
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022 1697

Disaggregation for Energy Efficient
Fog in Future 6G Networks

Opeyemi O. Ajibola , Member, IEEE, Taisir E. H. El-Gorashi , and Jaafar M. H. Elmirghani , Fellow, IEEE

Abstract—We study the benefits of adopting server disaggre-
gation in the fog computing tier by evaluating energy efficient
placement of interactive apps in a future (6G) fog network.
Using a mixed integer linear programming (MILP) model, we
compare the adoption of traditional server (TS) and disaggre-
gated server (DS) architectures in a fog network that comprises
selected fog sites. We also propose a heuristic for energy effi-
cient and delay aware placement of interactive fog apps in a fog
network which effectively mimics the MILP model formulated
in this paper. Compared to a non-federated fog computing layer,
federation of selected fog computing sites over the metro-access
network enables significant reductions of the total fog comput-
ing power consumption (TFPC). Relative to the use of TSs in
the fog network, the adoption of DSs improves the energy effi-
ciency of the fog network and enables up to 18% reduction in
TFPC. To minimize response time, more instances of interactive
fog apps are provisioned in a fog network that is implemented
over a network topology with high delay penalty. Our result also
shows that the proximity of metro-central offices and radio cell
sites to geo-distributed users makes them important fog sites for
provisioning delay-sensitive fog applications.

Index Terms—Disaggregated servers, fog network, disaggrega-
tion, fog computing, composable infrastructures, optical access
and metro networks, software defined infrastructures, energy
efficient networks, MILP.

I. INTRODUCTION

CLOUD computing became an integral part of the global
society over the last two decades because it enabled

improved capital and operational efficiencies relative to the
traditional distributed computing architecture. Adoption of
cloud computing in its different service offerings such as
Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS) spans across a variety
of personal, enterprise and public applications. Some of

Manuscript received 30 July 2021; revised 26 November 2021,
12 January 2022, and 12 February 2022; accepted 14 March 2022. Date
of publication 17 March 2022; date of current version 19 August 2022.
This work was supported in part by the Engineering and Physical
Sciences Research Council (EPSRC); in part by the INTelligent Energy
aware NETworks (INTERNET) under Grant EP/H040536/1; in part by the
SwiTching And tRansmission (STAR) under Grant EP/K016873/1; and in
part by the Terabit Bidirectional Multi-User Optical Wireless System (TOWS)
Project under Grant EP/S016570/1. All data is provided in the results section
of this paper. The editor coordinating the review of this article was D. Van
Veen (Corresponding author: Opeyemi O. Ajibola.)

The authors are with the School of Electronic and Electrical
Engineering, University of Leeds, Leeds LS2 9JT, U.K. (e-mail: o.ajibola@
ultracellnetworks.com; t.e.h.elgorashi@leeds.ac.uk; j.m.h.elmirghani@
leeds.ac.uk).

Digital Object Identifier 10.1109/TGCN.2022.3160397

the key drivers of this trend include digital transformation,
artificial intelligence and machine learning and Internet of
Things (IoT) [1]. By 2022, it is estimated that the global spend-
ing on IoT will reach $1.2 trillion [2]. Furthermore, Cisco
predicts that about 500 billion smart devices will be connected
by 2030 [3].

The growing uptake of the cloud computing and IoT
paradigms is expected to enable a new range of emerging and
future Internet applications at the edge of telecommunication
networks. However, the centralized architecture of the tradi-
tional cloud computing paradigm is a major inhibiting factor
to the emergence of some of these applications which require
real-time or near-real-time computation. In addition, the vol-
ume, velocity, and variety of data generated by geo-distributed
IoT-devices and end-users of these emerging Cloud-IoT appli-
cations combined with traditional network traffic can also
overwhelm network infrastructures. Therefore, leading to sig-
nificant increase in the cost of owning and operating networks
and their carbon footprint. Furthermore, the centralized cloud
computing architecture can degrade the performance of some
future applications due to increased network congestion.
Hence, the concept of edge/fog computing [4]–[6] has been
proposed in recent times to address some of these challenges.

The fog computing paradigm extends cloud computing to
the network edge to support emerging and future Internet
applications and services. This is enabled via the introduc-
tion of a new intermediate computation tier called the fog
computing tier. The fog computing tier is located between
the centralized cloud computing tier and geo-distributed IoT-
devices and end-users of emerging applications at the network
edge. The fog tier comprises heterogeneous devices and nodes
called fog nodes. These heterogeneous fog nodes/devices
adopt heterogeneous network infrastructures (both wireless
and wired) for connectivity. The geo-distributed heteroge-
neous nodes may also be orchestrated collectively as a fog
federation within a given area to enable a fog as a ser-
vice (FaaS) or fog Infrastructure as a service (IaaS, FIaaS)
business model [7]–[9].

Like the cloud computing tier, fog nodes possess com-
pute, storage, and networking capabilities. Virtualization might
also be supported in fog nodes to ensure efficient use of
the computation capacity as obtainable in the cloud comput-
ing tier [7]. However, fog nodes are unable to enjoy other
benefits obtainable in centralized cloud computing infras-
tructures. For example, the ability to strategically position
massive computational resources at little or no opportunity
cost is limited in the fog computing tier. Furthermore, the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5268-4358
https://orcid.org/0000-0001-9744-1790
https://orcid.org/0000-0002-3319-9103

1698 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

fog computing nodes cannot fully maximize the benefits of
using commodity hardware as obtainable in hyper-scale cloud
datacenters (DCs) because they are relatively smaller in size.
In recent times, large DC infrastructure providers such as
Facebook and Microsoft have also begun to explore the use of
the server disaggregation concept as a tool to further improve
the overall efficiency of DC infrastructure [10].

Server disaggregation proposes the physical or logical sep-
aration of traditional server (TS) intrinsic resources into pools
of homogeneous resources, which can be composed, decom-
posed, and recomposed on-demand over high bandwidth and
low latency networks, to support applications. This concept
addresses the limitations associated with TSs such as poor
resource modularity and lifecycle management, the need for
purpose-built servers in computing clusters, high power con-
sumption and capital expenditure resulting from inefficient
resource utilization [11]–[14]. Adoption of server disaggre-
gation concept in the fog computing tier could improve
fog computing efficiency to approach efficiencies that are
traditionally attributed to the cloud computing tier.

In this paper, we explore the gains that server disaggregation
can enable in fog networks relative to TS architecture and
study the impact of fog computing on metro networks. In [15],
we conducted an initial study to demonstrate some potential
benefits of adopting disaggregated servers (DSs) in the fog
computing tier, concluding that the network bottlenecks may
inhibit optimal performance and that users experience may
suffer due to the resulting increased hop counts between users
and fog app instances. This paper extends our initial work as
follows; (i) it provides for the first time the complete MILP
model, which has been extended by considering queuing delay
in the network topology; (ii) it considers emerging fog apps
with varying delay sensitivity; (iii) it investigates the impact
of user distribution on the fog network; and finally, (iv) it
develops a fast and scalable policy (heuristic) which mimics
the MILP model for practical deployment in large scenarios,
and to verify the MILP.

The rest of this paper is organized as follows. We review
the concepts of fog nodes federation and resource disag-
gregation and related literatures in Section II. Section III
presents the system setup and the MILP model formulated
to investigate the placement of applications in fog networks.
Section IV presents a scalable heuristic that is compara-
ble to the formulated MILP model. Section V gives the
evaluation scenarios along with numerical results and dis-
cusses the insights obtained by solving the MILP model
and heuristic. Finally, the paper is concluded in Section VI
along with a brief discussion of future work and future
directions.

II. FOG NETWORKS AND DISAGGREGATION

A. Fog Networks

The fog computing layer is an intelligent intermediate
layer between centralized cloud computing servers and geo-
distributed connected devices and end-users. This layer
provides distributed computing infrastructure at network
edges (i.e., metro-access network). Hence, the fog com-
puting layer complements the centralized cloud computing

infrastructure by extending cloud-like services closer to end-
users and connected things for improved performance and
to support new classes of applications. The fog computing
layer can also enable reductions in computing and network
infrastructures [16]–[18].

The traditional definition of fog computing classifies
any device with compute, storage and network connec-
tivity as a fog node [19]. However, some locations and
devices may be more optimal than others because of factors
such as energy efficiency, resource capacity, node availabil-
ity, resource reusability and utilization efficiency. In recent
times, wired edge network devices [20] and wireless edge
network devices alike are often equipped with extra com-
puting capability to support the hosting of non-network
functions and Machine Learning (ML) and Artificial intelli-
gence (AI) functions at the edge of the network. This trend
is expected to be sustained in future 6G networks as the
use of ML and AI capability increases at the edge of future
networks [21]. Therefore, the traditional network locations,
i.e., central offices (COs) and radio cell sites (CSs) where such
devices are located may be relatively more optimal for some
applications.

For instance, compared to the use of dedicated fog com-
puting nodes, the availability and use of spare computing
capacities at traditional network locations, i.e., COs and
radio CSs for fog computing can promote sustainability and
improved energy efficiency. This is because such locations are
centralized at the network edge and can be easily accessed
by multiple distributed devices and end-users at the network
edge. Therefore, reducing the number of active dedicated fog
computing nodes at the network edge and their correspond-
ing power consumption. The adoption of commodity hardware
to support network function virtualization at the edge of the
network also supports the use of some traditional network
locations to provide shared fog computing capability. As a
result, the energy efficiency of NFV [22] can be leveraged
in the fog computing layer. Additionally, existing computing
capacities at other edge locations such as enterprise offices
and public locations can also be made available to all end-
users and devices to further promote sustainability in the fog
computing layer.

However, efficient sharing of fog computing capacity at the
network edge requires the federation of independent fog nodes
via coordinated orchestration and control of distributed fog
nodes over the network infrastructure. Such a group of linked
fog nodes with non-application specific resource is called a
federated fog network [23]. To ensure low latency, the span
of each federation of fog nodes could be limited to satisfy
the requirements of some applications. The rising demand
for the federation of distributed fog nodes (fog network) is
motivating the emergence of service-oriented access mod-
els for computing resource in the fog computing tier in the
form of Fog Infrastructure as a Service (FIaaS) and Fog as
a Service (FaaS) [23], [24]. The adoption of service-oriented
consumption of federated fog computing capacity can reduce
the number of required fog nodes. Fog networks can also
enable new revenue streams which can offset the total cost of
ownership incurred by providers that deploy fog computing
nodes [23].

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1699

In spite of the opportunities that the federation of fog
nodes enables, a practical implementation of federated fog
node in the multi-domain network edge has inherent chal-
lenges. For instance, a holistic framework is required to
manage the federation of fog node across multiple operat-
ing domains [25], [26]. Such as a framework should support
the discovery of fog nodes, dynamic management of compute,
network and storage resources, ensure compliance with service
level agreements and establish trust and security mechanisms
in the fog network.

B. Resource Disaggregation

Resource disaggregation proposes the separation of the
resource components of traditional computing servers into
physical or logical pools of homogenous resource types, i.e.,
homogenous resources are in the same pool. The concept
addresses the problems of resource stranding and fragmenta-
tion which inhibit efficiencies, modularity, agility, and effective
resource lifecycle management in traditional computing infras-
tructure. Resource disaggregation solves these problems by
relaxing the rigid physical resource utilization boundary of
traditional servers to permit on-demand use of un-collocated
resource components (via networks) to form logical computing
hosts. Disaggregation of the server intrinsic resource compo-
nents can be performed at different scales, i.e., rack-scale,
pod-scale and DC-scale [14], [27], [28]. Furthermore, the con-
cept of resource disaggregation can be implemented physically
or logically over a corresponding physical hardware. On the
one hand, physical disaggregation ensures that the alloca-
tion of physical components leads to the creation of physical
pools (nodes/racks/pods) of homogenous components. On
the other hand, logical disaggregation virtually implements
resource disaggregation on homogenously and/or heteroge-
neously resourced pools to support on-demand creation of
logical servers to run applications.

Resource disaggregation promises significant improvements
in the efficiency of computing infrastructure at both the
fog and cloud computing tiers of the cloud of things
continuum. However, such infrastructure requires software
defined (SD) techniques [29] and appropriate network connec-
tivity to maximize the potential benefits enabled by resource
disaggregation. A computing infrastructure that implements
resource disaggregation builds on the efficiencies, flexibil-
ity and agility enabled by SD-techniques to enable even
greater efficiency. Additionally, an appropriate network topol-
ogy that supports on-demand creation of logical hosts from
disaggregated resource components is essential for practical
implementation of any form of resource disaggregation [30].
This is because resource disaggregation exposes high band-
width and low latency intra-host communication of traditional
servers onto the DC network.

C. Related Works

Comprehensive studies of energy efficient communication
networks have been done in [31]–[36] as a result of increas-
ing adoption of digital solutions and services, which are
often domiciled in remote DCs of cloud computing services

providers. However, the recent introduction of the fog com-
puting layer motivates an extension of similar studies to
the fog computing layer. The authors of [16]–[18] have also
conducted extensive studies on how the introduction of the
fog computing layer can enable significant power savings
in the cloud of things architecture relative to the adoption
of a 2-tier architecture. The work in [9] also showed that
a 3-tier cloud of things architecture is better than a 2-tier
cloud of things architecture especially when energy consump-
tion and latency are used as comparison metrics; hence, a
3-tier cloud of things architecture is adopted in this paper.
However, the goal of this paper is to minimize the num-
ber of computational nodes in the lowest tier of the 3-tier
architecture by employing the concept of server disaggre-
gation for the first time in this context. In [7], the authors
showed that the execution of large tasks experiences significant
processing delay in the fog computing layer. Hence, scaling
fog computing capacity at the expense of higher financial
cost is required. In [23], a platform which orchestrates dis-
tributed fog nodes over the network to form fog networks that
support on-demand deployment of applications and services
was proposed. The authors in [37] introduced a programming
model for present and emerging geo-distributed, massive and
latency-sensitive applications. The programming model was
validated using two latency sensitive applications. In [19],
the authors proposed a high-level policy for placing applica-
tions in the fog computing tier based on application latency
requirements only. The policy is generic and does not con-
sider the impact of factors such as energy efficiency, resource
utilization, networks, and disaggregation on optimal applica-
tion placement. Workload offloading [38], [39] and workload
assignment [40], [41] are two different approaches used to
study the minimization of response time in fog computing
tier in the literature. Given a set of fog workloads, the work-
load assignment approach attempts to assign such workloads
to fog computing nodes while optimizing a specific cost such
as response time or energy. On the other hand, the workload
offloading approach aims to design policies that offload fog
computing requests to other fog nodes or to the cloud while
optimizing a specific cost.

The workload assignment approach is adopted in this paper
by formulating a MILP model to assign varying classes of
interactive fog applications. This is because the workload
offloading approach may be less appropriate for interactive
workloads with stringent delay requirements. A heuristic is
proposed from the insights obtained from the MILP model.
In contrast to existing literatures, this work is focused on the
fog computing tier only and its associated access and metro
networks. The things and cloud computing layers of the cloud
of thing architecture are not explicitly considered. However,
the impact of cloud destined network traffic on the overall
performance of the fog computing system is modeled and a
cost is associated with fog servers that are deployed very close
to the things layer.

Like the works of the authors in [16]–[18], [40], this work
explores power consumption, cost and latency in the fog com-
puting layer. However, the novelty of this work is that it
considers disaggregation of fog servers and different classes

1700 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

TABLE I
A COMPARISON OF THE CONTRIBUTIONS OF THIS PAPER WITH THAT OF THE RELATED WORKS IN THE LITERATURE

of delay sensitive (interactive) applications. Other factors that
may influence performance in such a setup are also studied.
The adoption of DSs in place of TSs in fog networks departs
from the state of the art since server disaggregation is expected
to improve efficiency. In spite of expected improvement, it is
also important to evaluate how adoption of DS in fog networks
would affect the performance of metro-access network. This
is because metro-access network provides the enabling con-
nectivity between federated fog nodes that form fog networks.
Furthermore, the consideration of different classes of delay
sensitive applications allows a comprehensive study that can
inform the development of effective placement strategies for
diverse interactive fog applications in fog networks.

In contrast to [13] where the authors focused on the design
of an energy efficient network for DCs with disaggregated
servers, we do not consider DC networks in this paper
to simplify our evaluation scenario. Moreover, in previous
works [30], [42], we formulated a MILP model that placed
workloads energy efficiently in composable DC networks.
Therefore, this paper focuses on the application of the resource
disaggregation concept in the fog computing layer of the
cloud of things architecture. Furthermore, we adopt logical
disaggregation of TSs as a representation of the resource
disaggregation concept. Table I gives a comparison of the con-
tributions of this paper with those of other related works in
the literature.

III. MILP MODEL FOR FOG APPLICATIONS PLACEMENT

A. System Setup

Only functions of emerging fog applications that can be per-
formed in the fog computing tier, such as data pre-processing,
aggregation, and intelligence (e.g., facial recognition) are
considered. Distributed fog nodes in selected locations are
federated by linking fog computing capacity together via
metro-access network to create a pool of computing capacity

Fig. 1. Metro fog network.

in the fog network. The federated fog nodes include special-
ized wired/wireless network equipment in centralized locations
which can support generic application. Additionally, exist-
ing computing infrastructure owned by enterprises and public
institutions, as shown in Fig. 1, are also included to the metro
fog network. The preferred fog computing sites support mis-
sion critical traditional applications, i.e., virtual machine (VM)
and/or virtual network functions (VNF) required by their own-
ers. Each traditional app (TA) is associated with specific fog
computing sites in the network topology and the spare com-
puting resource capacity in such sites is made available in the
pool of federated fog computing capacity.

Furthermore, a scenario where the fog computing layer must
process all delay sensitive application is considered. This is
because such applications cannot be supported by the cen-
tralized cloud computing architecture. If a delay sensitive
application is not provisioned in the fog network, a local fog
node must be provisioned at the source of the request for that
application. Every provisioned instance of any fog applica-
tion leads to corresponding pre-processing and post-processing
traffic in the network. Regular network traffic from (to) each

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1701

Fig. 2. Access layer use cases and network architectures in metro fog
network.

access node comprises of traditional network traffic and the
traffic from (to) other applications which are processed in
centralized cloud computing node. We only consider delay
in metropolitan area network (MAN) and access network by
evaluating total delay as a sum of propagation delay and
congestion delay experienced on each link in the network
topology.

A scenario where fog applications traffic between a fog
computing site and end-users follows a single path is consid-
ered to simplify delay calculations. Such single low latency
path is provisioned by the network service provider to sup-
port instances of interactive fog apps created in the fog
network. Similar to the work of the authors in [41], a maxi-
mum delay threshold is adopted for interactive fog apps during
delay-aware placement. Two classes of emerging fog apps are
considered. The first class comprises mission critical fog appli-
cations such as vehicle-to-everything and industrial process
control which require sub-milliseconds (end-to-end) delay, and
at most a delay of 20 ms or less. The second class comprises
emerging fog apps which are moderately sensitive to delay and
can tolerate delay that is above 20 ms. As there are different
use cases at the access network layer for a federation of fog
nodes in the network, it is expected that the network com-
ponents traversed by network traffic in the access layer will
also differ according to each use case. Fig. 2 gives illustra-
tions of such use cases and their corresponding access network
architecture.

B. MILP Model Description

In this sub-section, a MILP model that efficiently assigns
instances of interactive applications into distributed fog com-
puting nodes within a MAN topology is presented. The model
minimizes network power consumption, fog computing power
consumption, resulting power consumption of rejected fog
applications and the approximated total queuing delay incurred
in the network. Given:

i A MAN topology that comprises sets of metro
and access network nodes and corresponding inter-
connecting physical link capacities as illustrated in
Fig. 1.

ii The availability of fog computing capacity in selected
fog sites/network nodes in the MAN topology.

iii The locations of clusters of end-users/IoT-
devices with explicit demand for an instance of
fog applications.

The MILP model determines the number of instances of
each fog app that can be provisioned and the optimal location
of each provisioned instance while enforcing defined con-
straints. The data traffic at a given node is proportional to
the number of users in that node. Hence, both pre-processing
and post processing data traffic of each fog app instance are
defined in Gbps per user. Furthermore, only one instance of
a given fog app is allocated to all users of that fog app
in each access node. The model parameters are given in
Table II, Table III, and Table IV. The model variables are given
in Table V. Linear approximations are made as required to
ensure linearity.

Delay related variables in the MILP model are derived as
follows:

PDsdec
mn = PDmnH

sdec
mn

∀s , d ∈ N , ∀e ∈ E , ∀c ∈ C , ∀m ∈ N , ∀n ∈ NBm (1)

Equation (1) gives the propagation delay experienced by
flow Lsdecon physical link (m, n) on the path selected for
the flow.

WLsdec =
∑

m∈N

∑

n∈NBm

(
TLsdec

mn + PDsdec
mn

)

∀s , d ∈ N , ∀e ∈ E , ∀c ∈ C (2)

Equation (2) gives the total delay experienced by flow
Lsdec on all physical links, it is a sum of congestion delay
and propagation delay experienced on all physical links on
the path.

RDsdec = WLsdec +WLdsec

∀s , d ∈ N , ∀e ∈ E , ∀c ∈ C (3)

Equation (3) gives the round-trip delay experienced between
a node with users of an emerging fog app and the network node
hosting the instance assigned to the users at that node.

TQ =
∑

m∈N

∑

n∈NBm

Wmn (4)

Equation (4) gives the approximated total delay experienced
on all physical links of the network topology.

The following equations present the derivation of vari-
ables that aid the calculation of network traffic and power
consumption.

ϕesa =
∑

c∈C

∑

x∈A
xecaCNcxAM xs

∀s ∈ N , ∀a ∈ AN , ∀e ∈ E (5)

Equation (5) gives the variable ϕesa which depends on the
placement of emerging fog application. A scenario where the
compute capacity of an instance of emerging fog app e ∈ E is
greater than the maximum compute capacity required by the

1702 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

TABLE II
LIST OF MILP MODEL NETWORK SETS AND PARAMETERS

cluster of users of that app in all access node is considered.
Hence, ϕesa > 1 is avoided.

ysdec =
∑

x∈A

∑

a∈AN

xecaFUeUAeaΔasCNcxAM xd

∀s , d ∈ N , ∀e ∈ E , ∀c ∈ C (6)

Equation (6) gives the pre-processing traffic between users
in access nodes and instances of emerging fog applications
placed in fog computing sites.

zsdec =
∑

x∈A

∑

a∈AN

xecaFDeUAeaΔadCNcxAM xs

∀s , d ∈ N , ∀e ∈ E , ∀c ∈ C (7)

TABLE III
LIST OF MILP MODEL FOG APPLICATIONS SETS AND PARAMETERS

Equation (7) gives the post-processing traffic between users
in access nodes and instances of emerging fog applications
placed in fog computing sites.

Lsdec = ysdec + zsdec

∀s , d ∈ N , ∀e ∈ E , ∀c ∈ C (8)

Equation (8) gives the total traffic between a pair of nodes
due to the creation of an instance of an emerging fog app in
the fog network.

ksd =
∑

a∈AN

∑

e∈E
ϕesaFDeUAeaEGed

∀s ∈ N , ∀d ∈ G (9)

Equation (9) gives the post-processing traffic between
instances emerging fog applications placed in fog computing
sites and gateway metro nodes.

Λmn =
∑

s∈N

∑

d∈N

∑

e∈E

∑

c∈C
Hsdec

mn

∀m ∈ N , ∀n ∈ NBm (10)

Equation (10) gives the delay sensitive traffic routed over
a physical link by summing all the delay sensitive flows over
the link.

λmn =
∑

s∈N

∑

d∈N
hsdmn + RTmn

∀m ∈ N , ∀n ∈ NBm (11)

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1703

TABLE IV
LIST OF MILP MODEL FOG COMPUTING NODES SETS AND PARAMETERS

Equation (11) gives the delay tolerant traffic routed over a
physical link by summing all the delay tolerant flows over the
link with the given regular traffic on that physical link.

Γmn = Λmn + λmn

∀m ∈ N , ∀n ∈ NBm (12)

TABLE V
LIST OF MILP MODEL VARIABLES

(continued)

Equation (12) gives the total traffic over a link by summing
delay sensitive and delay tolerant traffic routed over the link.

Total network power consumption TNPC is given by:

TNPC = ANPC +MNPC (13)

MNPC is the total metro network power consumption and
is given by

MNPC =
∑

m∈U
(um + gm + qm)MG (14)

1704 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

TABLE V
(Continued.) LIST OF MILP MODEL VARIABLES

where um is the traffic relayed by a metro node m and is
given by

um =
∑

s∈N

∑

d∈N

∑

n∈NBm

hsdmn

+
∑

n∈NBm

∑

s∈N

∑

d∈N

∑

e∈E

∑

c∈C
Hsdec

mn

∀m ∈ U , s , d ∈ N , s �= m, d �= m (15)

gm is the traffic received by a metro node m and is given by

gm =
∑

s∈N

∑

n∈NBm

hsmnm

+
∑

s∈N

∑

n∈NBm

∑

e∈E

∑

c∈C
Hsmec

nm

+
∑

n∈NBm

RTnm

∀m ∈ U (16)

and finally, qm is the traffic transmitted by a metro node m
and is given by

qm =
∑

d∈G

∑

n∈NBm

hmd
mn

+
∑

d∈N

∑

n∈NBm

∑

e∈E

∑

c∈C
Hmdec

mn

+
∑

n∈NBm

RTmn

∀m ∈ U (17)

ANPC is the total access network power consumption and
is given by

ANPC =
∑

a∈AN

(CE ACa + NU APa)

+
∑

a∈AN

∑

m∈ANa

(Γam + Γma)(MA+ APa OL)

(18)

The total fog computing power consumption (TFPC) is
given by:

TFPC = TCPC + TMPC + TSPC (19)

where TCPC is the total power consumption of CPU resources
in fog network and is given by

TCPC =
∑

c∈C

⎛

⎝(IC CPccc) +
∑

f ∈F
ΔCc cfcFC f

⎞

⎠ (20)

TMPC is the total power consumption of memory resources
in fog network and is given by

TMPC =
∑

m∈M

⎛

⎝(IMMPmmm) +
∑

f∈F

ΔMm mfmFM f

⎞

⎠

(21)

and TSPC is the total power consumption of storage resources
in fog network and is given by

TSPC =
∑

s∈S

⎛

⎝(IS SPsss) +
∑

f ∈F
ΔSs sfsFS f

⎞

⎠ (22)

The total cost of rejected traditional fog apps in the
distributed fog network is given by

TCRTA =
∑

t∈T
αt (23)

where

αt = ((IC CPM +MΔCFCt)

+ (IM MPM +MΔM FMt)

+ (IS SPM +MΔSFD t))tt

∀t ∈ T (24)

where the state of traditional application t is given by

tt =
∑

c∈C
(1− ctc)

∀t ∈ T (25)

The total cost of rejected emerging fog apps in the dis-
tributed fog network is given by

TCREA =
∑

e∈E
βe (26)

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1705

where

βe = ((IC CPM +MΔC FCe)

+ (IM MPM +MΔM FMe)

+ (IS SPM +MΔS FSe))
∑

a∈AN

(1− vea) UAea

∀e ∈ E (27)

where vea indicates if the emerging application e requested
by node a has been provisioned or not, and is given by

vea =
∑

c∈C
xeca

∀e ∈ E , ∀a ∈ AN (28)

It is important to note that the cost of rejecting an app is
defined as the maximum power consumed if it is accepted, i.e.,
the power consumption in the case where inactive components
must be turned-on to support the app.

The model is defined as follows:
Objective: Minimize

TNPC + TFPC + γTCRTA+ ∅TCREA+ δTQ (29)

The objective of the model is to minimize a weighted sum of
the TNPC, TFPC, the total cost of rejected traditional, emerg-
ing fog applications and the cost of approximated total delay in
the network as given by the expression in (29). Note that both
traditional and emerging fog apps are provisioned or rejected
based on the cost coefficient of terms in the objective. The
unit of the terms in the objective function and their corre-
sponding cost-coefficients jointly ensure a consistent unit (i.e.,
Watt) for the sum of terms in the objective function. Setting
γ to a high value ensures that TCRTA is significantly higher
than TCREA. Hence, higher priority is given to provisioning
traditional fog apps in the objective function. ∅ may also be
varied to increase or decrease the cost of rejected emerging
fog apps. By modelling the TCRTA and TCREA, the addi-
tional power that will be consumed by provisioning traditional
apps and emerging fog apps respectively with dedicated fog
servers are modelled as cost of apps rejection. The value of
δ dictates the weight of approximated total queuing delay in
the objective function. δ � 1 represents a network with trivial
queuing delay penalty while δ � 1 represents a network with
significant queuing delay penalty.

Subject to the following constraints:
Fog DC related constraints

∑

c∈C
cfc =

∑

m∈M
mfm

∀f ∈ F (30)∑

c∈C
cfc =

∑

s∈S
sfs

∀f ∈ F (31)

Constraints (30) and (31) ensure that the number of
instances of CPU resources provisioned for any (traditional
or emerging) fog app is equal to the number of instances of
memory and storage resources provisioned for that app across

the distributed fog sites.
∑

c∈C
cfcCNcx =

∑

m∈M
mfmMNmx

∀f ∈ F , ∀x ∈ A (32)∑

c∈C
cfcCNcx =

∑

s∈S
sfsSNsx

∀f ∈ F , ∀x ∈ A (33)

Constraints (32) and (33) are the locality constraints when
the traditional server architecture is adopted in compute nodes.
They ensure that the CPU, memory, and storage components
used to provision a given instance of a fog app are in the same
compute nodes.

∑

x∈A

∑

c∈C
cfcCNcxAM xn =

∑

x∈A

∑

m∈M
mfmMNmxAM xn

∀f ∈ F , ∀n ∈ N (34)∑

x∈A

∑

c∈C
cfcCNcxAM xn =

∑

x∈A

∑

s∈S
sfsSNsxAM xn

∀f ∈ F , ∀n ∈ N (35)

Constraints (34) and (35) are the locality constraints when
the disaggregated server architecture is adopted in compute
nodes. They ensure that the CPU, memory, and storage compo-
nents used to provision a given instance of a fog app are in the
same fog computing site (network node) but not necessarily
in the same compute node.

∑

x∈A

∑

c∈C
ctcCNcxAM xn = TStn

∀t ∈ T , ∀n ∈ N (36)

Constraint (36) is the workload locality constraint for
traditional fog apps associated with a given network node.

∑

c∈C
cfcCNcx ≤ 1

∀f ∈ F , ∀x ∈ A (37)∑

m∈M
mfmMNmx ≤ 1

∀f ∈ F , ∀x ∈ A (38)∑

s∈S
sfsSNsx ≤ 1

∀f ∈ F , ∀x ∈ A (39)

Constraints (37) - (39) are SLA constraints which ensure
robustness of the fog network. They ensure that only an
instance of fog app f is provisioned within a given com-
pute node. Hence, the impact of a compute node failure is
minimized for a fog app with multiple instances.

∑

f ∈F
FC f cfc ≤ Cc

∀c ∈ C (40)∑

f ∈F
FMfmfm ≤ Mm

∀m ∈ M (41)

1706 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

∑

f ∈F
FS f sfs ≤ Ss

∀s ∈ S (42)

Constraints (40) - (42) denote resource capacity constraints
for each CPU, memory, and storage component in the fog
network. They ensure that each resource component’s capacity
across all fog computing sites is not exceeded.

∑

f ∈F
cfc ≥ cc

∀c ∈ C (43)∑

f ∈F
cfc ≤ Qcc

∀c ∈ C (44)∑

f ∈F
mfm ≥ mm

∀m ∈ M (45)∑

f ∈F
mfm ≤ Qmm

∀m ∈ M (46)∑

f ∈F
sfs ≥ ss

∀s ∈ S (47)∑

f ∈F
sfs ≤ Qss

∀s ∈ S (48)

Constraints (43) - (48) derive the state of CPU, memory, and
storage resources components across all fog computing sites.

Fog app instance related constraints
∑

c∈C
xeca ≤ 1

∀e ∈ E , ∀a ∈ AN (49)

Constraint (49) ensures that the cluster of users requesting
an emerging fog app is assigned at most one instance of that
application.

∑

a∈AN

xeca ≥ cec

∀c ∈ C , e ∈ E (50)∑

a∈AN

xeca ≤ Qcec

∀c ∈ C , e ∈ E (51)

Constraints (50) and (51) ensure that each instance of an
emerging fog app in a CPU component is allocated to one
or more user clusters in access nodes. Otherwise, the instance
should not be created.

xeca = EAeaveacec

∀c ∈ C , e ∈ E , a ∈ AN (52)

xeca ≤ EAeacec

∀c ∈ C , e ∈ E , a ∈ AN (53)

xeca ≤ EAeavea

∀c ∈ C , e ∈ E , a ∈ AN (54)

xeca ≥ EAea (vea + cec)− 1

∀c ∈ C , e ∈ E , a ∈ AN (55)

Constraint (52) derives xeca which gives the instance of an
emerging fog app in a CPU that is assigned to users of that
fog app in an access node. xeca = 1 if and only if users of an
emerging fop app are present in an access node, an instance
of that fog app is in a CPU component and that instance has
been assigned to users of that fog app in the corresponding
access node. Constraints (53) - (55) implement linearly the
product of parameter and variables given in Constraint (52).

Network related constraints

∑

n∈NBm

hsdmn −
∑

n∈NBm

hsdnm =

⎧
⎨

⎩

ksd m = s
−ksd m = d
0 otherwise

∀s ,m ∈ N , ∀d ∈ G : s �= d (56)

Constraint (56) enforces flow conservation for post-
processing traffic to the cloud in the physical layer of the
network.

∑

n∈NBm

Hsdec
mn −

∑

n∈NBm

Hsdec
nm

=

⎧
⎨

⎩

Lsdec m = s
−Lsdec m = d
0 otherwise

∀s , d ,m ∈ N , e ∈ E , c ∈ C : s �= d (57)

Constraint (57) enforces flow conservation for delay sensi-
tive flows in the physical layer of the network.

Hsdec
mn ≥ H

sdec
mn

∀s , d ,m,n ∈ N , e ∈ E , c ∈ C : s �= d (58)

Hsdec
mn ≤ Q H

sdec
mn

∀s , d ,m,n ∈ N , e ∈ E , c ∈ C : s �= d (59)

Constraints (58) and (59) give the binary equivalent of
Hsdec

mn .
∑

n∈NBm

H
sdec
mn ≤ 1

∀s , d ,m ∈ N , e ∈ E , c ∈ C : s �= d (60)

Constraint (60) ensures that the flow Lsdec is not bifurcated
over multiple paths.

Γmn ≤ PLmn

∀m ∈ N , n ∈ NBm (61)

Constraint (61) enforces capacity constraint on each physi-
cal link (m, n).

Network delay related constraints

TLsdec
mn = WmnH

sdec
mn

∀s , d ,m ∈ N ,n ∈ NBm , e ∈ E , c ∈ C : s �= d (62)

TLsdec
mn ≤ LUmnH

sdec
mn

∀s , d ,m ∈ N ,n ∈ NBm , e ∈ E , c ∈ C : s �= d (63)

TLsdec
mn ≤ Wmn

∀s , d ,m ∈ N ,n ∈ NBm , e ∈ E , c ∈ C : s �= d (64)

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1707

TLsdec
mn ≥ Wmn − LUmn

(
1−H

sdec
mn

)

∀s , d ,m ∈ N ,n ∈ NBm , e ∈ E , c ∈ C : s �= d (65)

Constraint (62) estimates the queuing delay experienced by
flow Lsdec on physical link (m, n) which is given by the
product of Wmn and H

sdec
mn . Constraints (63) - (65) linearize

Constraint (62). LUmn is the upper bound of the queuing delay
experienced on each physical link, it is required to ensure that
the delay experienced on a physical link does not exceed a
predefined threshold.

Wmn ≥ ∇mnqΓmn + ζmnq

∀m ∈ N ,n ∈ NBm , q ∈ LPmn (66)

Constraint (66) represent piecewise linear approximation of
queuing delay experienced on physical link (m, n). This is
required because M/M/1 delay is a non-linear function.

RDsdec ≤ EDe

∀s , d ∈ N , e ∈ E , c ∈ C : s �= d (67)

Constraint (67) represents the round-trip delay constraint for
an emerging fog app e. The round-trip delay experienced by an
emerging fog app e must not exceed the predefined threshold.

IV. HEURISTIC FOR ENERGY EFFICIENT AND DELAY

AWARE PLACEMENT OF FOG APPLICATIONS

The complexity of the MILP model formulation increases
exponentially as the size of the fog network is scaled-up. This
is because MILP models are known to be NP-hard and are con-
sequentially computationally intractable [43]. For instance, the
satisfiability problem, a known NP-hard problem, is directly
reducible to a special case of a MILP resource allocation
problem (where the non-binary variables are replaced with
binary variables) [44]. Therefore, MILP problem is also NP-
hard and a fast heuristic that mimics the MILP model is
more effective for large fog networks. Consequently, a heuris-
tic that leverages a centralized orchestration and management
framework for a network of distributed fog computing nodes
is proposed. Centralized control is an essential tool that can
enable the efficiencies that will approach exact solutions of
obtained from solving a MILP model formulation. The heuris-
tic depends on centralized control of distributed fog nodes
and on global knowledge derived from control information
exchange to achieve high efficiency in a fog network. The
heuristic optimally provisions both mission critical traditional
applications and (delay sensitive) emerging fog applications in
a fog network when possible.

Given a set of input fog apps (i.e., mission critical tradi-
tional apps and emerging fog apps), the algorithm attempts to
provision instance(s) of these applications in a fog network
in an energy efficient manner while considering the delay
requirements of each application. Applications that cannot be
provisioned are rejected and users whose delay requirements
are not satisfied by provisioned instance(s) are also rejected.
The algorithm supports the use of TS and DS architectures in
the fog network. Other inputs to the algorithm include the user
distribution and delay requirement of each emerging fog app;
the distribution of fog compute nodes in the network topology;

the features and characteristics of each resource components
at each fog site; and the load and propagation delay on each
network link.

A. HEEDAP Algorithm Description

A high-level description of the heuristic for energy efficient
and delay aware placement (HEEDAP) of applications in fog
networks is illustrated in Fig. 3. At inception, the HEEDAP
algorithm processes the set of input mission critical TAs which
are associated with specific network nodes by sorting the list
of TAs (in each network node) in descending order of CPU
demand intensity. If a tie occurs, memory demand intensity is
initially adopted to break the tie followed by storage demand
intensity. The output of this process is the “local job list”
(LJ-list) created at each network node.

Secondly, the HEEDAP algorithm processes the set of input
emerging fog apps to the fog network in two stages. The initial
stage identifies fog apps that are highly sensitive to network
delay. These fog apps form the secondary job list at each
fog computing site if some users of such delay sensitive fog
app are directly connected to the corresponding network node
via wireless media. This secondary job list created at each
fog computing site is called the “pseudo-local job list” (PLJ-
list). Emerging fog apps that are classified as delay sensitive
are subsequently ejected from the list of input emerging fog
apps. The PLJ-list at each network node is also arranged in
descending order of resource demand intensity as described
for the LJ-list. In the second stage, the HEEDAP algorithm
sorts the list of input (moderately sensitive) emerging fog apps
in descending order of resource intensity to create the “real
fog job list” (RFJ-list). The RFJ-list also (implicitly) holds
information about the number of users at each network node
which is a source of any request made for each emerging fog
app. After input apps processing, HEEDAP creates a tempo-
rary copy of the RFJ-list. This temporary copy is the “pseudo
fog job list” (PFJ-list) which is refreshed after each com-
plete iteration of the algorithm. It is important to note that
an iteration of the HEEDAP algorithm is complete when the
PFJ-list of that iteration is empty. Furthermore, a union of LJ-
list and PLJ-list at each network node and the RFJ-list form
the list of applications in the fog network.

Whilst the list of applications in the fog network is not
empty (this is the first check of the HEEDAP algorithm), at
each network node with compute capacity, the mission crit-
ical traditional fog app at the top of the LJ-list is set as a
“query app”. The query app at each network node is placed
energy-efficiently; new components may be activated to sup-
port the query app as required. If the query app could not
be placed, it is rejected and removed from the LJ-list. The
state of all compute components in each network node is
recorded and stored by the central orchestrator. Thereafter, at
each network node, a candidate app in the LJ-list is identified
to maximize the utilization of the idle resource capacity (IRC)
of active components in this network node where possible.
If a candidate app is not found in the LJ-list, the PLJ-list
is checked for a candidate app. The search for a candidate
local or pseudo-local app in each network node gives higher

1708 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Fig. 3. Flow chart of HEEDAP algorithm.

priority to maximum utilization of the IRC of active CPU
components because CPU components consume more power
than memory and storage components (as illustrated later in

Table VI). When the DS architecture is adopted, inactive
memory and storage components within the same network
node may be used to complement available IRC of CPU

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1709

component. A similar approach may be adopted when the
TS architecture is deployed and a single compute node has
multiple intrinsic CPU, memory, and storage components; oth-
erwise, the resource locality constraint of TS architecture is
enforced.

If a candidate app is not found in the LJ-list or PLJ-list of a
network node, the PFJ-list is searched to identify a moderately
sensitive emerging fog app that can maximize utilization of
the IRC of active resource components at such network node.
This search gives priority to the emerging fog app with more
stringent delay requirement if the node is within the round-
trip delay threshold of one or more unserved users of that
fog app. The search conducted at each network node provides
control data that supports the placement of emerging fog apps
in the PFJ-list in subsequent steps of the HEEDAP algorithm.
Such control information provides the global knowledge to the
algorithm.

In each network node, if a candidate app is found in the
LJ-list, the app is selected as the new query app and placed
energy-efficiently. Hence, the algorithm gives higher priority
to mission critical traditional fog apps of the fog computing
infrastructure provider. Otherwise, if a candidate app is found
in the PLJ-list, the app is also selected as the new query app
and is placed energy-efficiently. Relative to moderately sensi-
tive emerging fog apps, this gives greater priority to emerging
fog apps that have greater delay sensitivity. On the other hand,
if a candidate app is not found in LJ-list or PLJ-list in each
network node and one is found in the PFJ-list, the algorithm
checks if other network nodes can also host this candidate
emerging fog app using IRC before a best network node is
selected. Thus, global knowledge of the central orchestrator
must be consulted before the best network node is selected
from the list of all contending network nodes that can host the
candidate moderately sensitive emerging fog app using IRC.

The best network node for a given moderately sensitive
emerging fog app in the PFJ-List is the network node that
leads to the smallest increase in TFPC after the placement
of the candidate emerging fog app, i.e., the most energy effi-
cient network node. However, ties may occur when energy
efficiency is used as the decision metric. Hence, the CO that is
closest to the metro gateway node is given the highest priority
when a tie occurs. This ensures that the (number of hops tra-
versed or) traffic in the network is minimized. Furthermore, if
the list of contending network nodes for the emerging fog app
comprise of only access network nodes, the network node with
the highest user density is given higher priority. Otherwise, if
some contending network nodes have the same user density
for the emerging fog app, then lower delay to the metro gate-
way node is used as the decision metric to select the best
network node.

Once the best network node for a given emerging in the PFJ-
list fog app is found, an instance of the app is provisioned in
that network node and all users of the app that can be served
by this new instance (without violating delay requirements and
network capacity constraints) are removed from the RFJ-list.
Furthermore, the fog app and its served users are also removed
from the PFJ-list of the present iteration. Additionally, the pro-
visioned emerging fog app is replaced as a candidate emerging

fog app at all corresponding fog computing sites where it was
previously a candidate by electing a new candidate fog app
from the PFJ-list to maximize the utilization of the IRC of
active CPU component at such network nodes. This approach
ensures fair placement for each emerging fog app in the fog
network. This placement strategy, which fills the IRC of active
CPU components in the fog network with emerging fog apps
in the PFJ-list, is repeated at all network nodes to place all
elected candidate emerging fog apps in the active iteration.

After exhausting all opportunities to use the IRC to pro-
vision an instance of each candidate emerging fog app in the
PFJ-list in the active iteration, the size of the LJ-list is checked.
If the LJ-list is not empty, the HEEDAP algorithm repeats all
procedures described above; hence, the algorithm attempts to
provision all mission critical traditional apps before consider-
ing emerging fog apps for placement. On the other hand, if
the LJ-list is empty, another check is made to confirm that the
PLJ-list in each network node is empty. If the PLJ-list in a
network node is not empty, the HEEDAP algorithm attempts
to provision the fog apps at the top of the PLJ-list in each
network node. Such attempts may activate inactive resource
components as required since the LJ-list in the network node
is now empty. Hence, after mission critical TAs, emerging fog
apps with higher sensitivity to delay have the highest prior-
ity. Emerging fog apps in the PLJ-list of a network node that
are placed successfully are removed from the PLJ-list of that
network node. Fog apps that are rejected are also removed
from the PLJ-list of the corresponding network node. The
HEEDAP algorithm thereafter repeats all procedures described
above to place all moderately-sensitive emerging fog apps with
available IRC of active resource components. It is important
to note that if both LJ-list and PLJ-list of a network node
are empty, only fog apps in the PFJ-list of the active iteration
will be considered for energy efficient placement using IRC
as given in the previous procedures described above.

On the other hand, if the PLJ-list is empty, a new check is
made to confirm if the PFJ-list of the active iteration of the
fog network is empty or not. If the PFJ-list is not empty, the
emerging fog app with the highest delay sensitivity in the PFJ-
list is set as query app and energy-efficient placement of the
query app is attempted. Inactive resource components may be
activated as required to place an instance of this query app. If
a query app cannot be placed, the app is deleted from the PFJ-
list and RFJ-list along with the information about all un-served
distributed users of that app. Otherwise, if an instance of the
query app was successfully provisioned, users of the query app
whose delay threshold has been satisfied by the new instance
are removed from both PFJ-list and RFJ-list. To ensure fairness
when placing emerging fog apps, the provisioned query app is
also removed from the PFJ-list of the active iteration, but the
details of unserved distributed users are kept in the RFJ-list.
Thereafter, the HEEDAP algorithm repeats all previous steps
in this paragraph to place one instance of each moderately
sensitive emerging fog apps in the PFJ-list until the list is
emptied.

An empty PFJ-list implies that an active iteration of the
HEEDAP algorithm has been completed and that a single
instance of each emerging fog app has been provisioned.

1710 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Since the HEEDAP algorithm uses the RFJ-list to maintain
global knowledge of users of some emerging fog apps whose
delay requirement remain unfulfilled, this knowledge is used to
refresh PFJ-list. The refreshed PFJ-list comprise of all emerg-
ing fog apps with one or more unsatisfied users. The HEEDAP
algorithm subsequently returns to the first check at the top of
the algorithm to begin a new iteration since this check will be
negative. However, if the delay requirements of all users of
all emerging fog apps have been satisfied or the emerging fog
apps has been rejected because their delay threshold could not
be satisfied, the first check of the algorithm will be positive
and the HEEDAP algorithm stops.

The HEEDAP algorithm calculates delay by considering the
sum of the delay experienced on a link and link’s propa-
gation delay as the delay cost on each link in the network
topology as given in the MILP model. The path with the
smallest total delay is always selected as the shortest path
between two nodes. It is assumed that the information of the
network topology such as propagation delay and historical traf-
fic (load) on each network link is available as input to the
HEEDAP algorithm. Given this information, Dijkstra’s short-
est path algorithm is used determine the shortest path between
two network nodes using total (propagation plus congestion)
delay as the cost metric.

In the HEEDAP algorithm, resource locality constraint dis-
tinguishes a fog computing site with DS architecture from a
fog computing site with TS architecture. To reduce the com-
plexity of control and orchestration required for the algorithm
in a large fog network deployment, i.e., big fog networks can
be sub-divided into multiple small units. The algorithms can be
deployed in a stand-alone mode in each small unit. Criteria for
deciding the division thresholds for big fog networks include
delay, number of network nodes and fog application user distri-
bution. It is also important to note that an emerging fog app is a
candidate app in a network node if and only if network capac-
ity exists on a selected shortest path that satisfies the delay
threshold of some users of that fog app after the placement
of that fog app into the node. Otherwise, the fog app is not
an acceptable candidate for that network node. Similarly, the
users of placed fog app at a given network node are removed
from the RFJ-list if and only if the delay threshold of such
users are satisfied within specified link capacity constraint of
links on the selected shortest path between users of that app
and the network node where the instance has been provisioned.

B. HEEDAP Computational Complexity

The computational complexity of HEEDAP algorithm
depends on the following input parameters.

l The total number of unique requests for an instance
of each application in the fog network.

n The number of network nodes in the fog network.
s The maximum number of compute nodes (servers)

in any network node in the fog network.
c The maximum number of unique compute compo-

nents in any compute node in the fog network.
x The maximum number of VMs/VNFs in the LJ-list

of any network node.

y The maximum number of fog apps in the PLJ-list of
any network node.

z The maximum number of delay tolerant emerging fog
apps in the RFJ-list or PFJ-list of the fog network.

The number of unique requests for an instance of each appli-
cation in the fog network is derived by (68). It depends on the
number of application instance demands in FJ-list, PFJ-list and
RFJ-list at each network node.

l = (x + y + z)n (68)

It is important to note that the Dijkstra’s shortest path
algorithm which can be implemented with a computation com-
plexity of O(n2) is always implemented by HEEDAP when
an emerging fog app in PFJ-list and RFJ-list is considered for
placement in any network node. In the worst case, the com-
plexity of different segments of the HEEDAP algorithm is as
follows.

• The computational complexity of placing or rejecting all
requested instances of each application in the fog network
is O(l). This determines when HEEDAP will stop.

• The computation complexity of attempting to place or
reject a query app in all network node is O(n ·s ·3·c). This
is because in the worst case, all CPU, memory and storage
components in each compute node of each network node
must be considered before placing a query app.

• The computational complexity of attempting to find the
next query app in each network node of the fog network
is O(n(x +n2y+3n2 · z)). This is because, in the worst
case, all application instance requested at each network
node would be considered in the search to fill active
components.

• The computational complexity of placing or rejecting a
candidate query app from the PFJ-list at each network
node is O(n2 ·3n2). This because a network wide search
is conducted to determine the best network node for a
candidate query app from the PFJ-list before the final
decision is made on the placement location of an instance
of the candidate query app.

• The computational complexity of searching for a new
candidate query app from PFJ-list following the place-
ment of a candidate query app from PFJ-list is O(n2 · z ·
3n2).

• The computation complexity of placing (or rejecting) the
most resource intensive application in the PFJ-list of each
network node energy efficiently following the placement
of all fog apps in the LJ-list is O(n · s · 3 · c · n2).

• Following the placement (or rejection) of all fog apps in
the FJ-list and PLJ-list in the fog network, the worst-case
computation complexity of finding a suitable fog app in
the PFJ-list and then placing or rejecting an instance of
that app in PFJ-list is O(z (n · 3n2 + n · s · 3 · c)).

An expression of the worst-case computational complexity
of the HEEDAP algorithm is given by O(h), where h is as
given in (69). The expression in (69) can be further simplified
as given in (70). Hence, the worst-case computational com-
plexity of HEEDAP is as given in (70). Therefore, HEEDAP
is a polynomial time algorithm. Compared to the computa-
tionally intractable MILP model formulation, HEEDAP is a

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1711

Fig. 4. Fog network system setup. The figure shows the evaluated network
topology, the preferred fog computing sites, and the allocation of compute
nodes to the fog sites. The figure also shows the traditional fog apps associated
with each fog computing site and un-provisioned emerging fog apps.

much faster and efficient algorithm. Additionally, effective
use global knowledge in the algorithm is expected to ensure
lower average execution time in a practical scenario. This is
because global knowledge of fog network is obtained after
placing or rejecting the first application in all network nodes.
Such knowledge would often facilitate rapid instantiation of
application instances by HEEDAP.

h = l
(
(3n · s · c) + n

(
x + n2 · y + 3n2 · z

)

+
(
3n4

)
+
(
3n4 · z

)
+
(
3n3 · s · c

)

+
(
3n3 · z + 3n · s · c · z

))
(69)

h = l
(
n
(
x + n2y

)
+
(
n3sc

)
+ nz

(
n3 + sc

))
. (70)

V. EVALUATION AND RESULTS

A. Evaluation Scenarios and Input Parameters

The MILP model and HEEDAP algorithm are used to study
the impact of adopting DS architecture in the fog computing
layer of the cloud of things continuum relative to the use of
TS architecture. A small network topology comprising of 4
(metro) central offices (COs) and 16 access nodes is adopted
as the default evaluation scenario. This helps to minimize
execution time of the MILP model which grows as the size
and complexity of the problem increases. The access nodes
comprise 4 radio cell sites (CSs), 4 enterprise offices (EOs),
which are connected to the metro ring via 40Gbps links, and
8 homes, which are connected to the metro ring via 40Gbps
Next-Generation Passive Optical Network 2 (NG-PON2) links.
Connected to each metro CO are an EO, a radio CS and two
residential houses as illustrated in Fig. 4. By using 40Gbps last
mile links between metro and access network nodes, network
bottlenecks that can lead to the rejection of emerging fog apps
as reported in [15] are avoided.

To further maintain simplicity, the evaluation scenario allo-
cates two servers (or compute nodes comprising of commodity
hardware) to each fog computing sites. The fog computing
sites comprise metro COs, EOs, and radio CSs in the network
topology as illustrated in Fig. 4. When the TS architecture

TABLE VI
COMPONENT CAPACITY AND POWER FEATURES

is adopted, the utilization scope of each server’s intrinsic
resource components is limited to that server. On the other
hand, when the DS architecture is adopted, servers are log-
ically disaggregated to expand the utilization scope of the
intrinsic resources present in each server at fog computing
sites. However, access to such disaggregated resource com-
ponents is limited to the corresponding fog computing site
hosting each component. A common configuration is adopted
for all servers distributed across the metro network topology,
each server comprises of one CPU, one memory and one
storage components. The characteristics of each compute com-
ponent used to evaluate the MILP model are given in Table VI.
The power consumption profile of each compute component
comprises of an idle portion and another portion that is lin-
early dependent on the component’s utilization. Servers are
not allocated to residential houses when fog computing sites
are federated to form a fog network. On the other hands, in
the absences of fog federation, each fog computing apps must
be instantiated at the location (including residential houses) of
the users.

Each designated fog computing site within the federation
of fog computing nodes has one or two in-situ VM/VNFs
for mission critical traditional applications (TA), as illustrated
in Fig. 4, which must be provisioned at the node. Each CO
node has 2 VNFs; each EO has 2 VMs; and each radio CS
has 1 VNF. The resource demand of each mission critical
TA is illustrated in Table VII. Four types of emerging fog
applications, which have distributed users in the access layer,
are considered. Based on the assumption that all applications
required by each enterprise are either hosted locally as VMs
or hosted remotely in centralized cloud DCs, distributed users
of emerging fog applications are not associated with EOs. All
user demands for a fog app in each access node are grouped
together to form a cluster of user demand in that node. In all
scenarios, a group of 5 end-users, which are attached to each
radio CS via wireless media, collectively form a single clus-
tered demand for each emerging fog app at the access layer.
While a single end-user located in each residential house,

1712 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

TABLE VII
RESOURCE DEMAND OF FOG APPLICATIONS

forms a single clustered demand for each emerging fog app
in the access layer.

Both VM/VNF of traditional fog apps and emerging fog
apps have a mix of resource intensity as illustrated in
Table VII. Relative to the maximum compute resource capacity
some apps are CPU intensive while others are memory inten-
sive. Relative to the capacity of computes resource adopted,
fog app “U” has medium CPU demand, high memory demand
and low storage demand. Fog app “V” has high CPU demand,
high memory demand and medium storage demand, Fog app
“W” has medium CPU demand, low memory, and low stor-
age demand. Fog app “X” has low CPU, memory, and storage
demands. Relative to other emerging fog apps, fog apps U and
X have the highest pre and post processing traffic per user as
illustrated in Table VII. In spite of varying processing demands
by fog applications, the MILP model and heuristic provision
each instance of a fog application by proportionally utilizing
CPU, memory and storage components in the corresponding
fog computing sites. However, the resource locality constraint
must be satisfied for the corresponding server architecture
being considered.

Although the placement of apps in centralized cloud DCs is
not explicitly considered, the impact of cloud destined traffic
on the overall performance of metro and access network tiers is
considered and it is further assumed that traffic to and from the
centralized cloud DC is part of the regular traffic traversing the
network topology. A scenario where priority is given to traffic
of emerging fog apps in the fog network is considered while
traffic of other (including traditional) applications and services
contribute to the regular traffic traversing metro and access

networks. Therefore, the traffic of traditional apps is embedded
into the regular traffic. The regular traffic in the metro-access
network is an input parameter to the MILP model and the
heuristic. In this paper, the range of regular traffic on the metro
ring and access links are 114 – 120 Gbps and 4 – 5 Gbps,
respectively. Therefore, regular traffic utilizes about 60% and
12.5% of the capacity of a metro and access link, respectively.
It is important to note that the regular traffic in the metro-
access network can also be predefined based on a reference
traffic model.

The network traffic that is associated with each instance of
an emerging fog app is routed over the metro-access network
without traffic splitting. The presence of the traffic of emerg-
ing fog apps in the metro-access network changes the state of
the network. The pre-processing and post-processing data rates
per user for each emerging fog app considered are given in
Table VII. After processing at the optimal location, processed
data is sent to the requesting users at the edge of the network
and to the central cloud for further/historical analysis and per-
sistent storage. It is assumed that the ratio of post-processing
data rate to pre-processing data rate is about 50% as illustrated
in Table VII. In the worst-case scenario, if the request made by
a given user (located at access node 7, a residential house with
a single user for each emerging fog app) for all emerging fog
apps is satisfied about 6% of the access link capacity will be
utilized. On the other hand, if the requests made by all users
in node 6 (a radio CS with multiple users for each emerging
fog app) are satisfied, about 30% of the access link capacity
will be utilized. Generally, compared to the fog related traffic,
regular traffic is dominant in the network topology.

A scenario where shared network elements such as
Ethernet access and aggregation routers and optical line ter-
minals (OLTs) are assumed to have a load proportional power
profile is considered. On the other hand, dedicated network
components such as consumer premises equipment (CPE) and
optical network units (ONUs) have an on-off power profile.
Table VI shows the power profile of each network element
and their corresponding values. The exponential M/M/1 delay
curve of each network link is divided into 6 piecewise lin-
ear segments (or pieces) to implement piecewise linearization
of the non-linear delay curve. Fig. 5 gives the piecewise lin-
ear approximation of both 200 Gbps and 40 Gbps network
links using the 6 piecewise linear segments. Each piecewise
linear segment is a linear approximation of a segment of
the non-linear M/M/1 delay curve (i.e., the green curve) as
shown in Fig. 5. Each linear segment (i.e., a blue line) falls
within an approximate linear region (i.e., R1, R2, R3, R4,
R5 or R6) of the M/M/1 delay curve as illustrated in Fig. 5.
We have examined the use of more than 6 piecewise linear
segments and no appreciable improvement in accuracy was
obtained. When using a much lower number of linear seg-
ments (two or three segments) the converse was observed. The
predefined upper bound for link load on both 200 Gbps and
40 Gbps network links are 195 Gbps and 39 Gbps, respec-
tively. Both values enforce a corresponding upper bound for
queuing delay on each link. These values maybe varied based
on expected network performance as desired by the network
service provider on the corresponding link.

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1713

Fig. 5. M/M/1 average delay on metro-access links.

This study evaluates the energy efficient placement of delay
sensitive emerging fog applications in the presence of mis-
sion critical traditional fog applications in a shared distributed
fog network. The MILP model is solved using the 64-bit
AMPL/CPLEX solver on the ARC3 supercomputing node
with 24 CPU cores and 128 GB of memory [45]. Analysis
of results from the model focuses on metrics such as TFPC,
TNPC, number of fog app instances created, round-trip delay
experienced by users of emerging fog applications. The num-
ber of active resource components across all fog computing
sites in fog network and the corresponding average utiliza-
tion of each active component type across the fog network
is also adopted as an evaluation metric. To obtain optimal
results, the results show that the MILP model effectively
bin-packs applications resource demands onto fog computing
resources to achieve optimal resource power and utilization
efficiencies within capacity constraints and limited resource
utilization scope.

B. Energy Efficient Placement in Non-Federated Fog Layer

The non-federated fog layer scenario assumes that a fog
network is not created. Hence, distributed fog nodes are not
linked by the metro-access network and the spare computing
capacity at selected fog sites in Fig. 4 are inaccessible.

Fig. 6. Total fog power consumption of non-federated and federated fog
layers.

Therefore, dedicated fog computing capacity is required for
each cluster of users that have a request for a given emerging
fog app. To simulate the non-federated fog layer scenario, the
MILP model is solved to optimally place TAs into TSs when
∅ = 0, i.e., cost of rejecting any emerging fog app instance is
zero. Consequently, all emerging fog app instance requests are
rejected and must be provisioned with standalone computing
capacity at the source of the user request. Fig. 6 shows the
TFPC due to the activation of computing nodes in the selected
network location and due to the use of fog computing nodes
at the source of the fog app instance demand. Non-federated
fog computing layer consumes significantly high fog comput-
ing power consumption since computing capacity is required
at the source of user demand for an instance of each emerging
fog application.

Fig. 7 and Fig. 8 show the corresponding utilization of each
compute components across distributed fog nodes under TS
and DS architectures respectively after optimal placement of
mission critical TAs. These results are also obtained by solving
the MILP model to optimally place all fog apps when ∅ = 0,
i.e., cost of rejecting any emerging fog app instance is zero.
Consequently, no instance of emerging fog app is provisioned
in the fog network. Fig. 7 and Fig. 8 show the presence of
unused computing capacity to support emerging fog applica-
tions in preferred fog computing sites after TAs have been
provisioned under both TS and DS architectures. Relative to
the TS architecture, the DS architecture has greater average
active resource utilization and reduced number of active com-
ponents across fog computing sites. It is expected that these
advantages of DS architecture over TS architecture will be
maintained when attempts are made to also place emerging
fog apps into the fog network. However, to achieve optimal
efficiency, the placement of each TA within each network node
may be revised according to the characteristics of the emerg-
ing fog apps under consideration. Furthermore, subsequent
analysis of application placement is focused on emerging fog
applications alone since the placement of mission critical TAs
is fixed to specific fog computing sites in the system setup.

C. Energy Efficient Placement Under Low Delay Penalty

Under this scenario, a fog network is created via the fed-
eration of computing capacity at selected fog sites over the

1714 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Fig. 7. Resource component utilization under TS architecture.

metro-access network in Fig. 4. Furthermore, the VMs/VNFs
of both mission critical TAs and emerging fog applications are
optimally placed into the fog network. All emerging fog apps
considered are moderately sensitive to end-to-end delay in the
network and the network has a trivial queuing delay penalty,
i.e., δ � 1 when the MILP model is solved. The scenario is
evaluated when TS architecture is adopted and when the DS
architecture is adopted in fog computing servers.

1) Placement Under Traditional Server Architecture:
The illustration in Fig. 9 shows the optimal placement of
emerging fog applications when TSs are deployed in the fog
network. A single instance of each emerging fog app is provi-
sioned in the fog network. The instance provisioned for each
emerging fog app satisfies the computing capacity requested
by all geo-distributed users of that app. These provisioned
instances are strategically placed in the fog network to mini-
mize both TNPC and TFPC. All mission critical TAs are also
placed in the required network nodes to minimize the high cost

Fig. 8. Resource component utilization under DS architecture.

of rejecting them as defined in the objective. Therefore, both
TCREA and TCRTA are both zero. Network power consump-
tion is dominant because a small fog network with a limited
number of fog computing nodes, users and applications is con-
sidered. Moreover, fixed regular traffic in the network topology
accounts for a significant portion of the TNPC.

Given enough CPU, memory and storage resource capac-
ity in metro COs, the placement of fog apps as illustrated
in Fig. 9 shows that there is high preference for metro COs
when the selection of optimal locations for emerging fog apps
is made. Relative to other network nodes, COs are centrally
located, closer to geo-distributed users and closer to the metro
gateway to the cloud. Hence, placement of fog apps in COs
reduces the number of hops traveled by the fog traffic and
therefore reduces TNPC. As illustrated in Fig. 9, instances of
three emerging fog apps are placed in metro COs. Because
homogenous servers are adopted across the distributed fog

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1715

Fig. 9. Energy efficient placement of emerging fog apps in a fog network.

computing nodes, the power consumption incurred by hosting
a given emerging fog app in inactive resource components is
the same across all network nodes. Likewise, power consump-
tion incurred by hosting a given emerging fog app in the idle
resource capacity of active resource components is also equal
across all network nodes. Hence, multiple candidate metro
COs which lead to the same increment of TFPC may exist for
a given emerging fog app. Such ties are broken by selecting
the metro CO which enables lower total (i.e., fog computing
plus network) power consumption. Network node 1, which
is also the metro gateway node to the core network in the
network topology, wins such tie breaks. This is because the
placement of emerging fog apps close to the metro gateway
helps to reduce the number of hops traversed in the network
topology and consequently the TNPC. Emerging fog apps “W”
and “X” are placed in network node 1 as shown in Fig. 9.
However, when resource capacity in network node 1 is limited,
other candidate metro COs with adequate resource capacity are
considered. Consequently, network node 3 is selected to host
emerging fog app “U” as shown in Fig. 9.

In the absence of enough resource capacity in fog com-
puting nodes attached to metro COs, fog sites in the access
network must be selected to support emerging fog apps in the
fog network if such fog sites have adequate computing capac-
ity. However, multiple candidate access nodes may also present
equal compute energy efficiency to host a given emerging
fog application (as result of the homogeneous power profile
of fog computing nodes across the distributed fog network).
Hence, network energy efficiency is used as a decision met-
ric to select the optimal network node in such scenarios. For
example, emerging fog app “V” which requires a dedicated
server because of the intensive nature of its memory demand
is placed in network node 6, an access node as illustrated in
Fig. 7. This node is selected over other network nodes (10, 14

Fig. 10. Power consumption under energy efficient placement in a fog
network with low delay penalty.

Fig. 11. Resource components utilization across fog sites in the network
under energy efficient placement in a fog network with low delay penalty.

and 18) due to its proximity to the metro gateway node which
promotes lower total network traffic because the number of
hops traversed by cloud bound traffic is reduced. It is impor-
tant to note that unused servers are also present in network
nodes 10, 14 and 18 as illustrated in Fig. 4.

The HEEDAP algorithm achieves comparable results as
those reported when the MILP model is solved as shown in
Fig. 10. As shown in Fig. 10 and Fig. 11, the HEEDAP algo-
rithm achieves the same TFPC, number of active resource
components and average active resource utilization as the
MILP model when the TS architecture is deployed in the fog
network. This demonstrates the efficacy of the HEEDAP algo-
rithm at mimicking the compute energy efficiency achieved by

1716 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Fig. 12. Round trip delay from app instance to users under energy efficient
placement in a fog network with low delay penalty.

the MILP model in a similar system setup that adopts homoge-
nous resources across the fog network. A single instance of
each emerging fog app is provisioned in the fog network
to serve all distributed users as reported when the MILP
model was solved as shown in Fig. 9. All traditional apps
in the fog network are also provisioned. Both TCREA and
TCRTA obtained by HEEDAP are both zero as shown in
Fig. 10. The placement of the instance created for each emerg-
ing fog app obtained via the HEEDAP algorithm is also an
exact match with those obtained by solving the MILP model
when TS architecture is deployed in fog nodes. Consequently,
the average and maximum RTT from app instance to users
obtained by HEEDAP are also comparable to those obtained
by solving the MILP model when TS architecture is adopted
in fog network nodes as shown in Fig. 12. The TNPC obtained
using the HEEDAP algorithm is marginally (about 2%) lower
than that of the MILP model as shown in Fig. 10. Disparity
in path selection made for cloud bound traffic is responsible
for this difference, while the MILP minimizes overall con-
gestion in the network topology by distributing such traffic
as necessary (which leads to higher network power consump-
tion), HEEDAP always selects the shortest path which in turns
minimizes network power consumption.

2) Placement Under Disaggregated Server Architecture:
Replacing TSs with DSs in the fog network leads to changes
in the optimal placement of emerging fog applications as
shown in Fig. 9. Improved consolidation of both traditional
and emerging fog apps enabled by the adoption of DSs in the
distributed fog network is responsible for the revised place-
ment observed. Consequently, Fig. 11b shows corresponding
increases in the average utilization of active resources com-
ponents in the fog network as result of the revision in server
architecture. All traditional apps in the fog network are provi-
sioned and the demand of all distributed users of emerging
fog apps are satisfied. A primary instance of each emerg-
ing fog app is provisioned in the network node that leads
to optimal energy efficiency when the DS architecture is
deployed in the fog network. Furthermore, additional instances
of an emerging fog app are created if such instances lead to
marginal rise in TFPC while achieving significant drop in the
TNPC. Reductions in TNPC is achieved because the creation
of additional instance(s) enable reductions in the number of

hops traversed. This explains the creation of two instances of
emerging fog app “X”. The instance in network node 18 is
responsible for distributed users of the application in network
nodes 6, 7, 8, 14, 15, 16, 18, 19 and 20. A second instance
of emerging fog app “X” in network node 10, which is provi-
sioned using IRC of active resource components, is responsible
for distributed users in network nodes 10, 11, and 12. Hence,
the number of hops between instances of app “X” and their
distributed users is minimized.

The revisions in fog apps placement observed when DSs
are deployed is responsible for the fall (about 18%) in TFPC
relative to results obtained when TSs are deployed in the fog
network as shown in Fig. 10. Reduction in the TCPC is respon-
sible for over 90% of the fall seen in TFPC. This is because
power consumption of CPU component is significantly higher
than that of memory and storage components. Disaggregation
enables significant improvements in CPU utilization efficiency
(as shown in Fig. 11b) via improved consolidation of CPU
demands of mission critical traditional apps and emerging fog
apps in each fog computing site. Hence, the number of active
CPU component reduced when DS are deployed to replace
TS in the fog network as shown in Fig. 11a. The same is also
true for HDD components and their corresponding utilization
efficiency. However, the 33% drop in the number of HDD
component observed in Fig. 11a does not lead to significant
fall in the TFPC because HDD components have a lower peak
power consumption relative to CPU and memory components
as illustrated in Table VI. Fig. 11a only shows a marginal drop
in the number of active memory components. This is because
several considered applications have high memory demand rel-
ative to the capacity of the homogenous memory components
as given in Table VII. Hence, a significant improvement in
active memory component utilization could not be realized as
shown in Fig. 11b.

Fig. 10 shows a marginal increase in the TNPC obtained by
solving the MILP model after TSs are replaced with DSs in the
fog network. This marginal rise is as a result of increased hop
count between the instance of some emerging fog apps and
their users. Furthermore, the hop count between instance of
emerging fog app “W” and “X” and the metro gateway node
also increases after a change in server architecture. Hence,
network traffic traverses through more network equipment
when DSs are deployed in the fog network. Fig. 12 gives the
average and maximum round trip time between distributed user
of each emerging fog app and the provisioned instances of the
app. Relative to the deployment of TS architecture in the fog
network, both average and maximum RTT increased when DS
architecture is adopted in the fog network. Users of emerging
fog app “U” experience relatively higher delay as shown in
Fig. 12 compared to other emerging fog apps. Although the
placement of fog app “U” in network node 6 enables optimal
energy efficiency in the fog network, this choice also leads to
high congestion on the link that connects network node 6 to
node 1. Consequently, users of emerging fog apps “V”, “W”
and “X”, which are in node 6, experience the corresponding
maximum delay illustrated in Fig. 12. Since, the moderate
delay thresholds of all emerging fog apps under this scenario
are satisfied, such performance is acceptable. However, the

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1717

performance obtained under both TS and DS architectures
violates the delay threshold (i.e., τ ≤ 20ms) for delay sensi-
tive fog apps. Hence, another subsection considers a scenario
where requests for a delay sensitive emerging fog app are
present in the fog network.

The same trends observed from the analysis of the solved
MILP model are also observed when the HEEDAP algorithm
is deployed to perform energy efficient placement of moder-
ately sensitive emerging fog apps in a fog network that adopts
DS architecture. The TFPC obtained by HEEDAP algorithm is
almost equal to that obtained by solving the MILP model. The
TFPC of the HEEDAP algorithm is marginally (1%) lower
because only a single instance of emerging fog app “X” is
provisioned when HEEDAP algorithm is deployed as shown
Fig. 9. This contrasts with the creation of two instances of the
same emerging fog app when the MILP model was solved.
Consequently, relative to the TNPC obtained by solving the
MILP model, the TNPC obtained by HEEDAP algorithm is
marginally higher because the total volume of traffic in the
network is higher. Furthermore, the placement of emerging
fog apps obtained by the HEEDAP algorithm as shown in
Fig. 9 is largely comparable to those obtained by solving the
MILP model. However, compared to results obtained by solv-
ing the MILP model, the placement of emerging fog app “U”
as obtained by the HEEDAP algorithm is different since the
app is placed in node 14. This revised placement is responsi-
ble for the fall in the average and maximum RTT experienced
by the distributed users of the app as shown in Fig. 12. This
is because node 14 is farther away from node 1 which is also
the metro gateway node to the cloud. Hence, the congestion
on the paths to node 14 is lower.

D. Energy Efficient Placement Under High Delay Penalty

In this subsection, a fog network is created and δ � 1;
hence, network delay penalty is high. This represents a
network where the network operator desires minimal impact
of emerging fog apps on regular traffic. All results in this
sub-section are obtained by solving the MILP model.

1) Placement Under Traditional Server Architecture:
Under this scenario, multiple instances of some emerging
fog apps are created when the TS architecture is adopted as
shown in Fig. 9. This reduces the number of hops between
instances of replicated fog apps and their users. Consequently,
the total volume of traffic traversing the network topology is
reduced and the delay experienced on each link of the network
topology is also minimized. Relative to result obtained under
low delay penalty (δ � 1), the average and maximum RTT
between the instance of fog apps and their distributed user
falls when δ � 1 as shown in Fig. 13. However, to ensure
a balanced trade-off between minimizing TFPC and the total
approximated delay, only applications (app “W” and app “X”)
with low-medium resource demand intensity are replicated as
shown in Fig. 9. The primary instances for both apps are
placed in centrally located fog sites (i.e., COs). These primary
instances are responsible for users in directly attached access
network nodes and for most distributed users in the network
topology. On the other hand, additional instances of emerging

Fig. 13. Round trip delay from app instance to users under EE placement
scenarios.

Fig. 14. Power consumption under EE placement scenarios.

fog app “W” and app “X” are provisioned in some radio CSs.
This strategy reduces the traffic associated with densely pop-
ulated user clusters attached to each radio CS in the network
and consequently reduces network congestion. Because the
app “W” and app “X” have small compute footprint, they are
easily provisioned with IRC of active TSs. Hence, minimal
increase in TFPC is incurred compared to the δ � 1 scenario
as shown in Fig. 14. Furthermore, relative to results obtained
when δ � 1, additional compute components are not acti-
vated to provision the additional instances of app “W” and
“X” as shown in Fig. 15a. However, replication of fog app
instances leads to the increase observed in the utilization of
active resource components in the fog network as shown in
Fig. 15b. Relative to the low delay penalty scenario where TSs
are deployed, there is a 3% rise in the TFPC when the high
delay penalty scenario is considered under a similar setup. On
the other hand, the TNPC consumption fell by 2% as shown
in Fig. 14.

2) Placement Under Disaggregated Server Architecture:
A similar trend is observed when DSs are deployed in the fog
network. Replicas of certain emerging fog apps are made, as
shown in Fig. 9. This strategy enables reductions in the vol-
ume of traffic traversing the network topology and increased
network congestions that may arise due to the creation of a sin-
gle instance of each fog app. Consequently, distributed users
of fog apps experienced lower average and maximum round
trip time to assigned fog instances as shown in Fig. 13. Under
the high delay penalty scenario, three instances of app “U” and

1718 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

app “X” are created while only two instances of fog app “W”
are created. High CPU and memory demands of emerging fog
app “V” prevents the replication of the app to avoid signifi-
cant increase in TFPC. As observed when TSs are deployed
in the network, radio CSs are often used to host instances of
emerging fog apps to ensure that the total volume of traffic in
the network topology is minimized. This because of the high
user density associated with radio CSs in the system setup.
For example, App “V” is placed in network node 14 because
the node does not require the activation of an additional CPU
component to support the CPU intensive demands of emerging
fog app “V”.

Furthermore, since app “U” and app “W” have higher data
rate per user relative to other emerging fog apps as illustrated
in Table VII, replication of these emerging fog apps can sig-
nificantly reduce the total volume of traffic and congestion
experienced in the network. Additionally, app “X” has non-
intensive CPU and memory demands; therefore, the replication
of app “X” does not lead to significant increase in the TFPC
but can lead to additional reduction in the network traffic.
Relative to the results obtained when low delay penalty is
considered under a similar setup, the creation of replicas of
some emerging fog apps when the DSs are deployed under
the high delay scenario leads to about 8% rise in the TFPC
as seen in Fig. 14. A comparison of TNPC under both sce-
narios shows about 1% decrease due to reduced traffic on the
network topology as illustrated in Fig. 14. Under DS archi-
tecture, the creation of replicas of some emerging fog apps
(“U”, “W” and “X”) under the high delay penalty increased
the number of active compute resource components and the
average active utilization of resource components in the fog
network relative to the low delay penalty scenario as shown
in Fig. 15a and Fig. 15b respectively.

Comparison of TS and DS architectures under the high
delay penalty scenario expectedly shows that the adoption of
the disaggregation concept enabled notable (about 14%) reduc-
tion in TFPC as shown in Fig. 14. This is because server
resource components are independently and proportionally uti-
lized. A marginal fall in TNPC is also observed as a result of
the revised server architecture. This is because the DS archi-
tecture encouraged the creation of more distributed replicas of
most emerging fog apps relative to when the TS architecture is
adopted in compute nodes within the fog network. Compared
to the placement obtained under TS architecture where repli-
cation of emerging fog app “U” is discouraged because of the
app’s high compute footprint, replicas of emerging fog app
“U” are created when the DS architecture is deployed. Note
that app “U” has moderate CPU demand and high memory
demand; hence, proportional usage of resource components
when DS architecture is employed promotes the independent
activation of new memory components to support replicas of
app “U”, while the moderate CPU demands of the app’s repli-
cas are aggregated with the CPU demand of other applications
into active CPU components. However, replication of app “V”
is still discouraged because of its high CPU and memory
demands. Therefore, proportional usage of resource compo-
nents does not enable sufficient benefits to promote replication
of an emerging fog app that is CPU and memory intensive.

Fig. 15. Resource components utilization across fog sites under EE placement
scenarios.

Relative to the deployment of TS under the high delay penalty
scenario, Fig. 13 shows that the average and the maximum
round trip time are higher for some emerging fog apps when
DSs are employed. Thus, the number of hops between users
of such emerging fog apps and the instances of the app that is
assigned to them increased because more network nodes are
traversed.

E. Energy Efficient Placement of Delay Sensitive Fog App

A network with trivial queuing delay penalty (δ � 1) is
adopted under this scenario. In contrast with the previous sce-
nario, emerging fog app “X” is sensitive to end to end delay
experienced in the network (i.e., τ ≤ 20ms) under this sce-
nario. Other emerging fog apps remain moderately sensitive
to end-to-end delay in the network as in previous subsections.
Under this scenario, EE placement of both traditional and
emerging fog apps is also evaluated when both TS and DS
architectures are deployed in the fog computing nodes placed
in the fog network.

Multiple instances of the delay sensitive emerging fog app
are provisioned at all radio CS in the network topology as
shown in Fig. 9 irrespective of the server architecture adopted
in fog nodes. This ensures that the delay threshold of the fog
app “X” is satisfied for users that are directly attached to a
radio CS. On the other hand, users of emerging fog app “X”
which do not have direct access to a radio CS are out rightly
rejected. Hence, local computation capacity is required to sup-
port such users. This led to additional fog compute power con-
sumption as observed in Fig. 16. It also implies higher CAPEX

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1719

Fig. 16. Power consumption following energy efficient placement of delay
sensitive fog app.

and OPEX. It is expected that a similar placement strategy
will be implement if users of emerging fog apps are associ-
ated with enterprise office. Other emerging fog apps, which are
moderately sensitive to delay, are placed in the fog network
as shown in Fig. 9 to achieve optimal energy efficiency in the
fog network as reported in Section V-C. Fig. 16 shows that the
TNPC increases marginally when DS architecture is deployed
in fog sites to replace TS architecture as observed previously.

Furthermore, the TFPC and the number of active com-
ponents is lower when DSs are used to replace TSs in the
distributed fog network as shown in Fig. 16 and Fig. 17a,
respectively. By reducing the number of active resource com-
ponents while provisioning the same number of emerging fog
apps as when TS architecture is adopted, the adoption of DS
architecture in the fog network can increase the amount of
spare capacity available in the fog network. This spare capac-
ity can support both highly sensitive and moderately sensitive
emerging fog apps at the network edge without additional
CAPEX. As observed in Section V-C, Fig. 18 shows that the
average and maximum delay experienced by distributed users
of emerging fog apps, which are moderately sensitive to end
to end delay, increases when DS architecture is adopted. For
instance, the illustration in Fig. 9 shows that each instance
of moderately sensitive emerging fog apps created are provi-
sioned in radio CSs, which are far from most of the distributed
users of each fog app. However, the performance of such
applications does not degrade because they have greater delay-
tolerance. It is important to note that the delay experienced by
accepted users of the delay sensitive app is extremely low and
insignificant as expected of today’s 5G mobile networks and
future 6G mobile networks.

Under this scenario, the HEEDAP algorithm also effectively
mimicked the performance of the MILP model when TS or DS
architecture is adopted in the fog network as depleted in Fig. 9.
Pre-processing of input applications, which is performed in the
initial steps of the HEEDAP algorithm, simplified the place-
ment or rejection of delay sensitive fog apps in the presence
or absence of in situ computing capacity at the source of
each request for such apps. Therefore, the HEEDAP algorithm
effectively mimicked the MILP model by provisioning some
instances of delay sensitive emerging fog apps at radio CSs to
serves users at such location. Users of delay sensitive emerging
fog apps located at network nodes without local computing

Fig. 17. Resource components utilization across fog sites in the network
following energy efficient placement of a delay sensitive fog app.

capacity are rejected. Thus, the corresponding cost of rejec-
tion (i.e., TCREA) as represented by fog computing power
consumption can be seen in Fig. 16. Additionally, CAPEX and
OPEX will also be incurred to setup an in-situ fog computing
node for each user cluster of the rejected fog app.

When TS architecture is deployed in the fog network, the
resulting placement of emerging fog apps by the HEEDAP
algorithm is an exact replica of the placement obtained by
solving the MILP model. Consequently, the same TFPC is
achieved by both the MILP model and HEEDAP algorithm
under the TS architecture as shown in Fig. 16. As shown in
Fig. 17a, the HEEDAP algorithm obtained the same number
of active resource component as those obtained by solving the
MILP model. Likewise, HEEDAP also replicated the average
utilization of active components across fog computing sites
that obtained by solving the MILP model as show in Fig. 17b.
The TNPC obtained by the HEEDAP algorithm is also compa-
rable to the same value obtained by solving the MILP model
under a similar scenario. Similarly, the average and maximum
RTT to distributed users of emerging fog apps obtained by
HEEDAP is comparable to those obtained by the solving the
MILP model as shown in Fig. 18.

However, when the DS architecture is employed in the fog
network, the resulting placement of emerging fog apps by
the HEEDAP algorithm is not an exact replica of the place-
ment obtained by solving the MILP. The TFPC obtained with
the HEEDAP algorithms is about 2% higher than the TFPC
obtained by solving the MILP model under this scenario as
shown in Fig. 16. The adoption of homogeneous compute

1720 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Fig. 18. Round trip delay experienced by users of emerging fog app following
energy efficient placement of a delay sensitive fog app.

resources across the fog network is responsible for the compa-
rable TFPC obtained. Therefore, the number of active resource
components and the average utilization of these active compo-
nents across fog computing sites as obtained by the HEEDAP
algorithm is comparable to those obtained by solving the MILP
model. Difference in the placement of emerging fog apps is
responsible for the changes in the average and maximum RTT
experienced by users as shown in Fig. 18. Apps “V” and “W”
are placed in COs in the metro ring by the HEEDAP algorithm;
hence, the average and maximum RTT experience by the dis-
tributed users of these fog apps is reduced compared to results
obtained by solving the MILP model under the same setup.

VI. CONCLUSION

In this paper, we evaluated the energy efficient placement
of delay sensitive emerging fog applications in the presence
of mission critical traditional fog applications in a shared
distributed fog network that employs TS and DS architec-
ture across selected fog computing sites at the network edge.
Compared to the non-federated fog computing layer, feder-
ation of selected fog computing sites over the metro-access
network leads to significant reductions in TFPC. Relative to
the use of the TS architecture in the fog network that is built
over a network with low delay penalty, the adoption of DSs
enabled up to 18% reduction in TFPC. This because disag-
gregation enabled proportional usage of compute resources
at each fog computing site and consequently improved the
energy efficiency of the fog network. However, this is achieved
at the expense of marginal increase in TNPC and some-
what higher response time when DS architecture is adopted.
Setting up a fog network with high delay penalty increased
the TFPC when either TS or DS architecture are employed
in fog computing sites. This was done to minimize the con-
gestion experienced on the network by reducing the network
traffic. Consequently, the TNPC is also reduced. But the TFPC
of the fog network that employed DS architecture was 14%
lower than that of the fog network that adopted TS architecture
when a fog network with high delay penalty is considered. Our
result also showed that COs and radio CSs are important edge
locations for supporting interactive applications demanded by
geo-distributed end-users when energy efficiency is an impor-
tant design criterion, and such applications are moderately
sensitive to the end-to-end delay experienced on the network.

Otherwise, instances of such fog apps, which are more sen-
sitive to delay, must be provisioned in the nearest network
node that satisfies a predefined (and acceptable) delay thresh-
old to distributed users. We also proposed a polynomial time
heuristic, HEEDAP, which leverages a centralized orchestra-
tion and management framework, for a network of distributed
fog computing nodes. The heuristic can rapidly provision both
mission critical traditional applications and (delay sensitive)
emerging fog applications in a fog network when possible.
The HEEDAP algorithm achieves comparable results as those
reported when the MILP model was solved under similar eval-
uation scenarios. On most occasions, the HEEDAP algorithm
achieves the same application placement pattern, compute
and network energy efficiencies as the exact results obtained
by solving the MILP model. Occasional difference between
the results obtained via by the HEEDAP algorithm and by
solving the MILP model are marginal. For example, the dif-
ference between the TFPC obtained with the HEEDAP and
that obtained by solving the MILP model is not greater than
2% in all scenarios considered. A limitation of the work in
this paper is that delay in the fog network is modelled using
M/M/1 queueing system which implicitly adopts the Poisson
traffic model with exponential inter-arrival times. Adoption
of the open queuing network can lead to more accurate
modelling of the fog network. Future work will consider sce-
narios where mission critical traditional apps can be placed
dynamically in contrast to the static placement considered in
this paper. Furthermore, inter-workload communication may
also be introduced between applications. The HEEDAP algo-
rithm can also be extended or revised to investigate various
placement strategies for emerging fog apps. Finally, artifi-
cial intelligence and machine learning techniques can also be
adopted to further validate and enhance the proposed concepts
and policy in this paper.

ACKNOWLEDGMENT

The first author would like to acknowledge his Ph.D.
scholarship awarded by the Petroleum Technology Trust
Fund (PTDF), Nigeria.

REFERENCES

[1] “Cloud Vision 2020: The Future of the Cloud.” LogicMonitor
Inc. 2017. [Online]. Available: https://www.logicmonitor.com/wp-
content/uploads/2017/12/LogicMonitor-Cloud-2020-The-Future-of-the-
Cloud.pdf (Accessed: Jun. 17, 2019).

[2] “IDC Forecasts Worldwide Technology Spending on the Internet of
Things to Reach $1.2 Trillion in 2022.” DC. 2018. [Online]. Available:
https://www.idc.com/getdoc.jsp?containerId=prUS43994118 (Accessed:
Jun. 17, 2019).

[3] “Internet of Things.” Cisco. 2016. [Online]. Available:
www.cisco.com/go/iot (Accessed: Jun. 17, 2019).

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct.–Dec. 2009.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput., 2012, pp. 13–16.

[6] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A plat-
form for Internet of Things and analytics,” in Big Data and Internet of
Things: A Roadmap for Smart Environments (Studies in Computational
Intelligence). F. Bonomi, R. Milito, P. Natarajan, J. Zhu, N. Bessis, and
C. Dobre, Eds. Cham, Switzerland: Springer Int., 2014.

AJIBOLA et al.: DISAGGREGATION FOR ENERGY EFFICIENT FOG IN FUTURE 6G NETWORKS 1721

[7] M. Aazam, S. Zeadally, and K. A. Harras, “Fog computing architec-
ture, evaluation, and future research directions,” IEEE Commun. Mag.,
vol. 56, no. 5, pp. 46–52, May 2018.

[8] Y. Yang, “FA2ST: Fog as a service technology,” in Proc. IEEE 41st
Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 7, 2017, p. 708.

[9] W. Li et al., “System modelling and performance evaluation of a
three-tier Cloud of Things,” Future Gener. Comput. Syst., vol. 70,
pp. 104–125, May 2017.

[10] J. Taylor, “Facebook’s data center infrastructure: Open compute, disag-
gregated rack, and beyond,” in Proc. Opt. Fiber Commun. Conf. Exhibit.
(OFC), 2015, p. 1.

[11] A. D. Papaioannou, R. Nejabati, and D. Simeonidou, “The benefits of
a disaggregated data centre: A resource allocation approach,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), 2016, pp. 1–7.

[12] B. Abali, R. J. Eickemeyer, H. Franke, C.-S. Li, and M. Taubenblatt,
“Disaggregated and optically interconnected memory: When will it be
cost effective?” 2015, arXiv:1503.01416.

[13] H. M. M. Ali, T. E. H. El-Gorashi, A. Q. Lawey, and
J. M. H. Elmirghani, “Future energy efficient data centers with disag-
gregated servers,” J. Lightw. Technol., vol. 35, no. 24, pp. 5361–5380,
Dec. 15, 2017.

[14] R. Lin, Y. Cheng, M. De Andrade, L. Wosinska, and J. Chen,
“Disaggregated data centers: Challenges and trade-offs,” IEEE Commun.
Mag., vol. 58, no. 2, pp. 20–26, Feb. 2020.

[15] O. O. Ajibola, T. E. H. El-Gorashi, and J. M. H. Elmirghani,
“Disaggregation for improved efficiency in fog computing era,” in Proc.
21st Int. Conf. Transparent Opt. Netw. (ICTON), 2019, pp. 1–7.

[16] H. A. Alharbi, T. E. H. Elgorashi, and J. M. H. Elmirghani, “Energy effi-
cient virtual machines placement over cloud-fog network architecture,”
IEEE Access, vol. 8, pp. 94697–94718, 2020.

[17] I. S. B. M. Isa, T. E. H. El-Gorashi, M. O. I. Musa, and
J. M. H. Elmirghani, “Energy efficient fog-based healthcare monitoring
infrastructure,” IEEE Access, vol. 8, pp. 197828–197852, 2020.

[18] B. A. Yosuf, M. Musa, T. Elgorashi, and J. Elmirghani, “Energy
efficient distributed processing for IoT,” IEEE Access, vol. 8,
pp. 161080–161108, 2020.

[19] “Fog Computing and the Internet of Things: Extend the Cloud to Where
the Things Are What You Will Learn.” Cisco. 2015. [Online]. Available:
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-
overview.pdf (Accessed: Feb. 26, 2019).

[20] “Application Hosting on Catalyst 9000 Series of Switches—Cisco
DevNet.” Cisco. [Online]. Available: https://developer.cisco.com/docs/
app-hosting/#!application-hosting-in-the-enterprise/what-is-application-
hosting (Accessed: Apr. 21, 2020).

[21] K. David, J. Elmirghani, H. Haas, and X.-H. You, “Defining 6G:
Challenges and opportunities [from the guest editors],” IEEE Veh.
Technol. Mag., vol. 14, no. 3, pp. 14–16, Sep. 2019.

[22] A. N. Al-Quzweeni, A. Q. Lawey, T. E. H. Elgorashi, and
J. M. H. Elmirghani, “Optimized energy aware 5G network function
virtualization,” IEEE Access, vol. 7, pp. 44939–44958, 2019.

[23] N. Chen, Y. Yang, T. Zhang, M.-T. Zhou, X. Luo, and J. K. Zao, “Fog as
a service technology,” IEEE Commun. Mag., vol. 56, no. 11, pp. 95–101,
Nov. 2018.

[24] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[25] L. Cominardi et al., “Opportunities and challenges of joint edge
and fog orchestration,” in Proc. IEEE Wireless Commun. Netw. Conf.
Workshops (WCNCW), 2018, pp. 344–349.

[26] A. Yousefpour et al., “All one needs to know about fog computing and
related edge computing paradigms: A complete survey,” J. Syst. Archit.,
vol. 98, pp. 289–330, Sep. 2019.

[27] K. Katrinis et al., “Rack-scale disaggregated cloud data centers: The
dReDBox project vision,” in Proc. Des. Autom. Test Eur. Conf. Exhibit.
(DATE), 2016, pp. 690–695.

[28] C.-S. Li, H. Franke, C. Parris, B. Abali, M. Kesavan, and V. Chang,
“Composable architecture for rack scale big data computing,” Future
Gener. Comput. Syst., vol. 67, pp. 180–193, Feb. 2017.

[29] G. Kandiraju, H. Franke, M. D. Williams, M. Steinder, and S. M. Black,
“Software defined infrastructures,” IBM J. Res. Develop., vol. 58,
nos. 2–3, pp. 1–13, Mar. 2014.

[30] O. O. Ajibola, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “Energy
efficient placement of workloads in composable data center networks,”
J. Lightw. Technol., vol. 39, no. 10, pp. 3037–3063, May 15, 2021.

[31] X. Dong, T. El-Gorashi, and J. M. H. Elmirghani, “Green IP over
WDM networks with data centers,” J. Lightw. Technol., vol. 29, no. 12,
pp. 1861–1880, Jun. 15, 2011.

[32] X. Dong, T. El-Gorashi, and J. M. H. Elmirghani, “IP over WDM
networks employing renewable energy sources,” J. Lightw. Technol.,
vol. 29, no. 1, pp. 3–14, Jan. 1, 2011.

[33] X. Dong, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “On the energy
efficiency of physical topology design for IP over WDM networks,”
J. Lightw. Technol., vol. 30, no. 12, pp. 1931–1942, Jun. 15, 2012.

[34] A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “Distributed
energy efficient clouds over core networks,” J. Lightw. Technol., vol. 32,
no. 7, pp. 1261–1281, Apr. 1, 2014.

[35] A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “BitTorrent
content distribution in optical networks,” J. Lightw. Technol., vol. 32,
no. 21, pp. 4209–4225, Nov. 1, 2014.

[36] L. Nonde, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “Energy
efficient virtual network embedding for cloud networks,” J. Lightw.
Technol., vol. 33, no. 9, pp. 1828–1849, May 1, 2015.

[37] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and
B. Koldehofe, “Mobile fog: A programming model for large-scale appli-
cations on the Internet of Things,” in Proc. 2nd ACM SIGCOMM
Workshop Mobile Cloud Comput., 2013, pp. 15–20.

[38] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog computing: Towards
minimizing delay in the Internet of Things,” in Proc. IEEE Int. Conf.
Edge Comput. (EDGE), 2017, pp. 17–24.

[39] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing IoT
service delay via fog offloading,” IEEE Internet Things J., vol. 5, no. 2,
pp. 998–1010, Apr. 2018.

[40] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of
fog computing in the context of Internet of Things,” IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 46–59, Jan.–Mar. 2018.

[41] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016.

[42] O. O. Ajibola, T. E. H. El-Gorashi, and J. M. H. Elmirghani,
“Network topologies for composable data centers,” IEEE Access, vol. 9,
pp. 120955–120984, 2021.

[43] J. Zheng and H. T. Mouftah, “Virtual topology design,” in Proc. Optical
WDM Netw., 2004, pp. 89–130.

[44] R. Li, D. Zhou, and D. Du, “Satisfiability and integer programming
as complementary tools,” in Proc. Asia South Pac. Des. Autom. Conf.
(ASP-DAC), 2004, pp. 880–883.

[45] “ARC3—Advanced Research Computing.” University of Leeds.
[Online]. Available: http://arc.leeds.ac.uk/systems/arc3/ (Accessed:
Sep. 11, 2018).

[46] “NFX series network services platform,” Data Sheet, Juniper Netw.,
Sunnyvale, CA, USA. Accessed: Mar. 28, 2019. [Online]. Available:
https://www.juniper.net/assets/uk/en/local/pdf/datasheets/1000563-
en.pdf

[47] “MX series 5G universal routing platforms product description,” Data
Sheet, Juniper Netw., Sunnyvale, CA, USA. Accessed: Mar. 28,
2019. [Online]. Available: https://www.juniper.net/assets/uk/en/local/
pdf/datasheets/1000597-en.pdf

[48] “Cisco ME 4600 Series Optical Network Terminal Data Sheet—Cisco.”
Cisco. 2017. [Online]. Available: https://www.cisco.com/c/en/us/
products/collateral/switches/me-4600-series-multiservice-optical-access-
platform/datasheet-c78-730446.html (Accessed: Mar. 28, 2019).

Opeyemi O. Ajibola (Member, IEEE) received
the B.Sc. degree (High Hons.) in Electrical and
Electronic Engineering from Eastern Mediterranean
University, Famagusta, North Cyprus, in 2011,
the M.Sc. degree (with distinction) in Digital
Communications Networks from University of
Leeds, Leeds, UK in 2015 and the PhD degree
in Energy Efficient Composable Data Centers from
the University of Leeds, Leeds, UK, in 2021.
He is currently a Network Architecture Engineer
with Ultracell Networks Limited, Leeds, UK and

a Visiting Research Fellow in the School of Electronic and Electrical
Engineering, University of Leeds, Leeds, UK. From 2012 to 2013, he was a
Wireless Solution Sales Engineer with Huawei Technologies, Abuja, Nigeria.
He was a Graduate Assistant and Lecturer at Federal University Oye-Ekiti,
Ekiti State, Nigeria, from 2014 to 2015 and from 2016 to 2021 respectively.
His research interests include composable data center infrastructures, energy
efficient cloud and edge (fog) data centers and communication networks, and
the Internet of Things.

1722 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Taisir E. H. El-Gorashi received the B.S. degree
(first-class Hons.) in Electrical and Electronic
Engineering from the University of Khartoum,
Khartoum, Sudan, in 2004, the M.Sc. degree
(with distinction) in Photonic and Communication
Systems from the University of Wales, Swansea,
UK, in 2005, and the PhD degree in Optical
Networking from the University of Leeds, Leeds,
UK, in 2010. She is currently a Lecturer in optical
networks in the School of Electronic and Electrical
Engineering, University of Leeds. Previously, she

held a Postdoctoral Research post at the University of Leeds (2010–2014),
where she focused on the energy efficiency of optical networks investigating
the use of renewable energy in core networks, green IP over WDM networks
with datacenters, energy efficient physical topology design, energy efficiency
of content distribution networks, distributed cloud computing, network virtu-
alization and big data. In 2012, she was a BT Research Fellow, where she
developed energy efficient hybrid wireless-optical broadband access networks
and explored the dynamics of TV viewing behavior and program popu-
larity. The energy efficiency techniques developed during her postdoctoral
research contributed 3 out of the 8 carefully chosen core network energy effi-
ciency improvement measures recommended by the GreenTouch consortium
for every operator network worldwide. Her work led to several invited talks
at GreenTouch, Bell Labs, Optical Network Design and Modelling confer-
ence, Optical Fiber Communications conference, International Conference on
Computer Communications, EU Future Internet Assembly, IEEE Sustainable
ICT Summit and IEEE 5G World Forum and collaboration with Nokia and
Huawei.

Jaafar M. H. Elmirghani (Fellow, IEEE) is
Fellow of the IET, Fellow of the Institute of
Physics and is the Director of the Institute of
Communication and Power Networks and Professor
of Communication Networks and Systems within
the School of Electronic and Electrical Engineering,
University of Leeds, UK. He joined Leeds in 2007
having been full professor and chair in Optical
Communications at the University of Wales Swansea
2000–2007.

He received the BSc in Electrical Engineering,
First Class Honours from the University of Khartoum in 1989 and was
awarded all 4 prizes in the department for academic distinction. He received
the PhD in the synchronization of optical systems and optical receiver
design from the University of Huddersfield UK in 1994 and the DSc
in Communication Systems and Networks from University of Leeds, UK,
in 2012. He co-authored Photonic Switching Technology: Systems and
Networks, (Wiley) and has published over 550 papers.

He was Chairman of the IEEE UK and RI Communications Chapter
and was Chairman of IEEE Comsoc Transmission Access and Optical
Systems Committee and Chairman of IEEE Comsoc Signal Processing
and Communication Electronics (SPCE) Committee. He was a member of
IEEE ComSoc Technical Activities Council’ (TAC), is an editor of IEEE
Communications Magazine and is and has been on the technical program
committee of 41 IEEE ICC/GLOBECOM conferences between 1995 and
2020 including 19 times as Symposium Chair. He was founding Chair
of the Advanced Signal Processing for Communication Symposium which
started at IEEE GLOBECOM’99 and has continued since at every ICC
and GLOBECOM. Prof. Elmirghani was also founding Chair of the first
IEEE ICC/GLOBECOM optical symposium at GLOBECOM’00, the Future
Photonic Network Technologies, Architectures and Protocols Symposium. He
chaired this Symposium, which continues to date. He was the founding chair
of the first Green Track at ICC/GLOBECOM at GLOBECOM 2011, and is
Chair of the IEEE Sustainable ICT Initiative, a pan IEEE Societies Initiative
responsible for Green ICT activities across IEEE, 2012-present. He has given
over 90 invited and keynote talks over the past 15 years.

He received the IEEE Communications Society 2005 Hal Sobol award for
exemplary service to meetings and conferences, the IEEE Communications
Society 2005 Chapter Achievement award, the University of Wales Swansea
inaugural ‘Outstanding Research Achievement Award’, 2006, the IEEE
Communications Society Signal Processing and Communication Electronics
outstanding service award, 2009, a best paper award at IEEE ICC’2013, the
IEEE Comsoc Transmission Access and Optical Systems outstanding Service
award 2015 in recognition of “Leadership and Contributions to the Area of
Green Communications”, the GreenTouch 1000x award in 2015 for “pioneer-
ing research contributions to the field of energy efficiency in telecommunica-
tions”, the IET 2016 Premium Award for best paper in IET Optoelectronics,
shared the 2016 Edison Award in the collective disruption category with a
team of 6 from GreenTouch for their joint work on the GreenMeter, the
IEEE Communications Society Transmission, Access and Optical Systems
technical committee 2020 Outstanding Technical Achievement Award for out-
standing contributions to the “energy efficiency of optical communication
systems and networks”. He was named among the top 2% of scientists in the
world by citations in 2019 in Elsevier Scopus, Stanford University database
which includes the top 2% of scientists in 22 scientific disciplines and 176
sub-domains. He was elected Fellow of IEEE for “Contributions to Energy-
Efficient Communications,” 2021.

He is currently an Area Editor of IEEE Journal on Selected Areas in
Communications series on Machine Learning for Communications, an edi-
tor of IEEE Journal of Lightwave Technology, IET Optoelectronics and
Journal of Optical Communications, and was editor of IEEE Communications
Surveys and Tutorials and IEEE Journal on Selected Areas in Communications
series on Green Communications and Networking. He was Co-Chair of the
GreenTouch Wired, Core and Access Networks Working Group, an adviser to
the Commonwealth Scholarship Commission, member of the Royal Society
International Joint Projects Panel and member of the Engineering and Physical
Sciences Research Council (EPSRC) College.

He has been awarded in excess of £30 million in grants to date from
EPSRC, the EU and industry and has held prestigious fellowships funded
by the Royal Society and by BT. He was an IEEE Comsoc Distinguished
Lecturer 2013–2016. He was PI of the £6m EPSRC Intelligent Energy Aware
Networks (INTERNET) Programme Grant, 2010–2016 and is currently PI of
the EPSRC £6.6m Terabit Bidirectional Multi-user Optical Wireless System
(TOWS) for 6G LiFi, 2019–2024. He leads a number of research projects
and has research interests in communication networks, wireless and optical
communication systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

