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Abstract—The Internet of Vehicles (IoV) is an emerging
paradigm, which is expected to be an integral component of
beyond-fifth-generation and sixth-generation mobile networks.
However, the processing requirements and strict delay constraints
of IoV applications pose a challenge to vehicle processing units.
To this end, multi-access edge computing (MEC) can leverage the
availability of computing resources at the edge of the network
to meet the intensive computation demands. Nevertheless, the
optimal allocation of computing resources is challenging due to
the various parameters, such as the number of vehicles, the avail-
able resources, and the particular requirements of each task. In
this work, we consider a network consisting of multiple vehicles
connected to MEC-enabled roadside units (RSUs) and propose
an approach that minimizes the total energy consumption of the
system by jointly optimizing the task offloading decision, the
allocation of power and bandwidth, and the assignment of tasks
to MEC-enabled RSUs. Due to the original problem complex-
ity, we decouple it into subproblems and we leverage the block
coordinate descent method to iteratively optimize them. Finally,
the numerical results demonstrate that the proposed solution can
effectively minimize total energy consumption for various num-
bers of vehicles and MEC nodes while maintaining a low outage
probability.

Index Terms—6G, B5G, block coordinate descent, computation
offloading, energy efficiency, Internet of Vehicles, mobile edge
computing.
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I. INTRODUCTION

THE SIXTH-GENERATION (6G) of mobile networks
aims to integrate the advances in wireless communica-

tion technologies to deliver enhanced performance compared
to fifth-generation (5G) mobile networks and realize new
applications and services [1], requiring increased comput-
ing capabilities and low computing latency. The Internet of
Vehicles (IoV) is an emerging paradigm derived from the con-
cept of the Internet of Things and features great potential in
the Beyond 5G/6G era [2]–[5]. The IoV paradigm aims to
deliver an intelligent and efficient transportation system able
to support applications such as autonomous driving, traffic
prediction, and road security and safety [6]. Such applica-
tions often have strict delay constraints and require intensive
computations [7]. Although the computing capabilities of vehi-
cles are higher than conventional mobile devices, the complex
processing requirements and strict delay constraints of IoV
applications pose a challenge to vehicle processing units. In
addition, an individual vehicle’s available computing resources
may not be able to meet the aforementioned requirements and
constraints.

Multi-access edge computing (MEC), formerly known as
mobile edge computing, can leverage the availability of com-
puting resources located at the edge of the network to effi-
ciently realize computing resource sharing, in order to meet
the intensive computing demands posed by IoV applications.
In this direction, a device can offload a task to a MEC-enabled
small cell (SC), where sufficient computation resources exist.
Nevertheless, the orchestration of resource sharing among var-
ious devices and SCs is challenging due to the heterogeneity
of the resources and the time-varying topology of vehicu-
lar networks. Furthermore, the dense deployment of MEC-
enabled SCs will result in higher total energy consumption.
Consequently, minimizing the total energy consumption while
taking into account the quality of service (QoS) requirements
of the application, is challenging [8], [9].

A. Related Works

In this direction, research efforts are being focused on
exploiting the ample computing resources of the edge nodes
by offloading the tasks of mobile devices or vehicles. In more
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detail, the minimization of the task processing time is the
focus of the research works in [10]–[19]. The authors in [10]
developed a task offloading optimization approach that aims
to minimize task computation delay and energy consumption.
Xu et al. [11] investigated an offloading system, where the
QoS depends on the task response time and developed a deep
reinforcement learning approach that minimizes the response
time. Zhao et al. [12] considered the partial offloading of
vehicle tasks to multiple smart devices, such as drones and
edge nodes, and minimized the execution time of a task tak-
ing into account energy consumption and rental rate of the
smart device. In [13], the authors combined reinforcement
learning and heuristic algorithms to optimize the alloca-
tion of user applications to vehicular computation resources.
Moreover, Luo et al. [14] designed a dynamic programming-
based algorithm that minimizes the processing latency of tasks
in heterogeneous MEC environments. In [15], the authors
leveraged reinforcement learning to develop a mobile offload-
ing method aiming to minimize the cost of task migration
under energy constraints. The authors of [16] proposed a fed-
erated learning-based offloading scheme for minimizing the
total latency in vehicular environments, where each task can
be divided into three parts so it can be respectively pro-
cessed locally, offloaded to another vehicle, or offloaded to a
MEC node. Yadav et al. [17] developed an algorithm to min-
imize the task latency by optimally selecting the tasks to
be offloaded to the MEC nodes. In [18], the authors formu-
lated the minimization of task latency by jointly optimizing
the offloading decision, as well as the wireless and comput-
ing resource allocation in satellite-assisted vehicle-to-vehicle
communications. The authors of [19] utilized the particle
swarm optimization algorithm to minimize the processing time
of each task by offloading portions of the task to multiple
vehicles.

Alternatively, the maximization of the throughput is the
focus of the research works presented in [20]–[22] The authors
in [20] investigated the resource allocation in networks con-
sisting of unmanned aerial vehicles and formulated a mixed-
integer non-linear problem, aiming to maximize the average
throughput while satisfying energy constraints. In addition,
Ning et al. [21] leveraged non-orthogonal multiple access and
MEC technologies to develop a method that maximizes the
link throughput, by optimizing power allocation, subchannel
assignment, and task assignment. Furthermore, Lu et al. [22]
considered a network, where two unmanned aerial vehicles
(UAVs) provide wireless power transfer to two ground devices
and developed a solution based on successive convex pro-
gramming in order to maximize the sum average transmission
rate.

The approaches presented in [23]–[29] are focused on maxi-
mizing the system utility. Specifically, Dai et al. [23] proposed
a low-complexity algorithm to jointly optimize the offload-
ing decision and resource allocation toward maximizing the
system utility. In [24], the authors proposed a vehicle-assisted
offloading scheme that aims to maximize the long-term util-
ity rate of a vehicular network using a reinforcement learning
method. The authors in [25] addressed the maximization of
the system offloading utility rate taking into account the task

execution order and the available computing resources. The
authors of [26] designed a collaborative resource allocation
and offloading decision optimization scheme for maximizing
the utility rate of the system. In [27], Zhang et al. adopted
a deep Q-learning method for optimizing the offloading deci-
sion and the data uploading method (i.e., vehicle-to-vehicle,
vehicle-to-base-station) with the aim of maximizing the system
utility rate. The authors in [28] presented a joint resource
allocation and task scheduling scheme for maximizing the
system’s utility by formulating the corresponding optimization
problem as a Stackelberg game. Xu et al. [29] leveraged a
multi-objective evolutionary algorithm based on decomposi-
tion to minimize the task processing latency and maximize
the utilization of the system resources.

Finally, the research works in [30]–[40] are focused on min-
imizing the system energy consumption through the optimal
allocation of the available resources. Particularly, the authors
in [30] formulated the computation offloading as a mixed-
integer non-linear programming problem and proposed a
genetic algorithm that minimizes the energy consumption.
In [31], the authors leveraged a deep reinforcement learning
approach for minimizing the energy consumption through the
joint optimization of the offloading decision and the assign-
ment of tasks to the MEC nodes. The authors in [32] investi-
gated the trade-off between the task latency and energy con-
sumption and developed an approach to find the optimal task
offloading decision and the allocation of wireless resources.
Zhou et al. [33] developed a scheme based on the alternating
direction method of multipliers for minimizing the total energy
consumption of the system by finding the optimal offload-
ing decision for each task. In [34], the authors presented a
method based on the Lagrange dual decomposition method
for minimizing the energy consumption through the joint
optimization of the offloading decision, the allocation of trans-
mission power, and the scaling of computing resources. The
authors in [35] proposed an approach that maximizes the
system energy efficiency by optimally allocating the offload-
ing transmission power and time, as well as scaling the device
chip computing frequency. Jang et al. [36] investigated the
energy consumption assuming partial and complete offload-
ing in vehicular edge computing environments and proposed
a solution for optimally assigning the offloading of the task in
time-slots. The authors in [37] developed an energy-efficient
fog computation offloading scheme in order to meet the strin-
gent requirements of the industrial Internet of Things. The
scheme leverages an accelerated gradient descent algorithm
that optimizes the offloading ratio, the transmission power and
time, and the local central processing unit (CPU) computation
speed. Wang et al. [38] focused on the energy consumption
of an edge system and proposed an imitation learning-enabled
scheduling algorithm that takes into account the latency con-
straints of the tasks. In [39], the authors presented a deep
reinforcement learning method to minimize the long-term
energy consumption and task processing latency through the
optimization of the offloading decision and the allocation of
computing resources. Lagkas et al. [40] developed a joint allo-
cation scheme, involving three optimization phases for the
edge, radio, and optical resources, respectively.
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B. Contributions

The aforementioned works presented some interesting
results, however, some of them are focused on optimizing
only a particular aspect of the offloading process (e.g., the
offloading decision), while most of the are focused on jointly
optimizing the offloading decision and the allocation of the
transmission power. Furthermore, some of the research works
are focused on the joint optimization of the wireless and com-
puting resources. Of note, the solutions presented in most of
the works are based on deep learning or reinforcement learn-
ing algorithms to optimize the long-term system performance.
However, these algorithms are considered computationally
expensive. Moreover, deep learning algorithms require large
datasets volumes to achieve high performance.

Motivated by these remarks, we develop a solution that aims
to minimize the total energy consumption of the system by
optimally offloading the tasks to the MEC-enabled roadside
units (RSUs), taking into account the latency requirements
and the availability of wireless and computing resources.
In particular, the solution aims to jointly optimize the task
offloading decision, the allocation of power and bandwidth
resources, the assignment of tasks to MEC-enabled RSUs, and
the frequency scaling of MEC-enabled RSUs. In more detail,
the contributions of this work are as follows:

• We present a scenario consisting of multiple vehicles
that are served by a number of RSUs. In the considered
scenario, each vehicle may choose to compute its task
locally or offload a portion of it in a MEC-enabled RSU.
Additionally, the scenario supports task migration, mean-
ing that a task can be migrated from a RSU to another,
based on the computation requirements and availability
of resources.

• We formulate the minimization of the total energy con-
sumption as a joint optimization of the task offloading
decision, the allocation of power and bandwidth, the
assignment of tasks to MEC-enabled RSUs, and the
frequency scaling of MEC-enabled RSUs. We also dis-
cuss the convexity of the original optimization problem
and transform it into convex equivalents.

• As the joint optimization problem is challenging to solve,
we decouple the original optimization problem into three
problems and solve each one in an iterative way by
leveraging the block coordinate descent (BCD) method.

• Particularly, for optimizing the task offloading deci-
sion, we derive closed-form expressions taking into
account each task’s latency constraints. Towards opti-
mizing the power and bandwidth allocation, as well as
the task assignment and frequency scaling, the Lagrange
multipliers and subgradient methods are employed.

• We evaluate the performance of the proposed approach
through system-level Monte Carlo simulations in terms
of total energy consumption and outage probability.

• To highlight the impact of the allocation of wireless
and computing resources on the total energy consump-
tion, we designed three evaluation scenarios. Particularly,
in the first scenario, only the offloading decision is
optimized, whereas in the second scenario we optimize

TABLE I
SUMMARY OF NOTATIONS

Fig. 1. Computation Offloading for Internet of Vehicles.

the offloading decision and the allocation of wireless
resources. Finally, in the third scenario, the allocation
of both wireless and computing resources is optimized in
addition to the offloading decision.

The remainder of the paper is structured as follows: In
Section II we develop the model and the problem formula-
tion, while, in Section III, we present the proposed solution.
We provide the evaluation results in Section IV and we con-
clude the work in Section V. Additionally, all notations used
throughout the paper are summarized in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 depicts the considered system model. In particu-
lar, a number of vehicles are served by RSUs equipped with



PLIATSIOS et al.: JOINT WIRELESS RESOURCE AND COMPUTATION OFFLOADING OPTIMIZATION 1471

MEC capabilities. Each vehicle is served by its nearest RSU
via a wireless link, while RSUs are interconnected using
high-capacity optical backhaul links [41]. The wireless com-
munication between the RSUs and the vehicles can be enabled
by a mobile network (e.g., B5G or 6G), while the optical
backhaul links can be enabled by the latest optical communi-
cations standards, such as the 10-Gigabit Symmetrical Passive
Optical Network (10GS-PON) or the Next-Generation PON 2
(NG-PON2), that are able to provide data rates up to 10 Gbps
[42], [43].

Let N = {1, . . . ,N } denote the set of vehicles, while
S = {1, . . . ,S} denotes the set of RSUs. To mitigate the
energy required for the wireless data transmission, each vehi-
cle is assumed to be connected to the closest RSU in its
proximity and the corresponding distance is denoted by dn,s .
We assume that the optimization process takes place in cycles,
in which the vehicles may offload a portion of a task.
Consequently, the terms vehicle and task can be used inter-
changeably. In addition, for the duration of the cycle, the
vehicle position is assumed to remain steady. The offloaded
tasks can be part of various IoV applications, including
navigation assistance, image or video recognition, collision
or obstacle detection, or autonomous driving [44], [45]. In
addition, task profilers can be leveraged to provide valu-
able insights to operators about the computing and delay
requirements of each task [46], [47].

A. Communication Model

The wireless link capacity between a vehicle and an RSU
is calculated by

Rn = wnW log2
(
1 + SNRn,s

)
(1)

where wn denotes the bandwidth portion allocated to vehicle
n, while W is the total available bandwidth. The respective
signal-to-noise ratio (SNR) is obtained by

SNRn,s =
pnd

−δ
n,s

σ2
(2)

where pn is the power of the transmitted signal, d−δ
n,s is

distance pathloss based on δ coefficient, and σ2 is the
noise variance. Orthogonal frequency-division multiple access
(OFDMA) is selected for minimizing interferences among
vehicles.

B. Computation Model

Each task n is described by the tuple (Ln ,Cn ,T
max
n ),

where Ln denotes the data length in bits to be processed
and Cn (cycles/bit) denotes the number of cycles required
to process a single bit of the task [21], [48]. Consequently,
the total number of cycles required for processing the task
can be obtained by LnCn . Also, Tmax

n denotes the maximum
tolerable latency for the task.

1) Local Computation: The total time for the local com-
putation is obtained by

T loc
n =

LnCn

f locn
(3)

where f locn (cycles/s) denotes the computing capability of
the n-th vehicle. As in [48], [49], and [50], we model the
energy consumption of the processor as φlocn (f locn )3 (joules
per second), where φlocn stands for the processor’s chip energy
coefficient [49]. By multiplying the aforementioned equation
with the right hand side of (3), we obtain the energy consumed
for the processing of the n-th task as

E loc
n = LnCn

(
f locn

)2
φlocn (4)

2) Offloaded Computation: The total time for the offloaded
computation consists of the time required for the vehicle to
upload the data to the nearest MEC-enabled RSU and the time
required for the RSU to process the data. Moreover, the near-
est RSU may not have enough available computing resources
and thus, the task will be migrated to another RSU through the
backhaul optical link. Also, since that the size of the offloaded
task is much smaller than the backhaul link capacity, we can
assume that the task migration time is zero in order to sim-
plify the optimization process. To indicate where each task is
processed, we use the binary variable an,s as follows:

an,s =

{
1, the n − th task is proccessed at the s − th node

0, otherwise
(5)

Based on the aformenioned remarks, the upload time is
calculated as

Tup
n =

Ln

Rn
(6)

The processing time of the n-th task at the s-th node can
obtained by

T proc
n,s =

LnCn

fn,sFmax
s

(7)

where fn,s is the frequency scaling coefficient that denotes the
utilization ratio of the processor. For example, when fn,s = 1,
the current processor frequency will be equal to Fmax

s , where
Fmax
s denotes the maximum computing capability of the s-th

RSU (in Hz).
Assuming that the downlink transmission delay is consid-

ered negligible, due to the result of the computation being very
small ([51], [52]), the total time for the offloaded computation
of the n-th task is

T off
n = Tup

n +

S∑

s=1

an,sT
proc
n,s (8)

The total energy consumed in the offloaded computation
includes the energy consumed at the vehicle for the task upload
and the energy consumed at the RSU for the processing. In
particular, the energy consumed for the task upload will be
the transmission power of the n-th vehicle multiplied by the
time required to upload the task and can be calculated by

Eup
n = pnT

up
n (9)

Using the same energy consumption model as in local com-
putation, the energy consumed for the processing of n-th task
at the s-th node is obtained by

Eproc
n,s = LnCn

(
fn,sF

max
s

)2
φmec
s (10)
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where φmec
s is the energy consumption coefficient of the RSU.

Eoff
n = Eup

n +

S∑

s=1

an,sE
proc
n,s (11)

For the communication between RSUs, a high-capacity passive
optical network is utilized [53], [54]. As a result, in case of
task migration, the respective data can be promptly transferred
among RSUs, with minimal delay, leading to a small energy
overhead.

C. Problem Formulation

We aim to minimize the total power consumption of the
system by jointly optimizing the task offloading decision,
the allocation of power and bandwidth, the assignment of
tasks to MEC-enabled RSUs, and the frequency scaling of
MEC-enabled RSUs. Moreover, we adopt a partial offloading
scheme, meaning that a task can be concurrently computed
locally and in a MEC-enabled RSU. The portion of local and
offloaded computation is denoted by xn . Specifically, when
xn = 0 the whole task is computed locally at a vehicle,
whereas when xn = 1, the whole task is offloaded to a MEC-
enabled RSU. Combining (1) - (11), the total computation time
is expressed as

Tn
(
xn , pn ,wn , an,s , fn,s

)
= (1− xn)T

loc
n + (xn)T

off
n (12)

Similarly, the total energy consumption is formulated as

En
(
xn , pn ,wn , an,s , fn,s

)
= (1− xn)E

loc
n + (xn )E

off
n (13)

Consequently, the optimization problem is expressed
as follows:

P0: min
xxx ,ppp,www ,aaa,fff

N∑

n=1

En
(
xn , pn ,wn , an,s , fn,s

)
(14a)

subject to:

max
{
T off
n ,T loc

n

}
≤ Tmax

n , ∀n (14b)

0 ≤ xn ≤ 1, ∀n (14c)

0 ≤ pn ≤ Pmax
n , ∀n (14d)

0 ≤ wn ≤ 1, ∀n (14e)
N∑

n=1

wn ≤ 1 (14f)

an,s = {0, 1}, ∀n, s (14g)
N∑

n=1

an,s ≤ 2, ∀s (14h)

0 ≤ fn,s ≤ 1, ∀n, s (14i)
N∑

n=1

fn,s ≤ 1, ∀s (14j)

In P0, xxx denotes the vector of the task offloading deci-
sion, while ppp and www denote the vectors of the transmission
power and bandwidth allocation, respectively. Furthermore, aaa
denotes the task-MEC assignment vector, while fff denotes the
frequency scaling coefficient vector. Constraint (14b) enforces
that the total computation time of the task does not exceed

the maximum tolerable delay. Additionally, constraint (14c)
enforces the task offloading portion in the range [0, 1],
while (14d) enforces the transmission power between 0 and
the Pmax

n . Similarly, (14e) and (14f) are employed to limit
the bandwidth coefficient up to 1. Furthermore, (14g) enforces
binary values to an,s , while (14g) limits the tasks computed in
a single RSU up to two. Finally, (14i) and (14j) are imposed
to limit frequency scaling coefficient up to 1.

In P0, the objective function and constraint (14b) are
non-linear due to the logarithm in (1). Moreover, there
are product relationships between the optimization variables
in the objective function. For example, for the offloaded
computation case, xn , pn , fn,s , an,s are multiplied based
on (11). Additionally, (14b) and (14g) make the feasible set
non-convex. Therefore, P0 is a non-convex mixed-integer
non-linear problem.

III. PROPOSED SOLUTION

This section presents the solution to the formulated
optimization problem. In this direction, the original problem is
decoupled into three problems, which are iteratively optimized
through the BCD method. Particularly, closed-form expres-
sions are derived for solving the task offloading decision.
Moreover, the Lagrange multipliers and subgradient methods
are employed for solving the wireless and computing resource
allocation problems.

A. Optimizing Offloading Decision While Fixing the Rest
Optimization Variables

In P0, constraint (14b) makes the feasible set non-convex.
Therefore, to transform the feasible set into a convex one, we
propose Lemma 1.

Lemma 1: The equivalent of (14b) is expressed as

1− f locn Tmax
n

LnCn
≤ xn ≤ Tmax

n Rn

Ln + RnT
proc
n

(15)

Proof: The proof of Lemma 1 is provided in the
Appendix.

Assuming fixed ppp,www ,aaa, fff , P0 can be decoupled into N sub-
problems that can be independently optimized. By leveraging
Lemma 1, the following optimization problem is formulated
for each task:

P1:min
xn

En (xn) (16a)

subject to 1− f locn Tmax
n

LnCn
≤ xn ≤ Tmax

n Rn

Ln + RnT
proc
n

(16b)

The first derivative of P1’s objective function is

∂En (xn)

∂xn
= Eoff

n − E loc
n (17)

According to (17), the objective function is monotonically
increasing or decreasing based on the sign of the first deriva-
tive. By exploiting this monotonocity, xn can be set to the
lower/upper bound of (16b) when the objective function is
increasing/decreasing. Therefore, the following Theorem is
proposed:
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Theorem 1: The optimal offloading decision is obtained as

x∗n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max

{

0, 1− f locn Tmax
n

LnCn

}

, if E
off
n − E loc

n ≥ 0,

min

{
1,

Tmax
n Rn

Ln + RnT
proc
n

}
, otherwise

(18)

B. Optimizing Wireless Resources While Fixing the Rest
Optimization Variables

After obtaining the optimal offloading decision for each
task, we consider xxx ,aaa, fff to be fixed in order to determine the
optimal power and bandwidth allocation. Consequently, P2 is
formulated as

P2:min
ppp,www

N∑

n=1

En(pn ,wn ) (19a)

subject to:

Tn (pn ,wn ) ≤ Tmax
n , ∀n (19b)

0 ≤ pn ≤ Pmax
n , ∀n (19c)

0 ≤ wn ≤ 1, ∀n (19d)
N∑

n=1

wn ≤ 1 (19e)

To find the optimal power and bandwidth allocation, we
employ the Lagrange multiplier and subgradient methods.
Consequently, the respective Lagrangian of P2 is obtained
by (22) shown at the bottom of the page. In (22), set
Xp,w = {βn , λn , μ, πn} denotes the non-negative Lagrange
multipliers. Therefore, the dual function is written as follows:

D1
(Xp,w

)
= min

pn ,wn
L
(
pn ,wn ,Xp,w

)

subject to: (19b)− (19e) (20)

Consequently, the dual problem is expressed as

max
βn ,λn ,μ,πn

D1
(Xp,w

)

subject to: Xp,w � 0, ∀n (21)

In accordance to the Karush–Kuhn–Tucker (KKT) condi-
tions, the derivative of the Lagrangian function with respect to
pn is provided in (23), shown at the bottom of the page. Since

Algorithm 1 Bisection Method for Finding pn
Input: Maximum transmission power Pmax

n
Output: Optimal pn

1: Set pLBn = 0 and pUB
n = Pmax

n
2: repeat

3: Set X =
pLBn + pUB

n

2

4: if
∂Lp,w (p

LB
n )

∂pn
· ∂Lp,w (X )

∂pn
< 0 then

5: pUB
n = X

6: else
7: pLBn = X
8: end if
9: until |pUB

n − pLBn | < 0.001
10: Return pn

it is challenging to obtain a closed-form expression for (23),
we utilize the bisection method for finding the root. The
bisection method for finding pn is presented in Algorithm 1.

To obtain the optimal bandwidth allocation, we calculate
the first derivative of the Lagrangian with respect to wn . The
result is provided by (24), shown at the bottom of the page.
Solving for wn , the root can be obtained by

wn =

√√
√
√
√

xnLn (pn + λn ) ln 2

(βn + μ)W log2

[
1 +

pnd
−δ
n,s

σ2

] (25)

After obtaining the solution for problem D1 through
Algorithm 1 and (25), the Lagrange multipliers are updated as

λt+1
n =

[
λtn + s1

(
xnLn

Rn
+ xnT

proc
n − Tmax

n

)]+
(26)

πt+1
n =

[
πtn + s2(pn − Pmax

n )
]+

(27)

βt+1
n =

[
βtn + s3(wn − 1)

]+
(28)

μt+1 =

[

μt + s4

(
N∑

n=1

wn − 1

)]+

(29)

where s1, s2, s2, and s4 are the positive step sizes. The subgra-
dient method for optimizing the wireless resource allocation
is presented in Algorithm 2.

Lp,w
(
pn ,wn ,Xp,w

)
=

N∑

n=1

En(pn ,wn ) +

N∑

n=1

λnTn(pn ,wn ) +

N∑

n=1

πn (pn − pmax )

+

N∑

n=1

βn(wn − 1) + μ

(
N∑

n=1

wn − 1

)

(22)

∂Lp,w
(
pn ,wn ,Xp,w

)

∂pn
= πn +

xnLn

(

log2

[
1 +

pnd−a
n,s

σ2

]
− pn+λn

ln 2
(
pn+d−δ

n,sσ2
)
)

wnW log2

[
1 +

pnd
−a
n,s

σ2

]2 (23)

∂Lp,w
(
pn ,wn ,Xp,w

)

wn
= βn + μ− xnLn (pn + λn )

wnRn
(24)



1474 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Algorithm 2 Subgradient Method for Optimizing ppp,www

Input: Maximum transmission power Pmax
n , ∀n and system

bandwidth W
Output: Optimal ppp,www

1: Initialize pn = Pmax
n and wn = W

|N | , ∀n
2: Initialize the Lagrange multipliers: βn , λn , μ, πn
3: set t = 0
4: repeat
5: for n = 1 to N do
6: Calculate pn using Algorithm 1
7: Calculate wn according to (25)
8: Update the Lagrange multipliers using (26) - (29)
9: end for

10: Set E [t ] =∑N
n=1 En(pn ,wn )

11: until |E [t ]− E [t − 1]| < 0.01
12: Return ppp,www

C. Optimizing Computing Resources While Fixing the Rest
Optimization Variables

Having obtained the optimal offloading decision and wire-
less resource allocation, we will determine the optimal MEC
assignment, as well as the optimal MEC frequency allocation
to each task. Therefore, in this step, xxx , ppp, www are assumed to
be fixed. Also, to address the non-convexity introduced by the
binary constraint (14g), we relax it by setting it in [0, 1] range.
This relaxation can be perceived as dividing the offloaded por-
tion of the task into multiple parts and processing them in
different RSUs. Consequently, P3 is expressed as

P3:min
aaa,fff

N∑

n=1

En
(
an,s , fn,s

)
(30a)

subject to:

Tn
(
an,s , fn,s

) ≤ Tmax
n , ∀n (30b)

0 ≤ an,s ≤ 1, ∀n, s (30c)
N∑

n=1

an,s ≤ 2, ∀s (30d)

0 ≤ fn,s ≤ 1, ∀n, s (30e)
N∑

n=1

fn,s ≤ 1, ∀s (30f)

To solve P3, the Lagrage multiplier and subgradient meth-
ods can be employed. The Lagrangian of P3 is given
by (39), shown at the bottom of the next page. In (39),
set Xa,f = {κn , λn,s , μs , ξn,s , τs} denotes the non-negative
Lagrange multipliers. Thus, the dual function is written as
follows:

D2
(Xa,f

)
= min

an,s ,fn,s
La,f

(
an,s , fn,s ,Xa,f

)

subject to: (19b)− (19e) (31)

Consequently, the dual problem is expressed as

max
κn ,λn,s ,μs ,ξn,s ,τs

D2
(Xa,f

)

subject to: Xa,f � 0, ∀n, s (32)

Algorithm 3 Bisection Method for Finding fn,s

Input: Maximum RSU frequency Fmax
s

Output: Optimal fn,s
1: Set f LBn,s = 0 and f UB

n,s = 1
2: repeat

3: Set X =
f LBn,s + f UB

n,s

2

4: if
∂La,f (w

UB
n )

∂fn,s
· ∂La,f (X )

∂fn,s
< 0 then

5: f UB
n,s = X

6: else
7: f LBn,s = X
8: end if
9: until |f UB

n,s − f LBn,s | < 0.001
10: Return fn,s

To obtain the optimal task assignment, we take the first
derivative of La,f (an,s , fn,s , κn , λn,s , μs) with respect to
an,s . According to (40), shown at the bottom of the next page,
the n-th task can be assigned to the s-th RSU as follows:

an,s = 1|s = arg mins
∂La,f

(
an,s , fn,s ,Xa,f

)

∂an,s
(33)

Using (33), binary values for an,s can be obtained without
introducing errors due to the relaxation of (14g).

On the other hand, we utilize the bisection method shown
in Algorithm 3 to obtain the optimal frequency scaling.

After problem D2 is solved and the optimal task assigment
and frequency vectors are obtained, the Lagrange multipliers
are updated as

λt+1
n =

[
λtn + s1

(
xnLn

Rn
+ xnT

proc
n − Tmax

n

)]+
(34)

κt+1
n,s =

[
κtn,s + s2

(
an,s − 1

)]+
(35)

μt+1
s =

[

μts + s3

(
N∑

n=1

an,s − 2

)]+

(36)

ξt+1
n,s =

[
ξtn,s + s4

(
fn,s − 1

)]+
(37)

τ t+1
s =

[

τ ts + s5

(
N∑

n=1

fn,s − 1

)]+

(38)

where s1, s2, s3, s4 and s5 are the positive step sizes.The
subgradient method for optimizing the computing resource
allocation is presented in Algorithm 4.

D. Iterative Optimization Using Block Coordinate Descent

The solution to the joint optimization problem is achieved
by iteratively optimizing the subproblems. The employed BCD
method is presented in Algorithm 5. During the initialization
phase, the initial values for the optimization variables and the
Lagrange multipliers are set. In each step, the correspond-
ing optimal value for each optimization variable is calculated
and the algorithm ends after tmax iterations or if the energy
consumption improvement is lower than 1%.
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Algorithm 4 Subgradient Method for Optimizing aaa, fff

Input: Maximum RSU frequency Fmax
s , ∀s

Output: Optimal aaa, fff
1: Initialize an,s = 1 and fn,s = 1, ∀n, s
2: Initialize the Lagrange multipliers: κn , λn,s , μs , ξn,s , τs
3: set t = 0
4: repeat
5: for n = 1 to N do
6: Calculate an,s using (33)
7: Calculate fn,s using Algorithm 3
8: Update the Lagrange multipliers using (34) - (38)
9: end for

10: Set E [t ] =∑N
n=1 En(an,s , fn,s )

11: until |E [t ]− E [t − 1]| < 0.01
12: Return aaa, fff

Algorithm 5 Block Coordinate Descent for the Joint
Optimization

1: Initialize the optimization variables and the Lagrange
multipliers

2: Set t=0;
3: repeat
4: Find xn , ∀n using (18)
5: Find pn and wn using Algorithm 2
6: Find an,s and fn,s using Algorithm 4
7: Set E [t ] =∑N

n=1 En(xn , pn ,wn , an,s , fn,s )
8: Set t = t + 1

9: until t > tmax or
|E [t ]− E [t − 1]|

E [t − 1]
< 0.01

10: Return xxx ,ppp,www ,aaa, fff

IV. PERFORMANCE EVALUATION

To evaluate the performance of our proposed solution, we
utilize system-level Monte Carlo simulations. Table II sum-
marizes the simulation parameters. The numbers of vehicles
is set to {5, 10, 15, 20, 25}, while the number of RSUs
is set to {1, 5, 10, 15, 20}. The maximum available trans-
mission power of each vehicle is 36 dBm, while the available
system bandwidth is 20 MHz. Additionally, the path loss coef-
ficient is set to 2 and 4, while noise variance is set to 10−8.
Regarding the computation model, the task size is uniformly

TABLE II
SIMULATION PARAMETERS

distributed in the range [500, 3500] Kbits, while the required
cycles to process 1 bit and maximum latency are respectively
set to 297.6 cycles/bit and 0.5s-3.5s ([30], [37], [46]). The
energy consumption coefficients for the vehicles and RSUs are
set to 10−28. Furthermore, the computing frequency of vehi-
cles ranges from 500 MHz to 800 MHz, while the maximum
computing frequency of RSUs is set to 10 GHz.

Three evaluation scenarios are designed in order to high-
light the impact of the allocation of wireless and computing
resources on the total energy consumption in addition to
the optimization of the offloading decision. In more detail,
Scenario 1 is focused on optimizing only the offloading
decision is optimized, whereas Scenario 2 is focused on opti-
mizing the offloading decision and the allocation of wireless
resources. Finally, in Scenario 3, the allocation of both wire-
less and computing resources is optimized in addition to the
offloading decision.

Fig. 2 shows the total energy consumption as a function of
the number of vehicles, for various numbers of RSUs. The
task size is randomly selected in the range [500, 3500] Kbits,
while the maximum delay tolerance is randomly selected in the
range [0.5, 3] seconds. In particular, Fig. 2-(a) shows the total
energy consumption when the path loss exponent is set to 2,
whereas Fig. 2-(b) shows the corresponding energy consump-
tion when the path loss exponent is set to 4. It is apparent

La,f

(
an,s , fn,s ,Xa,f

)
=

N∑

n=1

En
(
an,s , pn,s

)
+

N∑

n=1

λnTn
(
an,s , pn,s

)
+

N∑

n=1

S∑

s=1

κn,s
(
an,s − 1

)

+

S∑

s=1

μs

(
N∑

n=1

an,s − 2

)

+

N∑

n=1

S∑

s=1

ξn,s
(
fn,s − 1

)
+

S∑

s=1

τs

(
N∑

n=1

fn,s − 1

)

(39)

∂La,f

(
an,s , fn,s ,Xa,f

)

an,s
= κn,s + μs +

xnLnCn

(
λn +

(
fn,sF

max
s

)3
φs

)

fn,sFmax
s

(40)

∂La,f

(
an,s , fn,s ,Xa,f

)

fn,s
= ξn,s + τs +

an,sxnCnLn

(
−λn + 2

(
fn,sF

max
s

)3
φs

)

f 2n,sF
max
s

(41)
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Fig. 2. Total energy consumption as a function of the number of vehicles for various numbers of RSUs.

that as the number of vehicles is increased, the total con-
sumption also increases. This is expected because there exist
more tasks to be computed leading to increased energy con-
sumption. Furthermore, for a given number of vehicles, the
total energy consumption is slightly increased as the number
of RSUs increases. Thus, the number of RSUs has a small
effect on the energy consumption for fixed vehicle numbers.
Note that, the MEC-enabled RSUs have the capability to scale
the allocated computing resources, therefore increasing the
energy efficiency. With respect to the path loss exponent, for
a given number of vehicles and RSUs, the total energy con-
sumption of the system is increased as the path loss exponent
increases. This is expected as additional power will be needed
for uploading the respective tasks. Also, higher path loss will
lead to lower channel capacity. Therefore, additional process-
ing resources will be employed in order to timely process the
task, resulting in higher energy consumption.

Fig. 3 presents the outage probability as a function of the
number of vehicles, for various numbers of RSUs. The max-
imum latency is randomly selected in the range of [0.5, 3.5]
seconds, while the outage probability is calculated as the num-
ber of tasks that have not been computed in the required time
to the total number of tasks. According to the results, the
number of vehicles does not have a considerable impact on
the outage probability. On the other hand, when there exist
more RSUs, more tasks can be offloaded, leading to a reduced
outage probability.

Fig. 4 shows the total energy consumption as a function
of the maximum tolerable latency. The numbers of vehicles
and RSUs are set to 20 and 10, respectively. Also, the energy
consumption is evaluated for two cases of path loss expo-
nents, particularly when δ = 2 and δ = 4. Based on the
results, the total energy consumption is decreasing as the max-
imum tolerable latency is increased. This is due to the fact that
lower computing resources are allocated, leading to reduced

Fig. 3. Outage probability as a function of the number of vehicles for various
numbers of RSUs.

energy consumption. As far as the task size is concerned, it is
expected that when the task size is increased, more computing
resources should be allocated, leading to increased energy con-
sumption. Regarding the path loss exponents, the total energy
consumption is increased for higher values of δ because of
the additional transmission power and computing resources
that will be employed.

Fig. 5 depicts a comparison between the three scenarios in
terms of the total energy consumption for a varying number
of devices. The task sizes are randomly selected in the range
[500, 3500] Kbits, while the maximum delay tolerance values
are randomly selected in the range [0.5, 3] seconds. Also, the
number of RSUs is set to 10 and 20. In all cases, when the
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Fig. 4. Total energy consumption as a function of the maximum task latency
for various task sizes.

Fig. 5. Comparison between three scenarios in terms the total energy
consumption for varying number of devices.

number of vehicles is increased the total energy consumption
is also increased since there are more tasks to be processed,
thereby consuming more energy (both for the upload and pro-
cessing). Particularly, Scenario 1 results in the highest energy
consumption as only the offloading decision is optimized. As
a result, the vehicles transmit with the highest power (i.e.,
36 dBm), while the RSUs process each task by assigning all
available computing resources. On the other hand, Scenario
2 results in lower energy consumption as the allocation of
wireless resources has been optimized, thus, lower levels of
vehicle transmission power are required. Finally, Scenario 3
features the lowest total energy consumption since, in addition
to the offloading decision, it optimizes the allocation of both
wireless and computing resources.

Finally, Fig. 6 shows a comparison between the scenarios
with respect to the total energy consumption as a function
of the maximum tolerable latency. The numbers of vehicles
and RSUS are respectively set to 25 and 20, while the task

Fig. 6. Comparison between three scenarios in terms the total energy
consumption for varying tolerable delay.

sizes are randomly selected in the range [500, 3500] Kbits.
Similarly to Fig. 4, the total energy consumption is decreased
as the maximum tolerable latency of each task is increased.
However, Scenario 1 features the highest overall energy con-
sumption followed by Scenario 2, while Scenario 3 results in
the lowest overall energy consumption. This is expected, as in
Scenario 3 all the system variables are optimized, in contrast
to Scenarios 2 and 3 where only a subset of the variables is
optimized.

V. CONCLUSION

In this work, we considered the energy consumption
minimization of a vehicular network. Specifically, we for-
mulated the optimization problem as a joint optimization
of the task offloading decision, the allocation of power and
bandwidth, the assignment of tasks to MEC-enabled RSUs,
and the frequency scaling of MEC-enabled RSUs. Since the
optimization of the aforementioned problem is challenging,
we decoupled it into three problems and leveraged the BCD
method to iteratively optimize them. For the performance
evaluation, we carried out system-level Monte Carlo sim-
ulations and evaluated the total energy consumption and
the outage probability. The simulation results show that the
proposed BCD-based approach can minimize the system
energy consumption while maintaining a low outage probabil-
ity. Moreover, three evaluation scenarios have been designed
in order to highlight the impact of optimizing the allocation
of both wireless and computing resources in addition to the
offloading decision.

In the future, we aim to extend this work towards mini-
mizing the average energy consumption over time, taking into
account the mobility of the vehicles, as well as the arrival of
new tasks. Furthermore, we aim to leverage our previous work
in [55] in order to incorporate UAVs to provide on-demand
computation offloading. In this direction, the design of the
offloading policy and resource allocation should also consider
the limited energy reserves of the UAVs. Finally, in light of
the exponential increase of Internet of Things devices, we will
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also evaluate the impact of novel multiple access methods in a
scenario consisting of numerous devices and vehicles sharing
the same wireless and computing resources.

APPENDIX

For a given xn the required time for the local computation
is expressed as

xn

(
Ln

Rn
+ T proc

n

)
≤ Tmax

n ⇒ xn ≤ Tmax
n Rn

Ln + RnT
proc
n

(42)

On the other hand, the required time for the offloaded
computation is expressed as

(1− xn)

(
LnCn

f locn

)
≤ Tmax

n ⇒ xn ≥ 1− f locn Tmax
n

LnCn
(43)

Combining (42) and (43) Lemma 1 is proved.
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