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Abstract—Deep neural networks (DNNs) have been successfully
applied to music classification including music tagging. However,
there are several open questions regarding the training, evaluation,
and analysis of DNNs. In this paper, we investigate specific aspects
of neural networks, the effects of noisy labels, to deepen our under-
standing of their properties. We analyze and (re-)validate a large
music tagging dataset to investigate the reliability of training and
evaluation. Using a trained network, we compute label vector simi-
larities, which are compared to groundtruth similarity. The results
highlight several important aspects of music tagging and neural
networks. We show that networks can be effective despite rela-
tively large error rates in groundtruth datasets, while conjecturing
that label noise can be the cause of varying tag-wise performance
differences. Finally, the analysis of our trained network provides
valuable insight into the relationships between music tags. These
results highlight the benefit of using data-driven methods to ad-
dress automatic music tagging.

Index Terms—Music tagging, convolutional neural networks.

I. INTRODUCTION

MUSIC tags are descriptive keywords that convey various
types of high-level information about recordings such

as mood (‘sad’, ‘angry’, ‘happy’), genre (‘jazz’, ‘classical’) and
instrumentation (‘guitar’, ‘strings’, ‘vocal’, ‘instrumental’) [1].
Tags may be associated with music in the context of a folkson-
omy, i.e., user-defined metadata collections commonly used for
instance in online streaming services, as well as personal music
collection management tools. As opposed to expert annotation,
these types of tags are deeply related to listeners’ or communi-
ties’ subjective perception of music. In the aforementioned tools
and services, a range of activities including search, navigation,
and recommendation may depend on the existence of tags as-
sociated with tracks. However, new and rarely accessed tracks
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often lack the tags necessary to support them, which leads to
well-known problems in music information management [2].
For instance, tracks or artists residing in the long tail of popu-
larity distributions associated with large music catalogues may
have insufficient tags, therefore they are rarely recommended or
accessed and tagged in online communities. This leads to a cir-
cular problem. Expert annotation is notoriously expensive and
intractable for large catalogues, therefore content-based anno-
tation is highly valuable to bootstrap these systems. Music tag
prediction is often called music auto-tagging [3]. Content-based
music tagging algorithms aim to automate this task by learning
the relationship between tags and the audio content.

Music tagging can be seen as a multi-label classification
problem because music can be correctly associated with more
than one true label, for example, {‘rock’, ‘guitar’, ‘happy’, and
‘90s’}. This example also highlights the fact that music tagging
may be seen as multiple distinct tasks. Because tags may be
related to genres, instrumentation, mood and era, the problem
may be seen as a combination of genre classification, instrument
recognition, mood and era detection, and possibly others. In the
following, we highlight three aspects of the task that emphasise
its importance in music informatics research (MIR).

First, collaboratively created tags reveal significant informa-
tion about music consumption habits. Tag counts show how
listeners label music in the real-world, which is often very dif-
ferent from the decision of a limited number of experts (see
Section III-A) [4]. The first study on automatic music tagging
proposed the use of tags to enhance music recommendation [3]
for this particular reason. Second, the diversity of tags and the
size of tag datasets make them relevant to several MIR prob-
lems including genre classification and instrument recognition.
In the context of deep learning, tags can particularly be consid-
ered a good source task for transfer learning [5], [6], a method of
reusing a trained neural network in a related task, after adapting
the network to a smaller and more specific dataset. Since a music
tagger can extract features that are relevant to different aspects
of music, tasks with insufficient training data may benefit from
this approach. Finally, investigating trained music tagging sys-
tems may contribute to our understanding of music perception
and music itself. For example, analysing subjective tags such
as mood and related adjectives can help building computational
models for human perception of music (see Section III-C).

Albeit its importance, there are several issues one faces when
analysing music tags. A severe problem, particularly in the con-
text of deep learning, is the fact that sufficiently large training
datasets are only available in the form of folksonomies. In these
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user-generated metadata collections, tags not only describe the
content of the annotated items, for instance, well-defined cate-
gories such as instruments that appear on a track or the release
year of a record, but also subjective qualities and personal opin-
ions about the items [7]. Tags are often related to organisational
aspects, such as self-references and personal tasks [8]. For in-
stance, users of certain music streaming services frequently in-
ject unique tags that have no significance to other users, i.e., they
label music with apparently random character sequences which
facilitate the creation of virtual personal collections, misappro-
priating this feature of the service. While tags of this nature
are relatively easy to recognise and disregard using heuristics,
other problems of folksonomies are not easily solved and con-
stitute a great proportion of noise in these collections. Relevant
problems include mislabelling, the use of highly subjective tags,
such as those pertaining to genre or mood, as well as hetero-
geneity in the taxonomical organisation of tags. Researchers
have been proposing to solve these problems either by imposing
pre-defined classification systems on social tags [7], or provid-
ing tag recommendation based on context to reduce tagging
noise in the first place [9]. While the benefits of such organisa-
tion or explicit knowledge of tag categories have been shown
to benefit automatic music tagging systems e.g. in [10], most
available large folksonomies still consist of noisy labels.

In this paper, we do not directly address the above issues, but
perform data-driven analyses instead, focussing on the effects
of noisy labels on deep convolutional neural networks for au-
tomatic tagging of popular music. Label noise is unavoidable
in most real-world applications, therefore it is crucial to under-
stand its effects. We hypothesise that despite the noise, neural
networks are able to learn meaningful representations that help
to associate audio content with tags and show that these repre-
sentations are useful even if they remain imperfect. The insights
provided by our analyses may be relevant and valuable across
several domains where social tags or folksonomies are used to
create automatic tagging systems or in research aiming to under-
stand social tags and tagging behaviour. The primary contribu-
tions of this paper are as follows: i) An analysis of the largest and
most commonly used public dataset for music tagging including
an assessment of the distribution of labels within this dataset.
ii) We validate the groundtruth and discuss the effects of noise,
e.g. mislabelling, on both training and evaluation. Finally, iii) we
provide a novel perspective on using specific network weights
to analyse the trained network and obtain valuable insight into
how social tags are related to music tracks. This analysis utilises
parts of the weights corresponding to the final classifications.
We termed these label vectors.

The rest of the paper is organised as follows. Section II out-
lines relevant problems and related works. Section III presents
an analysis of a large tag dataset from three different but related
perspectives. First, tag co-occurrence patterns are analysed and
our findings are presented in Section III-A. Second, we validate
the dataset labels and discuss the effects of label noise on neu-
ral network training and evaluation in Section III-B. We then
assess the capacity of the trained network to represent musical
knowledge in terms of similarity between predicted labels and
co-occurrences between ground truth labels in Section III-C.

Finally, we draw overall conclusions and discuss cross-domain
applications of our methodology in Section IV.

II. BACKGROUND AND RELATED WORK

Music tagging is related to common music classification and
regression problems such as genre classification and emotion
prediction. The majority of prior research have focussed on ex-
tracting relevant music features and applying a conventional
classifier or regressor. For example, the first auto-tagging algo-
rithm [3] proposed the use of mid-level audio descriptors such
as Mel-Frequency Cepstral Coefficients (MFCCs) and an Ad-
aBoost [11] classifier. Since most audio features are extracted
frame-wise, statistical aggregates such as mean, variance and
percentiles are also commonly used. This is based on the as-
sumption that the features adhere to a pre-defined or known
distribution which may be characterised by these parameters.
However, hand-crafted audio features do not necessarily obey
known parametric distributions [12], [13]. Consequently, vec-
tor quantisation and clustering was proposed e.g. in [14] as an
alternative to parametric representations.

A recent trend in music tagging is the use of data-driven
methods to learn features instead of designing them, together
with non-linear mappings to more compact representations rel-
evant to the task. These approaches are often called represen-
tation learning or deep learning, due to the use of multiple
layers in neural networks that aim to learn both low-level fea-
tures and higher-level semantic categories. Convolutional Neu-
ral Networks (denoted ‘ConvNets’ hereafter) have been pro-
viding state-of-the-art performance for music tagging in recent
works [15], [1], [6]. In the rest of this section, we first review the
datasets relevant to the tagging problem and highlight some is-
sues associated with them. We then discuss the use of ConvNets
in the context of music tagging.

A. Music Tagging Datasets and Their Properties

Training a music tagger requires examples, i.e., tracks la-
belled by listeners, constituting a groundtruth dataset. The size
of the dataset needed for creating a good tagger depends on
the number of parameters in its machine learning model. Using
training examples, ConvNets can learn complex, non-linear rela-
tionships between patterns observed in the input audio and high-
level semantic descriptors such as generic music tags. However,
these networks have a very high number of parameters and
therefore require large datasets and efficient training strategies.
Creating sufficiently large datasets for the general music tag-
ging problem is difficult for several reasons. Compared to genre
classification for instance, which can rely mostly on metadata
gathered from services such as MusicBrainz1 or Last.fm2, tag-
ging often requires listening to the whole track for appropriate
labelling, partly because of the diversity of tags [16], i.e., the
many different kinds of tags listeners may use or may be inter-
ested in while searching.

1See https://musicbrainz.org: a crowd-sourced music meta-database.
2See http://www.last.fm: a personalised online radio.
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Tagging is often seen as an inherently ill-defined problem
since it is subjective and there is an almost unconstrained num-
ber of meaningful ways to describe music. For instance, in the
Million Song Dataset (MSD) [17], one of the largest and most
commonly used groundtruth sets for music tagging, there are
522,366 tags. This is outnumbering the 505,216 unique tracks
present in the dataset. In fact, there is no theoretical limit on
the number of labels in a tag dataset, since users often ‘invent’
specific labels of cultural significance that cannot be found in
a dictionary, yet become widely associated with niche artistic
movements, styles, artists or genres. Peculiar misspellings also
become commonplace and gain specific meaning, for instance,
using ‘nu’ in place of ‘new’ in certain genre names (‘nu jazz’,
‘nu metal’) suggests music with attention to pop-culture refer-
ences or particular fusion styles, or the use of ‘grrrl’ refers to
bands associated with the underground feminist punk movement
of the 90s. Given a degree of familiarity with the music, listen-
ers are routinely able to associate songs with such tags, even if
the metadata related to the artist or the broader cultural context
surrounding a particular track is not known to them. This leads
to a hypothesis underlying most auto tagging research, that is,
audio can be sufficient to assign a reasonably broad range of
tags to music automatically. We note that our approach, like
other generic auto tagging methods, does not aim to cover the
kinds of highly personal tags mentioned in Section I.

Tags are also of different kinds and a single tag may often
convey only a small part of what constitutes a good descrip-
tion. Tagging, therefore, is a multi-label classification problem.
Consequently, the number of unique output vectors in a set in-
creases exponentially with the number of items, while that of
single-label classification only increases linearly. Given K bi-
nary labels, the size of the output vector set can increase up to
2K . In practice, this problem is often alleviated by limiting the
number of tags, usually to the top-N tags given the number of
music tracks a tag is associated with, or the number of users
who applied them.

The prevalence of music tags is also worth paying attention
to because datasets typically exhibit an unbalanced distribution
with a long-tail of rarely used tags. Regarding the diversity of the
music and from the training perspective, there is an issue with
non-uniform genre distributions too. In the MSD for example,
the most popular tag is ‘rock’ which is associated with 101,071
tracks. However, ‘jazz’, the 12th most popular tag is used for
only 30,152 tracks and ‘classical’, the 71st popular tag is used
11,913 times only, even though these three genres are on the
same hierarchical level.

B. Labelling Strategies

We finally have to consider a number of labelling strategies.
Audio items in a dataset may be ‘strongly’ or ‘weakly’ labelled,
which may refer to several different aspects of tagging. First,
there is a question of whether only positive labels are used. A
particular form of weak labelling means that only positive as-
sociations between tags and tracks are provided. This means,
given a finite set of tags, a listener (or annotator) applies a tag in
case s/he recognises a relation between the tag and the music.

In this scenario, no negative relations are provided, and as a
result, a tag being positive means it is ‘true’, but a tag being
negative, i.e. not applied, means ‘unknown’. The most common
tags are about positiveness–labels usually explain the existence
of features, not the non-existence of them. Exceptions that de-
scribe negativeness include ‘instrumental’, which may indicate
the lack of vocals. Typical crowd-sourced datasets are weakly
labelled, because it is the only practical solution to create a
large dataset. Furthermore, listeners in online platforms can-
not be reasonably expected to provide negative labels given the
large number of possible tags. Strong labelling in this particu-
lar context would mean that disassociation between a tag and
a track confirms negation, i.e., a zero element in a tag-track
matrix would signify that the tag does not apply. To the best of
our knowledge, CAL500 [18] is the biggest music tag dataset
(500 songs) that is strongly labelled. Most recent research has
relied on collaboratively created, and therefore weakly-labelled
datasets such as MagnaTagATune [19] (5,405 songs) and the
MSD [17] containing 505,216 songs if only tagged items are
counted.

The second aspect of labelling relates to whether tags de-
scribe the whole track or whether they are only associated with
a segment where a tag is considered to be true. Time-varying
annotation is particularly difficult and error prone for human lis-
teners, therefore it does not scale. Multiple tags may be applied
on a fixed-length segment basis, as is done in smaller datasets
such as MagnaTagATune for 30s segments. The MSD uses only
track-level annotation, which can be considered a form of weak
labelling. From the perspective of training, this strategy is less
adverse in case of particular tags than it is for some others.
Genre or era tags are certainly more likely to apply to the whole
track consistently than instrument tags for instance. This dis-
crepancy may constitute noise in the training data. Additionally,
often only preview clips are available to researchers. This forces
them to assume that tags are correct within the preview clip too,
which constitutes another source of groundtruth noise. In this
work, we train ConvNets to learn the association between track-
level labels and audio recordings using preview clips associated
with the MSD.

Learning from noisy labels is an important problem, there-
fore several studies address this in the context of conventional
classifiers such as support vector machines [20]. In deep learn-
ing research, [21] assumes a binary classification problem while
[22] deals with multi-class classification. Usually, auxiliary lay-
ers are added to learn to fix the incorrect labels, which often
requires a noise model and/or an additional clean dataset. Both
solutions, together with much other research, are designed for
single-class classifications, and there is no existing method that
can be applied for music tagging when considered as multi-label
classification and when the noise is highly skewed to negative
labels. This will be discussed in Section III-B.

C. Convolutional Neural Networks

ConvNets are a special type of neural network introduced
in computer vision to simulate the behaviour of the human vi-
sion system [23]. ConvNets have convolutional layers, each
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of which consists of convolutional kernels. The convolutional
kernels sweep over the inputs, resulting in weight sharing that
greatly reduces the number of parameters compared to conven-
tional layers that do not sweep and are fully-connected instead.
Kernels are trained to find and capture local patterns that are
relevant to the task using error backpropagation and gradient
descent algorithms. Researchers in music informatics are in-
creasingly taking advantage of deep learning techniques. Con-
vNets have already been used for chord recognition [24], genre
classification [25], onset detection [26], music recommendation
[27], instrument recognition [28] and music tagging [1], [15],
[6].

In MIR, the majority of works use two dimensional time-
frequency representations as inputs, e.g., short-time Fourier
transform or mel-spectrograms [29]. Recently, several works
proposed learning 2D representations by applying one dimen-
sional convolution to the raw audio signal [15], [30]. It is pos-
sible to improve performances by learning more effective rep-
resentations, although the approach requires increasingly more
data, which is not always available. Moreover, these approaches
have been shown to learn representations that are similar to
conventional time-frequency representations that are cheaper to
compute [15], [30].

ConvNets have been applied to various music and audio re-
lated tasks, assuming that certain relevant patterns can be de-
tected or recognised by cascaded one- or two dimensional con-
volutions. They provide state-of-the-art performance in several
music information retrieval tasks including music segmentation
[31], beat detection [32] and tagging [6], as well as in non-
music tasks such as acoustic event detection [33]. There are
several possible arguments to justify the use of ConvNets for
music tagging. First, music tags are often considered among
the topmost high-level features representing song-level infor-
mation above mid-level or intermediate musical features such
as chords, beats, and tonality. This hierarchy fits well with Con-
vNets as they can learn hierarchical features over multilayer
structures. Second, the invariance properties of ConvNets such
as translation, distortion and local invariances can be useful for
learning musical features when the relevant feature can appear
at any time or frequency range with small time and frequency
variances.

There are many different architectures for music tagging, but
many share a common training scheme. They follow the super-
vised learning framework with backpropagation and stochastic
gradient descent, they regard the problem as a regression prob-
lem. Many of them also use cross-entropy or mean square error
as a loss function, which is empirically minimised using a train-
ing set with the maximum likelihood approach. The analyses
presented in this paper aim at understanding the behaviour of
ConvNets using supervised learning with noisy labels. This as-
pect of the research is tangential to the variations of ConvNet
structures. Therefore, we omit results related to the different
possible ConvNet structures. Particularly with respect to the
analysis of the effect of label noise on tagging performance,
a major contribution of this paper, different convnet structures
have previously shown an almost identical trend in tag-wise
performances [34].

D. Evaluation of Tagging Algorithms

There are several methods to evaluate tagging algorithms.
Since the target is typically binarised to represent if the ith tag
is true or false (yi ∈ {0, 1}), classification evaluation metrics
such as ‘Precision’ and ‘Recall’ can be used if the prediction
is also binarised. Because label noise is mostly associated with
negative labels, as we quantify in Section III-B, using recall is
appropriate since it ignores incorrect negative labels. We have
to note that metrics such as recall cannot be used as a loss
function since they are not differentiable. They can be used
instead as an auxiliary method of assessment after training.
This strategy can work well because it prevents the network
from learning trivial solutions for those metrics. For instance,
predicting all labels to be ‘True’ to obtain a perfect recall score.
Optimal thresholding for binarised prediction is an additional
challenge however and discards information. The network learns
a maximum likelihood solution with respect to the training data,
which is heavily imbalanced, therefore the threshold should be
chosen specifically for each tag. This introduces an entirely
new research problem which we do not address here. The area
under curve - receiver operating characteristic (AUC-ROC, or
simply AUC) works without binarisation of predictions and is
often used as an evaluation metric. A ROC curve is created by
plotting the true positive rate against the false positive rate. As
both rates range between [0, 1], the area under the curve also
ranges between [0, 1]. However, the effective range of AUC
is [0.5, 1] since random classification yields 0.5 when the true
positive rate increases at the exact same rate of false positives.

III. EXPERIMENTS AND DISCUSSIONS

In this section, we present the methods and the results of ex-
periments that analyse the Million Song Dataset (MSD) and a
network trained on it. We select the MSD as it is the largest pub-
lic dataset available for training music taggers. It also provides
crawlable track identifiers for audio signals, which enables us to
access the audio and re-validate the tags manually by listening.
The analyses are divided into three parts and discussed sepa-
rately in the following subsections. Section III-A is concerned
with mutual relationships between tags. In Section III-B, we re-
validate the groundtruth of the dataset to ascertain the reliability
of research that uses it. Section III-C discuss properties of the
trained network.

The tags in the MSD are collected using the Last.fm API
which provides access to crowd-sourced music tags. We use
the top 50 tags sorted by popularity (occurrence counts) in the
dataset. The tags include genres (‘rock’, ‘pop’, ‘jazz’, ‘funk’),
eras (‘60s’ – ‘00s’) and moods (‘sad’, ‘happy’, ‘chill’). There
are 242,842 clips with at least one of the top 50 tags. The tag
counts range from 52,944 (‘rock’) to 1,257 (‘happy’) and there
are 12,348 unique tag vectors represented as a joint variable of
50 binary values.

Throughout this paper, particularly in Sections III-B2, III-B3,
and III-C, we use a ConvNet named ‘compact-convnet’. As
mentioned earlier, the proposed analysis is structure-agnostic,
and we chose this network since it achieves a reasonable per-
formance while being easy to understand and analyse due to its
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TABLE I
DETAILS OF THE compact-convnet ARCHITECTURE

input (1, 96, 1360)

Conv2d and Max-Pooling (32, (3, 3)) and (2, 4)
Batch normalization - ELU activation

Conv2d and Max-Pooling (32, (3, 3)) and (4, 4)
Batch normalization - ELU activation

Conv2d and Max-Pooling (32, (3, 3)) and (4, 5)
Batch normalization - ELU activation

Conv2d and Max-Pooling (32, (3, 3)) and (2, 4)
Batch normalization - ELU activation

Conv2d and Max-Pooling (32, (3, 3)) and (4, 4)
Batch normalization - ELU activation

Fully-connected layer (50)
output (50)

2-dimensional convolutional layer is specified by (channel,
(kernel lengths in frequency, time)). Pooling layer is specified
by (pooling length in frequency and time). Batch normalization
layer [35] and exponential linear unit activation [36] are used
after all convolutional layers.

simple structure. Table I summarises the hyperparameters which
are similar to the network in [1]. The original audio files are
encoded in mp3 format with a sampling rate of 22,050 Hz
and 64 kbps constant bit-rate. They are decoded, down-mixed
to monaural, re-sampled to 12 kHz, and converted into mel-
spectrograms with 96 mel-bins through a windowed short-time
Fourier transform using 512-point FFT with 50% overlap. The
ConvNet consists of homogeneous 5-layer, 3 × 3 convolutional
kernels. On the input side, the mel-spectrogram magnitude
is mapped using decibel scaling (log10 X) and adjusted us-
ing track-wise zero-mean unit-variance standardisation. We use
201,672/12,633/28,537 tracks as training/validation/test sets re-
spectively, following the set splits provided by the MSD. This
network3 achieves an AUC of 0.845.

A. Tag Co-Occurrences in the MSD

We investigate the distribution and mutual relationships of
tags in the dataset. This procedure helps understanding the task.
Furthermore, our analysis represents information embedded in
the training data. This will be compared to knowledge we can
extract from the trained network (see Section III-C).

Here, we investigate the tuple-wise4 relations between tags
and plot the resulting normalised co-occurrence matrix (NCO)
denoted C. Let us define #yi := |{(x, y) ∈ D|y = yi}|, the total
number of the data points with ith label being True given the
dataset D where (x, y) is an (input, target) pair. In the same
manner, #(yi ∧ yj ) is defined as the number of data points with
both ith and jth labels being True, i.e., those two tags co-occur.
NCO is computed using (1) and illustrated in Fig. 1.

C(i, j) = #(yi ∧ yj )/#yi. (1)

3The trained network and split settings are provided online:
https://github.com/keunwoochoi/transfer_learning_music and https://github.
com/keunwoochoi/MSD_split_for_tagging.

4These are not pairwise relations since there is no commutativity due to the
normalisation term.

Fig. 1. Normalised tag co-occurrence pattern of the selected 23 tags from the
training data. For the sake of visualisation, we selected 23 tags out of 50 that
have high co-occurrences and represent different categories; genres, instruments
and moods. The values are computed using (1) (and are multiplied by 100, i.e.,
shown in percentage), where yi and yj respectively indicate the labels on the
x-axis and y-axis.

In Fig. 1, the x- and y-axes correspond to i, j respectively.
Note that C(i, j) is not symmetric, e.g., (‘alternative rock’,
‘rock’) = #(alternative rock ∧ rock)/#alternative rock.

These patterns reveal mutual tag relationships which we cat-
egorise into three types: i) tags belonging to a genre hierarchy,
ii) synonyms, i.e., semantically similar words and iii) musical
similarity. Genre hierarchy tuples include for instance (‘alterna-
tive rock’, ‘rock’), (‘house’, ‘electronic’), and (‘heavy metal’,
‘metal’). All first labels are sub-genres of the second. Natu-
rally, we can observe that similar tags such as (‘electronica’,
‘electronic’) are highly likely to co-occur. Lastly, we notice tu-
ples with similar meaning from a musical perspective including
(‘catchy’, ‘pop’), (‘60s’, ‘oldies’), and (‘rnb’, ‘soul’). Interest-
ingly, C(i, j) values with highly similar tag pairs, including
certain subgenre-genre pairs, yi and yj are not close to 100% as
one might expect. For example the pairs (‘female vocalist’, ‘fe-
male vocalists’) and (‘alternative’, ‘alternative rock’) reach only
30% and 44% co-occurrence values, while the pairs (‘rock’ and
‘alternative rock’), (‘rock’, ‘indie rock’) reach only 69% and
39% respectively. This is primarily because i) items are weakly
labelled and ii) there is often a more preferred tag to describe
a certain aspect of a track compared to others. For instance,
‘female vocalists’ appears to be preferred over ‘female vocalist’
in our data as also noted in [2]. The analysis also reveals that
certain types of label noise related to missing tags or taxonom-
ical heterogeneity turn out to be very high in some cases. For
instance, only 39% of ‘indie rock’ tracks are also tagged ‘rock’.
The effect of such label noise is studied more deeply in Section
III-B. Furthermore, the computed NCO under-represents these
co-occurring patterns. This effect is discussed in Section III-C.
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TABLE II
THE SCORES OF GROUNDTRUTH WITH RESPECT TO OUR STRONGLY-LABELLED MANUAL ANNOTATION (SUBSET100) IN (A)-(D) AND OCCURRENCE COUNTS BY

THE GROUNDTRUTH (E), ESTIMATION (F), AND ON SUBSET400

Scores of the groundtruth on Subset100 Occurrence counts

(a) (b) (c) (d) (e) (f) (g)
Error rate,

Positive label [%]
Error rate,

Negative label [%]
Precision [%] Recall [%] In groundtruth

(for all items)
Estimate by (2)
and Subset100

By our annotation
(on Subset400)

instrumental 6.0 12.0 94.0 88.7 8,424 (3.5%) 36,048 (14.9%) 85 (21.3%)
female vocalists 4.0 24.0 96.0 80.0 17,840 (7.3%) 71,127 (29.3%) 94 (23.5%)
male vocalists 2.0 64.0 98.0 60.5 3,026 (1.2%) 156,448 (64.4%) 252 (64.0%)
guitar 2.0 70.0 98.0 58.3 3,311 (1.4%) 170,916 (70.4%) 266 (66.5%)

B. Validation of the MSD as Groundtruth for Auto-Tagging

Next, we analyse the groundtruth noise in the MSD and exam-
ine its effect on training and evaluation. There are many sources
of noise including incorrect annotation as well as information
loss due to the trimming of full tracks to preview clips. Some
of these factors may be assumed to be less adverse than others.
In large-scale tag datasets, the frequently used weak labelling
strategy (see Section II-B) may introduce a significant amount
of noise. This is because by the definition of weak labelling,
considering numerous tags a large portion of items remain un-
labelled, but then these relations are assumed to be negative
during training.

Validation of the annotation requires re-annotating the tags
after listening to the excerpts, which is not a trivial task for
several reasons. First, manual annotation does not scale and re-
quires significant time and effort. Second, there is no single cor-
rect answer for many labels–music genre is an ambiguous and
idiosyncratic concept, emotion annotation is highly subjective
too, so as labels such as ‘beautiful’ or ‘catchy’. Instrumentation
labels can be objective to some extent, assuming the annotators
have expertise in music. Therefore, we re-annotate items in two
subsets using four instrument labels as described below.

� Labels: ‘instrumental’, ‘female vocalists’, ‘male vocal-
ists’, ‘guitar’.

� Subsets:
Subset100: randomly selected 100 items for each class.
All are from the training set and positive/negative labels
are balanced as 50/50 respectively.
Subset400: randomly selected 400 items from the test
set.

1) Measuring Label Noise and Tagability: Table II column
(a)-(d) summarises the statistics of Subset100. Confidence in-
tervals for precision and recall are computed by bootstrapping
[37] and plotted in Fig. 2. The average error rate of negative
labels is 42.5%, which is very high, while that of positive labels
is 3.5%. As a result, the precision of the groundtruth is high
(96.5% on average) while the recall is much lower (71.9% on
average). This suggests that the tagging problem should be con-
sidered weakly supervised learning to some extent. We expect
this problem exists in other weakly-labelled datasets as well,
since annotators typically do not utilise all possible labels.

Such a high error rate for negative labels suggests that the
tag occurrence counts in the groundtruth are under-represented.
This can be related to the tagability of labels, a notion which may

Fig. 2. The precision and recall of groundtruth on Subset100, corresponding
to columns (c) and (d) in Table II. They are plotted with 95% confidential
interval computed by bootstrapping [37].

Fig. 3. The estimates of the number of items (red) and the number of items
in Subset400 (blue), both in percentage (they correspond to columns (f) and (g)
in Table II). The estimates are plotted with 95% confidential interval computed
by bootstrapping [37].

be defined as the likelihood that a track will be tagged positive
for a label when it really is positive. If the likelihood is replaced
with the portion of items, tagability is measured by recall as
presented in Table II as well as in Fig. 2. For example, bass guitar
is one of the most widely used instruments in modern popular
music, but it is only the 238th most popular tag in the MSD
since tagging music with ‘bass guitar’ does not provide much
information from the perspective of the average listener. Given
the scores, we may assume that ‘female vocalists’ (88.7% of
recall) and ‘instrumental’ (80.0%) are more tagable than ‘male
vocalists’ (60.5%) and ‘guitar’ (58.3%), which indicates that the
latter are presumably considered less unusual.

The correct number of positive/negative items can be esti-
mated by applying Bayes’ rule with the error rate. The estimated
positive label count N̂+ is calculated using (2) as follows:

N̂+ = N+(1 − p+) + (T − N+)p−, (2)

where N+ is the tag occurrence, T is the number of total items
(T = 242, 842 in our case), and p+ , p− refers to the error
rates of positive and negative labels respectively. Column (f) of
Table II and Fig. 3 present the estimated occurrence counts us-
ing (2). This estimate is validated using Subset400. Comparing
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the percentages in columns (f) and (g) confirms that the esti-
mated counts are more correct than the tag occurrences of the
groundtruth. For all four tags, the confidence intervals overlap
with the percentage counted in Subset400 as illustrated in Fig. 3.
In short, the correct occurrence count is not correlated with the
occurrence in the dataset, which shows the bias introduced by
tagability. For instance, ‘male vocalists’ is more likely to occur
in music than ‘female vocalists’, which means it has lower taga-
bility, and therefore it ends up having fewer occurrences in the
groundtruth.

2) Effects of Incorrect Groundtruth on the Training: Despite
such inaccuracies, it is possible to train networks for tagging
with good performances using the MSD, achieving an AUC be-
tween 0.85 [1] and 0.90 [6]. This may be because even with such
noise, the network is weakly supervised by stochastically correct
feedbacks, where the noise is alleviated by a large number of
training examples [38]. In other words, given x is the input and
ytrue , ynoisy are the correct and noisy labels respectively, the
network can approximate the relationship f : x → ytrue when
training using (x,ynoisy ).

However, we suggest that the noise affects the training and
it is reflected in the performances of different tags. In [34],
where different deep neural network structures for music tagging
were compared, the authors observed a pattern on the per-tag
performances that is common among different structures. This
is illustrated in Fig. 5 where the x-axis labels represent tag pop-
ularity ranking. The performances were not correlated with the
ranking, the reported correlation is 0.077, therefore the question
remained unanswered in [34].

We conjecture that tagability, which is related to (negative)
label noise can explain tag-wise performance differences. It is
obvious that a low tagability implies more false negatives in
the groundtruth. Therefore we end up feeding the network with
more confusing training examples. For example, assuming there
is a pattern related to male vocalists, the positive-labelled tracks
provide mostly correct examples. However, many examples of
negative-labelled tracks (64% in Subset100) also exhibit the
pattern. Consequently, the network is forced to distinguish hy-
pothetical differences between the positive-labelled true patterns
and the negative-labelled true patterns, which leads to learning a
more fragmented mapping of the input. This is particularly true
in music tagging datasets where negative label noise dominates
the total noise. This is supported by data both in this paper and
[34] as discussed below.

First, tagabilities (or recall) and AUC scores with respect
to the groundtruth and our re-annotation are plotted in Fig. 4
using Subset400 items and the compact-convnet structure.
Both AUC scores are positively correlated to tagability while
they are not related to the tag popularity rankings. Although
the confidence intervals of ‘instrument’ vs. ‘female vocalists’,
and ‘male vocalists’ vs. ‘guitar’ overlap, there is an obvious
correlation. The performances on the whole test set also largely
agree with our conjecture.

Second, in Fig. 5, AUC scores for instrument tags are ranked
as ‘instrumental’ > ‘female vocalists’ > ‘guitar’ > ‘male vocal-
ists’ for all three ConvNet structures. This aligns with tagability
in Fig. 4 within the confidence intervals.

Fig. 4. The recall rates (tagability, pink), AUC scores with respect to the
groundtruth (green), and AUC scores with respect to our annotation (yellow), all
reported on Subset400. The numbers on the x-axis labels are the corresponding
popularity rankings of tags out of 50. The recall rates and their 95% confidential
intervals are identical to Fig. 2 but plotted again for comparison with tag-wise
AUC scores.

This observation motivates us to expand this approach and
assess tags in other categories. Within the Era category in Fig. 5,
performance is negatively correlated with the popularity ranking
(Spearman correlation coefficient = −0.7). There is a large
performance gap between old music groups (60s, 80s, 70s) and
the others (90s, 00s). We argue that this may also be due to
tagability. In the MSD, older songs (e.g. those released before
the 90s) are less frequent compared to modern songs (90s or
00s). According to the year prediction subset of the MSD5, 84%
of tracks are released after 1990. This is also related to the fact
that the tag ‘oldies’ exists while its opposite does not. Hence, old
eras seem more tagable, which might explain the performance
differences in Era tags. We cannot extend this approach to mood
and genre tags because the numbers of tags are much larger
and there may be aspects contributing to tag-wise performance
differences other than tagability.

3) Validation of the Evaluation: Another problem with using
a noisy dataset is evaluation. In the previous section, we assumed
that the system can learn a denoised relationship between music
pieces and tags, f : x → ytrue . However, the evaluation of a
network with respect to ynoisy includes errors due to noisy
groundtruth. This raises the question of the reliability of the
results. We use our strongly-labelled annotation of Subset400
to assess this reliability.

Let us re-examine Fig. 4. All AUC scores with respect to
our annotation are lower than the scores with respect to the
groundtruth. Performance for the guitar tag is remarkably below
0.5, the baseline score of a random classifier. However, the
overall trend of tag-wise performance does not change. Because
the results are based only on four classes and a subset of songs,
a question arises: How does this result generalise to other tags?

To answer the question, three AUC scores are plotted in Fig. 6:
i) the scores of the four instrument tags with respect to our
annotation (dotted red), ii) the scores of the four instrument tags
with respect to the given groundtruth (dashed blue), and iii) the
scores of all tags with respect to the given groundtruth (solid
yellow).

The reliability of evaluation is typically assessed with a given
groundtruth and can be measured by ρ1 , the Pearson correlation
coefficient between AUCs using our annotation and the MSD.
The correlation between the four tags and all other tags (shown

5https://labrosa.ee.columbia.edu/millionsong/pages/tasks-demos.
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Fig. 5. k1c2, k2c1, and CRNN are the names of network structures in [34]. i) AUC of each tag is plotted using a bar chart and line. For each tag, the red line
indicates the score of k2c1which is used as a baseline of bar charts for k1c2 (blue) and CRNN (green). In other words, the blue and green bar heights represent the
performance gaps, k2c1-k1c2 and CRNN-k2c1, respectively. ii) Tags are grouped by categories (genre/mood/instrument/era) and sorted by the score of k2c1.
iii) The number in parentheses after each tag indicates that tag’s popularity ranking in the dataset.

Fig. 6. AUC scores of all tags (yellow, solid) and four instrumentation tags.
Instrumentation tags are evaluated using i) dataset groundtruth (blue, dashed)
and ii) our strong-labelling re-annotation (red, dotted). Pearson correlation co-
efficients between {red vs. blue} and {blue vs. yellow} is annotated on each
chart as ρ. In (c), x-axis is experiment index and various audio preprocessing
methods were applied for each experiment. (a) Training data used with melgram
[%], (b) Training data used with STFT [%], (c) Audio preprocessing methods.

in blue and yellow), denoted ρ2 , is a measure of how we can
generalise our re-annotation result to those concerning all tags.

We selected three sets of tagging results to examine and plot-
ted these in Fig. 6(a)–(c). The first two sets shown in subfigure
(a) and (b) are results after training the compact-convnet
with varying training data size and different audio representa-
tions: (a) melspectrogram and (b) short-time Fourier transform.
The third set of curves in Fig. 6(c) compare six results with
varying input time-frequency representations, training data size
and input preprocessing techniques including normalisation and
spectral whitening. The third set is selected to observe the cor-
relations when the performance differences among systems are
more subtle than those in (a) and (b).6 First, the ρ1 values in
(a)–(c) suggest that noisy groundtruth provides reasonably sta-
ble evaluation for the four instrument tags. On the first two sets in
(a) and (b), the scores of four tags using the MSD groundtruth (in
blue) are highly correlated (ρ1 = 0.905 and 0.833) to the scores
using our annotation (red). This suggests the evaluation using
noisy labels is still reliable. However, in (c), where the scores of
all tags with given groundtruth (yellow) are in a smaller range,
the correlation between all tags and the four tags (ρ1) decreases
to 0.543. The results imply that the distortion on the evaluation

6We omit the details of the preprocessing methods, which are summarised in
[39], because the focus is on the correlation of the final scores.

Fig. 7. Label vector similarity matrix by (3) (of manually selected 23 tags,
same in Fig. 1, where symmetric components are omitted and numbers are×100
after dot product for visual clarity.

using the noisy groundtruth may disguise the performance dif-
ference between systems when the difference is small. Second,
large ρ2 indicates that our validation is not limited to the four
instrument tags but can be generalised to all tags. The correla-
tion coefficients ρ2 is stable and reasonably high in (a)–(c). It is
0.856 on average.

C. Analysis of Predicted Label Vectors

In the previous sections, groundtruth labels were analysed
from various perspectives. It is worth considering how this in-
formation is distilled into the network after training, and whether
we can leverage the trained network beyond our particular task.
To answer these questions we use the trained network weights
to assess how the network ‘understands’ music content by its
label. This analysis also provides a way to discover unidentified
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TABLE III
TOP-20 SIMILAR TAG TUPLES BY TWO ANALYSIS APPROACHES

Similar tags by
groundtruth labels

(alternative rock, rock)§ (indie rock, indie)# (House, dance)‡‡ (indie pop, indie) (classic rock, rock) (electronica, electronic)*

(alternative, rock) (hard rock, rock) (electro, electronic)** (House, electronic)(alternative rock, alternative)¶ (catchy, pop) (indie rock,
rock) (60s, oldies)†† (heavy metal, metal)§§ (rnb, soul) (ambient, electronic) (90s, rock) (heavy metal, hard rock)‡ (alternative, indie)‖

Similar tags by label
vectors

(electronica, electronic)* (indie rock, indie)# (female vocalist, female vocalists) (heavy metal, hard rock)‡ (indie, indie pop) (sad,
beautiful) (alternative rock, rock)§ (alternative rock, alternative)¶ (happy, catchy) (indie rock, alternative) (alternative, indie)‖ (rnb,
sexy) (electro, electronic)** (sad, Mellow) (Mellow, beautiful) (60s, oldies)†† (House, dance)‡‡ (heavy metal, metal)§§ (chillout, chill)
(electro, electronica)

The first row is by analysing co-occurrence of tags in groundtruth (see Section III-A for details). The second row is by the similarity of trained label vector (see Section III-C for
details). Common tuples are annotated with matching symbols.

relationships between labels and the music. The goal of label
vector analysis is to better understand network training as well
as assess its capacity to represent domain knowledge, i.e., re-
lationships between music tags that are not explicitly shown in
the data. In the compact-convnet described in Section III,
the output layer has a dense connection to the last convolutional
layer. The weights are represented as a matrix W ∈ RN ×50 ,
where N is the number of feature maps (N=32 for our case)
and 50 is the number of the predicted labels. After training, the
columns of W can be interpreted as N -dimensional latent vec-
tors since they represent how the networks combine information
in the last convolutional layer to make the final prediction. We
call these label vectors.

We compute the pairwise label vector similarity (LVS) using
the dot product, i.e., S(i, j) = w(i) · w(j) where i, j ≤ 50 or
equivalently:

S = W� · W, (3)

which yields a 50 × 50 symmetric matrix.
LVS is illustrated in Fig. 7. The pattern is similar to the values

in NCO (normalised co-occurrence) shown in Fig. 1 (see Section
II-B). On average, the similarities in S(i, j) are higher than those
in C(i, j). In S, only four pairs show negative values, ‘classic
rock’ – ‘female vocalists’, and ‘mellow’ – {‘heavy metal’, ‘hard
rock’, and ‘dance’}. In other words, label vectors are distributed
in a limited space corresponding to a 32 dimensional vector
space, where the angle θ between w(i) and w(j) is smaller
than π/2 for most of the label vector pairs. This result can be
interpreted in two ways: how well the ConvNet reproduce the
co-occurrence that was provided by the training set; and if there
is additional insight about music tags in the trained network.

First, the Pearson correlation coefficient of the rankings by
LVS and NCO is 0.580.7 The top 20 most similar label pairs are
sorted and described in Table III. The second row of the table
shows similar pairs according to the label vectors estimated by
the network. Eleven out of 20 pairs overlap with the top 20 NCO
tuples shown in the top row of the table. Most of these relations
can be explained by considering the genre hierarchy. Besides,
pairs such as (‘female vocalists’, ‘female vocalists’) and (‘chill-
out’, ‘chill’) correspond to semantically similar words. Overall,
tag pairs showing high similarity (LVS) reasonably represent
musical knowledge and correspond to high NCO values com-
puted from the ground truth. This confirms the effectiveness

7Because of the asymmetry of C(i, j), rankings of max(C(i, j), C(y, y))
are used.

of the network to predict subjective and high-level semantic
descriptors from audio only.

Second, there are several pairs that are i) high in LVS, ii)
low in NCO, and iii) presumably music listeners would rea-
sonably agree with their high similarity. These pairs show the
extracted representations of the trained network can be used to
measure tag-level musical similarities even if they are not ex-
plicitly shown in the groundtruth. For example, pairs such as
(‘sad’, ‘beautiful’), (‘happy’, ‘catchy’) and (‘rnb’, ‘sexy’) are
in the top 20 of LVS (6th, 9th, and 12th similarities with 0.88,
0.86, and 0.82 of similarity values respectively). On the con-
trary, according to the ground truth, they are only 129th, 232nd,
111th co-occurring with 0.13, 0.08, and 0.14 of co-occurrence
likelihood respectively.

In summary, the analysis based on LVS indirectly validates
that the network learned meaningful representations that corre-
spond to the groundtruth. Moreover, we found several pairs that
are considered similar by the network which may help to extend
our understanding of the relation between music and tags.

IV. CONCLUSIONS

In this article, we investigated several aspects how noisy la-
bels in folksonomies affect the training and performance of deep
convolutional neural networks for music tagging. We analysed
the MSD, the largest dataset available for training a music tag-
ger from a novel perspective. We reported on a study aiming to
validate the MSD as groundtruth for this task. We found that the
dataset is reliable overall, despite several noise sources affecting
training and evaluation. Finally, we defined and used label vec-
tors to analyse the capacity of the network to explain similarity
relations between semantic tags.

Overall, the behaviours of the trained network were shown
to be related to the property of the given labels. The analy-
sis showed that tagability, which we measured by recall on the
groundtruth, is correlated to the tag-wise performance. This
opened a way to explain tag-wise performance differences
within other categories of tags such as era. In the analysis of the
trained network, we found that the network learns more intricate
relationships between tags rather than simply reproducing the
co-occurrence patterns in the groundtruth. The trained network
is able to infer musically meaningful relationships between tags
that are not present in the training data.

Although we focused on music tagging, our results provide
general knowledge applicable in several other domains or tasks
including other music classification tasks. The analysis method
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presented here and the result on the tagging dataset can eas-
ily generalise to similar tasks in other domains involving folk-
sonomies with noisy labels or tasks involving weakly labelled
datasets, e.g. image tagging, object recognition in video, or
environmental sound recognition, where not all sources are nec-
essarily labelled. Future work will explore advanced methods to
learn and evaluate using noisy datasets under a structured ma-
chine learning framework. Tagability can be understood from
the perspective in music cognition research and should be in-
vestigated further.
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