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Energy Optimization in Ultra-Dense Radio Access
Networks via Traffic-Aware Cell Switching

Metin Ozturk ~, Attai Ibrahim Abubakar
Sajjad Hussain

Abstract—We propose a reinforcement learning-based cell
switching algorithm to minimize the energy consumption in
ultra-dense deployments without compromising the quality of ser-
vice (QoS) experienced by the users. In this regard, the proposed
method can intelligently learn which small cells (SCs) to turn off
at any given time based on the traffic load of the SCs and the
macro cell. To validate the idea, we used the open call detail
record (CDR) data set from the city of Milan, Italy, and tested
our algorithm against typical operational benchmark solutions.
With the obtained results, we demonstrate exactly when and how
the proposed method can provide energy savings, and moreover
how this happens without reducing QoS of users. Most impor-
tantly, we show that our solution has a very similar performance
to the exhaustive search, with the advantage of being scalable
and less complex.

Index Terms—S5G, reinforcement learning, cell switching,
energy consumption, cellular networks.

I. INTRODUCTION

MALL cells (SCs) are low power nodes which are

deployed to boost the capacity at hotspot zones, the busiest
areas of a deployment. BSs are the major energy consumers,
accounting for about 60%—-80% of the total energy consump-
tion in cellular networks [1]. Since the traffic load of cellular
networks exhibit temporal and spatial variations, the tradi-
tional technique of keeping the BS always ON even when
it is not serving any user results in energy wastage. Therefore,
load adaptive network operation, where BSs are turned off
or operated in low power modes during periods of low or
no traffic in order to save energy, has been the focus of
many studies [1]-[7]. Nevertheless, it is not always feasible
to completely switch off SCs in the conventional heteroge-
neous network (HetNet) architecture because it often creates
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coverage holes, which in turn degrade the Quality of service
(QoS) of users initially covered by the inactive SCs. In addi-
tion, sleeping BSs do not transmit pilot signals needed by
the user equipment (UE) for cell discovery, channel estima-
tion, and subsequent connection. Hence, in the conventional
HetNet architecture certain components of the SCs need to be
left always ON even in sleep mode, resulting in sub-optimal
energy savings [8], [9].

Handling the aforementioned challenges of BS switching
in conventional HetNets requires a paradigm shift towards a
Control/Data Separated Architecture (CDSA) [8]. In CDSA,
the macro cells (MCs)—also known as control BS (CBS)—
maintain constant coverage and provide signalling functional-
ities and low data rate services. The SCs—also known as data
BS (DBS)—provide high data rate services and are connected
to the MCs through the backhaul. This architecture provides
support and flexibility for dynamic cell switching operations
as the MC always ensures constant coverage for both idle and
active users. It is also responsible for switching BSs off/on as
well as associating users to the SCs. As a result, it is possible
to completely switch of the DBSs under the CDSA when there
are no users associated to them [8].

Cell switching with traffic offloading has been identified
as one of the techniques for reducing the energy consump-
tion of MCNs. Several methods have already been proposed
for scheduling cell switching in the literature using analytical
modelling and heuristic algorithms [2]-[5], [10]. However, it is
very difficult to develop accurate analytical models for network
optimization when network dimensions become very large due
to network complexity and high computational overhead [11].
On the other hand, heuristic algorithms are difficult to gener-
alize and adapt to dynamic environment, such as ultra-dense
network deployment scenarios that have been envisioned in
5G [11], [12]. They also mostly employ exhaustive search
techniques, which makes them computationally demanding
and could lead to degradation in the QoS of users. Recent
works in [13]-[20] applied conventional reinforcement learn-
ing (RL) techniques for cell switching because of its ability
to adapt to a dynamic network environment through learning.

However, conventional RL algorithms are very challeng-
ing to implement when the network dimensions become huge
because it often results in very large state-action space, which
is computationally demanding to learn. In addition, a consid-
erable amount of memory is required to store the action-value
table (Q-table). In an attempt to solve the curse of dimen-
sionality problem facing conventional RL algorithms, they
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were combined with value function approximation (VFA) to
estimate the optimal policy. In this regard, RL with linear func-
tion approximators and deep RL approaches were proposed
in [21]-[24]. Deep RL algorithms have the ability to accom-
modate large state-action space resulting from large scale
networks deployment scenarios. However, training such mod-
els can be computationally demanding and energy consuming.
Hence, they should only be considered when no simpler solu-
tions exist or the complexity of the network requires the
application of a non-linear function approximator to estimate
the optimal policy.

We propose a RL-based cell switching and traffic offload-
ing methodology for ultra-dense radio access network (RAN),
and employ a RL algorithm with linear function approxima-
tion known as SARSA with VFA [25]. The well-known RL
with VFA algorithm is carefully designed according to the
requirements of the problem at hand in such a way that all
the states need not be visited as in [21] before the optimal
policy is learnt. In addition, the algorithm exhibits quick con-
vergence, and it is simpler to implement compared to deep RL
approaches. The learning algorithm is implemented at each
MC and it has the ability to learn the optimal switching pat-
tern even when a large number of SCs are deployed under the
coverage area of the MCs.

A. Related Work

The authors in [2] developed a load-based dynamic SC
switching scheme for ultra-dense networks. Their goal is to
minimize the signalling overhead resulting from user traffic
offloading during the cell switching process as well as to
optimize the energy savings. Two heuristic algorithms were
proposed in their work. In [3], the problem of user associa-
tion and cell sleeping in multi-tier ultra-dense SC networks
was formulated as a complex integer programming. Then,
two low complexity heuristic algorithms were employed to
determine the optimal user association and the cell switch-
ing pattern. A greedy heuristic algorithm was proposed in [4]
to determine the switching off/on pattern of SCs in a green
ultra-dense network. The optimization objective is to maximize
the network energy efficiency while considering traffic load
of the SCs and service requirements of users. Heuristic algo-
rithms often employ exhaustive search, which is often slow
and computationally demanding, to find the optimal solution,
hence they are only suitable for small network deployment.
On the other hand, the ultra-dense 5G network scenario will
involve massive deployment of SCs which would make it prac-
tically impossible to adopt such heuristic algorithms. Also, it
would result in huge computational overhead and degradation
in QoS.

An alternative solution for finding optimal switching pattern
for ultra-dense deployment scenarios is to employ RL tech-
niques. The authors in [15], [16], [21] proposed Q-learning-
based cell switching techniques for energy optimization. The
authors in [15] proposed a Q-learning algorithm to determine
the duration of time that the BS can spend at a particular sleep
level in order to optimize energy consumption of the network.
BS activation latency and the service requirements of users

were considered as constraints in their problem formulation. A
Q-learning framework was developed in [16] in order to deter-
mine the optimal switching and traffic offloading strategy in a
two-tier heterogeneous network with separation architecture.
Nonetheless, the works in [13]-[17] only considered small to
medium network deployment scenarios, where the state-action
space is suitable for the implementation of conventional RL
algorithms.

The authors in [21] proposed a centralized and decentralised
Q-learning algorithm with compact state representation (QC-
learning) for traffic offloading and cell switching for HetNet
to minimize energy consumption. The QC-learning is a com-
pact representation of the state-action pair using linear VFA
when it becomes practically impossible to explicitly store each
state-action pair in a look-up table. Moreover, even with the
compact state representation of the Q-value lookup table, as
the number of SCs in the network becomes very large, the
action set also grows dramatically, thereby making it difficult
to implement a centralized cell switching scheme. As a result,
they went further to develop a decentralized multi-agent-QC-
learning scheme. In the decentralized scheme, the MCs learn
in a cooperative manner and take joint traffic offloading and
cell switching actions by exploiting the previous cell switching
strategies used by other MCs. Moreover, in developing decen-
tralized multi-agent-QC-algorithm, the authors [21] assumed
that all the MCs under the controller have similar or station-
ary network states, which is a requirement for implementing
joint cell switching and traffic offloading strategy. However,
this might not be the case in real networks, as networks’
states may vary from one MC to another due to temporal
and spatial variations in user traffic demands [26]. In addi-
tion, the problem of increased state-action pair also arises
in multi-agent Q-learning, since each agent also includes its
own state-action pair to the joint state action space [26].
This increases the computational complexity as well as the
memory required for storing the joint state-action space at the
controller.

B. Contribution

In this article, we propose an intelligent cell switching and
traffic offloading framework using a RL technique known as
SARSA with VFA [25] in order to reduce the energy consump-
tion of ultra-dense RAN. In the CDSA RAN, a cell switching
and traffic offloading mechanism is implemented in a locally
centralized manner at each MC. This is because the MC is
responsible for scheduling the switching off/on pattern of all
the SCs deployed under its coverage. The proposed algorithm
provides a compact form of representing the action-value func-
tion like the QC-learning algorithm in [21]. However, all the
states need not be visited as in [21] before the optimal strategy
is obtained. The contributions of this work are as follows:

e We propose a scalable traffic-aware cell switching method
based on RL with VFA to find the optimal policy in
terms of energy minimization for controlling SC ON/OFF
status, without compromising the QoS.

e We prove mathematically that turning a SC off is not
always profitable in terms of energy savings, and identify
such situations where it is not profitable to switch off SCs.
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Fig. 1. A HetNet with CDSA comprising of a MC (CBS) and a dense
deployment of various types of SCs (DBSs).

o We evaluate the proposed method using a traffic model
based on real world data, making the solution more
reliable and realistic.

Due to its fast convergence and learning ability, RL is
employed in this work to make real-time, accurate, and effi-
cient switch off/on decision at each time slot. Moreover, VFA
is utilized in the developed RL algorithm, since the state space
expands exponentially with increasing number of SCs in the
network. Even though this could be handled by conventional
RL algorithms to some extent, it becomes infeasible to man-
age once the network size becomes very large. In addition,
due to the careful and proper design of the action set in the
proposed method, there is no need to include all the possible
switching combinations, thus annihilating the need for coop-
erative learning. Lastly, we tested the proposed method in a
realistic scenario, where all types of SCs given in [27] with
their diverse characteristics are included.

II. SYSTEM MODEL
A. Network Model

As mentioned before, in this work we consider an ultra-
dense RAN with a CDSA architecture [8]. The network model,
as illustrated in Fig. 1, consists of a dense network, where
SCs, acting as DBSs, are deployed under the coverage area of
a MC, which acts as the CBS. Moreover, SCs and MC operate
on dedicated frequency channels and SCs are connected to the
MC via optical fibre links.

The MC is responsible for constant coverage, control sig-
nalling, and data services, while SCs handle only data services
and user specific requests. Furthermore, the MC coordinates
the traffic offloading and switching off/on of all SCs under its
coverage. This task involves observing their traffic loads and
deciding which set of SCs should be turned off during periods
of low traffic intensity, while taking the available capacity of
the MC into consideration.

It should noted that since an ultra-dense RAN with CDSA
normally comprise of many MC-SCs configurations, only one
of such configurations is depicted in the system model in
Fig. 1.

B. Network Power Consumption

Following the Energy Aware Radio and neTwork tecH-
nologies (EARTH) power consumption model [27], P;, the

instantaneous consumption of a jth BS, B;, is given by [28]

p, — 4 Pog tmjAiPrj 0<X; <1, 1
! 5. Aj =0

where P, ; and P ; are the operational and sleep circuit power
consumption, respectively, rj; is the power amplifier (PA) effi-
ciency, /\j is the load factor, and PTJ- is the transmit power.
All SCs of the same type are considered to have identical
hardware, such that their PA efficiencies, and circuit power
consumptions are the same. Also, power allocation is not con-
sidered, hence, each type of BS has a fixed transmit power
that is constant among BSs of that type.

Lastly, P, the instantaneous power consumption for the
CDSA network, is expressed as

s+1

P= Z P;, )
j=1

where s is the number of SCs in the deployment.

III. PROBLEM FORMULATION

Considering the architecture described above, the aim of
this article is to find the best policy, in terms of energy sav-
ings, which offers a required QoS to the users. A policy
w = {01,02,...,0541} is defined by which SCs should be
ON at a given time ¢, where ¢; € {0, 1} indicates the state of
Bj, 1 for ON and 0 for OFF. By is the MC, and thus d7 is
always 1, as it is always ON.

Considering j > 1, when 5j changes from 1 to O at time ¢,
the MC allocates its users:

ALt = A—1+ @A) 1 3)
At =0, 4)

where /\j,t corresponds to the load of Bj at time ¢, and ¢j is
the relative capacity of B; with respect to By, such that

G
¢] = aa
where Cj indicates the total resources available in Bj.

Conversely, when 5j switches from O to 1 at time ¢, the MC
offloads some of its traffic to Bj, such that

J>1 (&)

Noy=L ©)
ALt = AMi—1 — At 7

where 7; corresponds to the resources used by users served
by B;. Note that C; > ;.
Therefore, we can formally write the problem as

s+1

min P(p) = > (Poj +mAjPr;)d; + Psj(1—6))
j=1

s.t. < 1. (8)

Note that the only constraint in the problem is to ensure that
the capacity of the MC is not exceeded, this takes care of the
QoS requirement. In other words, the MC only offloads users
from a SC if it can maintain the QoS of any user associated to
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it. Moreover, this ensures that once a solution is implemented,
Tr,l < Tm,17 )

where T;. 1 and Ty, 1 are the required and maximum provided
throughputs by the MC, respectively.

It should be noted that the problem formulation in (8) is
not as simple as it appears as it takes into account the load
status of both the MC and the SCs under its coverage. In
addition, it considers the power consumption of the 4 differ-
ent types of SCs (Table II) that are used in this work (even
though this cannot be explicitly seen in (8)) when making a
switching decision. As a result, it is more difficult to deter-
mine the optimal switching strategy in our work due to the
more complex scenario considered.

Theorem 1: 1f we draw a random SC B; from B, the set
of all possible BSs, the probability of J; = 1 integrating the
optimal policy is 1 if j>1 and

Poj — Psj
oimPr1 —n;Pr

when ¢j771PT,1 - 77jPT,j > 0.

Proof: See Appendix B for the proof. |

Based on Theorem 1, we can see that the optimal policy
will tend to have more SCs turned on when they are more
loaded, as the inequality in (10) will be more easily met. The
reasoning behind this is that the numerator of (10) represents
the saving on the static power consumption when a SC is put
into a sleep mode (which is by definition kept constant regard-
less of the load factor), while the denominator represent the
loss on the power consumption due to offloading the load from
the SC to the MC. The lesser load will incur more gain on the
power consumption, and thus the designed algorithm will be
prone to switch off a SC with lesser load factor. Similarly, we
can also see that when the transmit power of SCs is smaller,
it becomes more advantageous to use them, and the same can
be said if the MC is not very efficient (17 is small). Moreover,
as one would expect, when the power consumption of a sleep-
ing BS is higher, the less likely it will be that turning it off
would result in energy savings. Lastly, we can clearly see that
when (10) occurs for any BS in the network, there will be a
situation, where the most optimal policy has SCs turned on and
consumes less energy than keeping only the MC operational.

< /\j, (10)

IV. PROPOSED SOLUTION
A. Value Function Approximation

The goal of this article is to find the best policy, that is, the
set of SCs to switch off/on per time, in order to optimize the
energy consumption of the network. However, since the com-
plexity of the problem is exponentially increasing, in terms of
possible configurations, its solution is non-trivial. With that in
mind, we propose an intelligent solution, based on RL, in order
to minimize the energy consumption of the network without
compromising the QoS.

However, traditional RL techniques rely on a state-action
matrix, which has to contain an entry for each possible state-
action pair. This is an issue in this case because of the
aforementioned dimensionality of the problem, which results
in a very large matrix, and this in turn makes the algorithm

infeasible. To circumvent this issue, we use RL alongside
VFA, which is capable of estimating the state based on a set
of features, and therefore does not have to maintain a huge
structure with all the possibilities [25]. This not only alleviates
the computational burden caused by the algorithm implemen-
tation,! it also results in saving in the memory consumption
due to the fact that the proposed methodology needs to store a
matrix containing the selected features, whereas traditional RL
algorithms need to store a matrix that contains all the states
and actions. The size of the matrix, in the former case, grows
linearly with the network size, while the matrix size grows
exponentially with the network size in the latter case.

The way VFA can be used to enhance traditional RL is by
estimating the action-value function with an approximator. It
works by finding a set of weights for a known function by
solving an optimization problem based on given examples. In
particular, the value function denoted by (S, A), which is
obtained by following a policy m, is made the subject for an
approximation denoted by @(S VA, 5), such that Q@ (S, A) =~
Q(S , A,g) [25]. Although various methods can be used for
approximation, the main objective is to minimize the error
between Qr (S, A) and Q(S, A, 6), such that

min | Qr (S, 4) — Q(S, A,0) ? (11)
0

where S and A are the sets of all states and actions, respec-
tively. g is a vector of the weights.

Moreover, Q(S, A,0) can be expressed by

Q(S7A79) :f(ﬁ)’
where f(-) is a known function, which is also referred to as
hypothesis.

Even though any function can be used as the hypothesis,
some render (11) either too hard or infeasible. Linear func-
tions, shallow neural networks, and deep neural networks are
commonly used as f(.), and the choice depends on the type of
problem. With regards to the optimization, a popular strategy
is to use gradient descent (GD) or stochastic GD (SGD) to
find & based on the known examples [25].

In this work, we use a linear hypothesis, meaning that
Q(S, A, 5) is approximated by a linear combination of input
features [25], in other words,

(12)

-

Q(S,A,0)=X0T, (13)

where X and 6 are 1p-dimensional vectors—where 1) is the
number of features selected—containing input features and

weights, respectively. Note that 07 indicates 7] transposed.

—

Furthermore, using SGD and taking the SARSA case, 0 is
updated according to [25], [29]

0141 =01 +a|Rir1 + 0Qu(Sty1, Arr1)
- Q(St,Atﬁt)} VoQ(St, Ay, 0y), (14)

where « is the learning rate for SGD optimization (i.e., the
step-size of the gradient descent), and Vj represents the
gradient with respect to 6. S; and S;41 are the current and

ISee Section IV-C4 for a more detailed discussion.
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next states respectively, while A; and A;4 are the taken and
next actions respectively. Note that ¢ is initialized with an
arbitrary value, such as zero.

The agent observes a different example after each iteration
and updates ) accordingly using (14), which in turn help min-
imize the objective function given in (11). Therefore, as the
number of iterations increases, g converges with the recursion
in (14), and subsequently can be used to find the action-value
function, which in turn can guide the policy.?

B. SARSA With VFA

For the readers benefit, we have included a small summary
of SARSA in this section. The algorithm works by observ-
ing the cost of taking actions and updating its estimate of 7
at every iteration and then choosing the action based on an
e-greedy policy (e > 0) that facilitates the balance between
the exploration and exploitation phases, such that the agent
continues exploring with a probability of e. Furthermore, €
decaying—where the value of ¢ is slightly reduced over time,
is employed during the implementations, since it can yield
asymptotic convergence to the optimal policy [25]. Therefore,
although the policy remains the same over different episodes
(i.e., time slots in this case), the probability of exploration
is decayed in order to boost the convergence probability.
Algorithm 1 [25] contains a pseudo code implementation of
SARSA with VFA. Note that lines 22 to 29 in Algorithm 1 cor-
responds to the stopping criteria, where j,i, 1S the minimum
number of iterations to take before the stopping criteria come
into the effect. Cini, and Cpax are the minimum and maxi-
mum cost functions observed up to that iteration, respectively.
Lastly, € is the threshold for the feature scaled cost, while jrep
defines the number of iterations to be repeated (the conditions
on lines 23 and 24 are kept satisfied) before stopping.

Although the SARSA and Q-learning algorithms seem quite
similar to each other, there are some key differences that pro-
vide characteristic features to each. They are both model-free
methods—meaning that they do not require apriori knowledge
for the environment model—; however, while Q-learning is an
oft-policy algorithm, SARSA is regarded as on-policy. Hence,
Q-learning follows different policies when selecting the next
action and updating the action-value function, but SARSA
follows the same policy (i.e., e-greedy) for both action selec-
tion and action-value function update. In addition, there are
evidences that Q-learning is less suitable for function approx-
imation, as divergence can happen in some cases [25], and
thus the SARSA algorithm is preferred in this work in which
linear function approximation is implemented.

C. Traffic Aware Energy Optimization via Cell Switching

Leveraging the framework described above, we propose a
linear VFA solution to solve (8). Since we are looking to

2Although the number of iterations/examples needed for convergence
depends on various factors, such as the environment, the size of the problem,
etc., this phenomenon is observed and discussed in Section V-E for our
problem. In particular, the learning/training phase is clearly observed in
Figs. 3(a) and 3(b), in which the designed method learns (i.e., performs (11)
and (14)) in the first few episodes and then converges to the optimal value,
which is produced by the exhaustive search in this case.
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Algorithm 1: Proposed SARSA With VFA

1 for Every episode do
2 Initialize the current state, St;
3 for All actions in A do
4 Get features, X;
5 Estimate value of Q through (13);
6 end
7 Choose action, A¢, according to policy;
8 Set 5 = 0;
9 for Fach iteration do
10 Update 7t < 5it + 1;
11 Take the action Ay;
12 Observe cost, C, via (19);
13 Move to next state;
14 for All actions in A do
15 Get features, X;
16 Estimate value of Q through (13);
17 end
18 Choose next action, A4 1, according to policy;
19 Update the weights, 6y, using (14);
20 St Spi1;
21 At — At+1;
22 if jit > Jpin then

. 8 - Cmm
23 if < ) then

Q’ma . Cmin . R R

24 if & is the same for jrep iterations then
25 Stop executing;
26 Jump to the next episode;
27 end
28 end
29 end
30 end
31 end

accomplish a globally optimal solution, our proposed frame-
work is centralized and computed at the MC. As the total
number of policies increases exponentially with s, it would
not be scalable to consider any policy as an action. Therefore,
we propose a reduced action space as follows.

1) Actions: The actions for the proposed VFA consist of
switching OFF/ON different SCs in the network. However,
because there are so many possibilities, we propose an alter-
native representation which allows the algorithm to sample
several different possibilities by taking different actions.

This representation is done as follows. First, the status of
the SCs in the network are converted to a binary number, such
that the SCs that are ON are treated as binary 1, while the SCs
that are OFF are considered binary 0. In this regard, the status
of the network at time ¢ is

)2(0 = {Xz(t)‘l € {1’27""5}}a

where x; € {0,1} is the state of the 7* SC in the network.
Next, y is represented by a binary number 1, with s digits,
such that the status of each SC represents one of its digits and
thus xp = x1x2 """ Xs-
Within the proposed representation, the set of possible
actions is defined as

A= {o,igo,igl,...,igS},

where ¢ is a decimal constant number, defining the inter-space
between two consecutive actions.

(15)

(16)
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In this case, taking an action at time ¢, means to perform
Xd(t+1) = xa(t) + Az, (17)

where A, is an entry’ from A and Xq 1s the decimal repre-
sentation of xp,. In other words, an action consists of turning
on/off a number of BSs, depending on the current status and on
A. This ensures that, instead of checking all possible statuses
of SCs, we are taking only some samples of the entire set.

To illustrate the proposed idea, consider the following exam-
ple. In a network with 4 SCs at time 7, let x/(¢) = {1,1,0,1}.
In this case, xq(¢) = 13. Now, let us assume that { = 2 and
that the action selected is +¢1. In this case, the next status
will be xq(t + 1) = xq(t) + &' = 15, or in other words
X(t+1)={1,1,1,1}, which implies that all BSs are turned
on at time ¢t + 1.

2) Features: Feature selection is one of the fundamen-
tal aspects while designing a SARSA VFA-based solution,
since it has a great impact on both the convergence and
the performance of the developed solution. In almost every
decision and optimization problems, there are key factors (or
determinants), each of which have impacts on different scale,
used while determining the optimality. For instance, if we want
to buy a house with a minimum price, then we need to observe
the key determinants of the price, such as the year of con-
struction, location, number of bedrooms, etc. Similarly, in our
problem given in (8), the primary objective is the minimization
of the total power consumption of the network, and thus we
need to include the determinants of the total power consump-
tion in the feature selection. It can be observed from (1) that
the load factor is a very important factor in determining the
power consumption of a BS, the total load factor of each SC
is included as features in the designed algorithm.

Moreover, as it is recommended in [25] that it would be
better to include the interaction between the selected determi-
nants in order to approximate well, we capture the interactions
between the features as follows: 1) the total power consump-
tion of the network (P): the result of the load factors of all the
SCs and 2) the resultant load factor of the MC (A1): the com-
bination of the load factor of the MC itself (before offlaoding)
and the load factors of switched off SCs. The inclusion of the
resultant load factor of the MC in the feature matrix is also
important in a way because it indicates whether the constraint
in (8) is violated or not. Therefore, the features used by the
MC in order to find Q are the total power consumption of the
network and the total load factor of each BS, such that

X =[P, M, A2, Asp1l- (18)

3) Cost: The cost, or penalty, that we propose is described
as the total power consumption plus a penalty—which is pro-
portional to the number of SCs and the MC load—if the load

of the MC is exceeded. We can formally define it as
C =P+ sok), (19)

where £ is a penalty factor, and o € {0, 1} indicates whether
or not the MC is overloaded. The total power consumption of

3Not all entries of A can be selected at every time instant: the only valid
actions are those which render 0 < xq < 2% — 1.

the network, P, is included in (19) in order to demotivate the
agent from taking actions that result in more power consump-
tion, since the primary objective of this work is to minimize
the power consumption of the network through cell-switching.

4) Complexity: Since the problem given in (8) is an
N'P-hard problem,* which does not have any determinis-
tic polynomial-time solution yet, its optimal solution can
be found with an exhaustive search (or brute-force search),
which is quite demanding in terms of computational com-
plexity. Therefore, with the proposed VFA-based solution, we
intend to produce a sub-optimal solution that greatly reduces
the complexity of finding a good operating point by com-
promising on exact optimality. Although the operating point
that the proposed algorithm finds is not guaranteed to be
the optimal point, which exhaustive search guarantees, the
results—discussed in Section V-E—confirm that the proposed
solution follows the optimal solution very closely, especially
after the initial training phase.

In this regard, since there are s SCs which could be switched
off/on in any combination, an exhaustive search approach
would have complexity O(2%), while our proposed approach
only keeps track of 2s actions, and therefore has a complexity
O(s). However, note that our solution does not strictly guar-
antee the constraint in (8). This is important to give the RL
algorithm the chance to explore different actions and learn to
make the right decision. By incorporating o into the cost,
we can influence the RL algorithm not to violate the con-
straint, and thus satisfy the QoS requirements of the users
whilst seeking the best policy regarding energy consumption.

V. PERFORMANCE EVALUATION

The proposed cell switching framework is implemented in
a locally centralized manner at each MC. As a result, the
proposed SARSA with VFA model needs to be trained for
only one MC-SCs configuration and then the trained model is
shared by all other configurations throughout the network. The
simulation parameters are provided in Table I, while Table II
presents the power consumption characteristics of the BSs used
in the simulations. Note that £ is taken as 2 in this work, as
it is more convenient when compared to another selection due
to the fact that the cell-switching problem is formulated as a
binary problem. Thus, £ = 2 guarantees to visit all the states
when the number of iterations is sufficiently large, which may
not be provided by any other selection of &.

A. Data Set

In order to calculate the power consumption through (1),
A is required for each BS. In this regard, to obtain A val-
ues, we use a real call detail records (CDR) data set provided
by Telecom Italia, in which the city of Milan is divided into
10,000 square-shaped grids with a dimension of 235 x 235
meters. Then, within each grid, user call, text message, and
Internet activity levels were recorded with 10-minutes resolu-
tion for a two months period (November and December 2013).

4This can be proved by formulating the problem in terms of Knapsack
problem, which is a well know N P-hard problem [30], however due to the
page limitations, we are unable to demonstrate this here.
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TABLE I
SIMULATION PARAMETERS

Parameter Value
SARSA with VFA

Chance of choosing random action, € 0.8

Learning rate, o 1077

Discount factor, ~ 0.9

Inter-space between consecutive actions, § 2
Min. number of iterations for stopping, jumin 10

Threshold for the feature scaled cost, € 5x 1072
Consecutive iterations for stopping, jrep 10
Maximum number of iterations 100
General
Number of time slots 144
Number of days 1
Number of grids considered for the MC 2
Number of grids considered per SC 1
Bandwidth for the MC 20 MHz
Bandwidth per SC 20 MHz

Even though the data set consists only of unitless activity level
values and there is no information provided regarding the data
processing phase, the activity levels can be interpreted as grid-
wise relative traffic loads, since they represent the volume of
user-mobile network operator interaction at each time slot. In
the data processing phase of this work, first, we combine afore-
mentioned separated activity levels (i.e., call, text message, and
Internet). Then, we randomly pick two grids for the MC and
one grid for each SC. Note that the activity levels at the two
grids selected for the MC are further combined to create a traf-
fic load data. After that, all the activity levels are normalized
together, and the obtained values are treated as traffic loads
for each cell.

Based on the resolution of the data set, the interval between
one switching instance and another is set to 10 minutes in this
work. This is required in order to account for the activation and
deactivation latency of the SCs. Moreover, since the network
traffic is assumed to be static during this period in our simula-
tion, the switching interval is not expected to be long in order
not to negatively impact the performance of the network.

B. Benchmarking

Four different benchmark methods are used for compari-
son purposes, and they will be elaborated individually in the
following paragraphs.

1) Sorting: Inspired by [31], [32], the sorting algorithm is
developed to compare the results of the proposed solution. In
this method, the SCs are sorted in ascending order based on
their load factors, A. Then, they are switched off sequentially
until there is no available capacity left at the MC, and the
rest of the SCs are kept ON. Given the power consumption
profile in (1) and the characteristics of different types of BSs
in Table II, the MC consumes more power than the SCs for
the same value of A. As such, it is wiser to switch off a SC
with smaller traffic load in order to save more energy. This
concept lies at the heart of the sorting algorithm, since it aims
at minimizing the energy consumption of the network. On
the other hand, as the SC switching off is performed only
when there is enough capacity at the MC, this method also
guarantees the service of the users after the offloading process.

TABLE II
POWER PROFILES FOR BSs [27]

Power Consumption [W]

BS Type Efficiency  ppopomic Operational ~ Sleep
1 Pr, B 5.
Macro 4.7 20 130 75
RRH 2.8 20 84 56
Micro 2.6 6.3 56 39
Pico 4.0 0.13 6.8 4.3
Femto 8.0 0.05 4.8 2.9

2) All-ON Method: There is no switching implemented in
this method, meaning that all the SCs are always kept ON.
Accordingly, no offloading is needed as well in this case pro-
vided that none of the SCs are switched off at any time.
Therefore, it can be inferred that there is no concern of QoS in
this method, since all the users are served by the BSs (either
MC or SC) that they were associated in the first place.

3) All-OFF Method: In this methods, the SCs are always
kept switched off and their data traffics are offloaded to the
MC. However, this method is performed blindly, meaning that
the data traffic of the SCs are offloaded to the MC regardless
of its available capacity. This means that the users, which are
normally served by SCs, are vulnerable to service disruptions,
since there is no guarantee that they will be served by the MC.
Even if the service is provided by the MC, the QoS would be
reduced in case there are more users than the available capac-
ity, and in that case the MC reduces the available resources
for each user by certain amount in order to keep all the users
served.

4) Exhaustive Search: Exhaustive search is a method that
tries to find the best policy among the set of all possible
switching options consisting of the OFF/ON states of the SCs.
In particular, given the available capacity of the MC as a
constraint, this method searches for the option with the least
energy consumption. Hence, this method guarantees the ser-
vice for each user in the case of offloading, which in turn
prevents the QoS of the users from being violated. Note that
exhaustive search returns the optimum policy, and thus the
objective of any algorithm should be to mimic it as much as
possible.

Conventional RL methods such as Q-learning and SARSA
are not used as benchmarks as they are not able to compute
the value function for all state-action pairs since the number
of state space involved in our work is very large. In addi-
tion, the use of RL with linear VFA have been proven to be
more data and computation efficient compared to deep RL
techniques [25], [33]. Moreover, the way that our proposed
algorithm framework has been carefully designed, linear VFA
is more suitable for solving this problem, as new algorithm
framework design would be required in order to apply deep
RL methods. Hence, deep RL technique is not used as one of
the benchmarks in this work.

C. Performance Metrics

In this section, the metrics, which are used to evaluate
the performance of the proposed solution and the benchmark
methods are presented.
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1) Gain: In this work, we are interested in the percentage
gain on the total energy consumption compared to the all-
ON method. It is calculated as G(%) = (Eon — Ez)/Eon,
where E,n and Ej; are the total energy consumption in joules
with all-ON method and with one of the other methods, such
that B, € {Eom FEes, Esort, Evfa} where Eof, Fes, Esort,
and FE,, are the total energy consumption in joules with all-
OFF, exhaustive search, sorting, and the proposed VFA-based
methods, respectively.

2) Power Consumption: Power consumption in watts dur-
ing the simulation time are obtained for each method. This is
a beneficial metric to evaluate the performance of the meth-
ods, since it reflects the variations in power consumption for
different times of a day. Moreover, given that the gain is cal-
culated on the energy consumption by accumulating the power
consumption during the simulations, which can also be inter-
preted as upsampling, the detailed behaviours of the developed
methods are kind of lost. Thus, power consumption is also a
utilitarian metric that paves the way for detailed behavioural
observations.

3) Average Network Throughput: The total required RAN
throughput, T ., is calculated by combining the throughput
required from each cell as follows:

s+1
Tre(t) = Tris (20)
i=1
where T ; is the required throughput from B;, and is calcu-
lated as follows:

Tr,i(t) = Tu,i(t)Nu,i(t)7

where T, ;(t) is the average throughputs for users allocated
by B; and where N, ;(t) is the number of users served by B;
at time .

However, there is one caveat that since the backhaul capac-
ity of the cells is limited by the installed backbone, B;
penalizes the throughput for each user by Y; when the
combined demand of the users exceeds Tpﬂ-, the maximum
installed capacity of B;, such that

Tui(t) = Tui(t) — Ti(t),

21

(22)

where TuJ- () is the average throughput for users allocated by
B; at time ¢ after penalization. This also ensures the condition
in (9).

The throughput penalty, Y;, is calculated as

Tri(t)_Tmi .
Nya(m e >

0, otherwise,

(23)

Next, as explained in Appendix A, normalized throughput
is represented by the load factor in this work, thereby the
provided normalized network throughput is given as follows:

s+1
Trp(t) =Y w(=Xi(t) + DA(1) + u(Xi(t) = 1), (24)
=1

where TT,p(t) is the normalized throughput of the network
and u(-) is the unit step function.

D. Scenarios

The developed benchmark methods and the proposed VFA-
based switching algorithm are tested in two different scenarios,
namely Scenario A and Scenario B.

1) Scenario A: This is a simplistic scenario, where there
is only one type of SC (micro) in the network. Moreover, the
sleep mode power consumption for the SCs are assumed to be
zero, such that the SCs are not contributing to the total power
consumption at all when they are off.

2) Scenario B: This is a complex scenario, comprising four
different types of SCs, e.g., micro, remote radio head (RRH),
pico, and femto, are deployed in the network, and the num-
ber of SCs are distributed in these four types almost® equally.
Moreover, the sleep mode power consumption is not assumed
to be zero in this scenario, instead the values in Table II
are used. Therefore, this scenario is more realistic than
Scenario A, as in real networks, there are heterogeneous com-
binations of SCs and the sleep mode power consumption is
not zero.

E. Results

We first analysed the convergence of the developed algo-
rithm, as the convergence plays an important role in deter-
mining the performance and stability of the algorithm. For
this, we plotted the penalty calculated through (19) for each
iteration and episode, followed by averaging them out over
the episodes. We observed that, for any network size (e.g.,
any value of s) that is considered during the simulations, the
developed algorithm manages to converge after around 20 iter-
ations (note that the maximum number of iterations allowed is
100). However, we couldn’t include such graph in this article
due to the page limitations.

As explained in Section V-C1, Fig. 2 demonstrates how
much gain in energy consumption is obtained when all-OFF,
exhaustive search, sorting, and proposed VFA-based methods
are compared to all-ON method. Fig. 2(a) shows the gain
results for Scenario A, while the results for Scenario B are
presented in Fig. 2(b). Note that since the exhaustive search
method is computationally demanding with O(2%), where it
doubles the elapsed time when s is incremented by 1, it is
allowed to run only until s = 15 for both Fig. 2(a) and
Fig. 2(b). The idea in Fig. 2 is that we first compare the per-
formances of all-OFF, sorting, and the proposed method to the
exhaustive search, which is optimum, in a smaller network due
to the time requirement for exhaustive search when s increases.
Then, once we have an idea about the performance of the
methods compared to the optimum, we terminate the exhaus-
tive search and keep the other methods running in order to
observe further behaviours in larger scale networks.

It can be seen in Fig. 2(a) that the sorting method is working
exactly same with the exhaustive search, while the proposed
method follows them quite closely. These outcomes can lead
to a conclusion that the proposed method is outperformed by
a more simpler and straightforward algorithm, and one can
question the validity of the proposed method. However, when

51t is not always possible to distribute them equally, since the amount of
SCs are sometimes not divisible by four.
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Fig. 2. Percentage gain performances compared to the all-on method for
Scenario A and Scenario B.

Fig. 2(a) is reconsidered together with Fig. 2(b), it can be
inferred that the better performance of the sorting algorithm
is not generalized. While it gives promising results in simplis-
tic Scenario A, it starts under-performing in the complex and
realistic Scenario B. On the other hand, given that the proposed
VFA-based method gives very close results to the exhaus-
tive search in both scenarios, it seems quite immune to the
changes in the scenario with generalized good performance.
In other words, although there might be simpler alternatives
to the proposed method in simple scenarios, which are mostly
unrealistic, the proposed method takes the advantage of being
capable of generalization and works properly even when the
scenario becomes more complicated and realistic owing to the
nature of the developed VFA-based RL algorithm. This, in
turn, makes the proposed method work properly regardless of
the conditions, while the sorting method, for example, relies
on the simplicity of the scenario, making it impractical for
realistic scenarios, where the assumptions in Scenario A are
no more valid.

Another point about Fig. 2 is that the gain decreases sig-
nificantly when the scenario is switched from A to B. For the
proposed method, for instance, the gain drops from around
52% to 17% when s = 30, which yields around 67% reduction.
This is mainly due to more heterogeneity of Scenario B, where
there are four types of SCs. Scenario A includes only micro
cell, which is the second most energy consuming SC after
RRH according to Table II, making the SCs in Scenario A con-
sume a considerable amount of energy. For Scenario B, on the
other hand, there are four types of SCs with distinctive power
profiles, and thus total power consumption decreases because
of the inclusion of pico and femto cells, which consume small

amount of energy, in the network. Besides, while SCs still
consume energy when they are switched off in Scenario B,
the sleep mode power consumption is assumed to be zero
for Scenario A, making it consume overall less energy when
switching is performed.

The last point that is worthy to discuss about the findings in
Fig. 2 is related to the all-OFF method. While it outperforms
all the other method in terms of gain in Fig. 2(a), it becomes
the worst-performing method in Fig. 2(b). The reason behind
this phenomenon is again the characteristic diversity between
Scenarios A and B. There is only micro cell, which is demand-
ing in energy, in Scenario A, and thus switching off SCs almost
always result in less energy consumption, whereas, due to the
heterogeneity of Scenario B, the optimal policies for switching
off are different from each other for each type of SC. In par-
ticular, (10) holds for larger A;, j>1 values when the type of
SC goes from femto cell to RRH. This means that the number
of cases, where switching off is profitable, is larger for micro
cell than that of femto and/or pico cells. Therefore, since the
all-OFF method switches off all the available SCs regardless
of their types, the overall process becomes less profitable in
Scenario B when compared to Scenario A.

Fig. 3 reveals the power consumption behaviours of the
developed methods for various numbers of SCs included in
the network. Similar to the results in Fig. 2, for consistency,
we present the power consumption results for integer multi-
ples of four, where the types of SCs are distributed equally.
Hence, s value is altered as s = 4, s = 12, and s = 28,
respectively. Note that Fig. 3(c) does not include the exhaus-
tive search method, since it is allowed to run until s = 15 for
computational complexity reasons.

Fig. 3(a) demonstrates the power consumption performance
of the developed methods when s = 4. The findings sug-
gest that the proposed VFA-based method manages to mimic
the exhaustive search almost perfectly apart from the initial
learning phase. Given the computational complexities for the
exhaustive search and the proposed method are O(2°) and
O(s), respectively, these results confirm that the proposed
method performs quite well (i.e., producing near-optimal
results) with drastic decrease in computational complexity.

It is also worth discussing the learning phase of VFA algo-
rithm, which is common in all the three cases of s. This
behavior is expected as we propose an online learning frame-
work, where VFA-based cell switching method is deployed
without any prior knowledge, and thus it learns by interacting
with the real environment. In other words, the promising
performance after the initial learning phase is due to the expe-
rience obtained during the training. The slightly worse initial
performance is due the fact that VFA takes more random
actions in the beginning in order to increase the knowledge
about the environment. This process is referred to as explo-
ration. Then, after the exploration, the randomness in the
actions taken decreases with the number of episodes in order
to let the VFA start using the information it received, which
is known as exploitation. One important point here is that
the exploration process in the developed model takes a short
amount of time, making the online implementation feasible,
since longer learning phases would undermine the advantage
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Fig. 3. Average power consumption performances of the developed methods
for various number of SCs.

of the VFA based solutions. The reason behind preferring the
online implementation over the offline one is that the former
case is model-free, where it does not require any prior knowl-
edge, while a full environmental knowledge is needed in the
latter. This, in turn, renders the online implementation more
practical. Therefore, even though the offline implementation is
free from the possible negative impacts of the training process,
it is comparatively less functional in real scenario, where full
prior knowledge is often inaccessible.

Another interesting aspect that can be deduced from
Fig. 3(a) is the behavior of the sorting method. It mirrors the
all-OFF method in the beginning, where the data traffic is
relatively low, whereas it starts following the all-ON method
when the traffic load increases. This is because the sorting
method manages to switch off most (even all) SCs, which is
similar (same) behavior with the all-OFF method, when the
traffic load is lighter, since there is more offloading opportu-
nities in the MC owing to the low traffic patterns. Moreover,
the amount of offloaded data is also comparatively less at these
times. When the traffic volume becomes higher, on the other

hand, since the amount of data to be offloaded and the occu-
pancy of the MC increases simultaneously, the switching off
becomes much harder, which is quite similar to the behavior
of all-ON.

Fig. 3(b) presents the power consumption results when
s = 12. Similar to Fig. 3(a), we observe the sub-optimal results
of VFA during the training phase. However, other than being
short in time, the appreciable thing about this training phase
is that the results that VFA produces are still reasonable even
though it is not optimal. Another interesting observation is
the relative difference between all-ON and all-OFF methods
shrinks compared to the one in Fig. 3(a). Taking into account
the peak points, the relative difference between the all-OFF
method and all-ON method decreases by around 25% when s
increases from 4 to 12.

Two important questions arise from these findings. First,
why does the all-OFF method result in more power consump-
tion than the all-ON method? It is counter-intuitive to observe
such results where switching all the SCs off causes more power
consumption than always keeping all the SCs ON. Moreover,
we observe that all-ON outperforms all-OFF especially when
the traffic loads are higher. The reason behind this is that, as
repeated previously, considering (10) together with Table II,
it is usually non-profitable to switch off SCs when the traffic
load is above some certain threshold, which is different for
each type of SC. Therefore, it is not a rule of thumb that the
switching off is always resulting in less power consumption.
The outcomes in Fig. 2(b), where the all-OFF method gives
negative gains, also confirm this conclusion. Nonetheless, this
is not the only condition that makes the all-ON more favorable
than the all-OFF method in terms of power consumption. It
is also the intensity of the SCs in the network. Since s is not
large enough in both Figs. 3(a) and 3(b), the contribution of
the SCs to the power consumption is comparatively less than
that of the MC, therefore, the overall energy saving resulting
from switching off SCs cannot prevail against the loss caused
by offloading traffic to the MC.

Second, why does the relative difference between the all-
OFF and all-ON methods decay when s rises up from 4 to 12?
The answer for this question is related to the last discussion for
the previous question; since the intensity of the SCs increases
in the network with increasing s, the dominance of the MC in
the total power consumption scales down. This subsequently
renders the gain resulting from switching off more significant,
and thus the all-OFF method starts being more reasonable.
Hence, the number of instances that all-ON outperforms the
all-OFF method also decreases when s is increased from 4 to
12. The results in Fig. 2(b) again supports this conclusion, as
the percentage gain enhances with increasing s.

Fig. 3(c) showcases the power consumption results when
s = 28. It is again worth noting that exhaustive search is
not included this time, since it is run until s = 15, owing
to the computational complexity concerns. Unlike the results
in Figs. 3(a) and 3(b), there is no point in Fig. 3(c), where all-
OFF outperforms all-ON. Similar to the previous discussions
on this topic, the distribution of the total power consumption
among the SCs and the MC is an integral aspect of the per-
formances of the all-ON and all-OFF methods. Given that the
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Fig. 4. Results for normalized network throughput against the number of
SCs. The network throughput is calculated by averaging out the obtained
throughput values at each time slot during the simulation period.

SCs now consume considerable amount of energy due to their
increased number, the gain obtained from switching off the
SCs, which are profitable to switch off according to (10), pre-
vails over the loss incurred by switching off the SCs, which
are non-profitable to switch off.

Another interesting point about the findings in Fig. 3(c) is
that the power consumption for the all-ON method becomes
smoother compared to the results in Figs. 3(a) and 3(b). The
relative peak-to-peak difference, for example, was around 20%
when s = 4, whereas it drops to 6.2% when s increased to 28.
This is again because of the MC losing its dominance in the
total power consumption. While, when fully-loaded, 72.3%
of the power consumption comes from the load dependent
part for the MC, this rate is around 28% on average (min-
imum: femto cell with 8.3%, maximum: RRH with 66.7%)
for the SCs. In other words, the MC consumes more on
the load dependent part, whereas SCs consume more on the
static power. Therefore, for the smaller s values, the load
dependent power consumption is higher as the MC is the
main contributor to the total power consumption, while the
load dependent power consumption becomes relatively less
and the static power gets more significant for higher values
of s.

Fig. 4 shows normalized average network throughput, which
is calculated through (24), for various x values of VFA,
the all-ON and the all-OFF methods. Furthermore, the activ-
ity levels in the data set are assumed to be in Mbps after
the pre-processing detailed in Section V-A. The objective of
demonstrating these results is to highlight the impact of &
value on the performance of the proposed VFA-based switch-
ing algorithm. In addition, the findings also display the cost
of switching off all the SCs without taking into account the
available capacity at the MC. As such, the results suggest
that there is an upper bound for the all-OFF method, since
it only relies on the capacity of the MC, and after normal-
ization, each BS (MC or SC) has a capacity of unity at
maximum. Given that the MC is the only BS that is kept ON,
all-OFF switches off all the SCs and offloads their traffic to
the MC, meaning that it has one unit of capacity available in
the network. Therefore, these results also confirm that having
a blind policy, that is, acting without considering the envi-
ronmental conditions and/or constraints, is not a wise idea,
since it results in the degradation of the QoS of users as

well as being more costly in power consumption on some
occasions, as already proven in Figs. 2(b), 3(a), and 3(b).
The purpose of presenting the results for the all-ON method
is to demonstrate the upper bound that can be achieved in
throughput.

As seen in Fig. 4, we obtained promising results for the
proposed method. It gives quite close results to the all-ON
method, proving a good performance as it is producing sim-
ilar results to the best case. By considering the findings in
Figs. 2, 3, and 4 together, it is easy to deduce that the proposed
VFA-based switching algorithm performs outstandingly well
in terms of both power consumption and the throughput,
since it reduces the power consumption (similar to exhaustive
search) without compromising on the QoS of the users (sim-
ilar to the all-ON method). Provided that exhaustive search
and all-ON are the best methods in terms of power consump-
tion and QoS, respectively, the proposed method combines the
advantages of both methods.

Fig. 4 also showcases the impact of x in (19) on the
performance of the developed VFA model. The results sug-
gest that the throughput performance of the proposed VFA
decreases with decreasing values of x. This is because higher
values of x will result in more cost been incurred for the case
when the demanded capacity exceeds the available capacity
at the MC. As explained in Section V-C, when the demanded
capacity is higher than the available one, the network reduces
the allocated bandwidth for each user in order to accommo-
date the demands of all users. In this regard, the agent refrains
from switching off a SC, whose demanded capacity is larger
than the available one at the MC, which in turn helps to keep
the QoS above the required level. However, for the smaller
values of «, the agent starts following more relaxed poli-
cies on the given constraint, where it takes more actions that
are against the above-mentioned demanded/available capac-
ity criterion. Hence, the obtained throughput starts decreasing
for lower values of x. For the extreme scenario, where
x = 0, then (19) becomes C = P, meaning that the agent
only focuses on the total power consumption and does not
care about the constraint of available capacity at the MC.
Intuitively, the agent would be reducing the total power
consumption as much as possible at the expense of QoS
degradation.

VI. CONCLUSION

In this article we presented a RL-based solution for cell
switching, which is capable of learning the best policy in a
dense HetNet environment in order to save energy and satisfy
the QoS at the same time. We evaluated our solution using
real data from Milan and compared it with various benchmark
methods. The results in terms of power and energy consump-
tion show that the proposed method can perform just as well
as the exhaustive search method, which produces the optimum
solutions, regardless of the complexity and size of the given
scenario. Moreover, the proposed method resulted in much
fewer computations than that of exhaustive search, meaning
that it is a scalable method. Furthermore, network through-
put was also measured, and we observed that the proposed
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method gave similar results with the all-ON method, which
is the best in terms of the QoS given that it does not include
any offloading. Therefore, the proposed VFA-based method
resulted in a significant reduction in the network’s energy con-
sumption without much compromise on the QoS, thus making
it suitable for practical application.

APPENDIX A
NORMALIZED NETWORK THROUGHPUT

After penalization, the provided throughput for B; at time ¢

can be expressed as the product of the average user throughput
and the number of users it serves, as

Tp,i(t) = Tu,i(t)Nu,i' (25)
After that, using (22) into (25), it is obtained that
Tpi(t) = (Ty,i(t) — Ti) Ny (26)

When (23) is used in (26), T}, ;(t) becomes

T T = Ty Toa®) > T
Tp,i(t) = Tu,i(t)Nu,i {0’ otherwise,
(27)
after simplifying.
Then, using (21), (28) can be rewritten as
] _ Tm7i7 Tr,i(t) > vai
Tp,i(t) = { T;,i(t), otherwise. @8

Next, the throughput can be normalized with respect to the
installed capacity, as

Tr,i(t)

) (29)
Tm,i

Ai(t) =

where A;(t) is the load factor of B; at time ¢, but as mentioned
earlier, it is also treated as the normalized throughput of B; at
time ¢. Therefore, dividing (28) and using (29), the normalized
throughput can be obtained as

_ Lo () >1
Tpi(t) = {/\i(t), 0<Ai(t) < 1,

Then, using the unit step function, (30) can be rewritten as

3D

(30)

Tpi(t) = u(=Ai(t) + DAs(t) + u(Ai(t) - 1).

Lastly, in order to calculate the total provided network
throughput, a summation is performed over all BSs, arriving
at (24).

APPENDIX B
PROOF OF THEOREM 1

Using (2), the difference in power consumption AP when
considering changing ¢; to 1 can be expressed as

s+1 s+1
AP=Py—Pi1=3 Piy—» P, (32)
1=1 1=1

where P; is the total power consumption of the network at
time ¢ and P; ; is the power consumption of B; at time t.

Next, (32) can be expanded as

s+1
AP = Pl,t + Pj7t + Z Pi,t
i=2,i]
s+1
| Pig1+ P+ Z P (33)
i=2,i4j

Assuming Pigrq i1y Pig11,3,4—1, meaning all other
SCs are kept at their states, (33) becomes
AP=Pi1+Pjy—Pri1—Pj1. (34)
Next, using (1) and replacing (6) and (7) into (34) yields

AP = Po1+m(ALe—1— djAj¢)Pra+ Poj

+ 17, tPrj — Po1 —mAii—1Pra— Py, (35)
which can be further simplified to
AP = Poj +nAj e Prj —mojNj ¢ Pr1— Psj. (36)
From (36), it is easy to see that AP < 0 when
Poj+njAj e Prj < ojmAj+Pr1+ Psj, (37

Note that, in order to isolate )\j,t in (37), we must divide
both sides by ¢;n1 Pt 1 —n;Pr , and thus (10) is only valid
for ¢;m Pr1 — n; Prj > 0. Lastly, we remove the index ¢
from (37) to make it general and solve for A;, yielding (10).
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