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Abstract—Edge Learning (EL) pushes the computational
resources toward the edge of 5G/6G network to assist mobile
users requesting delay-sensitive and energy-aware intelligent
services. A common challenge in running inference tasks from
remote is to extract and transmit only the features that are
most significant for the inference task. From this perspective,
EL can be effectively coupled with goal-oriented communica-
tions, whose aim is to transmit only the information relevant to
perform the inference task, under prescribed accuracy, delay, and
energy constraints. In this work, we consider a multi-user/single
server wireless network, where the users can opportunistically
decide whether to perform the inference task by themselves
or, alternatively, to offload the data to the edge server for
remote processing. The data to be transmitted undergoes a
goal-oriented compression stage performed using a convolutional
encoder, jointly trained with a convolutional decoder running
at the edge-server side. Employing Lyapunov optimization, we
propose a method to jointly and dynamically optimize the selec-
tion of the most suitable encoding/decoding scheme, together
with the allocation of computational and transmission resources,
across all the users and the edge server. Extensive simula-
tions confirm the effectiveness of the proposed approaches and
highlight the trade-offs between energy, latency, and learning
accuracy.

Index Terms—Edge learning, goal-oriented communications,
Lyapunov stochastic optimization, deep learning.

I. INTRODUCTION

THE ADVENT of the fifth/sixth generation of mobile com-
munications has radically changed the network concept,
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from a pure communication infrastructure to a key enabler
for pervasive services, which are highly based on Artificial
Intelligence (AI) and Machine Learning (ML). Typical exam-
ples can be found in augmented reality, autonomous driving,
massive Internet of Things, and mission critical applica-
tions [1]. In these scenarios, the service delay and the reliabil-
ity constraints are often very restrictive, and this motivates the
need to design a holistic system where communication, com-
putation, learning, and control are jointly managed in order to
reach reliability, energy efficiency, and sustainability.

The need to process a huge amount of data, in real-time,
through proper AI/ML techniques, has driven researchers to
design training/inference tasks at the wireless edge, in col-
lective as well as distributed fashions. This has led to the
definition of the so called Edge Intelligence (EI) paradigm [2].
In this view, the allocation of system resources in order
to reach prescribed target performance in terms of latency,
accuracy, and energy consumption has been already con-
sidered in [3], [4], [5], [6]. Specifically, EI allows User
Equipments (UEs) connected to a mobile network to oppor-
tunistically offload their learning tasks to Edge Servers
(ESs), which are placed in the network edge, nearby the
Radio Access Points (RAPs). This allows the efficient man-
agement of system resources, such as transmission rate,
bandwidth, and CPU clock rates, according to specific
optimization strategies, which are mainly focused on the trade-
offs between energy consumption, overall latency, and learning
accuracy [6].

Clearly, in a resource optimization perspective, it would
be useful to offload to the ESs only the (minimum) amount
of information strictly necessary to fulfill the learning task
with the desired accuracy, while respecting the performance
requirements. This intuitive consideration, jointly with the
huge increase of traffic envisaged in future 6G networks [7],
motivates the search for a new communication paradigm, alter-
native to the classical Shannon design. In this view, a valuable
candidate is represented by Goal-Oriented Communications
(GOC) [8]. More specifically, if the goal of communication
is to perform an inference task on the data collected by the
UE, rather than requiring the accurate reproduction of all the
transmitted bits at the receiver side, the aim of GOC is to
transmit only the information that is most relevant to run the
inference task at the ES, guaranteeing a prescribed level of
decision accuracy and system performance. In this way, it
is possible to help the UEs to save transmission resources
and avoid unnecessary data rate growth, still respecting

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5877-6907
https://orcid.org/0000-0002-0004-6370
https://orcid.org/0000-0002-4130-3177
https://orcid.org/0000-0001-9846-8741


1710 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 4, DECEMBER 2023

application constraints, such as service delay and energy
consumption.

Related works. Seminal EI frameworks, with a wireless
offloading strategy, have been proposed in [6], [9], which save
transmission resources by simply allocating, in a dynamic
fashion, the number of (quantization) bits used by UEs to
transmit their data to the ES. This compression strategy has
also been employed in [10] and [11], where edge classifica-
tion and ensemble learning are considered, respectively, with
reliability guarantees. A more principled data reduction strat-
egy, better matched to the learning task and based on the
Information Bottleneck (IB) [12], [13], has been proposed
in [14]. However, the IB principle admits a closed form solu-
tion for the encoder only if the overall statistics are jointly
Gaussian [14], [15], or a solution achievable through an
iterative mechanism, if the statistics are discrete. When the
sensed data and decision outputs are neither jointly Gaussian,
nor discrete with manageable cardinality, it is not easy to
derive the IB solution and the source encoding problem can
be reformulated using the so called variational IB (VIB), as
recently explored in [16] and in [17], where a cooperative
(multi-device) inference framework is proposed.

A possibility to further deviate from the classical commu-
nication design is offered by Joint Source Channel/Coding
(JSCC), which has received increasing attention with the wide
spread use of Deep Neural Networks (DNNs). Quite recently,
several works have proposed to replace the classical cascade
of source and channel encoders with a DNN properly trained
with respect to the specific task. For instance, [18] proposed
a DNN-based JSCC scheme to achieve higher performance
in finite block-length regime for image retrieval applications.
Furthermore, if the task of communication is image recogni-
tion, it makes sense to design the JSCC architecture directly
focusing on the learning task, rather than on the image recon-
struction followed by the recognition task, as proposed in [19].
The authors of [20] presented a scheme for image retrieval
where the extracted vector features are directly mapped to
the channel input symbols, without resorting to any channel
coding technique, and the server retrieves the most relevant
images directly from the noisy channel output. This approach
has been extended in [21], where the extracted features are
quantized before being mapped onto the channel symbols.
In [22], JSCC is coupled with an OFDM system and operating
over a frequency-selective channel, while [23] considers the
combination of JSCC with non-linear transform coding [24].

As far as goal-oriented (also known as task-oriented) com-
munications is concerned, several recent works testify the
emerging relevance of this topic. For instance, in [25] and [26]
GOCs have been exploited to define the common-language
between a listener and a speaker, employing Reinforcement
Learning (RL) and Curriculum Learning (CL), while a
transformer-based approach has been proposed to assist image
and text transmissions [27]. A noise-aware JSCC for text-
transmission is described and assessed in [28], while [29]
exploited a hybrid automatic repeat request (HARQ) scheme
to improve reliability in sentence semantic transmission. Other
examples of image classification for Unmanned Aerial Vehicle
(UAV) applications, and a GOC-assisted Visual Question

Answering (VQA) task, can be found in [30] and [31], respec-
tively. Furthermore, [19] and [20] motivate the use of GOC
schemes for computer vision applications, by showing the
accuracy improvements they provide in image-classification
and re-identification tasks of humans and cars, respectively.
Finally, the impact of goal-oriented communications has also
been analyzed in speech recognition tasks [32].

However, none of the works cited above considered the
dynamic optimization of the data reduction strategy for multi-
user goal-oriented communications, jointly with the global
network resource management, under prescribed performance
guarantees, as we do in this manuscript. Along this line,
in [33] we proposed minimum-energy and maximum-accuracy
resource allocation strategies for edge-assisted image classifi-
cation tasks, in a single user/single server scenario, whereas
in [34] we reported some preliminary results on the extension
to the multi-user scenario, which we will further develop and
investigate more thoroughly hereinafter.

Our contributions. The main contributions of this work
concern the system architecture, the optimization strategies,
and the simulation results. They can be summarized as
follows:

A. System Architecture

Extending the preliminary strategies presented in [34], we
consider a multi-user goal-oriented communication scenario,
where multiple UEs may decide to offload their learning tasks
to an ES (or not). Each user relies on a bank of source
encoders, each one associated to a specific compression ratio,
which dynamically compresses the data-units (DUs) to be
transmitted to the ES, depending on the online system state.
Specifically, exploiting convolutional encoders (CEs), i.e., the
encoders of convolutional auto-encoders (CAE), as in [33], we
improve their performance by a new training function. The ES,
when requested, carries out multiple, user-independent, infer-
ence tasks, using a bank of convolutional classifiers (CCs), i.e.,
CNNs, each one matched to the CE used at the UE. The overall
CE-CC structure is instrumental to splitting the classification
task between UE and ES.

B. Optimization Strategies

We implement a dynamical split of the inference task,
selecting, in each time slot, the most suitable pair of CE-
CCs, within the bank of available (pre-trained) CE-CCs,
depending on the channel state and on the online accuracy
and performance. More specifically, resorting to Lyapunov
optimization, we implement a multi-user dynamical goal-
oriented source compression architecture that selects the
CE-CC pair and allocates computational and communication
resources, trading off energy consumption (including both
UEs and ES), delay and classification accuracy. Hereinafter,
we extend the preliminary results and optimization strategy
shown in [34], by considering also a multi-user Maximum
Accuracy strategy, with guaranteed (maximum) Delay bounds
and Energy consumption (MADE). Furthermore, we let every
UE able to decide whether to perform the inference task locally
or to offload it to the ES, since there might be applications
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where the UE hardware is capable of running the application
locally, or it could be more convenient, for the overall resource
management, to do that.

C. Simulation Scenarios

We investigate herein scenarios that were not analyzed
in [34], where each UE has different service requirements and
constraints. The wide set of possible scenarios, optimization
strategies, and simulation results, significantly extends the
results presented in [34], highlighting the effectiveness and
flexibility of the proposed holistic resource management.

Outline. The paper is organized as follows. Section II illus-
trates the goal-oriented communication system and the related
joint training procedure of both the CEs and the CCs for clas-
sification purposes. Section III describes the overall system
model used in the formulation of the resource optimization
strategies, which are then solved in Section IV exploiting
stochastic Lyapunov optimization. In Section V we discuss
our experimental results and, finally, in Section VI we draw
some conclusions and highlight future research directions.

II. CLASSIFICATION NETWORK AND TRAINING

This section describes the architecture employed to make
parsimonious use of transmission energy and bandwidth.
Specifically, we compress the UEs data-units (DUs) (i.e., the
input of the learning task), before they are transmitted to
the ES. The latter has to perform the learning task with-
out sacrificing a prescribed target accuracy. As more deeply
explained in [33], the Information Bottleneck (IB) [12] is a
promising theoretical framework to meaningfully compress the
data-source in a goal-oriented perspective. However, IB admits
a closed form solution only when the associated statistics are
discrete or Gaussian distributed [14], [15]. Thus, since in the
multi-class image classification task we are focusing on, the
Gaussian assumptions do not hold true and a meaningful defi-
nition of mutual information is problematic [35], we proposed
in [33] a heuristic approximation of the IB that nicely fits
with our goal-oriented strategy. Specifically, our approach is
based on the deployment of a tunable data-compression at the
UEs that is useful for the associated inference task at the ES.
Without restriction of generality for the overall GOCs architec-
ture and its resource management, we resort to banks of CEs
to compress images at the UE side, according to a layer-by-
layer max-pooling strategy. The CEs are coupled with CCs at
the ES to perform the final decision, as summarized in Fig. 1
for a single UE.

As detailed in [33], a CE may be realized as:
• Short-CE: It resizes the images to the desired reso-

lution by a single convolutional layer followed by a
max-pooling layer.

• Deep-CE: It down-samples the images by multiple con-
volutional layers, each one followed by a max-pooling
layer that halves the size of the (pseudo) image.

Note that our goal is to classify the images and not to
reproduce them. Thus, for the CE-CCs compression and clas-
sification network shown in Fig. 1, we have to consider a

Fig. 1. Training scheme: the output of the CE h feeds both the ES
classification CNN and a CD.

different learning cost function than those used for classi-
cal CAEs. Specifically, we resort to the following objective
function

minimize
θ,φ

1

Nt

Nt∑

n=1

Lce

(
Yn , Ŷn , φ, θ

)
+ λLmse

(
Xn , X̂n , θ

)
,

(1)

where Lce(Yn , Ŷn , φ, θ) is the cross-entropy loss, used in
order to control the performance of the ES classification task,
while Lmse(Xn , X̂n , θ) is the Mean Squared Error between
the input and the reconstructed version X̂ of the full CAE.
Note that the cross-entropy loss in (1) is a proxy of the mutual
information I(h;Y) [36]. Thus, minimizing the cross-entropy,
we maximize the I(h;Y) for a fixed CE architecture (compres-
sion size) and this constitutes the link of the proposed approach
with the IB principle. However, differently from what we did
in [33], (1) considers also the output MSE of a Convolutional
Decoder (CD), i.e., that part of the CAE that is typically used
for image reconstruction. Actually, the presence in (1) of this
(regularizing) MSE penalty term favours a meaningful feature
extraction [37], which can improve the performance of the
overall learning task, for proper values of the parameter λ.
Anyway, note that the CD is taken into account only during
the CE-CCs training, while it is not used for classification, as
clarified by Fig. 1. Each (split) CE-CC couple has to be prop-
erly trained, possibly off-line, by a third party. Thus, although
it would be interesting to analyze how to train the classification
network by the same wireless edge-computing architecture we
consider herein for classification, this is not the object of this
manuscript and is left for future studies.

JPEG compression. Note that the CE, targeting good
classification performance, compresses the images by a down-
sampling principle, due to the max-pooling strategy at each
layer. However, this design does not take into account the
wireless communication between UEs and ES. Thus, while
the size of the latent representation h of a CE output (see
Fig. 1) may be optimal for a target classification accuracy, it
could be still sub-optimal with respect to the file size of the
compressed data-units, leading to huge costs in terms of trans-
mission energy and (long) transmission time. This problem
justifies the employment of a further zipping (compression)
phase on h, before transmitting it to the ES, which will unzip
it back to h at the CC input. Due to the nature of the classifi-
cation task and the structure of the pseudo-images h extracted
by the CE, we base this further compression at the UE on
a JPEG codec, which proved to effectively reduce the file
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Fig. 2. Scenario: each UE dynamically employs its own set of CEs coupled with a proper set of CCs at the ES.

size of the data units, paying a reasonable price in terms
of additional computational overhead from the UE perspec-
tive. The choice of JPEG is justified since it is a widely
used zipping system, with a plethora of efficient implementa-
tions. Furthermore, despite its lossy nature, it has been proved
that JPEG codecs do not significantly affect the classification
performance of CNNs [38].

III. SYSTEM MODEL

The considered goal-oriented scenario encompasses multiple
devices (UEs), with limited computational and energy capa-
bilities, which are connected through an Access Point (AP)
to an ES with a larger amount of computing resources; an
illustration is given in Fig. 2. To perform a generic learning
task, for each UE connected to the network, the system handles
three main phases: i) The UE buffers the Data Units (DUs),
i.e., the images to be classified; ii) Depending on the specific
offloading decision, which is affected by the system status, the
DUs are either scheduled to be compressed and transmitted by
the goal-oriented compression strategy proposed in Section II
or, alternatively, to be processed locally; iii) The inference task
takes place either at the UE- or ES-side, depending on the
offloading decision.

The system evolves in a time-slotted fashion, where each
time slot has a fixed duration τ . Therefore, we deal with
discrete-time functions f (t), where t ∈ N is an index for the t-
th time-slot [tτ, (t+1)τ [. The aim of the resource optimization
strategies for GOC is to guarantee a specific E2E (maxi-
mum) delay requirement, while optimizing either the system
energy consumption or the learning accuracy. To this end, the
proposed policies have to manage several resources. In partic-
ular, the k-th UE has to allocate its transmission rate Rk (t)
toward the ES, its clock frequency f dk (t), employed to perform
the data compression by a specific compression factor ρk (t),
and the offloading decision dk (t). As far as the ES is con-
cerned, the main optimization variable is represented by the
clock frequency fc(t), which has to be properly split among the
learning tasks of the different users. This quantities represent
the optimization variables of the objective functions we will
define for the proposed resource management strategies. We

are now ready to describe the models adopted for latency,
energy and classification accuracy.

A. Latency Model

The system evolution over time is entirely described by a
queuing system, as prescribed by the Lyapunov optimization
framework [39]. In particular, for each user involved in the
network, we define two kind of physical queues:

- A computation/communication queue at each UE, which
collects the DUs, i.e., the images, generated by each
device, which are waiting to be compressed and trans-
mitted to the ES for classification.

- A separate computation queue at the ES side for any pos-
sible compression degree (e.g., CE) that the UEs may
dynamically employ: thus, for each UE connected to
the network, we have a different number of ES queues,
depending on the CE compression degrees that are avail-
able. This design choice has been motivated in order
to make the ES optimization problem computationally
affordable, as we will clarify later.

We denote with K the total number of UEs connected to
the network. The binary variable dk (t) ∈ {0, 1} models the
decision to offload (or not) the learning task of the k-th device
during the t-th time-slot. When any UE has to offload its learn-
ing task (i.e., dk (t) = 1), we make the following assumptions
that are instrumental to practically manage the optimization
problem (see [33] for further details).

Assumption 1: The DUs in each UE queue have to be com-
pressed and transmitted within the same time-slot. Indeed,
during a given time-slot, it is impossible to optimally compress
DUs that will be transmitted during one of the next time-slots,
when the system could possibly experience different channel
conditions, or different lengths of the ES/UEs queues, etc.
Therefore, compression and transmission operations have to
be done sequentially within the same time-slot.

Assumption 2: We assume that, while an UE is transmitting
some DUs, it can also simultaneously compress other DUs.

The number of (compressed) DUs that would be possible
to transmit during the t-th time-slot is expressed by

N tx
k (t) =

⌊
τRk (t)

M (ρk (t))N (ρk (t))

⌋
, (2)
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where Rk (t) and ρk (t) are the transmission rate and the
compression factor,1 respectively, selected for the k-th UE
at time t; M (ρk (t)) is the DU’s size for a certain com-
pression factor ρk (t), and N (ρk (t)) is the number of bits
that are necessary (on average) to encode a pixel in the
(zipped) pseudo-image h. To shorten the notation, we define
also W (ρk (t)) = M (ρk (t))N (ρk (t)), which represents the
average number of bits to store an image with a given ρk (t).
On the other hand, the number N c

k (t) of DUs that is possi-
ble to compress during the t-th time-slot by the k-th device is
expressed by

N c
k (t) =

⌊
τ f dk (t)Jd (ρk (t))

⌋
, (3)

where Jd (ρk (t)) denotes the number of DUs compressed in
a clock cycle C (which depends on the selected compression
factor ρk (t)), and f dk (t) denotes the device clock-frequency
that has been chosen for the k-th UE, during the same time-
slot. Recalling Assumption 1, all the DUs that are compressed
within a time-slot have to be transmitted during the same
time-slot, and all the transmitted DUs have to be first com-
pressed. Thus, we need to use a transmission rate Rk (t) ≤
W (ρ(t))f dk (t)Jd (ρ(t)) which results in N tx

k (t) ≤ N c
k (t).

Taking into account that, before the transmission could start,
we need to wait a time equal to 1/(f dk (t)J d

k (t)) to compress
the first DU, the actual number of DUs that can be offloaded
by the k-th device during the t-th slot is expressed by

N
off
k (t) =

⎢⎢⎢⎣
τ − 1/

(
f dk (t)J d

k (t)
)

W (ρk (t))/Rk (t)

⎥⎥⎥⎦. (4)

Plugging in (4) the inequality N tx
k (t) ≤ N c

k (t) we end-up
with the following (integer) inequality

⌊
τRk (t)

W (ρk (t))

⌋
− 1 ≤ N

off
k (t) ≤

⌊
τRk (t)

W (ρk (t))

⌋
, (5)

which will be useful in the next derivations.
Finally, similarly to (3), when the learning task is performed

locally, the total number of DUs processed by the k-th UE is
expressed by

N L
k (t) =

⌊
τ f dk (t)JL

k (ρk (t))
⌋
, (6)

where JL
k (ρk (t)) expresses the DUs that can be compressed

by a factor ρk (t) and successively classified in a clock-cycle
by the UE hardware. Putting together (4) and (6), the number
of DUs that can be processed by an UE, within a single time-
slot, is expressed by

NUE
k (t) = dk (t) ·N off

k (t) + (1− dk (t)) ·N L
k (t). (7)

The UE queue QUE
k (t) is fed by the arrival of new DUs, and

is drained either by the transmission of DUs to the ES, or by
their local classification at the UE. Thus, it is characterized by
the following evolution

QUE
k (t + 1) = max

(
0,QUE

k (t)− NUE
k (t)

)
+ Ak (t), (8)

1Note that we denote with ρ the compression factor of the images along
each dimension. The actual compression ratio scales with ρ2.

where Ak (t) models the DUs arrival process, whose statistical
properties are generally unknown.

At the ES, we employ Lk different queues for each UE,
whose evolution is described by

QES
ki (t + 1) = max

(
0,QES

ki (t)− NES
ki (t)

)

+dk (t) ·min
(
NUE
k (t),QUE

k (t)
)
· 1i{ρk (t)}, (9)

i.e., a queue for each compression factor among the Lk in
the set Sk = {ski}i=1,...,Lk

, which represents the set of the
compression factors employable by the k-th UE. These queues
store the ES computation load, expressed in number of DUs,
that is reserved for the k-th device. The term 1i{ρk (t)} in (9)
is a shorthand for the indicator function 1{ρk (t) = ski},
which models the arrival of new DUs in the ES queue only
if the UE have chosen the i-th compression factor. The term
NES
ki (t) in (9) denotes the number of DUs processed by the

ES during the t-th time-slot, and it is expressed by

NES
ki (t) = �τ f ski (t)J s

ki (t)�, (10)

where f ski (t) is the ES clock-frequency assigned to the i-th
queue (compression factor) of the k-th UE, during the t-th time
slot.2 The quantity 1

J s
ki (t)

in (10) is a conversion factor that
maps the number of DUs received by the ES into the equiv-
alent number of clock-cycles requested for their processing
(e.g., classification).

To set-up our delay constraints, we need to define an over-
all queue that, for each device, takes into account the overall
computational load at both the UE- and ES-side. Since we aim
to respect an average latency constraint, as we will detail in
the following, and taking in mind the ES can perform a par-
allel computation of multiple DUs, by means of (8) and (9),
it makes sense to consider the average length of the parallel
queues, which is expressed by

Q tot
k (t) = QUE

k (t) +

Lk∑

i

pkiQ
ES
ki (t), (11)

where pki is the probability to employ the i-th compres-
sion factor in Sk , which can be estimated by an online
sample-mean.3 By assuming a certain data arrival rate Ak =

E

{
Ak (t)

τ

}
, and exploiting the Little’s Law [40], (11) allow us

to model the average long-term delay, as expressed by

lim
T→∞

1

T

T∑

t=1

E

{
Q tot
k (t)

Ak

}
. (12)

2Having different queues for each compression factor is a design choice
instrumental to obtain a mathematical dependence between NES

ki and f ski , that
is simpler than in [33], where we used a single queue. This way, the solution
of the ES optimization problem becomes feasible also in a multi-user context,
as we will clarify later.

3The pk ,i are actually time-varying with the system state, which is also
influenced by the instantaneous and adaptive resource management strategies
we will end up with. The assumption here is that the stochastic resource
management algorithms, which will exploit knowledge of the estimated pk ,i ,
will converge to a steady state where also the running sample mean estimate
of the pk ,i will converge. This fact has been verified by extensive simulation
results.
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For a latency constraint D
avg
k , we get a queue length

constraint Qavg
k = Davg

k Ak and, consequently, we can equiva-
lently formalize the latency constraint as a queue constraint by

lim
T→∞

1

T

T∑

t=1

E
{
Q tot
k (t)

} ≤ Qavg
k . (13)

B. Energy Model

The energy model of our system involves three main
components:

- Transmission energy at the UEs, requested to transmit the
DUs to the ES in case of offloading decisions.

- Computation energy at the UEs, requested in order to
either compress/encode the DUs to be transmitted, or to
perform the learning task locally.

- Computation energy at the ES, requested to classify the
DUs transmitted by the UEs that decide to offload the
learning tasks.

For simplicity, assuming a capacity achieving transmission
system, in a flat-fading wireless channel, the transmission
power ptxk (t) requested by the k-th UE can be inferred by
the Shannon capacity [41]

Rk (t) = Bk log2

(
1 +

ptxk (t)|hk (t)|2
N0Bk

)
, (14)

where |hk (t)| is the channel gain, N0 denotes the noise power
spectral density at the receiver side, and Bk is the bandwidth.
Thus, by inverting (14), we obtain that the transmission energy
spent by the k-th UE during the t-th time-slot depends on the
rate Rk (t) by

E tx
k (t) = τptxk (t) =

τBkN0

|hk (t)|2
(
e

Rk (t)ln(2)

Bk − 1

)
. (15)

From the computation perspective, the ES’s and UE’s models
are equivalent. Specifically, in order to estimate the energy
consumption, we exploit the model in [42], which assumes
a cubic dependence on the ES’s and UE’s clock-frequencies
fs(t) and f dk (t), as expressed by

Ed
k (t) = τκdk f

d
k (t)3 and Es(t) = τκs fs(t)

3. (16)

The constants κs and κdk represent the effective switched
capacitance [42] of ES and k-th UE processor, respectively.
Thus, we quantify the system energy consumption during
the t-th time-slot using the following weighted performance
metric:

E tot
k (t) = (1− γ)Es(t) + γ

K∑

k=1

δk
(
E c
k (t) + E tx

k (t)
)
, (17)

where the parameter γ is used to weight the UEs versus ES
energy consumption, enabling tuning toward the implementa-
tion of an user-centric (γ → 1) or a server-centric (γ → 0)
optimization strategy. Furthermore, the weights {δk}Kk=1 (with∑K

k=1 δk = 1) can be employed to assign different impor-
tance to the energy consumption of different users, providing
an extra degree of flexibility to the resource optimization,
depending on the needs of the operators, users, and service
providers.

C. Accuracy Model

For the accuracy of the learning task of each UE, we resort
to a model-based management strategy. This means that the
accuracy for the k-th task can be cast in the optimization
problem as a function Gk (ρk (t)) of the compression degree.
This can be done in practice by employing a look-up table
(LUT) (shown in Section V), where each entry is associated
with a specific compression factor ρk ∈ Sk .4 This LUT stores
the (average) classification accuracy of the k-th learning task,
associated with each one of the CE-CC classifying chains
that are available for the k-th UE. The values stored in this
accuracy-LUT can be estimated off-line on meaningful test-
sets, after each CE-CC structure has been properly trained, as
described in the previous section. Thus, we can exploit the
LUTs G(ρk (t)) to enforce an average accuracy constraint for
each learning task, as expressed by

lim
T→∞

1

T

T∑

t=1

E{Gk (ρk (t))} ≥ G
avg
k . (18)

IV. DYNAMIC RESOURCE OPTIMIZATION FOR

MULTI-USER GOAL-ORIENTED COMMUNICATIONS

On the basis of the delay, accuracy, and energy models
presented in the previous section, we develop two resource
optimization strategies: a multi-user Minimum-Energy with
(maximum) Delay and Accuracy constraints (mu-MEDA), and
a multi-user Maximum-Accuracy with (maximum) Delay and
Energy consumption constraints (mu-MADE). In the sequel,
we describe the problem formulation and the algorithmic
solution for both strategies.

A. mu-MEDA: Multi-User Minimum-Energy With Delay and
Accuracy Constraints

Following a system energy minimization perspective, the
long-term optimization problem can be cast as follows:

min
Φ(t)

lim
T→∞

1

T

T∑

t=1

E{Etot (t)}

s. t. (a) lim
T→∞

1

T

T∑

t=1

E

{
Q tot

k (t)
}
≤ Qavg

k , ∀k

(b) lim
T→∞

1

T

T∑

t=1

E
{
G
(
ρk (t)

)} ≥ Gavg
k , ∀k

(c) 0 ≤ Rk (t) ≤ Rk ,max , ∀k , t
(d) ρk (t) ∈ Sk , fs(t) ∈ Fs , f dk (t) ∈ Fd,k ∀k , t

(e)

K∑

k=1

Lk∑

i=1

f ski (t) ≤ fs(t), (f ) f ski (t) ≥ 0 ∀k , i , t

(g) dk (t) ∈ {0, 1} ∀k , t (19)

4We modeled the relationship between the compression factor and the accu-
racy through a LUT, rather than by a formal analytical expression, because
it is almost impossible to find a closed-form expression for this function
in practice. Indeed, despite noticeable examples to theoretically formalize
DNNs performance can be found in [43], [44], these approaches are based on
Mutual Information, which is intractable to derive in closed-form in most of
the practical cases.
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where Φ(t) = [{Rk (t), f
s
ki (t), f

d
k (t), ρk (t), dk (t)}Kk=1, fs(t)]

contains all the optimization variables. The constraints in (19)
have the following meaning: (a) the average queue length for
the k-th UE must be lower than Q

avg
k , i.e., we are imposing

a maximum average service delay equal to Dk
avg = Qk

avg/Ak
(cf. (13)); (b) the average classification accuracy for the k-th
UE must be greater that Gk

avg ; (c) the k-th UE transmis-
sion rate Rk (t) must be smaller than the value Rk ,max (t),
which is the maximum possible rate for the k-th device,
inferred by (14), considering the maximum available trans-
mission power ptxk ,max ; (d) specifies the discrete sets Fc , Fd ,k
and Sk for the server frequencies set, the frequencies set for
the k-th UE, and the set of the possible compression factors
respectively; the constraints (e) − (f ) state that the sum of
the clock frequencies f ski (t) that the (edge) server allocates
for all the queues assigned to each user, must be lower than
the total ES clock-frequency chosen for the t-th time slot,
and that each clock-frequency must be obviously grater than
0; finally, (g) represents the binary constraints on the set of
the opportunistic offloading decisions variables of each UE.
Problem (19) is complicated due to the lack of knowledge
of the statistics of the radio channels and data arrivals, which
would be necessary to compute the expected values in (19). To
tackle this issue, we resort to Lyapunov stochastic optimization
arguments [39], which solve the long term problem (19) by
casting it to a sequence of instantaneous optimization prob-
lems, which can be solved in a per-slot fashion. According to
such an optimization framework [39], we start associating a
virtual queue to each one of the long-term constraints (a) and
(b). These virtual queues evolve according to

Zk (t + 1) = max
(
0,Zk (t) + μk

(
Q tot
k (t + 1)−Qavg

k

))

Yk (t + 1) = max
(
0,Yk (t) + νk

(
Gavg
k −Gk (t)

))
, (20)

where μk and νk are step-sizes that control the convergence
speed of the algorithm. This way, it is possible to prove
that respecting the long term constraints (a) − (b) is equiva-
lent to guarantee the mean-rate stability of the virtual queues
in (20) [39]. To this end, we define the actual Lyapunov func-
tion L(t), as the sum of the squares of all the (virtual and
physical) queues

L(t) =

K∑

k=1

Zk (t)
2 +

K∑

k=1

Yk (t)
2. (21)

Defining Θ(t) =
[{Zk (t)}Kk=1, {Yk (t)}Kk=1

]
, we obtain the

associated conditional Lyapunov drift

Δ(Θ(t)) = E{L(t + 1)− L(t)|Θ(t)}, (22)

whose minimization corresponds to the stabilization of the
virtual queues, but it does note take into account the objec-
tive function (i.e., the system energy consumption). Thus, in
order to trade-off system stability and energy consumption,
the Lyapunov Drift is augmented with a term dependent on
the system energy, to obtain the so-called Lyapunov Drift plus
Penalty function

Δp(Θ(t)) = Δ(Θ(t)) + VE{Etot (t)}. (23)

By increasing the value of the parameter V we give more impor-
tance to the objective function rather than to the queues stability,
thus pushing the solution toward optimality while still guaran-
teeing the stability of the system, i.e., respecting the long-term
constraints. In particular, [39] proved that, as the parameter V
increases, the optimal solution of (19) is asymptotically reached.
Following stochastic optimization arguments [39], we proceed
minimizing an upper bound of the Lyapunov Drift plus penalty
function in (23) (derived in the Appendix), ending up with the
instantaneous optimization problem in (24), where, since the
optimization variables affect only the terms NUE

k , NES
ki and

Gk , we neglect all the terms which do not depend on them. Note
moreover that in the followingweomit the time index t to simplify
the notation.

min
Φ

VEtot +
K∑

k=1

⎡

⎣LkN
UE
k μ2

k

⎛

⎝
Lk∑

i=1

1i{ρk}pkiQES
ki −QUE

k

⎞

⎠

− Lkμ
2
k

Lk∑

i=1

pkiQ
ES
ki NES

ki +μkZk

⎛

⎝max
(
0,QUE

k −NUE
k

)

+

Lk∑

i=1

max
(
0, pkiQ

ES
ki − NES

ki

)
⎞

⎠− νkYkGk (ρk )

⎤

⎦ (24)

s.t. 0 ≤ Rk ≤ Rk ,max , ρk ∈ Sk , fs ∈ Fs , f dk ∈ Fd,k

K∑

k=1

Lk∑

i=1

f ski ≤ fs, f ski ≥ 0, ∀k , i .

Since the UEs energy-consumption terms in the cost
function of problem (24) depend only (and separately for
each UE) on the UEs optimization variables {Φd ,k}Kk=1 =

{[Rk , f
d
k , ρk , dk ]}Kk=1, we can optimize this part of the cost

function separately at each UE. Note that our design choice
to assign at the ES separate computation queues for each UE
offloaded task, lets us completely decouple the optimization
problem and separately handle the UE and ES resource
optimization. Furthermore, as already pointed out in footnote 2,
the use of multiple queues for each compression factor ρki ,
thanks to (11), makes by (10) the problem linear with respect to
fki , up to the �.� operator. Consequently, Problem (24) is sep-
arable and solvable for each compression factor, as described
in the following.

1) UE Sub-Problem: For the k-th device, at each time slot
t, we have to solve the following optimization problem

min
Φd,k

LkN
UE
k μ2k

⎛

⎝
Lk∑

i=1

1i{ρk}pkiQES
ki −QUE

k

⎞

⎠

+ μkZk max
(
0,QUE

k − NUE
k

)
− νkYkGk (ρk )

+ V γδk
(
E tx
k + E c

k

)
(25)

s.t. 0 ≤ Rk ≤ Rk ,max , ρk ∈ Sk , f dk ∈ Fd ,k ,

dk ∈ {0, 1}.

Depending on the value of the offloading decision variable
dk we can optimize the other variables employing two dif-
ferent strategies. If dk = 1, we have to allocate both the
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transmission rate Rk to transmit the DUs to the ES, and the
UE clock-frequency f dk and compression factor ρk to perform
compression. Otherwise, if dk = 0 we need only to allocate
f dk and ρk to perform the learning task locally. We remark
that we assume, although this is not mandatory, that the UE
employs also locally the same (bank of) CE-CC classification
chains we designed for the GOC scheme, thus fairly offering
to the UEs the same flexibility of classification accuracy and
energy consumption that could be exploited by the ES solu-
tion. Other choices, or a fixed structure of the classifier at the
UE, would obviously have an impact on the offloading deci-
sions by the optimal resource management and, consequently,
on the energy-delay-accuracy tradeoffs.

Coming to the solution of the problem, when dk = 1 we
handle the min(·) in (4) by adding the following constraint on
the transmission rate of the k-th user

0 ≤ Rk ≤ R+
k ,max , R

+
k ,max = min

{
Rk ,max ,

QUE
k W (ρk )

τ

}
.

(26)

This way, according to Assumptions 1 and 2, and taking
in mind we cannot compress more DUs that we can trans-
mit, we select a data-rate that is bounded by the minimum
between the maximum achievable rate Rk ,max (computed
plugging the maximum power ptxk in the Shannon capac-

ity (14)), and the draining rate QUE
k W (ρk )/τ that is capable

to empty the transmission queue (and lets remove the max(·)).
By considering that x − 1 ≤ �x� ≤ x , we can also remove
the �·� in (4). Therefore, using the definition of the indicator
function, for any fixed compression factor ρki ∈ Sk , we end
up with the following optimization problem

min
Φd,k

−QTX
ki τRk

W (ρk )
+

τV γδkBkN0

h2k
e

Rk ln(2)

Bk + τV γδkκ
(
f dk

)3

− νkYkGk (ρk ) (27)

s.t. 0 ≤ Rk ≤ R+
k ,max , f dk ∈ Fd,k , (28)

where QTX
ki = Lkμ

2
k (Q

UE
k − pkiQ

ES
ki ) + μkZk . This is a

mixed-integer optimization problem. However, in practice, the
sets Fd ,k and Sk have a quite low cardinality and, as detailed
below, the solution can be rapidly found by an exhaustive
search. Indeed, for any fixed couple of compression fac-
tor ρk ∈ Sk and computation frequency f dk ∈ Fd ,k , the
optimization problem is convex with respect to the data rate
Rk , whose optimal value can be found in closed form by
duality theory through the Lagrangian

L = − τQTX
ki Rk

M (ρk )N (ρk )
+

τV γδkN0Bk

h2k
e

Rk ln(2)

Bk + τV γδkκ
(
f dk

)3

− νkYkGk (ρk )− αRk + β
(
Rk − R+

k ,max

)
, (29)

where α and β are the Lagrangian multipliers. Note that, if
QTX
ki ≤ 0, the second term monotonically increases with the

rate, and the Lagrangian is minimum for Rk = 0.
Otherwise, when QTX

ki > 0 we can solve the optimization
problem by imposing the following KKT conditions [45]

(a)
∂L
∂Rk

= −QTX
ki τ

W (ρk )
+

τV γδk ln(2)N0Bk

h2k
e

Rk ln(2)

Bk

− α+ β = 0

(b) 0 ≤ Rk ≤ R+
k ,max , (c) α ≥ 0, (d) β ≥ 0

(e) αRk = 0, (f ) β
(
Rk − R+

k ,max

)
= 0. (30)

Solving the KKT conditions we can compute the optimal rate
R∗
k (ρk , f

d
k ), by the following expression

R∗
k =

[
Bk

ln(2)
ln

(
QTX
ki h2k

W (ρk )V γδk ln(2)N0

)]R+
max

0

× 1
(
QTX
ki > 0

)
, (31)

which gives us the closed form expression for the optimal rate
for any fixed compression factor ρk and clock frequency f dk ,
of the k-th user. Thus, as anticipated, to select the best clock
frequency f d∗k , and compression factor ρ∗k , we can proceed by
an exhaustive search, thanks to the limited cardinality of Fd ,k
and Sk . Summarising, for a potential offloading (dk = 1),
we compute the optimal rate and clock frequency f dk for each
possible compression factor ρk , and then, at every time slot,
we select the triple T ∗

k = (R∗
k , f

d∗
k , ρ∗k ) that gives the lowest

energy cost. Otherwise, for a potential classification at the UE
(dk = 0), the transmission rate to the ES would be Rk = 0
and we need to optimize only the clock-frequency for each
possible compression factor, thus obtaining the optimal pair
P∗
k = (f d∗k , ρ∗k ) that minimizes the UE’s energy consumption.

The overall optimal solution of the UE’s optimization problem,
which includes the decision to offload or not the learning task,
is finally given by choosing between the pairs (dk = 1,T ∗

k )
and (dk = 0,P∗

k ), as the one that leads to the minimum value
of the UE’s energy cost function.

2) ES Sub-Problem: From the ES perspective, for each UE
we have to manage multiple computing queues, each one asso-
ciated to a specific compression factor that has been used by
the specific UE: in the following, we denote with QES

ki the
i-th ES computing queue for the k-th UE. It clearly makes
sense to constrain the fraction f ski (of the total ES’s comput-
ing frequency fs) reserved to the i-th queue of the k-th user,
to be lower than what would be necessary to completely drain
the same queue within a time-slot, as expressed by

f ski ≤ min

(
fs ,

QES
ki

τJ s
ki

)
. (32)

This way, we can remove the terms max(0,QES
ki − NES

ki )
from the sum in (24) and, consequently, we can rewrite the
ES’s resource allocation problem as

min
Φs

−
K∑

k=1

Lk∑

i=1

τQ
comp
ki J s

ki f
s
ki + τV (1− γ)κf 3s (33)

s.t. 0 ≤ f ski ≤ min

(
fs ,

QES
ki

τJ s
ki

)
∀k , i

K∑

k=1

L∑

i=1

f ski ≤ fs , fs ∈ Fs ,

where Φs = [{f ski}i=1,...,Lk ,k=1,...,K , fs ], and Q
comp
ki =

Lkμ
2
kQ

ES
ki + μkZk . Although the problem is a mixed-integer

optimization one, for any fixed ES’s clock frequency fs , it
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boils down to the classical (fractional) knapsack problem [46].
Consequently, the optimal solution is obtained by a greedy
algorithm, which consists in ordering the queues by their
weights (Q

comp
ki J s

ki ) in descending order, and then assign-

ing the clock frequency to the queue as min(φ,
QES

ki
τJ s

ki
), where

φ is the remaining part of the ES’s clock frequency fc(t).
Consequently, due to the limited cardinality of the ES’s clock-
frequency set Fs , also in this case we can exhaustively solve
the problem for all the server clock frequencies fs ∈ Fs , thus
obtaining the set of possible solutions {(f ski , fs)}fs∈Fs

and then
choose the one associated with the minimum ES’s cost in (33).

B. mu-MADE: Multi-User Maximum-Accuracy With Delay
and Energy Constraints

An alternative resource allocation, targeting a Maximum-
Accuracy, can be formulated as

min
Φ(t)

lim
T→∞

1

T

T∑

t=1

E

{
K∑

k=1

−Gk (t)

}
(34)

s. t. (a) lim
T→∞

1

T

T∑

t=1

E
{
Q tot
k (t)

} ≤ Q
avg
k ∀k

(b) lim
T→∞

1

T

T∑

t=1

E

{
Ed
k (t)

}
≤ Ed ,avg

k ∀k

(c) lim
T→∞

1

T

T∑

t=1

E{Es(t)} ≤ Eavg
s

(d) 0 ≤ Rk (t) ≤ Rk ,max ∀k , t
(e) ρk (t) ∈ Sk , fs(t) ∈ Fs , f

d
k (t) ∈ Fd ,k ∀k , t

(f )

K∑

k=1

Lk∑

i=1

f ski (t) ≤ fs(t)

(g) f ski (t) ≥ 0 ∀k , i , t
(h) dk (t) ∈ {0, 1} ∀k , t

where Φ(t) = [{Rk (t), f
s
ki (t), f

d
k (t), ρk (t), dk (t)}, fs (t)], for

k = 1, . . . ,K , and i = 1, . . . ,Lk contains all the optimization
variables. The constraints in (19) have the following mean-
ing: (a) the average queue length for the k-th UE must be
lower than Qavg

k , i.e., we are imposing a maximum average
service delay equal to Dk

avg = Qk
avg/Ak (cf. (13)); (b) the

average energy consumption for the k-th UE must be lower
than E k

d ,avg ; (c) the average ES’s energy consumption must
be lower than E s

avg ; (d)-(h) have the same meaning of (c)-(g)
in (19).

Proceeding similarly to the mu-MEDA strategy, in order
to manage the long-term energy constraints (b) and (c), in
addition to the virtual queue Zk (t) defined in (20) to manage
(a), we need to define the virtual queues

Sk (t + 1) = max
(
0,Sk (t) + λk

(
Ed
k (t + 1)− E

d ,avg
k

))

O(t + 1) = max(0,Ok (t) + η(O(t + 1)− Eavg
s )), (35)

where {λk}Kk=1 and η are the step-sizes used to control the
convergence speed of the algorithm. By the definition of the

virtual queues, in this case the Lyapunov Function becomes

L(t) =
K∑

k=1

[
Sk (t)

2 + Zk (t)
2
]
+O(t)2 (36)

and, consequently, given Θ(t) = [{Sk (t),Zk (t)}Kk=1,O(t)],
we derive the following expression for the Lyapunov drift-
plus-penalty function

Δp(t) = E{L(t + 1)− L(t)|Θ(t)} − VE

{
K∑

k=1

Gk (t)

}
(37)

As detailed in the Appendix, we end up with the following
optimization problem

min
Φ

K∑

k=1

⎡

⎣LkN
UE
k μ2k

⎛

⎝
Lk∑

i=1

1i{ρk}pkiQES
ki −QUE

k

⎞

⎠

+ μkZk

⎛

⎝max
(
0,QUE

k − NUE
k

)

+

Lk∑

i=1

max
(
0, pkiQ

ES
ki − NES

ki

)
⎞

⎠

+ λkSkE
d
k − Lkμ

2
k

Lk∑

i=1

pkiQ
ES
ki NES

ki

⎤

⎦

+ ηOE s
k − V

K∑

k=1

Gk (38)

s.t. 0 ≤ Rk ≤ Rk ,max , ρk ∈ Sk , fs ∈ Fs , f
d
k ∈ Fd ,k ∀k

K∑

k=1

Lk∑

i=1

f ski ≤ fs , f
s
ki ≥ 0

Exploiting again the decoupling of the problem, which
is granted by our proposed design to separately handle the
queues for any specific UE and any specific compression fac-
tor, we end-up also in this case with distinct instantaneous
optimization problems, one at each UE, and a single one at
the ES.

1) UE Sub-Problem: As far as the k-th UE is concerned,
we get the following optimization problem formulation

min
Φd,k

LkN
UE
k μ2k

⎛

⎝
Lk∑

i=1

{
1i{ρk}pkiQES

ki QUE
k

⎞

⎠

+ μkZk max
(
0,QUE

k NUE
k

)

− λkSkE
d
k − VGk (ρk ) (39)

s.t. 0 ≤ Rk ≤ Rk ,max

ρk ∈ Sk , f dk ∈ Fd ,k , dk ∈ {0, 1},
where Φd ,k = [Rk , f

d
k , ρk , dk ], for k = 1, . . . ,K . The reso-

lution strategy is quite similar to the previous case, when we
minimized the energy consumption: if an UE would decide
to offload its task (dk = 1), we need to allocate the optimal
transmission rate Rk for any fixed compression factor ρk and
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TABLE I
DEEP-CE PARAMETERS

device clock frequency f dk . Also in this case we can obtain
the optimal rate R∗

k (ρk , f
d
k ) in closed form, as expressed by

R∗
k =

[
Bk

ln(2)
ln

(
QTX
ki h2k

W (ρk )λkSk ln(2)N0

)]R+
max

0

× 1
(
QTX
ki > 0

)
. (40)

Thus, for a possible offloading decision (dk = 1) we com-
pute by (40) the optimal data transmission rate R∗

k for each
ρk ∈ Sk and f dk ∈ Fk ,d , and we select the optimal triple
T ∗
k = (R∗

k , f
d∗
k , ρ∗k ) that minimizes the cost function in (39).

Conversely, in order to evaluate the minimum cost of a local
learning task at the k-th UE (dk = 0), we just need to exhaus-
tively search for the pair P∗

k = (f d∗k , ρ∗k ) that would optimize
the accuracy under the prescribed constraints. Finally, depend-
ing on which one of the two optimal allocation strategies
guarantees the best accuracy, we decide to offload (dk = 1), or
not (dk = 0), the k-th user task, using the associated optimal
allocation strategy T ∗

k , or P∗
k , respectively.

2) ES Sub-Problem: From the ES perspective, the
optimization problem is similar to the mu-MEDA, except for
small differences in the cost function, and is expressed by

min
Φs

−
K∑

k=1

Lk∑

i=1

τQES
ki J s

ki f
s
ki + ηOκτ f 3s (41)

s.t. 0 ≤ f ski ≤ min

(
fs ,

QES
ki

τJ s
ki

)
, ∀k , i

K∑

k=1

L∑

i=1

f ski ≤ fs , fs ∈ Fs ,

where Φs = [f ski , fs ], and can be solved likewise the mu-
MEDA formulation.

V. SIMULATION RESULTS

In this section, we present the simulation results we obtained
by the two optimization strategies we proposed and solved.
Tables I-II report the values of the accuracy Gk (ρ), the data-
units J d

k (ρ) that can be compressed (and zipped by JPEG)
in a clock-cycle by the k-th UE, when it decides to offload
the classification, and the data-units JL

k (ρ) that can be com-
pressed and classified locally in a clock-cycle by the same UE.
Table III reports the data-units Js(ρ) that can be classified in
a clock-cycle at the ES, as well as the image-size M(ρ) and
the average number of bits/pixel N(ρ) that are shared by both
the short- and deep-CE, when using JPEG.

TABLE II
SHORT-CE PARAMETERS

TABLE III
COMMON PARAMETERS

TABLE IV
CHANNEL TYPE

We assumed a flat-fading channel, whose statistical char-
acterization is based on the Clarke’s autocorrelation func-
tion [47]. We considered two operating scenarios, summarized
in Table IV, and we accordingly set the time-slot duration to
τ = 50ms , which corresponds to the channel coherence time.
The parameter σ20 models the wireless channel power path-loss
and it has been computed by considering the Alpha-Beta-
Gamma model [48]. In a first set of simulations we considered
a scenario with K = 5 UEs connected to the network. Although
this is not strictly necessary, we assumed that the devices of
all the UEs share the same computation frequency set Fd =
{0.1, 0.2, . . . , 0.9, 1}×1.4GHz , while the server computation
frequency set is Fs = {0.1, 0.2, . . . , 0.9, 1}×4.5GHz . Finally,
for simplicity, we considered an effective switched capacitance
κ = 1.097×10−27[ s

cycles ]
3 for all the UEs and for the ES. We

underline that all the simulation results have been obtained at
convergence of the tested strategies [39].

A. Goal-Oriented Compression Results

For simplicity, all the UEs were assigned the same
image classification task, based on the German Traffic Sign
Recognition Benchmarks (GTSRB) [49] dataset. This dataset
includes 1213 pictures of German road signals, divided in 43
different classes. The dataset has been split in a 80% train-
ing set, composed of 970 images, and 20% test set, composed
of 243 images. During the data loading phase, all the all the
images have been normalized to a size of 256x256, and con-
verted to a 3-channel image (one channel for each RGB color),
such that the initial size of each data-unit, is 256x256x3.
Although this is not strictly necessary, we assumed that all the
UEs share the same bank of CE-CC classification networks,
e.g., the compression factors ρk assume values on the same
fixed set S = {2, 4, 8, 16, 32, 64}. In order to shade light on
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Fig. 3. Classification accuracy comparison.

the performance obtained by the proposed resource manage-
ments, we find useful to show in Fig. 3 the average accuracy
on the test-set associated to different compressive architec-
tures: i) Deep-CE, ii) Short-CE, iii) Down-sampling with
anti-aliasing pre-filter. As expected, the accuracy G(ρ) has a
monotone decreasing behavior with respect to the compres-
sion factor, for all the models. The deep-CE has always the
best performances even if, for lower compression factors (up
to 16), the differences with the Short-CE are almost negli-
gible. In contrast, for the highest ones (i.e., 32, 64) there is
there is a clear advantage in using the deep-CE. For com-
pression factor ρ = 64 we get output tensors with a size
of 4x4x3=48 pixels: despite (pseudo) images of this size
have clearly undergone a heavy transformation, the deep-CE
still allows the ES’s CC to classify them with a 67% accu-
racy, which is still a remarkable performance for a 43-class
43-class classification task. Conversely, for this compression
factor neither the down-sampling strategy nor the short-CE,
allow a meaningful classification. The price to be paid for
an increased accuracy of the deep-CE is the increase of the
computation energy and processing delay (as summarized
in Tables I-II) that we trade by our resource management
policies.

B. mu-MEDA Results

First of all, we tested the mu-MEDA strategy comparing
the CE (short and deep) with the down-sampling compres-
sion strategy in channel scenario B, reported in Table IV. We
set the same latency constraint Davg

k = Qavg
k /Ak = 0.20 s ,

for all the UEs. We considered a task arrival process with
Ak = 2DU /slot , and we forced the UEs to always offload
the classification task to the ES, without any opportunistic
strategy (i.e., dk (t) = 1, ∀k , t).

Each trade-off curve in Figs. 4 and 5 is associated to a dif-
ferent accuracy constraint, while they all respect the same
latency constraint, which is highlighted by a dashed horizontal
line in the plot. Each curve is obtained by evaluating the solu-
tion (at convergence) of the resource optimization problem, for
several different values of the trade-off parameter V in (23).

Fig. 4. UE Energy/Latency trade-off. CE (solid) vs down-sampling (dashed).

Fig. 5. ES Energy/Latency trade-off. CE (solid) vs down-sampling (dashed).

Specifically, by increasing V we end-up to solutions charac-
terized by a lower energy consumption and a higher latency
and, as indicated by the black arrow on the figures, we move
from the bottom-right to the top-left corner of the trade-off
plots, which correspond to the desired optimal solutions on the
borders of the feasibility regions. Fig. 4 shows that, from the
UE’s perspective, there is a clear advantage on employing the
CE compression strategy, since we end-up to solutions char-
acterized by a lower (computational and transmission) energy
consumption, while satisfying the same latency and accuracy
constraints. This depends on the fact that channel-B is charac-
terized by a huge attenuation: thus, since the CE compression
strategy allows to satisfy the same accuracy constraint trans-
mitting smaller DUs with respect to classical down-sampling,
this allows to reduce the transmission energy expenditure
considerably, without spending too much in extra computa-
tional energy for CE-based compression at the UE. Actually,
the proposed dynamical, goal-oriented, compression strategy
leads also to a lower ES’s energy computational expenditure,
as witnessed from Fig. 5. Indeed, also the classification of
smaller DUs is cheaper from a computational and energetic
perspective.
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Fig. 6. UE’s energy/latency trade-off. Opportunistic offloading (solid) vs
only offloading strategy (dashed).

Fig. 7. Average Accuracy vs V with opportunistic offloading at convergence.

C. Opportunistic Offloading

We compared the previous scenario, where UEs always
offload decision tasks to the ES, with the opportunistic
offloading strategy where UEs can also decide to perform
classification locally, by the same CE-CC classification archi-
tecture. Specifically, two out of five UEs are connected to the
ES by the channel in scenario A of Table IV, while the other
ones by the channel in scenario B. The opportunistic offload-
ing strategy ends up to a dynamical resource optimization that
is characterized by a significant lower UE energy expenditure
with respect to the always offload strategy, still satisfying both
the accuracy and latency constraints, as shown by Figs. 6-7,
where clearly all the solid curves are on the left, e.g., with a
lower energy expenditure, with respect to the dashed curves
of the pure offloading strategy. Fig. 8 shows the histogram
of the offloading decisions for each UE, for a (minimum)
accuracy constraint Gavg = 70% and a trade-off parameter
V = 1 × 106. As expected, since the UE-0 and UE-3 expe-
rience good channel conditions, they decide to offload more
frequently than the other devices, whose Channel-B requests
much higher transmission power to allocate rates to the UEs

Fig. 8. % of Offloading (G
avg
k

= 70%∀k , V = 1× 106).

TABLE V
SIMULATION SCENARIOS FOR EACH UE

and, sometimes, it may be also unfeasible to respect either the
accuracy or the delay constraint, or both.

D. Comparison With Static Allocation Strategies

A key strength of the proposed approach is the
joint dynamic optimization of transmission&computational
resources, together with the optimal dynamic selection of
the classification architecture used to perform the task. Thus,
we compare the proposed multi-user optimization strategy
with:

• A Fixed-Accuracy optimization strategy, where we
optimize both the computational and the transmission
resources at the UE-side, by keeping fixed a single CE-
CC classification architecture. This approach is quite
similar to the one presented in [6].

• A Hybrid static/dynamic optimization strategy, where,
inspired by [50], we fix the transmission rate R on
the basis of the average channel conditions, while we
dynamically optimize the CE-CC architecture, as well
as the computational resources at the UEs. The trans-
mission rate R is fixed as the minimum one that guar-
antees the stability of the UE queue. This rate can be
computed through the capacity for flat-fading Rayleigh
channels [51, eq. (9)], and it fixes also the transmission
power.

In this case we considered a scenario with K = 3 UEs,
each one experiencing different channel conditions and com-
putational efficiency, as summarized in Table V. We set an
arrival task with A = 2DU /slot , and we imposed the
same accuracy and latency constraints for all the UEs to
G

avg
k = 92% and D

avg
k = 0.2s , respectively. Thus, for

the Fixed-Accuracy optimization strategy, we considered the
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Fig. 9. Instantaneous UEs consumption for the dynamic optimization (a), fixed accuracy (b) and fixed rate (c).

short-CE with ρk = 8 as the unique learning model, which
according to Table II is capable to grant the requested average
classification performance with a fairly moderate computa-
tional energy. Fig. 9 shows that employing a fully dynamic
optimization strategy leads to solution characterized by a
lower UE energy consumption. As expected UE-0 and UE-2
reach the lowest and highest energy consumption, respec-
tively, given their computational and channel conditions sum-
marized in Tab. V. It is clear that, for all the UEs, our
optimization strategy allow to reach the lowest energy con-
sumption, thus confirming the effectiveness to jointly and
dynamically optimize the transmission/computation resources
as well as the learning architecture (i.e., the pair of CE-
CC) to be employed, depending on the instantaneous system
conditions.

E. mu-MADE Results

We tested the mu-MADE optimization strategy considering
a scenario with K = 3 UEs, each one characterized by dif-
ferent channel and computational conditions. In particular, we
considered an effective switched capacitance κ0 = 1.097 ×
10−27[ s

cycles ]
3 for the ES, and higher values for the UEs, in

order to simulate a lower energetic efficiency. The UE energy
constraint has been set to E

avg
k = 128 × 10−3J . Table V

summarizes the different conditions for the devices consid-
ered in the simulation, where we employed, concurrently, both
Deep- and the Short-CE. We remark that UE-0 experiences
both good channel conditions and computational efficiency:
this means that it has the maximum degree of flexibility
on the management of the opportunistic offloading. UE-1
is characterized by the same channel conditions of UE-0,
with a lower computational efficiency, while UE-2 operates
with both a bad channel and a low computational energy
efficiency.

The curves shown in Fig. 10 represent the accuracy-latency
trade-off: by increasing the parameter V of (37), we end up
with solutions with higher accuracy and latency, moving on
the curves from bottom-left to top-right corner, where we get
the desired optimal solutions at the boundary of the decision
region. Specifically, Fig. 10 shows that UE-0 (i.e., the UE with
the best computational & channel conditions) gets the highest
accuracy, while widely satisfying the latency constraint. We
note a similar behaviour for UE-1 and UE-2, with a higher
degree of latency for UE-2 (i.e., the device that works in the

Fig. 10. Accuracy vs Latency trade-off.

Fig. 11. Offloading histograms (V = 1× 105).

worst conditions). Finally, we report in Fig. 11 the histogram
of the offloading decisions for each UE. Given its favorable
channel and computational energy efficiency, we have a bal-
anced situation for UE-0, since it has the highest flexibility to
choose if offloading computations, or not. On the other hand,
UE-1 mostly performs offloading, since the transmission of
DUs in a channel with fairly low attenuation allows to miti-
gate the burden due to the low computational energy efficiency.
Finally UE-2, although it has a much worse channel, it offloads
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more DUs than UE-0 s due to its much higher computational
inefficiency.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work we implemented a goal-oriented compres-
sion architecture based on CEs, which is exploited by two
distinct dynamic optimization strategies in order to either
minimize the energy consumption or to maximize the learn-
ing accuracy in a multi-user scenario, where the UEs can
opportunistically decide whether and when to offload the com-
putations toward the ES. The extensive simulation results
confirmed the effectiveness and the flexibility of the proposed
approaches in different scenarios. However, we remark that
the proposed goal-oriented communication architecture, and
the associated resource management strategy, could exploit
also classification or learning-oriented compression strate-
gies, that may be different from the CE-based solutions
presented herein. Future research directions include the exten-
sion to multi-server scenarios, cooperative learning tasks (e.g.,
Federated Learning), as well as to explicitly take into account
also the battery level of each UE, which may be equipped
by some energy harvesting mechanism or batteries recharge
plan.

APPENDIX

MATHEMATICAL DERIVATIONS FOR MU-MEDA

Two Lemmas in [39] are useful to solve the proposed
resource optimization strategies.

Lemma 1: Given a queue that evolves according to X (t +
1) = max (0,X (t) + x (t + 1) − x ), by defining Δx =
X (t+1)2−X (t)2

2 , it is always true that Δx ≤ (x(t+1)−x)2

2 +
X (t)x (t + 1)− X (t)x .

Lemma 2: The following inequality holds true:

(max(0,Q − b) + A)2 ≤ Q2 + A2 + b2 + 2Q(A− b).

Employing Lemma 1, and recalling that, given x ∈ R
k ,

(
∑K

k=1 xk )
2 ≤ K

∑K
k=1 x

2
k , for the Latency Virtual Queue

Zk (t) we have

Δzk (t) ≤
μ2k
(
Q tot
k (t + 1)−Q

avg
k

)2

2
+ μkZk (t)

(
Q tot
k (t + 1)−Qavg

k

)

≤ μ2kLk

2

⎡

⎣QUE
k (t + 1)2 +

Lk∑

i=1

piQ
ES
ki (t + 1)2

⎤

⎦

+ μkZk (t)
(
Q tot
k (t + 1)−Q

avg
k

)
+

μ2kLk

2

(
Q

avg
k

)2
,

Now, recalling (8), (9) and using Lemma 2 we can derive the
following inequality

Δzk (t) ≤
μ2
kLk

2

{
QUE

k (t)2 +MUE
k + 2QUE

k (t)

×
(
Ak (t)− NUE

k (t)
)

+

Lk∑

i=1

[
piQ

ES
ki (t)2 +MES

k

+ 2piQ
ES
ki (t)

(
Âki (t)− NES

ki (t)
)]}

+ μkZk (t)
(
Q tot

k (t + 1)−Qavg
k

)
+

μ2
kLk

2

(
Qavg

k

)2

where Âki (t) = 1{ρk (t) = ski}NUE
k (t), MUE

k = A2
k ,max +

N 2
kdev ,max and MES

ik = A2
ki ,max +N 2

ki ,max . The same deriva-
tions presented in [9] can be applied to the accuracy virtual
queue, thus obtaining an upper-bound for Δyk (t). Putting
together the derived instantaneous upper-bounds we end up
to the optimization problem presented in Section IV-A.
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