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Abstract—The widespread use of sensor devices in IoT
networks imposes a significant burden on energy consump-
tion at the network’s edge. To address energy concerns, a
prompt anomaly detection strategy is required on demand for
troubleshooting resource-constrained IoT devices. It enables
devices to adapt their configuration according to the dynamic
signal quality and transmission settings. However, obtaining
accurate energy data from IoT nodes without external devices
is unfeasible.

This paper proposes a framework for energy anomaly
detection of IoT nodes using data transmission analysis. We use
a public dataset that contains peer-to-peer IoT communication
energy and link quality data. Our framework first utilizes lin-
ear regression to analyze and identify the dominant features of
data communication for IoT transceivers. Later, a deep neural
network modifies the gradient flow to focus on the dominant
features. This modification improves the detection accuracy of
anomalies by minimizing the associated reconstruction error.
Finally, the energy stabilization feedback provides nodes with
insight to change their transmission configuration for future
communication.

The experimental results show that the proposed approach
outperforms other unsupervised models in anomalous energy
detection. It also proves that redesigning the conventional loss
function by enhancing the impact of our dominant features can
dramatically improve the reliability of the anomaly detection
method.

Index Terms—Transmission protocol, Anomaly detection,
Edge networks, Unsupervised learning, IoT, Energy consump-
tion, Power consumption, Link quality, Deep learning, Low
power, Wireless sensor networks, Smart city

I. INTRODUCTION

AN Internet of Things (IoT) scenario on edge is defined
through a set of wireless sensor networks connect-

ing a collection of widely distributed monitoring sensor
devices (SD) [1]. This scheme would collect and send
the desired data to the edge servers for further processing
and decision-making [2]. Such tiny sensor devices feature
a severe constraint on the hardware resource, such as
stripped RAM size, low-rank CPU/GPU capability, and lim-
ited energy harvesting [3]. However, they are well-adopted
in autonomous systems for steady data collection, stable
transmission [4], continuous diagnosis [5], and real-time
analysis [6]. Energy consumption is counted as one of the
most challenging constraints for SD service provisioning.
Energy over-consumption occurs in cases like amplifying
the transmission power for fading shadowing avoidance.

Similarly, when SDs are located in remote areas and distant
from gateways, their vulnerability to increased path loss
becomes more pronounced, particularly in terms of energy
efficiency. Hence, energy optimization techniques are re-
quired to increase the battery lifetime of SDs and maintain
high-efficiency levels [7].

Most software-layer energy optimization models perform
at the levels of systems, architecture, or circuits [8] [9].
The outcome of these energy minimization approaches is
categorized into multiple groups for embedded computing
devices [10]. The first is called Dynamic Power Management
(DPM) [11]. DPM temporarily halts any idle element of the
system to avoid wasting energy, like processing cores. In the
second group, Dynamic Voltage-Frequency Scaling (DVFS)
permits CPUs to switch between different frequency-voltage
levels to scale down energy consumption [12]. To save a
significant amount of energy expended on generic tasks
on the third group, CPUs are customized to meet the re-
quirements of the tasks on a multiprocessor system-on-chip
[13]. The same customization happens for the fourth group
but for the cache-based memory access [14]. By mapping
tasks to different processors, the fifth group performs load
balancing across all the cores which results in the utilization
enhancement of processing elements on a multiprocessor
system-on-chip [15].

The mismanagement of energy consumption can result in
over-heat generation. The non-uniform heat generation leads
to spatial temperature gradients over the whole chip. The
more the load on a system caused by concurrent processing,
the higher temporal heat generation/dissipation occurs. This
may impose the temporal thermal gradients on a small area
on the chip. The spatial temperature gradients and temporal
thermal gradients besides the thermal cycles are three main
factors that degrade the performance and the efficiency of
a system during its lifetime. Ignoring overheating in edge
nodes may also cause significant performance, durability,
and reliability loss. For example, raising the temperature by
ten to twenty degrees in metallic materials would shorten
the useful life of the components by sixteen times [16].

However, applying the discussed solutions on a peer-to-
peer network is not highly effective in reducing energy
consumption for SDs and alleviating the consequences.
These approaches do not consider transmission energy con-
sumption as the primary cause of battery depletion for SDs
in a wireless sensor network [17]. Although sensor devices0000–0000/00$00.00 © 2021 IEEE
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are typically designed as a single processor board, most
discussed approaches are devised for multiprocessor system-
on-chips. For example, over-heat generation is much more
prone to happen in multiprocessors than single processor
SDs as the former suffers from non-homogeneous heat
dissipation in its processing elements.

SDs can be classified into normal, sink, and gateway
nodes. One of the main advantages of these resource-
constrained devices located in hostile environments [18] is
forwarding the collected data to the gateway nodes [19]
for further analysis and decision-making (DM) [20]. The
nodes with a higher rate of forwarding DM data are more
susceptible to energy failure. By collecting energy and other
transmission data (link quality parameters and configuration
settings), an AI-based model can detect anomalies in en-
ergy behavior. As supervised learning solutions require data
lebeling for energy over-consumption detection [21], they
are not practically feasible for continuous learning in IoT
domains. Consequently, there is a need to investigate if other
energy-saving approaches (including unsupervised models
and routing protocols) may prolong the survival time of the
whole network reliably [22].

The principal contributions of our study can be summa-
rized as follows.

• Propose a new energy-aware framework for the detec-
tion of energy consumption anomalies that might affect
IoT nodes’ lifetime in a wireless sensor network. This
framework collects peer-to-peer communication energy
and link quality data and uses a deep-learning approach
to detect the abnormal energy behavior of the SDs;

• Propose a learning solution for anomaly detection
based on an unsupervised algorithm. We design a new
loss function for the conventional variational autoen-
coder by analyzing the feature importance of the data
using a linear regression model;

• Evaluate the proposed approach by using a public
dataset. Our results show that our approach achieves
high-performance metrics and less intrusive execution
time compared to other alternatives;

• Implement the proposed approach with other baseline
clustering algorithms and unsupervised deep-learning
models, including multi-layer VAEs, to make a com-
parison between their effectiveness and that of our
proposed solution.

This paper is organized as follows. In the following section,
we introduce energy-saving approaches at the network level.
The problem statement and research question are presented
in Section III. Data and theoretical analysis are provided in
Section IV. The methodology and the details of the energy-
aware framework are explained in Section V. The results
of the experiments are described in Section VI. Finally,
conclusions are drawn in Section VII.

II. BACKGROUND AND RELATED WORKS

Minimizing energy footprint can be performed at the
node and cloud levels. At the node level, depending on

the communication scenario, such as the location of nodes
and the signal quality, data transmission is the primary
cause of energy consumption of an IoT node in wireless
sensor networks [23]. At the cloud level, data centers as
powerful processing units are the decisive elements in the
cloud computing domain. They host several power sup-
ply blocks, control systems, data communication, storage,
and cooling systems, in addition to security components.
Evaluating energy consumption in such complex systems is
challenging as it requires a deep investigation of various
connected elements [24]. We present the above-mentioned
energy-saving approaches at the node and cloud levels in
the following sections.

A. Node-based solutions

For IoT sensor nodes, extensive resource exhaustion oc-
curs in transmit (TX) and receive (RX) states [25]. Several
solutions are offered to remedy the high energy consumption
rate and increase the life expectancy for sensor nodes in
an IoT scenario. Without working on reliable energy-saving
strategies for IoT nodes, a considerable strain will be put on
the energy harvesting sources to provide sufficient supply
for operational activities. There are four primary categories
for network-based energy-saving approaches on IoT nodes:
sleep/wake-up protocols, radio optimization, energy-efficient
routing, and data reduction [26]. As we focus on dynamic
link quality and transmission settings in this work, the first
two approaches are investigated here to represent the role of
protocols in the transmission energy consumption of a node.

1) Radio Optimization: Radio optimization is a set of
approaches applied to a radio module as the most energy-
hungry element in a sensor network to optimize the re-
quired energy for data communication. This type of radio
optimization manages the energy consumption regime by
manipulating the radio parameters. To this end, several
optimization techniques for power transmission, modulation,
and antenna direction are suggested. Moreover, a coopera-
tive communication strategy and cognitive radio approach
deliver substantial improvement to suppress the appetite
for the remained energy in wireless sensor communication
[27]. The cognitive radio, a prominent strategy against en-
ergy over-consumption in retransmissions (caused by packet
loss), enables a transceiver to distinguish and avoid the
occupied channels and access the vacant channels for data
communication. Based on channel states, IoT nodes can
intelligently pick a proper channel in the wireless spectrum
and accordingly regulate the TX/RX parameters [28]. By
comparing the cognitive-radio-enabled sensor networks with
the classic ones, researchers in [29] indicated a 13% im-
provement in the network’s lifespan. In cooperative commu-
nication strategies, a virtual multi-antenna array is achieved
by using multiple single-antenna nodes and sharing antennas
with them, which results in a remarkable enhancement of
the received signal strength (RSS) [30]. Evaluating these
strategies shows that a large amount of energy could be
saved for contributors in a wireless sensor network. This
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regime designates a set of nodes as relays and uses them to
distribute the communication load by reducing the distance
between IoT nodes and the gateway. Hence, the required
energy for data collection through the gateway would be cut
significantly, and the lifetime of the sensor network would
be extended.

Selecting proper antennas affects the energy performance
of sensor networks significantly. For example, replacing
an omnidirectional with a directional antenna limits the
unwanted interference caused by retransmissions [31]. The
considerably enhanced energy comes from the fact that if a
transmission is done toward a specific direction, the neigh-
bor communications could also be accomplished without
interfering with others [32]. Although the advantages of
removing omnidirectional antennas have been demonstrated,
there are many practical difficulties in direction adjustment
and identifying proper parameters for directional antennas.
One of the solutions for the radio modulation parameter
selection could be the modulation optimization strategy that
contributes to energy minimization [33] [34]. By carefully
setting the modulation parameters in a wireless sensor
network, a balanced compromise between the transmission
power and the inter-node distance can be devised to regulate
an appropriate circuit/transmission power consumption. In
radio communications, the transmission power is managed
using the Dynamic/Transmit Power Control (DPC/TPC)
mechanism [35]. While maintaining the necessary link qual-
ity parameters, such as the Received Signal Strength Indica-
tor (RSSI) and Link Quality Indicator (LQI), DPC reduces
the power of a radio transmitter. By avoiding interference, it
results in network life span extension as well [36]. However,
applying radio optimization techniques such as adaptive
power adjustment at a high rate makes communications
vulnerable to packet loss.

2) Sleep/Wake-Up Protocols: A practical solution for
prolonging the life span of event-driven wireless sensor
networks is to change the behavioral pattern of IoT nodes
for data communication with the edge. The idea behind
behavioral tailoring in event-driven networks is to intermit-
tently let the IoT nodes switch to sleep/awake mode. While
an event is scheduled, the nodes would be in the awake
state (radio on) just before data communication is initiated,
and they would be switched back to sleep mode (radio off)
as soon as the data stops flowing (no-event availability).
Offering such a mechanism effectively contributes to en-
ergy footprint optimization in a resource-constrained edge
network. For establishing a connection in this scenario, the
sender and receiver should acquire a priori knowledge about
the sleep-wake schedule of the neighbors (synchronization
step). Given that information, the endpoint switches to
the active mode right before the pre-determined moment
and is subsequently involved in the data communication.
To conduct the synchronization step, a topology control
protocol can be used while adjusting the communication
duty cycle between individual IoT nodes. The duty cycling
technique offers an energy efficiency scheme by enabling

nodes to switch between sleep and awake modes at regular
intervals [37]. As the amount of consumed energy in awake
mode gets double compared to that of sleep mode [38], a
tuned duty cycle makes the sleep period extended while
keeping the idle listening mode remarkably limited [39].
Duty cycling turns the radio on by detecting the preamble
of a low-level carrier. Optimizing the energy consumption
could be carried on through the topology control techniques
(connectivity- and location-oriented) [40] [41], as they mini-
mize the number of essential IoT nodes to meet the network
connectivity and coverage requirements. The connectivity-
oriented protocols for wireless sensor networks toggle IoT
nodes between ON and OFF states dynamically to verify
inclusive coverage and guarantee connectivity among nodes.
On the other hand, according to the physical location of the
IoT nodes, location-oriented protocols decide which nodes
are qualified to be put in ON mode and when this transition
takes place in a wireless sensor network to ensure network
connectivity and coverage. While this approach reduces
energy consumption considerably, it suffers from a critical
weakness. Real-time data collection cannot be performed
using this technique as it requires a high-duty cycle of an IoT
node and, subsequently, results in high energy consumption.

B. Cloud-based solutions

Most proposed approaches addressing high energy con-
sumption are grouped into idle server shutdown and work-
load consolidation. However, machine-learning-based so-
lutions have recently seen an upward trend in energy
optimization. M. Demirci in [42] presented the produced
heat, virtual machine placement, task scheduling, and power
distribution as the main contributors to power consumption,
while the environmental control overhead and processing
overload control are considered side effects. However, re-
source prediction without a priori knowledge of allocated
tasks to the data centers usually comes with a large error
margin. Thus, an efficient predictive model can significantly
enhance energy consumption by providing an optimized
allocation approach. DejaVu [43] is presented as a cloud-
based resource management system. The authors made a
classification for load consolidation through a supervised
machine-learning approach. As a result, the system started to
be trained by analyzing the allocation process for varying
workloads. After this step, DejaVu has already learned to
classify any unseen workload in two ways. It checks if the
load is similar to any of those previously seen or not. If
so, the exact allocation applies. Otherwise, it is treated as
a new sample to be learned. As another load forecasting
strategy, a neural-network-oriented predictor is employed in
[44] to forecast how large the cloud will be loaded in the
future. According to that, the unnecessary running machines
would be switched off to prolong the total uptime of the
system. Such green scheduling solutions can keep the same
productivity with fewer servers while consuming less than
60% of energy compared to the standard scenario. Other
works [45] anticipate running tasks’ future energy footprint

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2023.3335342

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

TABLE I: Relevant energy saving mechanisms in IoT domain

Approaches Methodology Strategy Articles

Energy Saving Mechanisms

Node based
Radio Optimization

Cognitive Radio [27], [28], [29]
Cooperative Communication [27], [30]
Directional Antenna [31], [32]
Modulation Optimization [33], [34]
Transmission Power Control [35], [36]

Sleep/Wake-Up Protocols Duty Cycling [37], [39]
Topology Control [40], [41]

Cloud based Node Sleeping Unsupervised Learning [46]
Supervised Learning [43], [58], [59], [60], [61]

and service level agreement metrics like response time using
supervised machine learning. The insightful feedback pro-
vided by such estimation helps the maintenance team devise
energy-efficient task scheduling for high-demanding data
centers. Applying unsupervised machine learning (ML) [46]
could estimate the required resources by virtual machines.
By evaluating the resource estimation, this approach reduces
the consumed energy in data centers by turning unnecessary
machines into sleep mode. A centralized approach in [47] is
used for resource allocation using Q-learning in Heteroge-
neous cloud radio access networks. Despite a considerable
energy budget saving by this framework, their analysis
reports that the interference mitigation is met and the quality
of service is acceptably preserved among users. Though
the data analytics approaches discussed so far are related
only to data centers, leveraging machine learning decision-
making to resource-constrained edge devices is also a high-
demanding trend. Due to the limited hardware/software
capabilities of edge devices for IoT applications, mapping
large-scale ML algorithms is not practical. However, an
energy-efficient in-memory computing kernel is proposed
for linear classification [48]. They use a split-data-aware
mechanism to adjust voltage, process, and temperature
changes. This results in an admissible balance between
energy efficiency and accuracy features. A summary of the
discussed energy-saving mechanisms is presented in Table
I.
Most introduced energy over-consumption detection ap-
proaches use external devices such as smart plugs [49] [50]
[51] or are designed for smart buildings rather than com-
puting devices [52] [53] [54]. Some other strategies follow
general-purpose models that do not meet the constraints for
edge nodes or use dynamic energy and thermal models with
high overhead [55] [56] [57]. Edge-based energy modelings
are mostly application-specific and may not necessarily
target the overall energy consumption of the edge node. In
some others, the energy requirements are known in advance
based on contextual information such as location, time,
and device capabilities. In others, the energy-controlling
regime will mainly be deployed unacceptably late. Through
our work, we target the limitations of the existing energy
anomaly detection models to devise a non-intrusive and
affordable mechanism to reduce the energy footprint of an
edge network.

III. PROBLEM STATEMENT

A pattern in collected data belongs to an anomaly category
if it does not conform to the defined expected behavior
compared to other experiments [62]. In practice, an extensive
range of anomalies may affect the energy efficiency of
a wireless sensor network or even expose the IoT nodes
to complete failure. Early anomaly detection strategies for
IoT nodes are enabled by either internal or external data
collection. Internal data collection consists of continuous
extraction of granular tracing data [63] [64] [65] [66] out of
IoT nodes along with gauged energy consumption so that
abnormal energy patterns can be identified and avoided in
future scenarios. On the other hand, external data collection
consists of monitoring the data communication among edge
elements.

Broadly speaking, detected anomalies can be categorized
into two groups: point and contextual anomalies [67]. The
former discusses a rare individual experiment that com-
pletely diverges from the energy of the majority of other
observations. An example of this type of generated anomaly
is a temporary sensor glitch that was raised from a bug in
running software. On the other hand, contextual anomalies
deal with a set of improper observations that occur in a
particular time window, considering that their values do not
reveal their nature of abnormal behavior at first glance.
A possible verification process is to detect inappropriate
patterns by comparing and correlating the patterns of data
in time-related periods (day hours vs. night hours, etc.) for
a long run [68].

It is worth mentioning that there are also cases in which
a node works in an underconsumption state of its energy.
Although we believe that this scenario could also be an
anomaly, we decided to focus only on the overconsumption
of energy to delimit the scope of our research in this paper.
We believe that IoT nodes and in general sensor devices
are designed to spend most of their lifetime in a standby or
sleep mode for an unknown time period without intending
to start any communication with other elements. Hence,
they often do not spend energy on data transmission. Unlike
obtaining a clear threshold for overconsumption, there is no
valid minimum threshold for underconsumption in WSN as
explained. Accordingly, if an IoT node consumes energy
much less than others, there is no clear threshold-based
strategy to detect an anomaly just through transmission data
analysis. Capturing the anomalies in energy underconsump-
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tion in this case, may require more information regarding
the internal execution trace of the system such as system
call, resource utilization, and timing analysis to unveil
the potential failure/malfunction of software or hardware
components. To this end, our concern in this paper is to
avoid overconsumption and prolong the lifetime of a node
as there are cases in which inaccurate node configuration
may reduce its operational lifetime by a hundred times [69].

IV. DATA DESCRIPTION AND MATHEMATICAL
ANALYSIS

In this work, we use a public dataset1 which contains
peer-to-peer IoT communication energy and link quality
data. The data is collected and used by [70] [71] [72]
to provide autonomous configuration of communication
systems, sustainable modular solutions, and heterogeneous
communication schemes for smart IoT nodes in various
environments. The data collection occurs in a context where
several IoT nodes are distributed around the experimental
environment. IoT nodes with variant communication pro-
tocols for data transmission surround a unique gateway.
Since the nodes are spread randomly around the gateway,
the distance to the gateway varies in line of sight per
node. Using variable transmission power and protocol for
each node mapped in diverse geospatial locations results
in various energy consumption at the transmitter’s side and
different RSS indicators at the gateway. The dataset is
composed of 18448 observations, while each entry includes
nine distinctive features as presented below:

• X position: X coordinate relative to the location of the
gateway (0,0)

• Y position: Y coordinate relative to the location of the
gateway (0,0)

• Scenario: Characteristics of the environment in which
the transmission is carried out (i.e., indoors and out-
doors)

• Distance: The distance in meters within which the
gateway can be reached in line of sight

• Obstacles: The number of interfering obstacles placed
between an IoT node and the gateway in line of sight

• Protocol: The transmission protocol used by each IoT
node

• Power: The transmission power used by an IoT node
• Energy: The energy used by an IoT node to carry out

the transmission
• RSSI: The received signal strength indicator at the

gateway
Although in this framework all the connections are estab-
lished with only one gateway, it could be easily extended
to an actual scenario with multiple gateways. In that case,
for each individual transmission initiated between a certain
node and the counterpart gateway, our proposed framework
can apply diagnostic troubleshooting actions separately.

1https://www.kaggle.com/datasets/andregloria/
p2p-iot-communication-energy-and-link-quality.

A. Feature Correlation

To display a clear picture of co-linearity between different
features of observations, a correlation matrix heatmap is
depicted in Fig. 1. Each cell in this matrix contains the
correlation coefficient. Blue reflects positive, and red shows
a negative correlation. The darker the color, the larger the
correlation coefficient magnitude. Targeting Energy, the two
most correlated features are Protocol and Power. In addition
to the practical correlation investigation done by the covari-
ance matrix, a study on theoretical correlation dependency
is also required to find how transmission-oriented features,
including Protocol, Power, and RSSI, affect the Energy
consumption of IoT nodes.
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Fig. 1: Covariance matrix

B. Mathematical Analysis

In this part, a mathematical energy analysis for our model
is provided to justify investigating the possible role of
transmission parameters in energy consumption. Here, three
terms are introduced during a machine cycle to represent
the amount of time spent on each machine state. First, the
amount of time for an IoT node in the awake state with the
radio on is defined as Timeactive. Besides that, the period just
before initializing data communication is called Timesleep
in which the radio turns off. The overall machine cycle
(TimeTotal) is hinged on the Timeactive in conjunction with
Timesleep in a wireless sensor network [73].

TimeTotal = Timeactive + Timesleep (1)

Fig. 2 depicts a wireless sensor network on the edge side.
For a machine cycle, the overall energy consumption for
data communication in a wireless sensor network consists
of Energyactive and Energysleep. The first part of EnergyTotal
is estimated based on the used energy for data transmission,
reception, and task processing on the micro-controller unit
(MCU) in the period of Timeactive. The second part is esti-
mated by the amount of energy consumed by all operating
units like the sensors, MCU, and transceivers while the IoT
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Fig. 2: IoT nodes communicating with the gateway at the
edge

node is in sleep mode during Timesleep. The parameters in
Equations 1 and 2 are summarized in Table II.

EnergyTotal = Eactive︸ ︷︷ ︸
Esensor ON︸ ︷︷ ︸
Psensor ON

×Tsensor ON

+ Emicro ON︸ ︷︷ ︸
[(Pmicro+PRX)×TRX]

+[(Pmicro+PTX)×TTX]

+ Esleep︸ ︷︷ ︸
Psleep×Timesleep

(2)

In general, the signal broadcasted by the source is af-
fected by multiple environmental factors associated with
the geospatial information of the transmission’s location.
For example, RSSI indicates the estimated level of a radio
signal power as it is delivered to the receiver endpoint.
Since the T-R pathway might comprise multiple obstacles
in between, the path loss behavior roughly follows the
log-normal shadowing rather than deterministic modelings
such as the ground reflection (Two-Ray) or log-distance
approaches [74]. Besides, the signal power behavior does
not conform with the log-distance path loss model along the
T-R range. Consequently, considering the random variations
in path loss for IoT nodes in any T-R range, the log-normal
shadowing in Equation 3 estimates the RSSI while avoiding
the symmetric path loss values [75].

RSSI = PTX − PLd︸ ︷︷ ︸
PLd0

+10η log10

(
d
d0

)
+Xσ

, (3)

Where, PLd stands for a reference path loss in the range
of random d meters from the transmitter, η is the path loss
rate at which the RSSI drops with the distance d. Xσ in
this equation defines the X ∼ N (µ, σ2) with zero mean
(µ = 0) and standard deviation of σ.

The effect of transmission power on the communication
range and the energy consumption of IoT nodes are thor-
oughly investigated [76] and must be adjusted based on
geospatial features and the IoT node attributes. However,
the correlation with the communication link is not linear, as

TABLE II: Parameters in energy consumption modelling

Parameter Description

EnergyTotal The overall energy consumption for
communicating to the sensor through the
transmitter during one machine cycle

Eactive The energy utilization for the period of the
active mode

Esleep The energy consumption during the
sleeping mode by modules such as
micro-controllers, transceivers, and sensors

Esensor ON The energy consumed by the sensor
during the active mode

Emicro ON The energy consumed by the
micro-controller while processing the data

Psleep The power utilization for the period of
sleeping mode

Psensor ON The power consumed by the sensor during
the active mode

Pmicro The power consumed by the
micro-controller during the active mode

PRX The power consumption during
receiving mode

PTX The power consumption during
transmission mode

Tsensor ON The period in which a sensor is in active
mode

TimeTotal The total time comprises of Timeactive
and Timesleep

Timeactive The amount of time for an IoT node in
the awake state with the radio on

Timesleep The period just before data communication
initiation in which the radio is off

multiple nodes transmitting at full power can generate inter-
ference in the network [77]. This shows that it is possible to
reduce the energy consumption of the device and improve
the network reliability by adjusting the transmission power
of each end node. Equation 2 shows the strong dependency
between the total energy consumption of an IoT node in a
different set of operating modes and the associated power
consumption. On the other hand, there is a strong association
between the power consumed for establishing a transmission
on the transmitter side and the received signal strength on
the receiver part based on Equation 3. In this equation, the η
parameter is highly sensitive to the propagation environment
and estimated by a larger value for a scenario with a higher
number of obstacles between a transmitter and a receiver.
The RSSI and the power of the received signal contain other
crucial communication information, such as the transmission
range between IoT nodes in wireless sensor networks [78].

Consequently, all features in the dataset but Protocol are
theoretically correlated with the energy consumption of an
IoT node. This article aims to validate how effective other
transmission parameters, such as Protocol, are against the
energy modeling of IoT nodes in wireless sensor networks.

As illustrated in Fig. 1 and excluding the Energy feature,
there is only a relatively high negative correlation between
RSSI-Distance and a high positive correlation between
Distance-X and Distance-Scenario among all possible cases.
There is also a minimum correlation between Protocol and
all other features. While enhancing the decision-making
process, such a low correlation avoids providing similar
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results and increasing the execution time [73].

V. METHODOLOGY

In this section, we explain our proposed machine learning-
based approach for energy anomaly detection at the edge.
First, we define what an anomaly is in our scenario and
how a sample can disrupt a predictable pattern in the
data. Next, we discuss two deep unsupervised models for
energy anomaly detection and propose a deep learning-based
model as a novel specialized approach to this problem. In
this section, we propose an energy-aware framework for
a point-to-point (P2P) scenario to design an energy-saving
framework at the edge of an energy-hungry wireless sensor
network (Fig. 3). The solution is based on a data analytic
approach capable of detecting the over-energy-consumed
IoT nodes during their transmission to the edge servers using
various communication configurations. The decision-making
process analyzes the observations based on the geographical
location, environmental conditions, communication param-
eters, and link quality data. To evaluate the performance
of each connection using different protocols, we study a
public P2P dataset containing IoT communication energy
and link quality data. Its contributors developed a script
and implemented it on two ESP32 system-on-chip micro-
controllers to emulate two wireless sensor endpoints. The
dataset includes the X-Y coordinates of nodes obtained
through GPS connection relative to the coordinate of the
edge gateway as set to (0,0). To collect the RSSI value,
multiple transmissions are investigated under various states,
such as the position of nodes, the possibility of having
indoor/outdoor scenarios, different node-gateway distances,
and the number of intervening obstacles in between. By
recording the communication parameters, such as transmis-
sion power consumption, and the RSSI of the signal, an
array of data is created for every established link to the edge

TABLE III: Protocol datasheet

Protocol Transmission Power Energy Consumption
(dBm) (mA)

BLE 7 150
RF 20 150
LoRa 23 120
ESP-NOW 1 88
ZigBee 8 40

gateway. Additionally, all of the above-mentioned features
are tested for the following communication protocols in data
transmission: ESPNow, BLE, Radio Frequency 434MHz,
LoRa, and ZigBee.

A. Data Labeling

The dataset used in our study comprises the communi-
cation configuration and energy consumption for P2P IoT
nodes in wireless sensor networks. As the essential part
of excessive energy detection lies in distinguishing normal
and abnormal consumption, binary labeling fits well in this
scenario. Table III describes the transmission power and the
corresponding transmission energy consumption for differ-
ent communication protocols, according to the datasheets.
The power consumption entries in this table are the highest
official values for each certain protocol in the dataset. Thus,
we decided to distinguish normal and abnormal data by
defining the maximum energy value as a threshold for data
labeling. In other words, the anomaly threshold setting is
considered as any energy use of more than 150 mA in
data transmission. Any resultant energy entry provided in
the dataset is designated as an anomaly if it surpasses the
maximum energy consumption of all protocols (150 mA)
according to the datasheets (Table III). To this end, the actual
energy consumption in the dataset for different protocols
is measured and provided using multiple values for all the
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variables, including transmission power. To detect energy
anomalies in this array, we train an autoencoder exclusively
on the normal energy data and later expect it to reconstruct
the whole data while minimizing the reconstruction error.
These observations will be classified as anomalies if the
error exceeds a certain threshold defined by the maximum
energy consumption of all the protocols under the experi-
ment (Table III). It is assumed that anomalies generate much
higher reconstruction errors than normal data.

B. Feature Importance

In training a machine learning model, each feature has a
different importance that can be represented by a score. A
higher score leads to a more significant impact on the model,
while some have minor influences and can be ignored or
removed from a dataset. In this part, to obtain each score, a
basic discrete choice model is used. It is a linear regression
model that is fitted to the dataset. A coefficient’s absolute
value (score) of a feature indicates the impact of that feature
change on the energy consumption of nodes. The mentioned
model is shown in Equation 4, where variables X1 to X8

represent features and Ŷ represents the final output.

Ŷ =

8∑
i=1

CiXi (4)

Algorithm 1 illustrates the entire process of measuring the
contributions of individual input features to the performance
of our learning model.

Algorithm 1 Feature scoring

1: Initialize a linear regression model with random coef-
ficients: Ŷ = F (X1, . . . , X8), where Ŷ represents the
predicted values.

2: Fit all samples (Xi, Yi) to the model to obtain the initial
predicted values: Ŷ (0) = F (X1, . . . , X8).

3: Calculate the residual error vector: ϵ(0) = Y − Ŷ (0),
where ϵ(0) represents the vector of residuals.

4: Set a threshold value for convergence: δ, where δ is a
predefined tolerance.

5: while not converged
(convergence is defined as ∥Y − Ŷ (k)∥ ≤ δ) do

6: Update the model coefficients by fitting the data
again: Ŷ (k+1) = F (X1, . . . , X8).

7: Calculate the updated residual error vector:
ϵ(k+1) = Y − Ŷ (k+1).

8: if ∥Y − Ŷ (k+1)∥ ≤ δ then
9: Stop the process.

10: end if
11: end while
12: Sort all coefficients in descending order based on their

magnitude.

Fig. 4 shows the absolute value for the coefficients of the
features. As apparent, Protocol has the highest coefficient
absolute value compared to other features and has the most

significant impact on the final output. On the other hand,
several features such as X, Y, Distance, Power, and RSSI
have a lower contribution to the performance of the outcome.
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Fig. 4: The significance of the features’ impact on the energy
consumption of nodes

C. Data Normalization

The features of the utilized dataset have different distribu-
tions. This variation in the training process is typically chal-
lenging for machine learning models. We normalize each
feature value to a range between zero and one to address this
issue. Equation 5 illustrates the normalizing formula used
in this paper. In this case, Xmin and Xmax correspondingly
represent the minimum and maximum feature values, and
Xscaled shows the normalized version of a feature’s value.

Xscaled = (X −Xmin)/(Xmax −Xmin) (5)

D. Loss Function Design

As discussed in Section V-B, a linear regression model
allowed us to sort all features based on their impacts on the
final output. The Protocol is found to be the most significant
feature among others. In this part, we want to redesign
the loss function of the conventional VAE by integrating
Protocol into its definition. The goal is to guide the direction
of gradient flow to focus more on the error between the
Protocol feature in the original and reconstructed versions
of data and adjust the model parameters accordingly. As a
means of accomplishing it, the loss function is redesigned by
adding a new term that represents the Protocol value error on
the input and output of the model. Equation 6 demonstrates
the new loss function (LNew), where the new term contains
the absolute value’s square of the difference between the
Protocol feature value in the original and reconstructed
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versions of data. Lrecon is the standard reconstruction loss
(e.g., MSE or binary cross-entropy) while the LKL is the
Kullback-Leibler divergence that regularizes the learned
latent space. λ is a weighting coefficient that controls the
impact of the Protocol term in the overall loss. In this
formula, β is a hyperparameter that balances the LNew and
Lrecon. It is common to set the value for β equal to 1 in a
standard VAE. Moreover, we set λ to 1 to emphasize that
the relevant Protocol term will have the same weight as the
other components of the loss function.

LNew = Lrecon + β · LKL + λ ·
(∣∣∣X̂protocol − Xprotocol

∣∣∣)2
(6)

E. Deep Unsupervised Learning Model for Anomaly Detec-
tion

The proposed framework is divided into training and
testing phases. First, we split the dataset into two training
and testing parts. While all training samples are composed
of normal observations, testing samples include both normal
and abnormal data. The principal assumption is to feed nor-
mal observations into the model during training to motivate
it to learn the normal data pattern. For this purpose, we
apply an encoder on training samples to convert data to a
latent feature space in the bottleneck layer. Then, a decoder
network is applied to the latent data to reconstruct the
original input. We then utilize the mean squared logarithmic
error (MSLE) to define the error between the original input
data and the reconstructed version. Equation 7 illustrates the
MSLE loss function, where X and X̂ represent the original
and reconstructed input data, respectively. In this equation,
N demonstrates the number of elements in the input data
sample.

MSLE(X, X̂) =
1

N

N∑
i=0

(
log (Xi + 1) − log

(
X̂i + 1

))2
(7)

Next, we define a threshold value based on the MSLE
loss function that indicates the maximum error between
the original and reconstructed input data. We obtain the
threshold value during the training phase when we feed
only normal samples to the model; therefore, the threshold
indicates the maximum margin between the normal orig-
inal and reconstructed input data. Equation 8 depicts the
threshold formula, which consists of two terms. The first
and second terms represent the mean and standard variation
of the MSLE loss function, respectively, and li shows the
ith element of the MSLE loss value.

Threshold =
1

N

∑
MSLE(X, X̂)︸ ︷︷ ︸
Mean

+

√√√√∑(
li − 1

N MSLE(X, X̂)
)2

N︸ ︷︷ ︸
Standard deviation

(8)

Next, we compute the MSLE loss between the original
and reconstructed test samples in the testing phase. If the
MSLE loss value of each test observation is higher than
the threshold, the observation is abnormal, and vice versa.

Algorithm 2 Anomaly Detection

Input: Mixed data
Output: Normal and abnormal data

Training Phase:
1: Feed the Encoder with normal data: µ, σ2 =

Encoder(Xtrain)
2: Set the latent variable Z as Z = µ + ϵ · eσ2/2, where

ϵ ∼ N (0, 1)
3: Feed the Decoder with Z: X̂train = Decoder(Z)
4: Compute MSLE(Xtrain, X̂train) based on Equation 7
5: Compute a threshold value based on Equation 8
6: Compute ∇L by using Equation 6:

θ, ϕ← Adam(∇L, θ, ϕ, α)
Testing Phase:

7: Feed the Encoder with sample i: µi, σ
2
i =

Encoder(Xtesti)
8: Set a latent variable Ztesti as Ztesti = µi + ϵ · eσ2

i /2

9: Feed the Decoder with Ztesti : X̂testi = Decoder(Ztesti)
10: Compute MSLE(Xtesti , X̂testi) based on Equation 7
11: if MSLE(Xtesti , X̂testi) > threshold then
12: Xtesti is an anomaly.
13: else
14: Xtesti is normal.
15: end if

Algorithm 2 shows the summary of the mentioned entire
process in a systematic fashion. ∇L is the gradient of a loss
function that measures the disparity between the predicted
values generated by the model and the actual values obtained
from the data. Basically, it is a vector that indicates the
direction of the most rapid increase of the loss function. θ
and ϕ are parameters (weights) of the model to be explored
for optimal values that makes loss function minimized.
The hyperparameter α is responsible for changing model
parameters after each model weight update, according to
the estimated error. Technically, an appropriate selection of
α has a significant impact on the convergence of the training
process.

VI. EXPERIMENT

In this paper, we seek to verify the performance of the
energy over-consumption detection framework through the
transmission settings and link quality parameters. The data
is generated in a point-to-point data transmission between
an IoT node and an edge gateway in a wireless sensor
network. It is important to note that the design of our
proposed framework is transmission-oriented. Therefore, we
can simply scale up the concept to many transmissions
between a node and multiple gateways.

A. Experiment Design

In this section, we describe the design of the experiment
and discuss the result of the deep neural network models
for detecting anomalies in the energy consumption of IoT
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devices. In practice, online anomaly detection frameworks
could be designed as “continuously active” [79] and “active
on-demand” [80]. Our proposed framework is designed to
work on demand. In other words, we use this framework
for diagnosis purposes. If the edge network requires energy
troubleshooting, the framework starts to collect the commu-
nication arguments only for a bounded period of time. Data
collection in the proposed framework follows the least intru-
sive technique which is called dynamic binary instrumenta-
tion. DBI (Dynamic Binary Instrumentation) [81] is known
as a run-time executable modification technique that enables
a tracing mechanism to collect detailed software/hardware
granular data with the least perturbation [9] [82] [83] [84].
Tracing imposes an extremely low overhead and therefore
it is unlikely to impact the energy consumption of nodes
significantly [85] [86]. Since dynamic binary instrumenta-
tion is a run-time mechanism for collecting desired data,
it does not impose any long-term overhead on the devices
under experiment and the overhead of data collection could
be safely lifted on the nodes immediately after the diagnosis
ended. Since the troubleshooting procedure is designed to be
performed in the limited time of diagnosis in our scenario,
it is undeniable that the cost of our short-term analysis
compensates for the cumulative overconsumption in the long
run for IoT anomalous nodes.

According to equations 2 and 3, the energy consumption
of an IoT node has an organic relationship with all of the
parameters such as T (Transmission time), P (Transmission
power), d (Transmission distance), RSSI, etc. To evalu-
ate the possibility of having a correlation between energy
consumption and other transmission parameters, a public
dataset is used as a testbed for the experiment. Our proposed
framework is expected to integrate the imbalanced attention
for features and provide better performance metrics than
traditional machine learning models and VAEs.

For the dataset, the influential features associated with
the energy consumption of IoT devices are extracted by
analyzing the features of experiments through a covariance
matrix and linear regression. Impressively, we verify a strong
Protocol-Energy correlation as a first step. By Finding that
Protocol is the most correlated parameter with energy in the
dataset, we accordingly design a new loss function for our
neural network (variational autoencoder) by adding the error
between the Protocol value in the original and reconstructed
output to guide the direction of gradient flow. According to
the binary labeling strategy for anomaly detection scenarios,
multiple baseline clustering algorithms have been applied to
evaluate the efficiency of those models. The given scores
for these models are calculated based on their clustering
estimations’ accuracy. By investigating how performance
metrics vary for most baseline clustering algorithms, atten-
tion is drawn to the key role of data labeling in anomaly
detection. In our case, the data labeling strategy discussed
in Section V-A is set based on the official datasheets of the
available protocols under the experiment. Such an approach
not only defines a realistic threshold for model training but

also makes the final result comprehensible.
An activation function is the main part of the neural

network design as it describes the transformation of the
weighted sum of an input to an output from the node(s) in a
network layer. We provide comparisons to demonstrate how
configuration parameters are associated with the model’s
performance in neural networks. This section uses popular
activation functions to conduct the comparison experiment.
Sigmoid function as a non-linear activation function trans-
forms the values to a range between 0 and 1. Secondly, as
a symmetric activation function, the Tanh function carries
out the transformation while the output range is constrained
between -1 and 1. Regarding the last activation function, the
ReLu, as a computationally efficient function, activates the
neurons for which the output of linear transformation gets
above zero and deactivates them otherwise.

In addition to the provided performance metrics, we eval-
uated the indirect complexity of the proposed algorithm by
measuring the model execution time. It contains the training
and testing time of the model that relatively represents
how feasible the model implementation is considering other
constraints imposed in certain scenarios.

B. Result and Discussion

By modifying and training a 2-layer VAE with normal
energy data and testing it on a mix of normal and abnormal
energy consumption observations, the performance metrics
and execution time are compared to a classic 2-layer VAE
in Fig. 5. This figure depicts the performance of a 2-layer
VAE against the proposed 2-layer modified VAE model
measured by accuracy, precision score, F1 score, MAE,
RMSE, training time, and testing time using three active
functions. The performance metrics and execution time
(training/testing time) computation are designed to get the
advantage of multiple K from 1 to 5 for a K-fold setting.

With Tanh as an activation function, the proposed 2-
layer modified variational autoencoder performs best (Fig.
5a-5e). While the performance of 2-layer VAEs for ReLu
and Sigmoid degrades compared to the proposed modified
version, the anomaly detection capability of 2-layer VAE
for Tanh improves in its modified form. Meanwhile, none
of the proposed 2-layer modified VAEs could gain any
better performance than that of the 2-layer VAE in accu-
racy, precision score, F1 score, MAE, RMSE levels, and
execution time. Based on Fig. 5f and 5g, the execution
time for each activation function increases in the modified
form. It makes sense as the newly designed loss function
has an additive term that comes with additional time for
processing and computation (see Equation 6). These figures
not only confirm that none of the performance metrics
for the proposed modified 2-layer VAE improved but also
indicate an 11 and 5 percent increase in training and
testing time (ReLu) compared to that of the 2-layer VAE
(ReLu). Besides, the ReLu activation function takes the least
training and testing time of all. Therefore, considering all
the activation functions, the 2-layer VAE using the ReLu
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Fig. 5: A comparison between performance metrics and execution time for 2-layer VAE and the proposed 2-layer modified
VAE using different activation functions: (a) Accuracy; (b) Precision score; (c) F1 score; (d) MAE; (e) RMSE; (f) Training
time; and (g) Testing time

activation function outperforms the other configurations. To
better evaluate the model performance, a different number of
hidden layers is inserted as the depth of our neural network.
Fig. 6 represents performance metrics, execution time, and
configuration for a 3-layer VAE and the proposed 3-layer
modified VAE to investigate the effect of the number of
hidden layers on the efficiency of our model. By comparing
the performance among the three activation functions for
different K parameters, the proposed 3-layer modified VAE
using the ReLu activation function accomplished the best.
It achieved a higher accuracy, precision score, and F1 score
while obtaining lower MAE and RMSE values at the cost
of 12 and 2 percent increase for the training and testing
time, respectively. Fig. 6f and 6g illustrate how temporally
efficient the ReLu activation function is compared to other
counterparts both in the modified and unmodified 3-layer
VAE. One of the advantages of ReLu in obtaining the
best execution time lies in sparsity, as a majority of the
neurons are inactivated in a layer for a given input. The
fewer number of neurons staying active, the lower the
computational load and time would be. By keeping all the
neurons active in the other activation functions, Sigmoid
and Tanh are computationally expensive. In the case of
Sigmoid, the execution time is clearly larger than that
of others. This activation function contains an exponential
term in its definition. This term requires a series expansion
and a complex numerical approximation that makes its
computation costly, in particular for large values of input.
Sigmoid also involves a division operation which adds extra
overhead to the computational cost. Moreover, the symmetry

in the Sigmoid function requires the computation of both
negative and positive values of the input, thus doubling the
computational cost compared to non-symmetric activation
functions. At this point, comparing the performance metrics
and execution time of a 2-layer VAE using ReLu against
the proposed 3-layer modified VAE using ReLu activation
function results in a comprehensive analysis of our investiga-
tion. Considering the three activation functions, Fig. 7 shows
that the highest accuracy, precision, and F1 score in parallel
with the lowest MAE and RMSE belong to the proposed
3-layer modified VAE. The highest performance metrics
level is obtained with three hidden layers for the ReLu
activation function at the cost of 14 and 17 percent increase
for the training and testing time, respectively. As already
discussed, our diagnostic framework performs in an ”active
on-demand” mode for a short duration in practice. Therefore,
such overhead for a troubleshooting framework can be
tolerated by the network compared to the driven benefits
of conserving excessive amounts of energy consumption in
a lifetime of anomalous nodes.

Although 1 or 2 percentages of improvement are negli-
gible for performance metrics with values lower than 90%
level, it becomes remarkably challenging to make further
improvements as a model becomes more accurate than 90%.
In other words, as the 2-layer VAE has already obtained high
performance (above 90%), even small gains for the proposed
3-layer modified VAE can be significantly important to
achieve because we are operating in a region where errors
are inherently hard to reduce.

A comprehensive overview of the performance metrics of
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Fig. 6: A comparison between performance metrics and execution time for 3-layer VAE and the proposed 3-layer modified
VAE using different activation functions: (a) Accuracy; (b) Precision score; (c) F1 score; (d) MAE; (e) RMSE; (f) Training
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TABLE IV: Comparison between the baseline clustering
algorithms and the proposed modified VAE

Models Accuracy Precision Score F1 Score

Kmeans 0.706 0.857 0.774
Normalized Kmeans 0.640 0.829 0.722
Mean Shift 0.594 0.858 0.702
Normalized Mean Shift 0.646 0.847 0.733
Spectral Clustering 0.552 0.872 0.676
Normalized Spectral Clustering 0.569 0.845 0.680
Birch 0.621 0.857 0.720
Normalized Birch 0.640 0.829 0.722
DBSCAN 0.150 0.860 0.260
Normalized DBSCAN 0.920 0.840 0.880
Mixture Model 0.713 0.857 0.778
Normalized Mixture Model 0.644 0.848 0.732
BGMM 0.477 0.857 0.613
Normalized BGMM 0.640 0.829 0.722
Agglomerative Clustering 0.621 0.857 0.720
Normalized Agglomerative 0.640 0.829 0.722
Clustering

Normalized 3-layer
Modified VAE using 0.948 0.952 0.950
ReLu activation function

the several baseline clustering models and the proposed 3-
layer modified VAE is presented in Table IV. According
to the comparison, the performance of our proposed 3-
layer modified VAE is improved dramatically not only
for accuracy but also for precision score and F1 score
against the baseline models. To evaluate the efficiency of the
normalized 3-layer modified VAE model, we concentrate on
the performance metrics in Table IV and Fig. 7. The output
of Sigmoid and Tanh activation functions is saturated for
large positive and negative inputs. Such poor performance
results in the vanishing gradient problem. This is a common
problem in creating neural networks [87]. It originates from
flattening the derivative of the activation function. Therefore,
there will be almost no new updates on parameters in the
process of model training which leads to poor convergence.
Similar to the pruning mechanisms, the Rectified Linear
Unit (ReLu) can invalidate the statistically nonessential
features by putting them to zero. In other words, the linear
structure of ReLu (non-saturating feature) boosts model
training efficiency as the output of the partial derivative of
the loss function will be mapped to a binary result (0 or 1)
and consequently stops the gradient from vanishing.

We find out that identifying the dominant features and
redesigning the loss function accordingly, gives the network
a deeper understanding of distinguishing the normal and
abnormal data patterns. Our investigation manifests that
choosing the proposed 3-layer modified VAE using the ReLu
activation function improves the robustness of the model
according to the obtained values for accuracy, precision
score, F1 score, MAE, RMSE, training time, and testing
time.

Eventually, our investigation proves that unfit adjustment
of link parameters in data transmission, such as the Protocol
plays a key indicator of high energy consumption between
an IoT device and the edge elements. Based on the pro-
tocol type, intuitive assumptions could be devised for the

reason behind the overconsumption of resource-constrained
devices. For security protocols, those which require signifi-
cant cryptographic processing with costly cipher parameters,
increase the energy consumed by the battery-powered nodes.
For communication protocols, those that are susceptible to
collisions (large packet loss) made by simultaneous flooding
of tag responses are energy-exhaustive mechanisms. For
routing protocols, those determining routes statically and
relying on periodic advertisements generated by routers
consume significantly more energy than traditional ones. It
should be declared that the online frameworks equipped with
energy-aware protocols should also take care of a limited
time window for service provisioning without compromising
QoS in order to avoid operation interruption.

According to the provided statistics, we can verify that
the delivered anomaly detection framework could be ap-
pointed as a validated approach for energy over-consumption
analysis. Further, the energy stabilization feedback enables
us to alter the transmission settings which determine the
alternative with the least energy footprint, under any given
operating environment. It may toggle the node configuration
towards a greener setting. In such settings, routing protocols,
security protocols, and communication protocols will meet
energy-awareness standards, while network responsiveness
ensures the necessary QoS levels and reliability.

VII. CONCLUSION

Artificial-intelligence-integrated Internet of Things
(AIoT) is an emerging discipline that integrates AI analysis
and approaches into the Internet of Things field of interest.
By nature, applications running in the AIoT domain
are computation-intensive. They require a high level of
real-time processing to achieve decisions made by ML
(Machine Learning), DL (Deep learning), and data analysis
operations. The high number of constraints imposed on
an AIoT scenario, such as limited energy harvesting
potential and demanding energy consumption, makes
achieving a better quality of service (QoS) challenging
for applications. Since ignoring the energy anomalies
can easily result in battery depletion and network failure
eventually, our work focuses on the early detection of the
hotspots communicating with the edge gateway according
to their link quality and communication configurations.
Accordingly, this paper proposes a deep learning approach
and a binary labeling strategy for identifying energy-
intensive operations. Such a self-configuring scheme uses a
3-layer modified VAE to detect anomalies for peer-to-peer
connections using link quality and communication features.
Additionally, several unsupervised clustering algorithms
are also presented, validated, and compared with the
performance metrics of our model, including the Mixture
Model, Bayesian Gaussian Mixture Model, Agglomerative
Clustering, Birch, and Modified Variational Autoencoder.
By analyzing these performance metrics, the best efficiency
in anomaly detection for the energy consumption of IoT
nodes in wireless sensor networks is achieved. As shown

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2023.3335342

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

earlier, the proposed 3-layer modified VAE model reached
an outstanding performance of 94.8% accuracy, 95.2%
precision score, 95.0% F1 score, 0.06014 MAE, and
0.24489 RMSE for anomalous energy detection.

As a primary conclusion, we find out that an improper
configuration of IoT nodes (e.g., communication protocol se-
lection for data transmission) may considerably increase the
energy consumption of nodes. Such settings subsequently
stop the necessary services from executing satisfactorily
and fulfilling expectations. Establishing energy-sustainable
networks on edge requires a real-time monitoring system to
discover the energy-hungry nodes. Most existing AI-based
solutions propose offline frameworks using supervised or
intrusive approaches. The supervised solutions on low-power
IoT nodes are mostly invalid due to the infeasible energy
labeling in real-time. High-intrusive approaches modify the
native software or hardware to monitor the energy behav-
ior of different components of the nodes. While energy
sampling methods can capture the energy peaks in prede-
termined periods, they cannot target contextual anomalies.
The major reason for such deep suffering lies in insufficient
precision for complex sensing activities/computation. More-
over, providing thousands of sensors with external energy
monitoring hardware is not practical, especially if flexibility,
price, and physical size come into the scene. Hence, for
early energy anomaly analysis and transmission parameters
adjustment, we employ a deep learning approach to detect
abnormal energy data indirectly without supervision.

For future work, using time-series data for transmission
parameters and link quality data not only helps us identify
patterns but also creates the opportunity to detect contextual
anomalies and predict future patterns. Using feature interac-
tion learning, we can also capture predictive information
(interactions between features) to improve the modified
loss function. Moreover, besides having the external data
regarding data communication, collecting the internal data
such as CPU/GPU/RAM utilization and NIC I/O rate gives
us more data to train the model. We hypothesize that
such a model not only detects the anomalous nodes in an
underconsumption state but can minimize the number of
false positive anomalies as it is contextually bound to the
internal behavior of the system rather than just a constant
threshold setting.
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