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Abstract—An effective approach for voice conversion (VC) is to
disentangle linguistic content from other components in the speech
signal. The effectiveness of variational autoencoder (VAE) based
VC (VAE-VC), for instance, strongly relies on this principle. In our
prior work, we proposed a cross-domain VAE-VC (CDVAE-VC)
framework, which utilized acoustic features of different properties,
to improve the performance of VAE-VC. We believed that the
success came from more disentangled latent representations. In
this article, we extend the CDVAE-VC framework by incorporating
the concept of adversarial learning, in order to further increase
the degree of disentanglement, thereby improving the quality and
similarity of converted speech. More specifically, we first investi-
gate the effectiveness of incorporating the generative adversarial
networks (GANs) with CDVAE-VC. Then, we consider the concept
of domain adversarial training and add an explicit constraint to the
latent representation, realized by a speaker classifier, to explicitly
eliminate the speaker information that resides in the latent code.
Experimental results confirm that the degree of disentanglement
of the learned latent representation can be enhanced by both
GANs and the speaker classifier. Meanwhile, subjective evaluation
results in terms of quality and similarity scores demonstrate the
effectiveness of our proposed methods.

Index Terms—Voice conversion, unsupervised learning,
disentangled representation, variational autoencoder, adversarial
learning, cross domain features.

I. INTRODUCTION

VOICE conversion (VC) aims to convert the speech from a
source to that of a target without changing the linguistic

content [1]. Speaker voice conversion [2] is a typical type of
VC and refers to the process of converting speech from a
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source speaker to a target speaker. In addition, a wide variety
of applications could be solved by applying VC, such as ac-
cent conversion [3], personalized speech synthesis [4], [5], and
speaking-aid device support [6]–[8]. Since the spectral property
plays an important role in characterizing speaker individuality,
spectral conversion has been intensively studied in VC. In this
work, we focus on spectral mapping in speaker voice conversion.

Numerous VC approaches have been proposed. The Gaussian
mixture model (GMM)-based method [9], [10] has been a pop-
ular statistical approach that estimates the joint density of the
source-target feature vectors, which requires a training proce-
dure and has a well-known disadvantage that the converted out-
puts generally suffer from an over-smoothing issue. Frequency
warping methods, such as vocal tract length normalization [11],
weighted frequency warping [12] and dynamic frequency warp-
ing [13], are able to keep spectral details while providing inferior
speaker identity conversion quality to that of statistical ap-
proaches. Exemplar-based methods [14]–[18] require much less
training data and are capable of modeling the high-dimensional
spectra. In recent years, deep neural networks (DNNs) have
established supremacy in a wide range of research fields, in-
cluding VC [19]–[22]. DNNs have been utilized for not only
spectral mapping but also neural vocoding [23]–[25]. It has been
shown that employing neural vocoders as the waveform gener-
ation module can greatly improve the performance of VC sys-
tems [26]–[31]. It has also been shown that VC systems, whether
implemented in high-dimensional or low-dimensional features,
benefit from spectral detail compensation [15], [18], [32].

Nonetheless, most of the approaches described above rely
on the availability of parallel training data, which is often
not accessible in real world scenarios. Thus, the development
of non-parallel VC methods has been gaining attention [33].
One approach is to construct a pseudo parallel dataset from a
non-parallel corpus [34]. Another family of approaches utilizes
a pre-trained automatic speech recognition model to compute
the phonetic posteriorgram (PPG) as the speaker-independent
linguistic feature, followed by a PPG-to-acoustic mapping to
generate converted features [35], [36]. A recently popular ap-
proach is to use DNNs to model the probability distribution of
the target features; state-of-the-art models such as variational
autoencoders (VAEs) [37] and generative adversarial networks
(GANs) [38] have been successfully applied to non-parallel
VC [36], [39]–[46].
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Fig. 1. Illustration of how entangled latent representation affects the con-
version performance in a general VAE-VC framework. The residual source
speaker information in the latent code will be mixed with the given target speaker
code, resulting in a mixed speaker identity in the converted feature. Thus, the
performance might be harmed.

In this work, we focus on VAE-based VC (VAE-VC) [39].
Specifically, the spectral conversion function is composed of an
encoder-decoder pair. The encoder encodes the input spectral
feature into a latent code; the decoder mixes the latent code
and a specified target speaker code to generate the converted
feature. The encoder-decoder network and the speaker codes are
trained by back-propagation of the reconstruction error, along
with a Kullback-Leibler (KL)-divergence loss that regularizes
the distribution of the latent code.

The degree of disentanglement of the latent representation
is crucial to the success of many speech processing frame-
works [47]–[51], including VAE-VC. Since we focus on the
task of speaker voice conversion, the degree of disentanglement
is defined as the amount of (source) speaker information residing
in the latent code, i.e., the independence of the latent code and the
speaker code [52]. An illustration is given in Figure 1. If the latent
code is entangled by multiple components (e.g., in the VC task,
the source speaker information remains in the latent code), dur-
ing conversion, the decoder will draw the speaker information
from both the given target speaker code and the residual source
speaker information in the latent code, which harms the conver-
sion performance. From the success of VAE-VC, we can infer
that, at least to some extent, the decoder is trained to use more
information in the given speaker code, rather than the speaker
characteristics remained in the latent code, otherwise conversion
made by changing the speaker code will not work. Although the
success may be a natural result of model optimization, we doubt
whether the performance is robust enough. For instance, in [53],
it was demonstrated that the performance of autoencoder-based
VC models was sensitive to the latent space dimension. This
raises the need to design better schemes for making the latent
code more independent of the speaker.

In our prior work [54], we proposed a cross-domain VAE-
based VC framework (referred to as CDVAE-VC in the fol-
lowing discussion). The motivations of CDVAE-VC are: (1)
although the effectiveness of VAE-VC using vocoder spectra
(e.g., the STRAIGHT spectra, SPs [55]) has been confirmed,
the use of other types of spectral features, such as mel-cepstral
coefficients (MCCs) [56] that are related to human perception
and have been widely used in VC, have not been properly
investigated; (2) since modeling the low- and high-dimensional
features alone has their respective shortcomings, based on multi-
target/task learning [57], [58], it is believed that a model capable
of simultaneously modeling two types of spectral features can
yield better performance even if they are from the same feature

domain. To this end, CDVAE-VC [54] extended the VAE-VC
framework to jointly consider two kinds of spectral features,
namely SPs and MCCs. By introducing two additional cross-
domain reconstruction losses and a latent similarity constraint
into the training objective, the latent representations encoded
from the input SPs and MCCs are biased to each other and
capable of self- or cross-reconstructing the input features. We
speculated that the success of CDVAE-VC came from the fact
that a more disentangled latent representation was learned.
Furthermore, we observed a positive correlation between the
conversion performance and the extent to which the latent code
was disentangled.

In this work, we extend the CDVAE-VC framework by in-
corporating the concept of adversarial training to improve the
degree of disentanglement as well as the conversion perfor-
mance. First, we directly combine CDVAE-VC with GANs.
GANs have shown the ability to enhance the output of the
decoder in encoder-decoder network based VC frameworks [45].
Therefore, it is expected that such a combination can improve
the quality of converted speech. Second, inspired from the idea
of domain adversarial training (DAT) [59], we add a speaker
classification training objective to the latent variables, in order
to explicitly project away speaker-related information. A sim-
ilar idea has been applied to several speech processing tasks,
such as speech recognition [60]–[62], speech enhancement [59],
VC [45], [63] and singing VC [64]. Here, we utilize DAT by
considering cross-domain features to further facilitate a more
disentangled latent representation.

Designing a clear evaluation metric for degree of disentan-
glement has long been an open problem in the field of ma-
chine learning. In image modeling, visual inspection has been a
standard and intuitive approach [65], [66]. However, the visual
inspection is not perfectly feasible for speech processing tasks
since it is hard to quantify the difference in voices as a specific
latent variable changes. In previous works [45], [53], [67], a
classifier-based metric has been proposed. Since the metric is
also based on a trained classifier, it has limitations in comparing
the disentanglement between different latent codes obtained
by different models due to different training conditions and
dynamics. Following [68], we utilize the parallel data that exist
in most benchmark VC datasets and derive a novel metric for
measuring disentanglement. The key assumption is that an ideal
encoder should encode a pair of parallel sentences uttered by
two different speakers to similar latent codes. We measure the
cosine similarity between such latent codes to evaluate how well
the encoder disentangles the latent codes.

The remainder of this paper is organized as follows. In
Section II, we first review the VAE-VC and its extended version,
CDVAE-VC. Section III introduces how to combine GANs
with CDVAE-VC. Then, we describe how to add an adversarial
speaker classifier objective to the latent code in Section IV.
In Section V, we first examine our proposed mechanisms one
by one, using conventional objective and subjective evaluation
metrics adopted in VC. Disentanglement measurements of our
proposed methods and how they are related to the VC perfor-
mance are presented afterwards. Finally, we conclude the paper
with discussions in Section VI.
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Fig. 2. Illustration of the conversion phase of the VAE-VC [39] framework. Following traditional VC systems, a vocoder first parameterizes the waveform into
acoustic features, which are then converted in different streams, and finally the converted features are used to synthesize the converted waveform by a vocoder.

II. BACKGROUND

In conventional VC frameworks, the acoustic features of the
source speaker are converted to those of the target speaker in dif-
ferent feature streams. Many researches focus on the conversion
of spectral features [10] and thus formulate VC as follows. Given
N source speaker’s spectral framesXs = {xs,1, . . . ,xs,N}, the
goal is to find a conversion function f such that

x̂t,n = f(xs,n). (1)

Note that the second subindices in both sides of the equation are
bothn, which means that the converted spectral feature sequence
has the same length with that of the source. In the rest of the
article, we drop the frame or the speaker indices for simplicity.

In the following subsections, we describe two VAE based VC
frameworks. Throughout the paper, we use “bar” to indicate
the reconstructed features, and “hat” to indicate the converted
features.

A. VAE-VC

Figure 2 depicts the conversion process of a typical VAE-
VC system [39]. The core of VAE-VC is an encoder-decoder
network. During training, given an observed (source or target)
spectral framex, a speaker-independent encoderEθ with param-
eter set θ encodes x into a latent code: z̄ = Eθ(x). The speaker
code y of the input frame is then concatenated with the latent
code, and passed to a conditional decoder Gφ with parameter
set φ to reconstruct the input. This reconstruction process can
be expressed as:

x̄ = Gφ(z̄,y) = Gφ(Eθ(x),y). (2)

The model parameters can be obtained by maximizing the
variational lower bound:

Lvae(θ, φ;x,y) = Lrecon(x,y) + Llat(x), (3)

Lrecon(x,y) = Ez∼qθ(z̄|x)
[
log pφ(x̄|z,y)

]
, (4)

Llat(x) = −DKL(qθ(z̄|x)‖p(z)), (5)

where qθ(z̄|x) is the approximate posterior, pφ(x̄|z,y) is the
data likelihood, and p(z) is the prior distribution of the latent

Fig. 3. Illustration of the training phase of the CDVAE-VC [54] framework.
In this framework, each feature has its own set of encoder and decoder. During
training, by minimizing the loss derived from the within- and cross-domain
reconstruction paths, the latent codes zSP and zMCC learn to reconstruct not
only corresponding input features but also the cross-domain features.

space. Lrecon is simply a reconstruction term as in any vanilla
autoencoder, whereas Llat regularizes the encoder to align the
approximate posterior with the prior distribution.

In the conversion phase, one could use (2) to formulate the
conversion function f :

x̂ = f(x, ŷ) = Gφ(ẑ, ŷ) = Gφ(Eθ(x), ŷ), (6)

where ŷ is the target speaker code.
The VAE framework makes several assumptions. First,

pφ(x̄|z,y) is assumed to follow a normal distribution whose
covariance is an identity matrix. Second, p(z) is set to be a
standard normal distribution. Third, the expectation over z is
approximated by sampling via a linear-transformation based
re-parameterization trick [37]. With these simplifications, we
can avoid intractability and optimize the autoencoder parameter
sets θ ∪ φ and the speaker codes via back-propagation.

B. CDVAE-VC

In [54], we proposed the CDVAE-VC framework to utilize
spectral features of different properties extracted from the same
observed speech frame. As depicted in Figure 3, the CDVAE
framework is formed by a collection of encoder-decoder pairs,
one for each kind of spectral feature. Considering the SPs and
MCCs as two kinds of spectral features (denoted as xSP and
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xMCC), the following losses are defined:

z̄SP = ESP (xSP ), z̄MCC = EMCC(xMCC), (7)

x̄S−S = GSP (z̄SP ,y), x̄M−M = GMCC(z̄MCC ,y), (8)

x̄S−M = GMCC(z̄SP ,y), x̄M−S = GSP (z̄MCC ,y), (9)

Lin = Lrecon(x̄S−S ,y) + Lrecon(x̄M−M ,y), (10)

LKLD = Llat(xSP ) + Llat(xMCC), (11)

Lcross = Lrecon(x̄S−M ,y) + Lrecon(x̄M−S ,y), (12)

where ESP and GSP are the encoder and decoder for SPs, and
EMCC and GMCC are the encoder and decoder for MCCs;
x̄S−S and x̄M−M , respectively, denote the generated SPs and
MCCs from the within-domain reconstruction paths; x̄M−S and
x̄S−M , respectively, denote the generated SPs and MCCs from
the cross-domain reconstruction paths. Note that Lrecon(·,y)
calculates the reconstruction loss between the first argument and
the corresponding input feature.

In short, we introduce two extra reconstruction streams. By
minimizing the cross-domain reconstruction loss, we enforce
zSP to contain enough information to reconstruct xMCC , and
vice versa. As a result, the behavior of the encoders for both
feature domains are constrained to be the same, i.e., they are
expected to extract similar latent information from different
types of input spectral features. To explicitly reinforce this
constraint, a latent similarity L1 loss defined as

Lsim = −‖z̄SP − z̄MCC‖1, (13)

can be included in the final objective expressed as:

Lcdvae = Lin + LKLD + Lcross + Lsim. (14)

The model parameters can be learned by maximizing (14).
In the conversion phase, there are four conversion paths (i.e.,
two within-domain and two cross-domain paths). As reported
in [54], the CDVAE MCC-MCC path gave the best performance
in terms of subjective evaluation, which matched the assumption
that MCCs are more related to human perception.

III. INCORPORATING CDVAE-VC WITH GANS

Minimizing the reconstruction loss in VAE-VC and CDVAE-
VC tends to result in blurry spectra, similar to the over-
smoothing effects in other VC frameworks. It is expected that
introducing a GAN objective [38] can guide the output spectra
to be more realistic. In this section, we present the main concepts
and system architectures of the combination of GANs and the
VAE-VC and CDVAE-VC frameworks.

A. The GAN Objective in the General VAE-VC

We follow [69] and incorporate a GAN objective into the
decoder in the original VAE-VC. Assume that the real data
distribution of any spectral frame admits density p∗, and the
autoencoding process defined in (2) induces a conditional prob-
ability px̄. From the data distribution prospective of view, the
goal is to enhance the decoder network G in (2) such that px̄

best approximates the real data distribution p∗:

px̄(Gφ(Eθ(x),y)) ≈ p∗(x). (15)

A typical GAN [38] realizes the above-mentioned proba-
bility approximation by introducing a discriminator Dψ with
parameter set ψ that judges whether an input follows a true and
natural probability distribution or an artificial one. Together with
a generatorG that tries to produce realistic output features, these
two components play a min-max game and seek an equilibrium
with the Jensen-Shannon divergenceDJS as the objective, which
is defined as follows:

Lgan(θ, ψ;x) = 2DJS(p∗‖px̄) + 2 log 2

= Ex∼p∗
[
logDψ(x)

]
+ Ez∼qθ

[
logDψ(Gφ(z)

]
.

(16)

To facilitate stable training, in this work we adopt a Wasser-
stein GAN (WGAN) [70], [71]. In the WGAN, the following
Wasserstein distance is derived:

W (p∗, px̄) = sup
‖D‖L≤1

Ex∼p∗ [D(x)]− Ex∼px̄ [D(x)], (17)

where the supremum is over all 1-Lipschitz functionsD : X →
R. Based on the above distance, the following WGAN loss can
be defined:

Lwgan(x) = Ex∼p∗ [Dψ(x)]− Ez∼qθ(z̄|x)[Dψ(Gφ(z,y))],
(18)

where Dψ is now a 1-Lipschitz discriminator. Finally, we can
combine the objectives of VAE and WGAN by assigning the
decoder of VAE as the generator of WGAN. As a result, com-
bining the WGAN loss (18) and the VAE loss (3) results in a
VAEGAN objective:

Lvaegan(θ, φ, ψ;x,y) = Lvae(x,y) + αLwgan(x), (19)

whereα is the weight of the WGAN loss. This objective is shared
across the encoder, decoder, and discriminator. As in standard
GAN training, the discriminator is first updated by maximizing
this objective, and the encoder and decoder are updated by min-
imizing the objective. Therefore, the components are optimized
in an alternating order. GANs produce more realistic (in our case,
sharper) outputs because they optimize a loss function between
two distributions in a more direct fashion.

The VAW-GAN-VC method in [41] has a similar motivation
to better model spectral features to improve feature generation.
However, there is a fundamental difference between the training
procedures of VAW-GAN-VC and the training procedures here.
In VAW-GAN-VC, the objective of WGANs is to minimize the
Wasserstein distance of the two distributions of the converted
features and the real target features. Although this is a strong
objective, it also brings some limitations. The original VAE-VC
and CDVAE-VC consider only auto-encoding in the training
phase, and perform conversion by changing the speaker code
in the conversion phase. In other words, multiple conversion
pairs are integrated into one model, sometimes referred to as
“multi-target” training in VC. VAW-GAN-VC, in contrast, needs
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to consider not only auto-encoding but also conversion in the
training phase, since the discriminator needs to discriminate the
real target features and the converted features in order to align
the distribution of the latter to that of the former. As a result,
VAW-GAN-VC is trained to convert from one source to one
target, which limits the flexibility of the model. In this work,
we intend to maintain the multi-target flexibility in CDVAE-VC
and thus design the WGAN objective to match the distributions
of the real features and the reconstructed features. Considering
this fundamental difference and to avoid confusion, we focus on
multi-target VC and do not take VAW-GAN-VC into discussion
and comparison in this paper.

B. CDVAE-VC With GANs (CDVAE-GAN)

Now we can combine the GAN objective with CDVAE-VC,
which we will refer to as CDVAE-GAN, where the derivation
of the objective is as simple as replacing the VAE loss in (19)
with the CDVAE objective defined in (14). However, in practice,
combining CDVAE-VC with GANs is not as trivial as replacing
the encoder and decoder in VAE-GAN with CDVAE. For each
kind of feature, a separate discriminator should be trained, i.e.,
DSP andDMCC should be considered. It seems natural to train
two discriminators jointly with the whole network. However, as
mentioned above, the MCC-MCC path in CDVAE-VC performs
best in four paths in the conversion phase. Introducing a discrim-
inator for SPs might not necessarily benefit the quality of the
output MCCs. To determine the best architecture, we examine
the effect of three settings, including combining CDVAE with
only DSP , only DMCC , and both DSP and DMCC . Detailed
experimental results will be shown in Sections V-C and V-D.

IV. ADVERSARIAL SPEAKER CLASSIFIER (CLS)

As discussed above, the viability of the family of VAE-VC
frameworks relies on the decomposition of input, which is
assumed to be composed of phonetic representation and speaker
information. Ideally, the latent code extracted using the encoder
should contain solely phonetic information and free from any
speaker information. However, this decomposition is not ex-
plicitly guaranteed. To this end, we investigate the effect of an
adversarial speaker classifier to explicitly force the latent code
to be speaker independent.

A. The Classifier Loss

An adversarial speaker classifier CΨ with parameter set Ψ
tries to classify which speaker the latent code comes from. We
will refer to this classifier as CLS. Specifically, given a latent
code z, the CLS predicts a posterior probability P (y = y|z),
which is the probability that z is extracted from an input frame
produced by speaker y. Therefore, we can define the CLS loss as
the negative cross-entropy between the predicted posterior and
the one-hot ground truth vector:

Lcls(x,y) = Ez∼qθ(z̄|x)
[− logP (y|z)]. (20)

B. CDVAE-GAN With CLS (CDVAE-CLS-GAN)

We now augment the CDVAE-GAN framework with the
adversarial speaker classifier, which we will refer to as CDVAE-
CLS-GAN. Adding the CLS loss (20) to the CDVAE-GAN loss,
we obtain the final objective:

Lall(θ, φ, ψ,Ψ;x,y) = Lcdvae(x,y)
+ αLwgan(x) + λLcls(x,y), (21)

where λ is the weight of the classifier loss. This objective is
shared, again, across the encoder, decoder, discriminator, and
classifier.

The training process is divided into three phases, as depicted
in Figure 4. Phase one involves the training of the VAE. In
phase two, to pre-train the classifier, we first use the trained
VAE obtained in phase one to extract latent codes from the same
training set. The classifier is then trained with these latent codes
to minimize (20). In the third phase, we train the whole network
using an alternating update schedule, similar to the one described
in Section III-A. Specifically, the encoder and the decoder are
first frozen and the discriminator and classifier are trained to
maximize Lwgan and minimize Lcls defined in (18) and (20),
respectively, and thus they can discriminate self-reconstructed
features and classify latent codes correctly. Then, we freeze these
modules and train the encoder and decoder to not only minimize
Lcdvae in (14), but also optimize Lwgan and Lcls so that they
can fool the frozen components.

The described training scheme also plays a min-max game
between {encoders, decoders} and {discriminator, classifier}.
An ideally trained model should contain encoders that learns to
project away as much speaker information as possible and de-
coders that can generate realistic and natural output spectra given
an inferred latent code with a specific speaker code. Algorithm 1
summarizes the training procedure of CDVAE-CLS-GAN.

V. EXPERIMENTAL EVALUATIONS

A. Experimental Settings

We conducted all experiments on the Voice Conversion
Challenge (VCC) 2018 dataset, which contained recordings of
12 professional US English speakers with a sampling rate of
22050 Hz. The training and testing sets, respectively, consisted
of 81 utterances and 35 utterances per speaker. We further
divided the training utterances into 70/11 training/validation
sets. The WORLD vocoder was used to extract acoustic features,
including 513-dimensional SPs, 513-dimensional aperiodicity
signals (APs), and fundamental frequency (F0). 35-dimensional
MCCs were then extracted from the SPs, which were then
normalized to unit-sum, and the normalizing factor was used as
the energy of SPs. The 0-th coefficient of MCCs was taken out as
the energy of MCCs. We further applied Min-Max normalization
to SPs and MCCs. In the conversion phase, the converted SPs
in VAE systems and the converted MCCs in CDVAE systems
(excluding CDVAE-GAN withDSP ) were obtained. The energy
and AP were kept unmodified, and F0 was converted using a
linear mean-variance transformation in the log-F0 domain.
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Fig. 4. Illustration of the training procedure of our proposed CDVAE-CLS-GAN model. Phase 1: A CDVAE is trained. Phase 2: The latent codes are used to
train the CLS. Phase 3-A and 3-B: The encoders, decoders and the CLS, discriminators are trained in an alternating order.

Algorithm 1: Training Procedure of CDVAE-CLS-GAN.
function AUTOENCODE x,y

z ← sample using E(x)
x̄← G(z,y)
return x̄, z

φ, θ, ψ,Ψ ← initialization
// Phase 1: train the VAE
while not converged do
X,Y ← mini-batch of samples from the training set
X̄, Z ← AUTOENCODE(X,Y )

φ, θ
update←−−−− −∇Lcdvae(X̄, Y )

// Phase 2: train the CLS
while not converged do
X,Y ← mini-batch of samples from the training set
Lcls ← Lcls(X,Y )

Ψ
update←−−−− −∇Lcls(X,Y )

// Phase 3: train the whole network
while not converged do
X,Y ← mini-batch of samples from the training set
X̄, Z ← AUTOENCODE(X,Y )
Lcdvae ← Lcdvae(X̄, Y )
Lwgan ← Lwgan(X)
Lcls ← Lcls(X,Y )

// Update the discriminator and classifier
while not converged do

ψ
update←−−−− −∇ψ(−Lwgan)

Ψ
update←−−−− −∇ΨLcls

// Update the encoder and generator
while not converged do

θ
update←−−−− −∇θ(Lcdvae + αLwgan − λLcls)

φ
update←−−−− −∇φ(Lcdvae + αLwgan)

The detailed network architectures are shown in Table I.
We adopted the fully convolutional network (FCN) [72] based
CDVAE-VC as our baseline system [68], which consumes con-
tinuous spectral frames extracted from the whole utterance and
outputs a sequence of converted frames of the same length.
This model has been confirmed to outperform the frame-wise
CDVAE-VC counterpart. We also adopted a gradient penalty
regularization [71] in the WGAN objective to stabilize the train-
ing. Layer normalization [73], the gated linear units activation

TABLE I
MODEL ARCHITECTURES. CONV-H×W-N INDICATES A CONVOLUTIONAL LAYER

WITH KERNEL SIZE H×W AND N OUTPUT CHANNELS. LRELU INDICATES THE

LEAKY RELU ACTIVATION FUNCTION. FC INDICATES FULLY-CONNECTED

LINEAR LAYER. LN INDICATES THE LAYER NORMALIZATION LAYER

function, and skip connections were also used to more effectively
propagate the conditional information.

Following [68], the latent space and speaker representation
were set to 16-dimensional. We used a mini-batch of 16 and
the Adam optimizer with a fixed learning rate of 0.0001. The
hyper-parameters α and λ were set to be 50 and 1000, respec-
tively, according to a held-out validation set. For CDVAE-GAN,
we first pre-trained the CDVAE for 100000 steps. Then, we
adversarially trained the discriminator(s) with the whole net-
work for 10000 steps. We followed a common WGAN training
scheme [70], [71] such that the discriminator(s) were updated
for 5 iterations followed by 1 iteration of encoder and decoder
update. For CDVAE-CLS-GAN, after training the CDVAE for
100000 steps, we pre-trained the classifier with the latent code
extracted from the encoders for 30000 steps. Then, we trained
the whole network for 10000 steps. After experimenting with
different training schemes, here we updated the discriminator
and the classifier for 1 iteration followed by 5 iterations of
encoder and decoder update.

The following models are compared in order to examine the
effectiveness of our proposed methods.
� VAE: The FCN version of the VAE-VC model introduced

in [39]. This model is only used to evaluate the impact of
cross domain features on the degree of disentanglement.
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� CDVAE: The FCN model in [68], which is the baseline
model in our experiments.

� CDVAE-GANSP: The CDVAE with DSP .
� CDVAE-GANMCC: The CDVAE with DMCC .
� CDVAE-GANBOTH: The CDVAE withDSP andDMCC .
� CDVAE-CLS: The CDVAE with CLS.
� CDVAE-CLS-GANSP: The CDVAE with DSP and CLS.
� CDVAE-CLS-GANMCC: The CDVAE with DMCC and

CLS.
For simpilcity, in the rest of the paper, we use brackets to

surround the type of feature used during conversion, and that
path will be used in CDVAE-based methods. For instance,
CDVAE-GANMCC [MCC] uses the MCC and the MCC-MCC
path. In addition, if MCC is used in CDVAE and CDVAE-CLS,
we additionally compare systems incorporating the global vari-
ance (GV) post-filter [74] to enhance the output, as in the original
CDVAE [54].

B. Evaluation Methodology

1) Objective Evaluation Metrics:
� Mel-Cepstrum distortion (MCD): MCD measures the spec-

tral distortion in the MCC domain, and is a commonly
adopted objective metric in the field of VC. It is calculated
as:

MCD[dB] =
10

log 10

√

2
∑K

d=1

(
mcc

(c)
d −mcc(t)d

)2

,

(22)
where K is the dimension of the MCCs and mcc(c)d and

mcc
(t)
d represent the d-th dimensional coefficient of the

converted MCCs and the target MCCs, respectively. In
practice, MCD is calculate in a utterance-wise manner.
A dynamic time warping (DTW) based alignment is per-
formed to find the corresponding frame pairs between the
non-silent converted and target MCC sequences before-
hand.

� Global variance (GV): GV serves as a metric for the over-
smoothness of the output features. GV is usually calculated
dimension-wise over all non-silent frames in the evaluation
set. The d-dimensional GV value is calculated as follows:

GV [d] =
1

N

N∑

n=1

(
mcc

(c)
n,d −mcc(c)d

)2

, (23)

wheremcc(c)d is the mean of all converted d-th dimensional
MCC coefficients.

� Modulation Spectrum (MS): MS [75] is defined as the
log-scaled power spectrum of a given feature sequence. The
temporal fluctuation of the sequence is first decomposed
into individual modulation frequency components, and
their power values are represented as the MS. In this work
we measure the MS of MCCs. Different from previous
works that measured the MS of specific dimension of the
MCC sequence, here we report the average of all dimen-
sions. We also measure a MS distortion (MSD), where the

TABLE II
MEAN MEL-CEPSTRAL DISTORTIONS [DB] OF ALL NON-SILENT FRAMES IN

THE EVALUATION SET FOR THE COMPARED MODELS

MSD for the d-dimension is calculated by:

MSD[d] =

√
1

N

∑N

n=1

(
mcc

(t)
n,d −mcc(c)n,d

)2

. (24)

2) Subjective Evaluation Methods: We recruited 14 partici-
pants for the following two subjective evaluations.1
� The mean opinion score (MOS) test on naturalness: Sub-

jects were asked to evaluate the naturalness of the converted
and natural speech samples on a scale from 1 (completely
unnatural) to 5 (completely natural).

� The VCC [33] style test on similarity: This paradigm was
adopted by the VCC organizing committee. Listeners were
given a pair of speech utterances consisting of a natural
speech sample from a target speaker and a converted speech
sample. Then, they were asked to determine whether the
pair of utterances can be produced by the same speaker,
with a 4-level confidence of their decision, i.e., sure or not
sure.

C. Applying GANs to Different Features

We first compare CDVAE-GANSP, CDVAE-GANMCC,
CDVAE-GANBOTH and CDVAE-CLS-GANSP, CDVAE-
CLS-GANMCC, CDVAE-CLS-GANBOTH, respectively. As in
Table II, CDVAE-GANBOTH and CDVAE-CLS-GANBOTH

gave the highest MCD, while in Figures 5(b), 5(c), 6(b) and
6(c), we can see that in terms of GV and MS, CDVAE-GANMCC

and CDVAE-CLS-GANMCC yielded curves closer to the target
curves, where the curves of the other models deviated more
from the target curves. Meanwhile, consistent with a common
observation in the VC literature that MCD, which measures the
sample mean, often yields opposite results to GV and MS, both
presenting the sample variance [10], [76]. This result suggests
that modeling both feature domains simultaneously does not
always yield better results. As for perceptual performance, our
internal listening tests revealed that CDVAE-GANMCC gave
the best results among the three models. Note that although
CDVAE-GANSP and CDVAE-CLS-GANSP gave the lowest

1A demo web page with samples used for subjective evaluation is available
at https://unilight.github.io/CDVAE-GAN-CLS-Demo/

 ignorespaces https://unilight.github.io/CDVAE-GAN-CLS-Demo/
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Fig. 5. Global variance curves of all non-silent frames averaged over all conversion pairs for the compared models.

Fig. 6. Average modulation spectrum curves over all dimensions of all non-silent frames over all conversion pairs for the compared models.

TABLE III
MEAN OPINION SCORES ON NATURALNESS FOR THE COMPARED MODELS AND THE NATURAL TARGET VOICE WITH 95% CONFIDENCE INTERVALS

MCD compared with the other two models, they do not nec-
essarily outperform their MCC counterparts in listening tests.
We speculate that fitting the SP domain tends to give more
over-smoothed output features, resulting in low MCDs but not
beneficial for improving perceptual performance. The result is
reasonable since the MCC-MCC path is used when performing
conversion.

D. Effectiveness of GANs

Next, we examine the effectiveness of combining GANs
with CDVAE and CDVAE-CLS. Based on the discussion in
the previous subsection, we focus on CDVAE-GANMCC and

CDVAE-CLS-GANMCC here. As in Figures 5(a), 6(a) and 7, we
can see that CDVAE-GANMCC and CDVAE-CLS-GANMCC

fit the GV and MS statistics to the target much better than
CDVAE and CDVAE-CLS, respectively. Also, models with
GAN yield very small MSD comparing to the rest of the models.
This confirms that involving a GAN objective in training indeed
improves the modeling of the statistics, especially the variance
of real speech data. Table III and Figure 8 show the subjective
evaluation results. The t-test showed that CDVAE-GANMCC

significantly outperformed CDVAE with a p-value of 4.21×
10−5. Meanwhile, CDVAE-CLS-GANMCC significantly out-
performed CDVAE-CLS with a p-value of 4.02× 10−4. These
results confirm the effectiveness of GAN. On the other hand,
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Fig. 7. Modulation spectrum distortion curves of all non-silent frames over
all conversion pairs for the compared models.

Fig. 8. Similarity results over all speaker pairs for the compared models.

CDVAE-GANMCC performed comparably with CDVAE with
GV post-processing (p-value = 4.03× 10−2), while CDVAE-
CLS-GANMCC performed comparably with CDVAE-CLS
with GV post-processing (p-value=7.64× 10−2). These results
are consistent with our findings in the objective evaluations,
suggesting that GANs enhance the variance of output features,
thus have the potential to replace the GV post-filtering process
commonly involved in traditional MCC-based VC systems [10].
This is advantageous since the model can then be freed from the
post-filtering process in the online conversion phase, which may
benefit real-time applications.

E. Effectiveness of CLS

Next, we evaluate the effectiveness of the adversarial speaker
classifier. Looking at the CDVAE, CDVAE-GAN models and
their counterparts with CLS, a trend of increase in MCD values
can be observed in Table II. On the other hand, Figures 5(a), 6(a)
and 7 show that applying CLS to CDVAE and CDVAE-CLS-
GANMCC yields similar GV values, but with MS values closer
to those of the target, as well as a smaller MSD. These results
imply that CLS can improve objective statistics.

Table III and Figure 8 show the subjective evaluation results.
The effectiveness of CLS can be confirmed by the following
observations: The speech naturalness was improved in all con-
version pairs, by adding CLS to CDVAE, CDVAE w/ GV,
and CDVAE-GANMCC. This is consistent with our aforemen-
tioned findings from the objective evaluations. Furthermore, the
conversion similarity is greatly improved when incorporating
CLS in CDVAE and CDVAE w/ GV, and is slightly improved
when added to CDVAE-GANMCC. This confirms our initial

TABLE IV
THE RESULTS OF DEM: THE COSINE SIMILARITY OF THE LATENT CODES

EXTRACTED FROM NON-SILENT FRAMES OF PARALLEL UTTERANCES OF

SOURCE-TARGET PAIRS

motivation of CLS, which is to increase speaker similarity by
eliminating source speaker identity in the latent code.

F. Disentanglement Measure

In this section, we investigate the degree of disentanglement
of the VC models involved in this study. We use a novel met-
ric that was recently proposed in [68] as the disentanglement
measurement, termed DEM. The main design concept of DEM
is that a pair of sentences of the same content uttered by the
source and target speakers should have similar latent codes since
the phonetic contents are the same. Therefore, we can use the
cosine similarity to measure the distance of the latent codes
obtained from the paired utterances. Specifically, the procedure
to calculate DEM is as follows:

1) extracting the latent codes of a pair of parallel utterances
spoken by the source and target speakers;

2) aligning the frame sequences of the pair of utterances using
DTW;

3) calculating the frame-wise cosine similarity, and then
taking the average of the entire sequence.

As with other popular evaluation metrics, e.g., MCD and
MSD, computing DEM requires parallel data. Since parallel
data are usually available in standardized VC datasets, DEM is
a simple but effective measure of the degree of disentanglement
of the latent codes.

Table IV shows the evaluation results of DEM. First, we
observe that CDVAE [SP] yields higher DEM scores than VAE
[SP]. This confirms that introducing cross domain features in-
deed increases the degree of disentanglement. Next, comparing
the corresponding methods in the upper and lower half of the
table, which used SP and MCC as input features respectively,
the DEM scores of the upper is consistently higher than those
of the latter. This result is somehow reasonable because here
SPs (513-dimensional) are of higher dimensions than MCCs
(35-dimensional) and carry much detailed information. As a
result, in terms of cosine similarity measure, higher DEM could
be observed in the upper half methods than the lower half.

One interesting finding here is that when corporating GANs
in CDVAE and CDVAE-CLS models, the DEM scores are
consistently and significantly improved. This result indicates
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that during training of CDVAE-GANMCC, although not in our
original expectaions, the discriminator not only benefits the
decoders, but also indirectly guides the latent codes to be better
disengagled.

As for CLS, we first observe that including CLS in CD-
VAE improves the DEM score when using MCC yet degrades
when using SP. Although this somewhat makes the effectiveness
of CLS inconvincing, we note that CDVAE-CLS [SP] and
CDVAE-CLS [MCC] have nearly identical DEM scores. This
intersesting finding shows that the CLS forces the encoders to
encode different features into similar contents. On the other
hand, including CLS in CDVAE-GAN models boosts the DEM
scores of cross gender pairs, which confirms that CLS can help
the encoders eliminate speaker independent information, such
as gender.

Finally, we compare the results of similarity tests of CDVAE
[MCC], CDVAE-GANMCC, and CDVAE-CLS-GANMCC in
Figure 8 and the DEM results in Table IV. CDVAE-CLS-
GANMCC achieves the highest similarity scores in Figure 8 and
gives the highest DEM scores in Table IV. The result verifies the
positive correlation between the conversion performance and the
degree of disentanglement of the latent codes.

VI. CONCLUSIONS

In this paper, we have extended the cross-domain VAE based
VC framework by integrating GANs and CLS into the training
phase. The GAN objective was used to better approximate
the distribution of real speech signals. The CLS, on the other
hand, was applied to the latent code as an explicit constraint to
eliminate speaker-dependent factors. Objective and subjective
evaluations confirmed the effectiveness of the GAN and CLS
objectives. We have also investigated the correlation between
the degree of disentanglement and the conversion performance.
A novel evaluation metric, DEM, that measures the degree
of disentanglement in VC was derived. Experimental results
confirmed a positive correlation between the degree of disen-
tanglement and the conversion performance.

In the future, we will exploit more acoustic features in the
CDVAE system, including rawer features, such as the magnitude
spectrum, and hand-crafted features, such as line-spectral pairs.
An effective algorithm that can optimally determine the latent
space dimension is also worthy of study. Finally, it is worthwhile
to generalize this disentanglement framework to extract speaker-
invariant latent representation from unknown source speakers in
order to achieve many-to-one VC.

We have made the source code publicly accessible so that
readers can reproduce our results.2
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