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Multiagent Reinforcement Learning for Community
Energy Management to Mitigate Peak Rebounds

Under Renewable Energy Uncertainty
Bo-Chen Lai, Wei-Yu Chiu , Member, IEEE, and Yuan-Po Tsai

Abstract—Price-based demand response (DR) can aid power
grid management, but an uncoordinated response may lead to
peak rebounds during low-price periods. This article proposes
a community energy management system based on multiagent
reinforcement learning. The scheme consists of a community ag-
gregator that optimizes the total community electricity cost for
multiple residential users. A home requires energy management
for home appliances, electric vehicles, energy storage systems, and
renewable energy generation. The appliance scheduling problem
is decomposed into smaller sequential decision problems that are
easier to solve. Renewable generation is predicted and used to miti-
gate the influence of energy generation uncertainty. As indicated in
numerical analyses, the proposed approach can handle the uncer-
tainty in renewable energy and leads to more economical energy
usage relative to existing energy management methods. The method
outperforms conventional algorithms, such as centralized mixed-
integer nonlinear programming and genetic algorithm-based opti-
mization, in terms of mitigating peak rebounds and addressing the
uncertainty of renewable energy generation.

Index Terms—Appliance scheduling, energy management
system, game theory, multiagent reinforcement learning, neural
network, peak rebound, renewable energy sources.

NOMENCLATURE

ln Power consumption information of residen-
tial user n

pag Power imported from the utility to the com-
munity

pnon
n,t Power consumption of non-shiftable appli-

ances in active residence n at time t
Dnon

n,t Power demand of non-shiftable appliances
in residence n at time t

T Observation window
ushift
n,i,t Indicator function of shiftable appliance i in

residence n at time t
T shift
n,i,start, T

shift
n,i,end Start and end times of shiftable appliance i

in residence n, respectively
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wshift
n,i Nominal total working hour of shiftable ap-

pliance i in residence n
Dshift

n,i,t Power demand of shiftable appliance i in
residence n

pshift
n,i,t Power consumption of shiftable appliance i

in residence n at time t
gshift
n,i,t User dissatisfaction cost of shiftable appli-

ance i in residence n at time t
βshift
n,i Dissatisfaction coefficient of shiftable ap-

pliance i in residence n
pcon
n,j,t Power consumption of controllable appli-

ance j in residence n at time t
Dcon

n,j,min, D
con
n,j,max Minimum and maximum power demand of

controllable appliance j in residence n, re-
spectively

T con
n,j,start, T

con
n,j,end Start and end times for controllable appli-

ance j in residence n, respectively
gcon
n,j,t User dissatisfaction cost of controllable ap-

pliance j in residence n at time t
βcon
n,j Dissatisfaction coefficient of controllable

appliance j in residence n
pEV
n,t Power consumption of charging an EV in

residence n at time t
gEV
n,t Charging anxiety function for an EV
βEV
n Charging anxiety coefficient

DEV
n,min, D

EV
n,max Minimum and maximum charging demand

of an EV in residence n
T EV
n,start, T

EV
n,end Start and end times for an EV charging event

in residence n, respectively
Bn,t, p

B
n,t Energy level and charging/discharging

power of an ESS in residence n at time t
ηn Charging and discharging efficiency of the

ESS in residence n
Bmin

n , Bmax
n Minimum energy level and maximum ca-

pacity of the ESS in residence n
pmin
n,t , p

max
n,t Discharge and charge limits of the ESS in

residence n
pPV
n,t Solar power in residence n at time t

fn Electricity cost of residential user n
λt Electricity price in time slot t
Δt Duration of a time slot
Cdeg

n Degradation cost of the ESS
gn Dissatisfaction cost of residential user n
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Un Cost function of residential user n
wn Weight that reflects the desired balance be-

tween electricity cost and dissatisfaction
cost of residential user n

P n Power control vector for all appliances and
the ESS in residence n

Bt, p
B
t Energy level and charging/discharging

power of an ESS at CA
η Charging/discharging efficiency of the ESS

at CA
Bmin, Bmax Minimum energy level and maximum ca-

pacity of the ESS at CA
pmin
t , pmax

t Discharge and charge limits of the ESS at
CA, respectively

pCA
t Amount of power imported from the grid to

the whole community
pPV
t Solar power at CA at time t
N ,M Sets of active and passive residential users,

respectively
Lmin
t , Lmax

t Lower and upper bounds of pCA
t

U Cost function of the CA
Cdeg Degradation cost of the ESS at CA
τ Overprice that forces the CA to meet the

constraints induced by Lmin
t and Lmax

t

pB Charging/discharging control vector at CA
Ct Generation cost on the supply side
et, ft Electricity price coefficients
C Set of all followers
ln Power demand vector
Γ Non-cooperative Stackelberg game (NSG)

strategy
w weather forecast information
LTSM(·) LSTM prediction model of renewable en-

ergy generation
S, st State space and state at time t, respectively
A, at Action space and action at time t, respec-

tively
rt Cost.
π Policy that maps a state to an action
π∗ Optimal policy.
qπ Action-value function
γ Discount factor
q∗(st, at) Optimal action-value function
Q(St, At) Q-value at state-action pair (St, At)
dh Demand load profile of upcoming time slots

starting from time h and ending at time T
pPV
h Forecast PV generation at CA

Qn,k Q-value of appliance k in residence n
ln,h Power demand of the selected agent n at

time h
l−n,h Power demand of other unselected agents at

time h

I. INTRODUCTION

B ECAUSE of the continual changes in the electricity market
with respect to, for example, electricity prices and user

energy consumption, an energy management system (EMS)
that adaptively optimizes generation or power transmission is
required [1]. Moreover, recent advances in information transmis-
sion and smart metering technologies have led to an increased
focus on demand response (DR) strategies that improve grid
efficiency and reliability by adjusting flexible loads on the
demand side [2]. A well-designed DR program can aid power
grid management by balancing electricity supply and demand,
facilitating the use of renewable energy sources, and reducing
fossil fuel consumption [3].

With the increasing use of smart home appliances, electric
vehicles (EVs), and energy storage systems (ESS), home energy
management systems (HEMS) based on price-based DR provide
new opportunities to achieve energy efficiency through efficient
energy scheduling without any compromise to user satisfaction.
HEMS can reduce both the electricity cost and peak-to-average
ratio by shifting some appliance operations to a period when
electricity prices are low [4]. Additionally, user satisfaction and
comfort levels in relation to thermoelectrical loads should be
considered [5], and HEMS can help balance between cost and
user satisfaction.

However, in a typical DR program, residential users may
receive the same price signal from the utility, thereby raising
the risk that many users would operate their appliances during
the same low-price period. This effect is referred to as a peak
rebound [6]–[8] and a systemwide DR management mechanism
is required to coordinate residential user and community levels.
Two coordination structures to mitigate peak rebound have been
examined, a centralized structure and distributed coordination
structure, which are classified according to the underlying com-
munication and control architecture [9].

A centralized structure has a central operator managing the
electricity use of all smart homes, with direct access to informa-
tion relating to the electric appliances of all end users [10], [11].
Although some studies have demonstrated that the centralized
approach is optimal for electrical energy use, one major draw-
back is the computational burden during optimization, especially
because of the large number of residential user assets that must
be controlled [12]. Furthermore, the requirement for detailed
information on end users may raise some privacy concerns [13].

By contrast, a distributed structure can distribute computation
to several subsystems to mitigate the high computational burden
and privacy concerns [14]. A distributed structure allows end
users to schedule their loads individually while communicating
with a central entity to obtain information about neighboring
electricity profiles. Community energy management can be de-
composed into a two-level optimization problem, in which the
upper level seeks to flatten the system load profile and the lower
level minimizes individual residential users’ energy costs [15],
[16].

A popular approach used for the distributed structure is game
theory [8], [17], [18]. Zhu et al. [19] proposed a noncooperative
game based on mixed-integer programming to schedule con-
sumption plans to minimize energy costs for several residential
consumers, but they only considered nonshiftable and shiftable
appliances in their scenario. Li et al. [20] proposed a distributed
algorithm for shiftable appliances to minimize energy costs.
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Rajasekhar et al. [21] examined an energy scheduling problem in
a residential community with an aggregator. In that study, EVs;
batteries; and critical, controllable, and shiftable loads were con-
sidered. The results indicated that the home appliance scheduling
problem became difficult to solve the more home appliances
there are. Genetic algorithms and the Stackelberg game were
applied to optimize users’ electricity costs and satisfaction.

Although previous studies considering distributed coordi-
nation have addressed the peak rebound problem, they have
implicitly assumed that the information on renewable energy
generation is accurate. Based on this assumption, optimization
methods can perform excellently. Given the lack of complete
environmental information, such as the uncertainty in electricity
prices or photovoltaic (PV) generation, reinforcement learning
(RL) can outperform conventional optimization methods [22]–
[24]. For example, Remani et al. [23] presented an innovative
RL-based model for residential shiftable load scheduling based
on uncertain renewable energy. To consider the diversity of home
appliances, Xu et al. [24] proposed multiagent RL (MARL)-
based HEMS that considered electricity prices and renewable
energy uncertainty but did not include an ESS. Although ex-
isting RL-based energy management methods have addressed
the problem of uncertainty in renewable energy, the focus has
primarily been on a single residence, potentially leading to peak
rebound.

Advances in community energy management in a distributed
structure have two weaknesses. First, most studies have formu-
lated the scheduling of home appliances as a problem in which
the computation time dramatically increases with an increasing
number of appliances. Second, existing approaches addressing
peak rebound have not considered the uncertainty of renewable
energy generation, and approaches addressing uncertainty have
focused on a single residence instead of a whole community.

To fill this research gap, we propose a MARL algorithm
for community energy management to mitigate peak rebound
influenced by uncertain renewable energy generation. A leader–
follower Stackelberg game is formulated in each time step. In the
game, a community aggregator (CA) serving as the leader fore-
casts future renewable energy generation, which can be achieved
using a method known as weather-based long short-term mem-
ory (LSTM) [25]. The CA optimizes the ESS scheduling while
updating a Q-table and initializes a community load profile for
all residential users. Residential users acting as followers predict
their own renewable energy generation.

We decompose the scheduling problem of home appliances
into a sequential scheduling problem for a single appliance. In
each home appliance scheduling problem, an appliance in a
residence is an agent, which has its own Q-table; this entails
multiple agents in the residence. Once an agent has updated
the Q-table in a planning phase, it transfers information about
the available renewable energy to the next appliance agent
for scheduling. After all the appliances have been scheduled,
the residential user notifies the CA of their load profile. This
interaction between the CA and residential user continues in
that time slot until a near Stackelberg equilibrium is reached.
In the next time slot, a new Stackelberg game is formulated,
and the appliance agents can inherit Q-tables obtained from the

Fig. 1. Bi-level DR structure.

previous time slot. Simultaneously, weather information is used
to predict renewable generation for the appliance agents to adjust
their scheduling to mitigate the influence of uncertainty.

This study’s main contributions are as follows. To miti-
gate the influence of uncertain renewable energy generation,
the proposed community energy management method incorpo-
rates future renewable energy generation prediction into en-
ergy scheduling. To mitigate peak rebounds for community
energy management, we formulated the problem of appliance
scheduling using a game-theoretic approach, with MARL used
to solve the game. We decomposed the scheduling problem
of home appliances into smaller sequential decision problems:
individual energy scheduling problems for shiftable appliances,
controllable appliances, EVs, and ESS. The proposed MARL
can efficiently use renewable energy because of the information
transfer between agents. The proposed method was compared
with existing learning-based and optimization-based methods
for community energy management. Compared with a single-
agent RL-based method, our method reduced the peak load and
average cost by 30.8% and 9.68%, respectively. Compared with
centralized mixed-integer nonlinear programming (MINLP),
our method reduced the average residential cost by 2.7%, the
standard deviation of the cost by 56%, and the peak load at
the CA by 1.72% while handling the uncertainty in renewable
energy generation.

The rest of this article is organized as follows. The system de-
scription, mathematical models relating to home appliances and
ESS, and problem formulation are presented in Section II. The
proposed community energy management method is detailed in
Section III. The simulation results are presented in Section IV.
Finally, the conclusion is presented in Section V.

II. SYSTEM MODELS

This section presents mathematical models representing resi-
dential communities; the models include the supply side, middle
layer, and demand side and comprise N active residential users
and M passive residential users (Fig. 1) [16], [20], [23]. Each
active residential user has an HEMS, renewable energy source
(e.g., solar panels), and ESS. Active residential users can sched-
ule the operating periods of household appliances to minimize
their electricity spending with acceptable user satisfaction in
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response to time-varying electricity prices. Passive residential
users neither optimize the appliance schedule nor respond to
price changes. In this scheme, residential user n provides the
CA with their power consumption information ln in the middle
layer. The CA is equipped with an ESS [21], receives all power
consumption profiles, and minimizes community electricity
spending. The CA can import power pCA from the utility to
balance supply and demand.

A. Residence Models

The HEMS of residential users can forecast future renewable
energy and optimize the scheduling of appliances to reduce
electricity bills. Appliances in a smart home can be classified
into three types [22]: nonshiftable appliances, shiftable appli-
ances, and controllable appliances. In addition, each residence
is assumed to be equipped with an EV, ESS, and PV system [21].

1) Nonshiftable Appliances: Nonshiftable appliances, such
as refrigerators and cooking appliances, are commonly
used [26]. These appliances are inflexible and cannot be sched-
uled. We denote pnon

n,t kW as the power consumption of non-
shiftable appliances in an active residence n in time slot t. The
total power consumption of the nonshiftable appliances is equal
to the power demand Dnon

n,t and can be expressed as

pnon
n,t = Dnon

n,t , t = 1, 2, . . ., T (1)

where T is the observation window.
2) Shiftable Appliances: Shiftable appliances, such as dish-

washers and washing machines, can be shifted from a high-price
period to a low-price period to reduce electricity costs [26].
Unlike nonshiftable appliances, shiftable appliances have two
available actions to choose from: “on” and “off,” coded as 1 and
0, respectively. If residence n has In shiftable appliances, let
ushift
n,i,t denote the indicator function:

ushift
n,i,t ∈ {0, 1} ∀t ∈ [T shift

n,i,start, T
shift
n,i,end], i = 1, 2, . . ., In

(2)
where T shift

n,i,start and T shift
n,i,end represent the start and end times of

shiftable appliance i, respectively.
A shiftable appliance must complete its nominal total work-

ing hour wshift
n,i in [T shift

n,i,start, T
shift
n,i,end]; thus, the constraint on the

indicator function can be expressed as

T shift
n,i,end∑

t=T shift
n,i,start

ushift
n,i,t = wshift

n,i . (3)

Power consumption pshift
n,i,t is equal to power demand Dshift

n,i,t kW
controlled by the indicator function:

pshift
n,i,t = ushift

n,i,tD
shift
n,i,t. (4)

Although energy costs can be reduced by shifting the power
demand of the shiftable appliances to time slots with low
electricity prices, this practice can cause user dissatisfaction
by delaying the expected schedule. The dissatisfaction cost of
shiftable appliances can be modeled as [23]

gshift
n,i,t = βshift

n,i (1− ushift
n,i,t)D

shift
n,i,t ∀t ∈ [T shift

n,i,start, T
shift
n,i,end] (5)

where βshift
n,i is a dissatisfaction coefficient of appliance i in

residence n.
3) Controllable Appliances: Controllable appliances can op-

erate flexibly in a predefined power range, such as in air con-
ditioners and water heaters. Let pcon

n,j,t denote the power con-
sumption of controllable appliance j. If residence n has Jn
controllable appliances, the following constraints are imposed
on pcon

n,j,t:

Dcon
n,j,min ≤ pcon

n,j,t ≤ Dcon
n,j,max, j = 1, 2, . . ., Jn (6)

where Dcon
n,j,min and Dcon

n,j,max represent the minimum and maxi-
mum power demand, respectively.

Although controllable appliances can lower household elec-
tricity spending by decreasing the power consumption, the
reduction in power may cause user dissatisfaction. The user
dissatisfaction cost of controllable appliance j can be modeled
as [27]

gcon
n,j,t = βcon

n,j(p
con
n,j,t −Dcon

n,j,max)
2 ∀t ∈ [T con

n,j,start, T
con
n,j,end]

(7)
where T con

n,j,start and T con
n,j,end denote the start and end time slots,

and βcon
n,j is a dissatisfaction coefficient of controllable appliance

j.
4) Electric Vehicles: Charging an EV introduces a control-

lable load. Let pEV
n,t denote the power consumption of charging

an EV in residence n at time t. The following constraints are
imposed on pEV

n,t

DEV
n,min ≤ pEV

n,t ≤ DEV
n,max ∀t ∈ [T EV

n,start, T
EV
n,end] (8)

where DEV
n,min and DEV

n,max represent the minimum and maximum
charging demand, respectively.

A “charging anxiety” function gEV
n,t of an EV represents the

fear of having insufficient energy to charge an empty EV battery;
the anxiety function is defined as [24]

gEV
n,t = βEV

n (pEV
n,t −DEV

n,max)
2 ∀t ∈ [T EV

n,start, T
EV
n,end] (9)

where T EV
n,start and T EV

n,end are the start and end times for EV
charging, respectively, and βEV

n represents the charging anxiety
coefficient.

5) Energy Storage Systems: Some residential users are as-
sumed to be equipped with an ESS to store surplus renewable
energy for future use, using batteries. Let Bn,t and pB

n,t denote
the energy level of the ESS and charging and discharging power,
respectively. The storage dynamic can be expressed as [21]

Bn,t+1 = Bn,t + ηnp
B
n,tΔt (10)

where ηn represents the charging and discharging efficiency of
the battery.

The constraints on the ESS are

Bmin
n ≤ Bn,t ≤ Bmax

n (11)

where Bmin
n and Bmax

n are the minimum energy level and max-
imum storage capacity, respectively. The constraints on the
charging and discharging power of the ESS are

pmin
n,t ≤ pB

n,t ≤ pmax
n,t (12)



572 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 6, NO. 3, JUNE 2022

where pmin
n,t and pmax

n,t are the discharging and charging limits of
the ESS, respectively.

Some residences have solar panels on their roofs that produce
renewable power pPV

n,t. The power consumption ln,t of residential
user n can be expressed as

ln,t = max{pnon
n,t +

In∑
i=1

pshift
n,i,t +

Jn∑
j=1

pcon
n,j,t

+ pEV
n,t − pPV

n,t + pB
n,t, 0}. (13)

The electricity cost of residential user n, denoted as fn, can be
expressed as

fn =

T∑
t=1

λtln,tΔt+ Cdeg
n |pB

n,t| (14)

where λt is the electricity price in time slot t, Δt is the duration
of a time slot, and Cdeg

n is the degradation cost of the battery.
The dissatisfaction cost gn of residential user n is

gn =

T∑
t=1

{ In∑
i=1

gshift
n,i,t +

Jn∑
j=1

gcon
n,j,t + gEV

n,t

}
. (15)

The cost function Un of residential user n is defined as

Un = wnfn + (1− wn)gn (16)

where wn ∈ (0, 1) represents the residential user’s weighting,
reflecting the desired balance between the electricity cost and
dissatisfaction cost. Let

P n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ushift
n,1
...

ushift
n,In
pcon
n,1
...

pcon
n,Jn

pEV
n

pB
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ushift
n,1,1 ushift

n,1,2 · · · ushift
n,1,T

...
...

. . .
...

ushift
n,In,1

ushift
n,In,2

· · · ushift
n,In,T

pcon
n,1,1 pcon

n,1,2 · · · pcon
n,1,T

...
...

. . .
...

pcon
n,Jn,1

pcon
n,Jn,2

· · · pcon
n,Jn,T

pEV
n,1 pEV

n,2 · · · pEV
n,T

pB
n,1 pB

n,2 · · · pB
n,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

be the power control vector for the appliances and battery. The
goal of residential user n can be described as

min
Pn

Un subject to (2) (3), (6), (8), (10), (11), and (12).

(18)

B. Aggregator Model

The CA is assumed to possess a battery and PV system and
acts as a broker between the residential users and utility [21].
The goal of the CA is to minimize costs. To achieve this goal,
its battery can be used to perform load shifting. Let Bt and pB

t

denote the energy level and charging and discharging power of
an ESS at time t in the CA, respectively. The community storage
dynamics can be expressed as [21]

Bt+1 = Bt + ηpB
t Δt (19)

where η represents the charging and discharging efficiency of
the CA’s ESS.

The constraints on the community storage system are

Bmin ≤ Bt ≤ Bmax (20)

where Bmin and Bmax are the minimum energy level and max-
imum storage capacity in the CA, respectively. The constraints
on the charging and discharging power of the battery are

pmin
t ≤ pB

t ≤ pmax
t (21)

where pmin
t and pmax

t are the discharging and charging limits of
the ESS, respectively.

The amount of power for the whole community imported from
the grid is

pCA
t =

∑
n∈N∪M

ln,t + pB
t − pPV

t (22)

where pPV
t represents renewable power and N and M are the

sets of active and passive residential users, respectively. The
imported power is further constrained by [28]

Lmin
t ≤ pCA

t ≤ Lmax
t . (23)

An aggregate power demand lower than Lmin
t may result in

additional costs if base load power plants are turned off; Lmax
t

is the upper boundary at which the aggregate demand without
outage is satisfied.

The cost function of the CA, denoted by U , can be expressed
as

U =

T∑
t=1

{λtp
CA
t Δt+ Cdeg|pCA

t |

+ τ max(0, Lmin
t − pCA

t , pCA
t − Lmax

t )} (24)

where Cdeg represents the degradation cost of the ESS and
τ represents the overprice that forces the CA to satisfy the
constraints in (23).

The electricity price per unit λt for the demand side can be
modeled as [17], [19], [21]

λt =
Ct

pCA
t

= etp
CA
t + ft, t = 1, 2, . . ., T (25)

where Ct represents the generation cost on the supply side,
and et and ft are price constants. The cost function Ct is a
quadratic function of pCA

t , which reflects a common assumption
that the cost increases quadratically with power consumption.
The model has been extensively used in research because it
resembles a physical system but is nonetheless simple enough
to be analyzed.

Let

pB =
[
pB
1 pB

2 · · · pB
T

]
(26)

be the battery charging and discharging control vector of the
CA. The goal of the CA can be achieved by solving

min
pB

U subject to (19), (20), (21) and (22). (27)
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III. PROPOSED METHOD FOR DISTRIBUTED COMMUNITY

ENERGY MANAGEMENT

Cost functions of residential users and the CA are to be
minimized. The associated solutions will affect each other and
these problems should not be solved centrally due to privacy
issues. These problems can form a non-cooperative Stackelberg
(NSG) game. The CA plays the role of a leader in the game and
the residential users act as followers [21]. We denote the set of
all followers as C = N ∪M.

In a Stackelberg game, the leader will make its decision in
consideration of the best responses for the followers. The CA
determines its battery dispatch profile pB to minimize the cost
function U in (27). All residential users make their optimal
decisions of power demand vector ln = [ln,1 ln,2 · · · ln,T ] to
minimize their cost functionUn in (18) after being notified of the
leader’s decision. The NSG strategy Γ can be formally defined
by the following strategic form:

Γ = {C ∪ {CA}, {ln}n∈C , {Un}n∈C ,pB, U}. (28)

The community energy scheduling problem is thus formulated
as a Stackelberg game, and the solution is the Stackelberg equi-
librium or near Stackelberg equilibrium in which the leader finds
its optimal storage dispatch profile under the followers’ equilib-
rium state, corresponding with the optimal power demand. To be
specific, consider the NSG strategy Γ defined in (28) where Un

and U are determined by solving (18) and (27), respectively. A
set of strategies (l∗n,p

B∗) constitutes the Stackelberg equilibrium
of Γ if it satisfies the following inequalities:

Un(l
∗
n, l
∗
−n) ≤ Un(ln, l

∗
−n) (29)

and

U(pB∗) ≤ U(pB). (30)

Thus, once all residential user demands are at the Stackelberg
equilibrium in Γ, no residential user can further minimize its
cost function by deviating to other strategies. The problem is
formulated to find the set of strategies (l∗n,p

B∗).
To develop algorithms for distributed community energy man-

agement, we first consider the use of weather-based LSTM for
forecasting the renewable energy generation. Demand informa-
tion is exchanged and appliance scheduling is optimized to reach
the Stackelberg equilibrium or near Stackelberg equilibrium by
several game rounds. In each round, the CA applies Q-learning
to solve (27). The residential users in the community apply
multiagent Q-learning to schedule their appliances and battery
to solve (18). After reaching the Stackelberg equilibrium, they
execute their individual scheduling in the current time slot,
transition to the next time slot, and reform a new Stackelberg
game. Details of the proposed method for community energy
management are given in the following subsections.

A. Weather-Based LSTM for Renewable Energy Generation

To deal with the uncertainty of renewable energy, an LSTM
based method using weather forecast information is employed to
predict the future renewable energy generation. LSTM networks
are well-suited to making predictions for temporal data because

they use a memory cell to remember previous important states
and learn to reset the cell for unimportant features.

In each time slot, the input vector of the trained LSTM is
the past renewable energy generation data and weather forecast
informationw, including the sun hour, cloud cover and humidity.
The output is the future renewable energy generation. This pre-
dicted information will be used for scheduling home appliances.
The prediction can be symbolically expressed as[
pPV
t+1 pPV

t+2 · · · pPV
t+T

]
= LSTM(

[
pPV
t−T+1 · · · pPV

t w
]
).

(31)

B. Multiagent Q-Learning

After obtaining the forecast PV generation, we exploit RL
to find the best appliance scheduling. RL deals with how an
agent chooses a proper action to minimize a cumulative cost (or
maximize a cumulative reward) in an uncertain environment.
RL includes three major components: states, actions, and costs.
States are the representation of the status of the agent in the
environment. Actions are what the RL agent can act to the
environment. A cost is the feedback the agent receives from
the environment for the action taken.

LetS denote the state set andA denote the action set. The state
of time slot t is st where st ∈ S . Given st, the RL agent selects
an action at from action set A. After the agent takes an action
at, the environment will feedback the cost rt and transition to
next state st+1. A policy π(·) is a mapping from the state space
to action space. The goal of an agent is to find an optimal policy
π∗ that minimizes the expected cumulative cost. Given a state
st, an action at and a policy π, the action-value function qπ for
policy π is defined as

qπ(st, at) = Eπ

[
T∑

i=t+1

γi−t−1ri−1|st, at
]
∀st ∈ S, ∀at ∈ A

(32)
where γ ∈ (0, 1] is a discount factor. The optimal action-value
function is denoted as q∗(st, at).

Q-learning [29] is a value-based RL algorithm that can be used
to seek q∗(st, at). Q-learning constructs a Q-table containing
Q-value Q(St, At) for each state-action pair (St, At). Q-value
Q(St, At) estimates the expected cumulative reward of action
At at state St. The cost function R(St, At) is the feedback from
the environment. Q-value Q(St, At) approximating q∗(st, at)
can be updated by

Q(St, At)← Q(St, At) + α[Rt+1(St, At)

+ γmin
a

Q(St+1, a)−Q(St, At)]. (33)

In Q-learning, ε-greedy action selection is generally used, i.e.,
greedy action

At = argmin
a

Q(St, a) (34)

is selected with probability 1− ε and a random action is selected
with probability ε.

At the middle layer in Fig. 1, the following setting was used
for applying Q-learning: state St is designed as (t, Bt), action
At = pB

t represents the charging or discharging of the battery,
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Algorithm 1: Q-Learning for CA’s Objective Optimization
at Time. h

Input: whole community demand profile dh, forecast
PV generation profile pPV

h .
Output: the community storage dispatch profile pB

h

(greedy action selection with respect to QCA).
1: Create a planning model with pPV

h and dh.
2: for episode do
3: Initialize state Sh.
4: for t = 0 : T − h do
5: Choose action Ah+t (i.e., pB

h+t) for the current
state Sh+t by ε-greedy action selection.

6: Take action Ah+t, observe reward Rag
h+t+1 and

next state Sh+t+1.
7: Update QCA(Sh+t, Ah+t) using (35).

and cost RCA
t+1 is the electricity cost. To minimize the total cost

of the community, the update rule is used:

QCA(St, At)← QCA(St, At) + α[RCA
t+1(St, At)

+ γmin
a

QCA(St+1, a)−QCA(St, At)].

(35)

Algorithm 1 presents the control algorithm for scheduling the
CA’s battery pB

h. The CA gathers demand load profile of all res-
idential users in the coming time slot dh := [dh dh+1 · · · dT ],
where dh =

∑
n∈C ln,h, and forecasts PV generation pPV

h :=
[pPV

h pPV
h+1 · · · pPV

T ] using (31). After that, the CA creates a
planning model with dh and pPV

h . The storage system agent will
learn episode by episode. Finally, the agent outputs the greedy
action selection pB

h := [pB
h pB

h+1 · · · pB
T ]. The Q-table is then

saved and used in the next time slot.
For residential users, letP n,h denote the power control vector

of all appliances and battery in residence n from time slot h to
final time slot T . The power control vector P n,h is defined as

P n,h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ushift
n,1,h
...

ushift
n,In,h

pcon
n,1,h

...
pcon
n,Jn,h

pEV
n,h

pB
n,h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ushift
n,1,h ushift

n,1,h+1 · · · ushift
n,1,T

...
...

. . .
...

ushift
n,In,h

ushift
n,In,h+1 · · · ushift

n,In,T

pcon
n,1,h pcon

n,1,h+1 · · · pcon
n,1,T

...
...

. . .
...

pcon
n,Jn,h

pcon
n,Jn,h+1 · · · pcon

n,Jn,T

pEV
n,h pEV

n,h+1 · · · pEV
n,T

pB
n,h pB

n,h+1 · · · pB
n,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(36)
At the demand side in Fig. 1, agents for controlling batteries

and all appliances cooperatively work in a sequential way. Each
agent has its own Q-table that records the cumulative cost of the
appliance, leading to multiagent Q-learning. The update rule is

Qn,k(St, At)← Qn,k(St, At) + α[Rn,k,t+1(St, At)

+ γmin
a

Qn,k(St+1, a)−Qn,k(St, At)]

(37)

Algorithm 2: Multiagent Q-Learning for Residential User
n at Time. h

Input: demand of other residential users l−n,h, forecast
PV generation profile pPV

n,h, Dnon
n,t , T

shift
n,i,start, T

shift
n,i,end,

wshift
n,i , Dshift

n,i,t, T
con
n,j,start, T

con
n,j,end, Dcon

n,j,min, Dcon
n,j,max,

T EV
n,start, T

EV
n,end, DEV

n,min, DEV
n,max, Bmin

n , Bmax
n ,

dissatisfaction coefficients βshift
n,i , β

con
n,j , β

EV
n .

Output: residential user’s power demand ln,h with P n,h

defined in (13).
1: Sort the appliances by dissatisfaction coefficient

βshift
n,i , β

con
n,j , β

EV
n in a descending order.

2: Create a planning model with l−n,h and available PV
generation pPV

n,h.
3: for each appliance agent k do
4: for episode do
5: Initialize state St.
6: for t = 0 : T − h do
7: Choose action Ah+t for the current state

Sh+t by ε-greedy action selection.
8: Take action Ah+t, observe the current cost

Rn,k,h+t+1 and the next state Sh+t+1.
9: Update the Q-value Qn,k(Sh+t, Ah+t)

using (37).
10: Obtain the scheduling of the agent from the greedy

action selection with respect to Qn,k, i.e., ushift
n,i,h,

pB
n,h.

11: Update available PV generation pPV
n,h by

performing the scheduling of appliance agent k

where Qn,k represents the Q-value of appliance k, which repre-
sents a shiftable appliance, controllable appliance, EV or ESS.

Table I lists our designs of states, actions and costs of different
agents controlling the appliances and battery. The state of a
shiftable appliance provides information about the current time
slot and left working time. Two actions “on” and “off” can be
selected, where action “on” is associated with the electricity cost
and action “off” is associated with user dissatisfaction. The state
for the controllable appliances and EV is the current time slot.
The actions are their flexible power rating. Their cost functions
are the electricity spending and user dissatisfaction. The state,
action and cost function of the battery are the same as those of
the CA.

Algorithm 2 is a multiagent Q-learning algorithm for all
appliances and the battery in residence. Dissatisfaction coef-
ficients βshift

n,i , β
con
n,j , and βEV

n are sorted in a descending order. A
planning model is composed by the demand of other residen-
tial users l−n,h := [ l−n,h l−n,h+1 · · · l−n,T ] and forecast PV
generation pPV

n,h := [pPV
n,h pPV

n,h+1 · · · pPV
n,T ]. The battery agent

learns through the planning model and obtains the best schedul-
ing. The battery agent executes and updates the available PV
generation pPV

n,h using the planning model, which helps the other
appliance agents to learn. In the end, the residential user sends
its own demand load ln,h := [ ln,h ln,h+1 · · · ln,T ] to the CA
with greedy selection action vector P n,h.
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TABLE I
DESIGNS OF STATE, ACTION AND COST FOR EACH AGENT

Fig. 2. Roles of the proposed algorithms in community energy management.

Algorithm 3 presents the proposed distributed community
energy management algorithm. In each time slot h, the CA and
the residential users reach the Stackelberg equilibrium through
several game rounds. At each game round r, residential user
n forecasts its own PV generation using (31), determines its
best appliances’ scheduling to minimize its cost function (18)
with demand of other residential users l−n,h(r−1), and produces
updated demand load ln,h

(r) and notifies the CA of that in-
formation. The CA receives the demand of all residential users,
forecasts its PV generation using (31), schedules its battery stor-

age dispatch pB
h
(r) using Algorithm 1, and broadcasts the new

l−n,h(r) to all residential users. This interaction continues until
the Stackelberg equilibrium is reached, i.e., the cost function of
the CA does not change. A new Stackelberg game between the
CA and residential users will form in the next time slot.

Fig. 2 visualizes the relationship between the proposed algo-
rithms. Algorithm 1 controls the ESS of the CA on the basis of
the community demand profile and forecast PV generation at
the CA. Algorithm 2 determines the power demands and power
control profiles for all appliances. Algorithm 3 iteratively and
dynamically adjusts the decisions made by Algorithms 1 and 2
so that a near Stackelberg equilibrium can be reached. From the
perspective of operating regions, Algorithm 1 is implemented
at the CA, Algorithm 2 is implemented in each residence, and
Algorithm 3 involves the interactions between the CA and all
residences.

IV. NUMERICAL ANALYSIS

This section examined the effectiveness of the proposed
community energy management method. The scenario involved
a CA, N = 10 active residential users, and M = 5 passive
residential users. The CA was equipped with a 30kWp solar
PV system and 62.5 kWh battery system. Suppose that five
active residences were equipped with an ESS to balance the
load in response to price variance and solar generation; the other
five active residences were equipped with solar generation. The
active residences were installed a solar PV system and ESS.
See Table II for the setting. The charging/discharging efficiency
coefficients ηn = 0.9 in (10) and ηag = 1.1 in (19) were set.
The degradation costs of battery Cdeg

n and Cdeg were set to
0.2. The overprice τ = 1000 was applied to force the CA to
meet the constraints. The weight wn = 0.5 in (16) was used.
Each residence was equipped with two non-shiftable appliances
(refrigerator and cooker), two shiftable appliances (washing
machine and dishwasher), two controllable appliances (water
heater and air conditioner), and an EV [21]; Table III shows the
relevant parameters. In (25), λt was set as following [17], [21]:

λt =

{
0.6 + 0.045pCA

t t = 1, 2, . . ., 8
0.8 + 0.06pCA

t t = 9, 10, . . ., 24

For the parameters in Q-learning, discount rate γ = 0.99 and
learning rate α = 0.1 in (33), and ε = 0.1 were set.

Real-world data were applied for training our weather-based
LSTM method that used weather information such as sun hour,
cloud cover, and humidity. The hourly solar generation was
collected form PJM [30]. The weather forecasting information
was gathered from World Weather Online [31]. Fig. 3 presents
a sample of 24-hour power demand of a residential user starting
from time slot labeled as 07:00 (time period from 07:00 to 07:59)
to the time slot labeled as 06:00 (next-day time period from 06:00
to 06:59). Peak demand was approximately 8 kW and occurred
in time slot 13:00. Renewable generation began in time slot 9:00
and ended in time slot 19:00, with peak generation during time
slots 14:00 and 15:00. When a bar representing “battery” meets
the demand curve, a charging event occurs. For example, the
battery was charged in time slots 9:00, 13:00–16:00, and 20:00.
The charging activities during 13:00–16:00 coincided with the
peak renewable generation. When a bar representing “battery”
does not meet the demand curve, a discharging event occurs.
As shown in the figure, the battery was discharged in time slots
07:00, 18:00, 19:00, 23:00, 00:00, 03:00, 04:00, and 06:00.
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Algorithm 3: Proposed Multiagent Method for Community
Energy Management.

Input: Dnon
n,t , T

shift
n,i,start, T

shift
n,i,end, wshift

n,i , Dshift
n,i,t, T

con
n,j,start,

T con
n,j,end, Dcon

n,j,min, Dcon
n,j,max, T EV

n,start, T
EV
n,end, DEV

n,min,
DEV

n,max, Bmin
n , Bmax

n , dissatisfaction coefficients
βshift
n,i , β

con
n,j , β

EV
n of each residential user n, Bmin, Bmax of

CA and electricity pricing coefficient et, ft.
Output: energy scheduling of home appliances for each
residential user P n and CA storage dispatch pB.

1: Initialize aggregator Q-table QCA(s, a) and Qn,k(s, a)
of all appliances in each residence arbitrarily.

2: For h = 1, 2, . . .T do
3: Initialize U (0) and round r = 1.
4: CA receives demand load l

(0)
n,h from all residential

users and calculates initial total demand profile
d
(0)
h .

5: CA forecasts PV generation profile pPV
h produced

by (31).
6: CA schedules the community storage dispatch

profile pB
h produced by Algorithm 1, and

calculates com- munity load profile p
(r)
h to

minimize U (r).
7: while ||U (r) − U (r−1)|| > ξ do
8: r ← r + 1
9: CA broadcasts the community load

profile p
(r−1)
h to all residential users.

10: for residential user n ∈ C do
11: Residential user receives l(r−1)−n,h

(p
(r−1)
h − ln,h

(r−1)) broadcasted by CA.
12: Residential user forecasts its PV genera-

tion profile pPV
n,h produced by (31) and

produces the scheduling for all appliances
using Algorithm 2.

13: Residential user sends its demand load
profile l

(r)
n,h to CA.

14: CA receives all demand load and calculates
community total demand profile d

(r)
h .

15: CA forecasts PV generation profile pPV
h pro-

duced by (31).
16: CA schedules the community storage dispatch

profile pB
h to minimize U (r) using

Algorithm 1 and calculates community load
profile p

(r)
h .

17: CA executes the community storage dispatch pB
h

and residential users perform energy scheduling of
all appliances.

TABLE II
SOLAR GENERATION AND BATTERY OF RESIDENCE

TABLE III
PARAMETERS FOR HOUSE APPLIANCES

REFG: refrigerator; CK: cooker; WH: washing machine; DW: dishwasher; WH: water
heater; AC: air conditioner; EV: electric vehicle.

Fig. 3. Residential user demand response resulting from the proposed multi-
agent method for community energy management.

A. Comparison With Learning Based Methods for Community
Energy Management

The proposed method for community energy management
was able to mitigate peak rebounds. Figs. 4(a) and (b) present
the community demand resulting from the proposed method for
community energy management and the energy management
by individual HEMSs (a single-agent RL based method), re-
spectively. For the individual HEMS, high load occurred in time
slots 08:00 and 09:00, and peak load was 56.47 kW. This may
be due the predicted low prices by an HEMS in that period.
The HEMS thus shifted shiftable appliances and turned up
the power of controllable appliances accordingly. This practice
caused a peak rebound and much burden on the gird, yielding
a high load. By contrast, coordinated behaviors encouraged by
the proposed method had a peak load of 39.07 kW, which was
30.8% peak reduction as compared with the energy management
by individual HEMSs.

Table IV shows the average residential user costs in four
seasons. The proposed method outperformed the single-agent
method in all cases. The single-agent method can synchronously
increase the demand. Such uncoordinated behaviors can increase
the market price and thus incur a larger average user cost than
coordinated behaviors encouraged by our multiagent method.
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Fig. 4. Community demand response resulting from (a) the proposed com-
munity energy management and (b) individual HEMSs. Energy management
by individual HEMSs (single-agent RL based method) led high demand in time
slots 08:00 and 09:00 because a low price period was expected, yielding a peak
rebound. The proposed method for community energy management mitigated
such a rebound.

TABLE IV
PERFORMANCE COMPARISON OF MULTIAGENT AND SINGLE-AGENT METHODS

FOR COMMUNITY ENERGY MANAGEMENT

The average cost reduction for all seasons by the proposed
method was 9.68%.

B. Comparison With Optimization Based Methods for
Community Energy Management

The proposed method for community energy management
was further compared with the centralized MINLP [19], [32] and

Fig. 5. Convergence of comparable algorithms to the Stackelberg equilib-
rium given perfect information about renewable generation at (a) CA and
(b) residential users. Centralized MINLP provided an ideal level of performance
but required information about all residential users to be processed at the CA,
raising a privacy concern. The proposed community energy management method
achieved a lower aggregator cost and average residential user cost than GA-based
optimization within 20 game rounds (the number of iterations used to solve the
Stackelberg game); it approximately attained the ideal average residential user
cost upon increasing the game rounds.

genetic algorithm (GA) based solution method [21]. In Fig. 5,
we assume future renewable generation is available and can be
used in energy scheduling optimization. As such, the centralized
MINLP produced an ideal level of performance while requiring
information about all residential users to be processed at the
CA and hence, raising a privacy concern. The proposed and
GA based solution methods converged after a few game rounds
(the number of iterations used to solve the Stackelberg game).
The proposed multiagent method for energy management was
better than the GA based solution method; it also approximately
attained the ideal average residential user cost upon increasing
the game rounds.

In practice, however, future renewable generation can only
be estimated, degrading the performance of any optimization
methods such as the centralized MINLP. The weather-based
LSTM method was applied to estimate the renewable generation
and resulted in prediction errors. Table V presents the average
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TABLE V
PERFORMANCE COMPARISON WITH RENEWABLE UNCERTAINTY

costs, standard deviations, and peak load at the CA. The standard
deviation can be used as a robustness measure; a smaller standard
deviation means that a method can produce a more consistent
result. The peak load should be as small as possible for a stable
system and less expensive capacity to be constructed. The cen-
tralized MINLP had the lowest CA cost, 16.5% cost reduction
from the proposed energy management. This was consistent
with the result presented in Fig. 5 that centralized MINLP was
more advantageous than our learning based method in terms
of the CA’s cost. However, this advantage may come from the
fact that centralized MINLP considered all local information in
residences as global information, which is not practical. Except
for the CA cost, the proposed community energy management
method outperformed centralized MINLP in terms of the average
residential cost by 2.7%, standard deviation by 56%, and the
peak load at the CA by 1.72%.

V. CONCLUSION

Research on community energy management is increasing
because of the ubiquity of EVs and renewable energy as well
as the growth of the smart home industry. Moreover, MARL
has been applied to energy management because of its ability to
address uncertainty resulting from the uncoordinated behaviors
of energy users. This study therefore focused on MARL for
energy management in a residential community and investigated
two critical aspects of community energy scheduling: peak re-
bounds and the uncertainty of renewable energy generation. Peak
rebounds place extra pressure on the grid, and the uncertainty
of renewable energy generation affects the efficiency of energy
scheduling. To address these problems, we propose a community
energy management method, in which appliance scheduling is
formulated as a game solved by a multiagent approach.

Evaluations in the form of numerical analyses were con-
ducted. In these evaluations, the proposed method could address
peak rebounds and the uncertainty of renewable energy gener-
ation while minimizing energy costs. By using the proposed
MARL-based method, we achieved a peak load reduction of
30.8% and average cost reduction of 9.68% compared with a
single-agent RL-based method. Compared with optimization
methods for community energy management, the proposed
method outperformed centralized MINLP in terms of the average
residential cost by 2.7%, standard deviation of the cost by 56%,
and the peak load of the CA by 1.72%.

The learning algorithms considered in this study used tabu-
lar solution methods, and Q-tables were learned for decision-
making. One limitation of tabular solution methods is that the

state space and action space must be finite and small. Our future
research will investigate the use of deep RL for a community
EMS that generalizes well in large state and action spaces.
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