and
pressure-based features. Experimental evaluation is based on two
public datasets and a third dataset collected in our lab. The
best performance, obtained by combining timing and pressure
features, is an Equal Error Rate (EER) of 2.3% for a population
of 42 users.

Keywords—Keystroke Dynamics, Mobile Security, Mobile Au-
thentication, Biometric Authentication, Typo Handling.

I. INTRODUCTION

The last decade has seen a dramatic increase in the number

and sophistication of mobile devices. Mobile devices are

increasingly used to perform complex and sensitive compu-

tations and store private data and resources. However, the

protection available for these devices remains still at the bare

minimum level.

The main protection for most devices consists of a simple

password or a Personal Identification Number (PIN). However,

passwords are known to be a weak form of authentication, no

matter how complex the password string is. Passwords can be

hacked, stolen, forgotten, or shared.

Recently, we have seen a growing interest in using biometric

technologies as alternatives or reinforcement for passwords.

Among the technologies being used or under consideration is

keystroke dynamic biometrics.

The roots of keystroke biometrics go back to the World

War II, where military intelligence used a methodology called

”The Fist of the Sender” to distinguish between a Morse Code

message sent by ally or enemy operators [1]. Today keystroke

dynamics is a well known behavioural biometric technology

that has several benefits over other biometric technologies. For

instance, keystroke dynamics biometric can be used in both

static and continuous authentication, it is a resettable biometric

technology, it operates in indoor and outdoor environments, it

does not require special hardware sensor, and it can be used

unobtrusively.

Over the last two decades much work has been done on

using keystroke dynamics data collected from conventional

computer keyboard for user authentication.

Recently, several proposals have been published on applying

keystroke dynamic biometric for mobile authentication. Most

of the proposals use the standard keystroke features, namely,

dwell time (the time between pressing and releasing a single

key) and the flight time (the time between two consecutive

key presses). Some of the challenges encountered in this

process are related to the differences in environments and

platforms. For instance, some of the keystroke features that are

readily available on conventional keyboards, cannot always be

captured in current mobile platforms.

As a consequence, the accuracies achieved with conven-

tional keystroke authentication have not always been translated

in the mobile keystroke authentication proposals published so

far. The error rates obtained for mobile devices remain on

average relatively high.

Recently, it has been shown that better accuracy can be

achieved using new features extracted from the finger pressure.

Despite the encouraging results achieved with these new

features, there is still room for significant improvement in

accuracy.

Another key limitation of the previous work on using

keystroke dynamics for mobile authentication is related to

typo handling or the lack thereof. For example, if the user

by mistake typed a wrong character the entire trail or login

attempt would be rejected biometric authentication. While this

might be acceptable in implementing keystroke in desktop

environment, it creates a major usability issue in mobile

platform, where users can easily hit the wrong key on a

regular basis. Not giving users the ability to correct typos

and asking them to retype their credentials (e.g. user name

and password) discourage from using strong password formats

(e.g. mix of characters, digits, upper-cases, lower-cases, and

special characters).
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We present in this paper a new approach for mobile

keystroke dynamic biometric authentication, that tackles the

aforementioned challenges. Specifically we show that im-

proved performance can be achieved by tuning adequately a

random forests classifier. We consider the different group of

features mentioned above (i.e. standard and pressure-based),

and evaluate the proposed model using 3 different datasets

involving cumulatively 103 users. The three datasets consist

of 2 public datasets of 51 and 42 users, respectively, and a third

dataset of 10 users collected in our lab. We also introduce a

new algorithm for typo handling, and evaluate the effectiveness

of the algorithm using the dataset collected in our lab.

The rest of the paper is structured as follows. In section II,

we summarize and discuss related work on keystroke dynamics

for mobile authentication. In Section III, we describe our fea-

ture space and classification model for mobile authentication.

In section IV, we describe the experimental evaluation of the

proposed approach. In Section V, we present our approach

for handling typing errors on keystroke dynamics for mobile

authentication. In Section VI, we make concluding remarks

and summarize future work.

II. RELATED WORK

Several papers have been published in the literature on

keystroke dynamic biometric authentication for conventional

computing devices. However, only a relatively smaller amount

of works have focused so far on keystroke biometrics for soft

keyboards on mobile devices.

In 2006, Clarke and Furnell conducted the first experiment

on keystroke dynamic analysis for mobile devices [2]. In

the experiment, 30 participants were asked to type for 30

times two different password strings, of size 4 and 11 digits,

respectively. The authors extracted as features the key dwell

time and digraph flight time which were processed using

neural network classifiers. On average, an equal error rate

(EER) of 12.8% was obtained.

Karnan and Krishnaraj conducted a comparison between

different biometrics techniques [3]. In the study a dataset

consisting of 200 samples for keystroke, 100 for finger print

and 100 for palm print, were used. They used Particle Swam

Optimization (PSO), Ant Colony Optimization (ACO) and

Bacteria Foraging Algorithm (BFOA) with Support Vector

Machine (SVM) classifier to improve the performance. For

the keystroke, they extracted as features the dwell time and

flight time for digraphs, and computed the mean and standard

deviation to create biometric templates. They selected finger

print and palm print as the input to the BFOA algorithm to

discover the most important subset of features. By applying

SVM classification with BFOA to the individual biometric

factors separately, error rates1 of 0.069%, 0.076% and 0.083%

were obtained for Keystroke, Fingerprint and Palmprint, re-

spectively. The best result was obtained for the combination of

the three modalities (Keystroke, Fingerprint, Palmprint) where

1Note that the error rate is a vague metric in the context of biometric, and
should not be equated with the EER.

they achieved 92.8% accuracy in detecting imposters with

0.063% being the error rate obtained for the BFOA algorithm.

However, they did not mention how the data was collected and

how many subjects were involved in the study.

Maiorana and Campisi [4] proposed an approach for user

authentication using keystroke dynamic biometric for mobile

devices.

An experiment was conducted to collect keystroke dynamic

samples, where 40 participants were asked to type 6 different

passwords 20 times each, giving a dataset of 4800 samples.

Two features were extracted from the raw data consisting

of the dwell time and flight time. The extracted features

were processed by varying the number of keys and using

different classifiers, specifically, fuzzy C-means, Bayes Clas-

sifier, Support Vector Machine (SVM), as well as Principal

Component Analysis (PCA). The best performance achieved

was an EER of 13.59% with 10 keystrokes long passwords

obtained using fuzzy C-means. Among the limitations of the

proposed approach are the relatively high EER especially

considering the length of the password string.

Karnan and Krishnaraj [5] applied Ant Colony Propaga-

tion(ACP) with Back Propagation Neural Network (BPNN)

for keystroke biometric authentication in mobile devices.

They collected a dataset with 25 participants, each providing

50 samples. Two types of features were extracted, namely,

dwell time and flight time. The comparison between ACP

and Genetic algorithm produced classification error rates of

1.07% and 0.20% where the accuracy was 88.9% and 88.6%

of combined features. On the other hand, Particle Swam

Optimization (PSO) produced a classification error rate of

0.006% and accuracy of 94.8%.

Bours and Masoudian [6] claimed their work to be the first

to investigate keystroke dynamics on randomly generated one-

time PIN (OTPs). Data was collected from 30 subjects where

each subject typed 6 digits OTPs 150 times correctly (without

typo). An EER of 26% was obtained, which is relatively high.

Saevanee and Bhattarakosol [7] presented an approach for

mobile authentication using keystroke dynamic where in ad-

dition to the standard features (i.e. dwell and flight times), the

impact of the finger pressure was investigated. They conducted

an experiment by collecting data for 10 users where each user

typed 30 times their cell phone numbers consisting of 10 dig-

its. Three features were extracted consisting of the dwell time,

the flight time, and the finger pressure. By applying neural

network classification, to the individual features separately,

EER of 35%, 40% and 1% were obtained for the dwell time,

flight time, and finger pressure, respectively. The combination

of the dwell time, flight time, and finger pressure produced

an EER of 9% while using just the dwell time and flight

time produced an EER of 29%. They established that using

the finger pressure is better than using the combination of

dwell time and flight time to identify the genuine user. An

accuracy rate of 99% was obtained for the combination of

the dwell time and the finger pressure; interestingly the same

accuracy was obtained for the finger pressure alone. The main

issue with the proposed work is the relatively small size of
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the validation population and also the fact that participants

provided samples by typing different set of characters (i.e.

individual phone numbers), which creates some confounds.

Another study using finger pressure with dwell time and

flight time as features for keystroke biometric authentication

on mobile devices was conducted by Sen and Muralidharan

[8]. Data was collected from 10 subjects where each partici-

pant typed a 4-digits password 100 times in 5 sessions with 20

samples in each session. They applied four different classifiers,

a decision tree classifier - J48, a Naive Bayes classifier,

the K* classifier and a multilayer perceptron classifier. The

best performance was an EER of 15.2% obtained using the

multilayer perceptron classifier. The main limitation with this

study is similar to Saevanee’s.

In addition to the standard features (i.e. dwell and flight

times), Trojahn [9] investigated finger pressure and size of

the finger for mobile authentication using keystroke dynamic.

The author conducted an experiment where 152 participants

were asked to type a predefined 17-digits password 10 times

in a single session. By applying K-means classification, to

the individual features separately, FAR of 8.03%, 12.66% and

12.63% and FRR of 12.3%, 11.64% and 33.33% were obtained

for the dwell time, flight time, and trigraph (three different

keys), respectively. The combination of the dwell time, flight

time, finger pressure and the size of the finger produced a FAR

of 4.19% and a FRR of 4.59% which are very encouraging

results. While using just the dwell time and flight time, a

FAR of 9.28% and a FRR of 6.72% were obtained. While the

authors avoided some of the experimental mistakes achieved in

the previous works using finger pressure, the main limitation

is the fact that the data was all collected in a single session.

Draffin, Zhu, and Zhang [10] applied Back Propagation

Neural Network (BPNN) for keystroke biometric authentica-

tion in mobile devices. Data was collected during a period

of 3 weeks from 13 subjects. Beside dwell time and flight

time features, finger pressure, finger area, drift, and device

orientation were extracted. A FAR of 14.0% and a FRR of

2.2% were obtained as performance. They did not explain

the mechanism of collecting their data, which raises more

unanswered questions.

A recent study using finger pressure and finger area as

features for keystroke biometric authentication in mobile de-

vices was presented by Antal and Szabo [11]. They asked

42 participants to type the same password (.tie5Roanl) 30

times in 2 sessions. Four features were extracted consisting of

the dwell time, the flight time, the finger pressure and the

finger area. They applied the same script R developed by

Killourhy and Maxion [12]. The script R implements three

anomaly detection methods based on Euclidean, Manhattan,

and Mahalanobis distances. The best performance achieved

was an EER of 12.9% with pressure and finger area features

obtained using Manhattan distance while an EER of 15.3%

was achieved using the standard features (i.e. dwell and flight

times).

III. FEATURES SPACE AND CLASSIFICATION MODEL

In this study we will consider both the standard features

(dwell and flight times) and the pressure features (finger

pressure and finger size). For the flight time, we consider the

following variations: release-to-press (RP) (the duration of the

time interval between a key released and a key pressed), press-

to-press (PP) (the duration of the time interval between two

keys pressed), release-to-release (RR) (the duration of the time

interval between two keys released).

We use Random Forest to classify individual users and

discriminate genuine users from impostors.

Random forest is a machine learning technique also called

bagging because it combines multiple learning models to

increase the classification accuracy. It is a classification and

regression method that generates random subsets of data and

variables, from which multiple decisions trees are created. It

is an ensemble technique which takes a decision based on

majority vote of classification prediction.

IV. EXPERIMENTS

A. Datasets

We used in our experimental evaluation three different

datasets. Two of the datasets are public datasets, while the

third dataset was collected in our lab.

1) Dataset 1: The first dataset used in our work (Dataset

1) provides only keystroke timing data, i.e., only standard

keystroke features (dwell and flight times) can be extracted

from the data. The dataset was collected by El-Abed, Dafer

and El Khayat from Rafik Hariri University, and made avail-

able online at http://www.coolestech.com/RHU-Keystroke/.

The data was collected from 51 subjects who typed the same

password string ”rhu.uvinversity” between 15-20 times, in 3

sessions spread over 3-30 days [13]. The dataset contains 985

samples where the minimum number of samples per user is

15 samples and the maximum number of samples per user is

21 samples. The average number of samples per user is 17

samples.

2) Dataset 2: The second dataset (Dataset 2)

provides both timing and pressure data from keystrokes.

The dataset was collected by Antal and Szabo from

Sapientia University, and made available online at

http://www.ms.sapientia.ro/∼manyi/keystroke.html. The

data was collected from 42 subjects who typed the same

password string ”.tie5Roanl” 51 times, in at least 2 sessions

spread over 2 weeks [11].

3) Dataset 3: The third dataset (Dataset 3) was collected in

our lab with the intent of studying the impact of typo handling

on performance. We developed a client/server application to

collect data from participants. The mobile client application

used for data collection is a hybrid application written in

Javascript and HTML 5, while the server is a lightweight

server written in python and is based on the Tornado web

framework. TinyDB NoSql database was used smartphone in

the back-end. The data was collected using Galaxy SIII from

10 participants, who typed 30 times (spread over 2 sessions)
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the password string [Mohammed-63]. We allowed typo, for

example, if the user by mistake typed a wrong character the

entered trail or login attempt is accepted.

B. Data Analysis Techniques

We applied Random Forest algorithm [14] in our experiment

to classify the genuine users and identify imposters. A profile

is built for each user using a training set consisting of positive

or genuine samples from the user, and negative or imposter

samples from other users.

We used 10-fold cross validation, where 90% of the dataset

is used for training and 10% for testing. In each test round,

we calculate the FRR individually for each user, by comparing

the (10%) genuine test samples (i.e. from the user) against the

user’s profile. Similarly, the FAR is calculated for each user

by comparing the (10%) test samples from other users against

the user’s profile. The FAR/FRR for the test round is obtained

by averaging the individual FAR/FRR. Furthermore the overall

FAR/FRR are calculated by averaging the values obtained over

the 10 rounds of cross validation.

In the above evaluation approach, the imposter class has

more samples than the genuine class, which will generate

imbalance class distribution. The potential outcome of im-

balance class distribution is what is known as a majority

classifier, where there is a tendency of classifying all samples

as belonging to the majority class (i.e. impostor samples).

The approaches commonly used in the literature to handle

imbalance class distribution include cost sensitive learning and

sampling.

Cost sensitive learning assigns weights to the training sam-

ples expressing different misclassification costs. Specifically,

positive (or genuine) samples are assigned greater weight

compared to the negative (impostor) ones.

Sampling involves under-sampling the majority class (i.e.

impostor) or over-sampling the minority class (genuine).

Under-sampling consists of selecting for training a subset of

the majority class, while over-sampling consists of using for

the same purpose a superset of the minority class. The superset

can be generated by reusing multiple times the same samples

or by generating synthetic samples.

In this work, we used in our evaluation experiments both

cost sensitive learning and under-sampling. We perform cost

sensitive training by assigning a weight P (denoted weight(P))

to the imposter class corresponding to the ratio between the

total number of genuine samples and the total number of

imposter samples.

C. Data Analysis and Results

We started the evaluation with Dataset 1 using cost sensitive

learning. Fig. 1 and Table I depict the ROC curve and

sample performance results, respectively, obtained by varying

weight(P). The best result was obtained when setting the

weight (P) to 0.000515, corresponding to EER = 5.8 %.

In addition to cost sensitive learning, we applied under-

sampling to Dataset 1. By varying weight(P) and using under-

sampling, the best performance was obtained when setting

Fig. 1. ROC curve without under sampling the negative class and by varying
the weight (P) for dataset 1.

TABLE I
PERFORMANCE OBTAINED FOR DATASET 1 WITHOUT UNDER SAMPLING

THE NEGATIVE CLASS (ALL SAMPLES = 985) AND VARYING THE WEIGHT

(P).

Weight(P) FRR % FAR %
0 0 1

0.0001 0.2 47.4
0.0002 1 22.7
0.0003 1.99 12.97
0.0004 4.08 8.64
0.0005 5.24 6.14

0.000515 5.8 5.8
0.0006 7.44 4.55
0.0007 9.85 3.57
0.0008 12.47 2.95
0.0009 13.73 2.45

weight(P)=0.0024. Let u denote our under-sampling parameter,

which in other words represents a percentage of the negative

samples available for training.

Fig. 2 and Table II show the ROC curve and sample results,

respectively, when setting the weight(P) = 0.0024 and varying

u from 18 samples to the maximum count of the negative

samples. The best result is obtained for u = 380 as EER = 6.6

%.

This indicates that with under-sampling, there is a slight

decrease in accuracy. But at the same time the lower amount

of training data involved means lower computation cost.

Next, we applied our algorithm to Dataset 2 by conducting

three different experiments and varying weight(P). In the first

experiment, we considered only the pressure features (finger

pressure and finger area). The second experiment used only

the timing features (dwell and flight times), while the third

experiment considered all the above features. Fig. 3-5 depict

the ROC in these experiments; table III lists the obtained error

rates. The curves show the relation between the FAR and FRR

when varying weight(P) from 0.0001 to 0.0009 and using the

maximum number of negative samples (i.e. without under-
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TABLE II
PERFORMANCE OBTAINED BY UNDER SAMPLING THE NEGATIVE CLASS

AND VARYING THE MAXIMUM COUNT OF THE NEGATIVE SAMPLE FOR

DATASET 1.

under sampling (# samples) Weight(P) FRR % FAR %
18 0.0024 0 1
180 0.0024 0.6 32.72
280 0.0024 2.72 13.44
380 0.0024 6.6 6.6
480 0.0024 11.21 4.16
580 0.0024 15.72 2.81
680 0.0024 19.39 2.01
780 0.0024 23.48 1.48
880 0.0024 25.26 1.26

full dataset (985) 0.0024 30.6 0.49

Fig. 2. ROC curve when under sampling the negative class and making the
weight (P) constant for dataset 1.

Fig. 3. ROC curve using just pressure and finger size and varying the weight
(P) for dataset 2.

Fig. 4. ROC curve using just Dwell Time (DT) and Flight Time (FT) and
varying the weight (P) for dataset 2.

Fig. 5. ROC curve using FT, DT, pressure and finger size and varying the
weight (P) for dataset 2.

sampling). The best result was obtained with the full features

set (i.e. both timing and pressure) when setting the weight (P)

to 0.0008 corresponding to EER = 2.3 %. On the other hand,

using dwell time and flight time an EER of 6.5% was achieved,

and while using just pressure and finger area an EER of 4.7%

was achieved.

From these results, it is clear that pressure features perform

better than timing features. Furthermore, as expected, the

combination of all the above feature categories provide much

better performance compared to using only a single category.

Table IV summarizes and compares with our work the per-

formances obtained for existing work on keystroke dynamics

biometric for mobile devices. Our proposed method performs

well comparatively with the existing work. This is encouraging

considering that a varied dataset was used.
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TABLE III
THE RESULT OBTAINED BY APPLYING RANDOM FOREST FOR DATASET 2.

Features Weight(P) FRR % FAR %

DT + FT 0.0007 4.7 4.8

Pressure + fin-
ger area

0.0009 6.3 6.8

DT + FT +
Pressure + fin-
ger size

0.0008 2.3 2.3

TABLE IV
COMPARISON OF EXISTING RESEARCH WORKS WITH OUR WORK

References
Number
of
Subjects

Features Algorithms Result

[2] 30
dwell time and
digraph flight
time

Neural Net-
work

EER=12.8%

[3]
dwell time and
digraph flight
time

PSO, ACO
and BFOA
with SVM

ER=.063

[4] 40
dwell time and
digraph flight
time

Bayes, SVM
PCA

EER=13.59%

[5] 25
dwell time and
digraph flight
time

PSO and
ACP with
BPNN

ER=0.006

[6] 30
dwell time and
digraph flight
time

SMD,
Adpted
(SMD),
SED, ASED

EER=26%

[7] 10

dwell time,
digraph flight
time and
finger pressure

Probabilistic
Neural
Network

EER=9%

[8] 10

dwell time,
digraph flight
time and
finger pressure

Multilayer
Perception

EER=15.2%

[9] 152

dwell time,
digraph flight
time, finger
pressure and
size of the
finger

K-means
FAR=4.19%
FRR = 4.59%

[10] 13

dwell time,
digraph flight
time, finger
pressure,
finger area,
drift and
device
orientation

Back Propa-
gation Neu-
ral Network

FAR=14.0%
FRR = 2.2%

[11] 42

dwell time,
digraph flight
time, finger
pressure and
finger area

Manhattan
Metrics

EER = 12.9%

This paper
dataset 1

51
dwell time and
digraph flight
time

Random For-
est

EER=5.8%

This paper
dataset 2

42

dwell time,
digraph flight
time, finger
pressure and
finger area

Random For-
est

EER=2.3%

V. HANDLING TYPING ERRORS

Typing errors occur whenever there is a misspelling of a word

while typing passwords. In order to deal with such errors, we

assume the following proposition.

Consider a case when a user mistyped his/her password and

realizes that he/she mistyped it. To correct the password, the

user deletes the wrong characters by pressing the backspace

key and then completes the password afterwards. In doing so,

the user types some extra characters which will also be logged

in the time stamps registers. As a consequence, not only there

will be some extra entries in the registers but the flight times

between the correct digits would also differ. Fig. 6 shows an

example of such a scenario.

Fig. 6. An illustration of a mistyped password.

Here the user typed three extra characters, V, X and Q,

while typing the password ABCDEFGH. Also, after realizing

the mistake, the user deletes these characters by pressing the

backspace key which is shown as ← in the figure.

Our typo handling algorithm makes the assumption that the

flight time between the incorrect letter and the preceding letter

is approximately the same as the time between the correctly

typed letters.

Based on this assumption, we compute the time stamps

for the password with extra characters as follows. Firstly we

find the difference between the time stamps of the incorrect

letter and the corresponding correct letter (V and B in the

Fig. 6), and then we subtract that difference from each of

the timestamps of the correctly typed letter and the letters

following it. For example, in the Fig. 6, the difference between

the time stamps of letters V and B is 3 ms. Afterwards, the

computed time difference is subtracted from the timestamps

of the letters starting from the letter B. The first row of the

’Corrected Time Stamps’ shows the updated time stamps. The

same procedure can be extended to the typing errors caused

by typing multiple extra characters as is the case with the

letters (X and Q) in the Fig. 6. Here the correct time stamps

are computed similarly by subtracting the time difference

between the timestamps of the first incorrect letter and the

corresponding correct letter. Notice that, by this procedure,

we are able to compute the correct time stamps as given in

the Table V.

We conducted a comparison between handling and not

handling typing errors using Dataset 3 which was collected

in our lab and includes typo data.We started by running our

classification model on the dataset without removing the typos,

and without applying our typo handling method. Next, we
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TABLE V
AN ILLUSTRATION OF A CORRECT PASSWORD

Password A B C D E F G H
Time Stamp 1 3 5 6 8 11 12 13

Fig. 7. ROC curves when handling typo vs. no typo handling and varying
the weight (P) for dataset 3.

repeated the same process, by running on the same dataset,

the classifier and the typo handling algorithm. Fig. 7 and Table

VI show the obtained results. In the first case, EER=12% was

obtained, while when applying our typo handling algorithm,

an EER=9% is obtained. The improvement in performance is

not surprising, as the typo handling is expected to correct the

negative impact of typos.

On the other hand, typo handling can have adverse effect on

accuracy. In order to assess the strength of our typo handling

method, we ran an experiment on a clean version of dataset.In

this dataset, we excluded the incorrect trails meaning that the

typing mistakes were not allowed. For example, if a user typed

a wrong character by mistake, the entire trail or login attempt

would be rejected. Fig. 8 depicts the ROC curve obtained

by varying weight (P). An EER of 9% is obtained which is

almost the same result when we handled the typo mistakes.

This implies that our proposed scheme for handling typing

mistakes does not degrade significantly the accuracy. With this

TABLE VI
PERFORMANCE OBTAINED BY HANDLING TYPO VS. NO TYPO REMOVAL,

WHEN VARYING THE WEIGHT (P) FOR DATASET 3.

Weight(P)
FRR %
No Typo

FAR %
No Typo

FRR % (Typo)
FAR %
(Typo)

0 .24 67 0.11 73 0.11

0.23 64 0.14 70 0.14

0.22 58 0.22 66 0.26

0.21 50 0.33 56 0.26

0.042 34 1.3 36 1.3

0.032 27 1.9 28 2

0.022 20 3.8 22 3.7

0.0021 9 9 13 11

approach, we are able to improve usability (by allowing typos)

while maintaining the same level of accuracy.

Fig. 8. ROC curves when no typo is allowed and varying the weight (P) for
dataset 3.

VI. CONCLUSION

In this paper, we used random forests algorithm to improve

the accuracy performance of keystroke dynamic biometric au-

thentication. We also proposed a novel algorithm for handling

typing mistakes. Simulations results on the publicly available

and our collected data sets show that the proposed approach

yields much improved performance results. Furthermore, using

finger pressure and area along with the timing features signif-

icantly improve the performance of the proposed scheme.

Despite the biometric factor, using fixed password strings

can be vulnerable to replay attacks. A sophisticated key logger

can be implemented to sniff the password strings along with

keystroke dynamics, which can then be reused to gain access

to the protected system. One approach to mitigate such threat,

is to extract the keystroke dynamics from a one-time password

(OTP). This approach still poses significant challenges in terms

of accuracy. Our future work will consist of investigating such

approach and the related challenges.
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