
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 1

Efficient Processing of Spiking Neural Networks
via Task Specialization

Muath Abu Lebdeh , Kasim Sinan Yildirim , Member, IEEE, and Davide Brunelli , Senior Member, IEEE

Abstract—Spiking neural networks (SNNs) are considered as
a candidate for efficient deep learning systems: these networks
communicate with 0 or 1 spikes and their computations do not
require the multiply operation. On the other hand, SNNs still
have large memory overhead and poor utilization of the memory
hierarchy; powerful SNN has large memory requirements and
requires multiple inference steps with dynamic memory patterns.
This paper proposes performing the image classification task as
collaborative tasks of specialized SNNs. This specialization allows
us to significantly reduce the number of memory operations and
improve the utilization of memory hierarchy. Our results show
that the proposed approach improves the energy and latency of
SNNs inference by more than 10x. In addition, our work shows
that designing narrow (and deep) SNNs is computationally more
efficient than designing wide (and shallow) SNNs.

Index Terms—Spiking neural networks, low energy and latency
computing, memory aware SNNs, specialized SNNs.

I. INTRODUCTION

N EUROMORPHIC computing offers a brain-inspired ap-
proach to enable intelligence by reducing the power and

energy requirements of computing platforms [1]. Neuromorphic
systems use the spiking neural network (SNN) as a compu-
tational model, in which each neuron uses the heaviside step
function as an activation function to generate spikes for com-
munication with other neurons. This pushes the activations to be
sparser (e.g., compared to the ReLU activation function), leading
to less effectual operations, and hence to better utilization of
event-driven computing resources. Moreover, SNNs rely on a
dynamic neural model that makes them capable of capturing
spatio-temporal patterns at the neuron level without any ar-
chitectural recurrent connections [2]. Therefore, this relatively
complex neural model allows feed-forward SNN architectures
to be deployed in a wide range of applications [2], [3], [4]

On the other hand, due to their dynamic properties, every
neuron in the SNN requires a dynamic state variable (the mem-
brane potential) to be maintained in memory during the whole

Manuscript received 29 May 2023; revised 9 December 2023; accepted 29
January 2024. This work was supported in part by the GEMINI “Green Machine
Learning for the IoT” national research project, funded by the MUR through the
PRIN 2022 program under Grant Prot. n. 20223M4HZ4. (Corresponding author:
Muath Abu Lebdeh.)

Muath Abu Lebdeh and Kasim Sinan Yildirim are with the Department of
Information Engineering and Computer Science, University of Trento, 38122
Trento, Italy (e-mail: muath.abulebdeh@unitn.it).

Davide Brunelli is with the Department of Industrial Engineering, University
of Trento, 38122 Trento, Italy.

Recommended for acceptance by M. Zhang.
Digital Object Identifier 10.1109/TETCI.2024.3370028

inference. This is an additional memory overhead compared
to feedforward ANNs. In feedforward ANNs, all intermediate
results produced by any layer can be completely evicted from
memory after producing the output of the next layer, while in
a feedforward SNN, the membrane potential variable of every
neuron in the network needs to be maintained in the memory
during the whole inference time. This additional overhead results
in two challenging problems when deploying SNNs in resource-
constrained computing systems:

1) Significant reduction in efficiency: With a limited working
memory (e.g., the main memory in a conventional com-
puting system or the on-chip memory of a neuromorphic
system), the membrane potential variables of a large scale
SNN need to be moved to a denser storage device (e.g.,
FLASH memory). This results in more frequent accesses
to the storage device during runtime, and hence resulting
in inefficient read and write operations. This increases
the overall energy consumption and latency of the SNN
inference, which squanders the other efficiency benefits of
SNNs such as the sparse computation and the replacement
of the multiply-and-accumulate operations with accumu-
late operations.

2) Increasing the cost of the computing system: As we need
to store all membrane potential variables in some form
of memory (either working memory or a storage device),
we increase the memory requirements of the comput-
ing system. Therefore, the overall cost of the comput-
ing system increases. This is especially obvious when
we desire to increase the size of the working memory.
For example, intel Loihi 2 neuromorphic chip has 128
asynchronous neural cores, each including up to 128 KB
of synaptic memory and up to 8192 neurons. This limited
on-chip memory requires partitioning of large scale SNNs
into smaller computations to fit the working memory of
the chip [5]. This requires either increasing the on-chip
neural capacity, using multiple neuromorphic chips, or
using an external memory and sequentially executing the
partitioned computations. All these solutions increase the
overall cost, which is undesirable for applications with
severe constraints on computational resources.

Contribution: In this paper, we propose utilizing the idea of
task specialization to design narrow SNNs, and hence reduce
the memory overhead of SNNs. This reduction in memory over-
head includes reducing the number of memory operations and
increasing the utilization of memory hierarchy. The proposed
approach performs the classification task as a collaborative effort

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-8610-3064
https://orcid.org/0000-0002-9528-6923
https://orcid.org/0000-0001-5110-6823
mailto:muath.abulebdeh@unitn.it

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

of multiple specialized and narrow SNNs rather than being
performed by a single and fairly large SNN. We show that
training each specialized SNN on a relatively unique subset of
the dataset leads to narrower layers, and in turn, decreases the
spatial dependencies between consecutive layers in SNNs. This
reduction in spatial dependencies reduces the number of needed
memory and computing operations. In addition, the decrease in
spatial dependencies allows the specialized SNNs to fit better
into more local memories, which reduces the movement of
data in different levels of the memory hierarchy. Therefore,
our proposed approach reduces the overall inference energy and
latency.

Briefly, the contribution of this paper is summarized below:
� Using the concept of specialized and ensembled SNNs to

design narrow SNNs which results in reduced number of
memory operations and increased utilization of memory
hierarchy.

� Proposing a workflow (based on specialization) that main-
tains the architecture of a baseline SNN (i.e., maintaining
the number of layers as well as the number of feature),
while systematically reducing the dependencies at every
layer of the SNN. This maintains the properties of the
baseline SNN architecture, while significantly reducing the
memory overhead.

The rest of this paper is organized as follows. Section II
presents the related work to our goal and approach. Section III
gives preliminary background on SNNs, Section IV explains the
main aspects of our approach. Section V presents the evaluation
methodology and the results. Section VI discusses some limita-
tions and future work. Finally, section VII concludes the paper.

II. RELATED WORK

Our work aims at using specialized SNNs for the goal of
reducing the memory overhead of SNNs; namely, reducing the
number of memory operations and increasing the utilization
of memory hierarchy. There are several related works in the
literature that either (1) share a similar purpose of reduce SNNs’
computational overhead in general and the memory overhead in
specific while using different and orthogonal approaches, (2)
share a similar approach of using an ensemble of weak SNN
classifiers but not directly to improve the processing efficiency
of the SNNs, or (3) share a similar approach of using specialized
networks for reducing the ANNs computations but not for reduc-
ing the memory overhead of the SNNs. This section discusses
these three types of related work.

Reducing the memory overhead of SNNs: Our work has a
very similar goal to the work in [6]. This work aims at reducing
the number of membrane potentials at any time step, which
automatically decreases the memory requirements of the SNNs,
the number of memory operations as well as the utilization of
the memory hierarchy. Although this work has the same goal of
our work, we take a different direction to reduce the memory
overhead. We reduce the memory overhead via specialized
ensembles of SNNs, which does not overlap with the approach
in [6]. In other words, these approaches are orthogonal and can

be integrated; e.g., the approach in [6] can be applied to the
specialized SNNs and further reduce their memory overhead.

SNN ensembles: The work in the literature that used ensem-
bles of SNNs have different goals than decreasing the memory
overhead of SNNs. In [7], SNN ensembles were used to fa-
cilitate the training of SNNs, and decrease the overall number
of parameters. Even though this work improves the processing
efficiency of SNNs, it still does not directly address the high
memory overhead in SNNs. In addition, the datasets tested in
this approach are relatively simple. In [8], two unimodal SNN
ensembles were used to enable multimodalities in SNNs with
STDP training. The focus of this paper is to enable a new appli-
cation in SNNs rather than improving the processing efficiency
of SNNs. In [9], an ensemble of weak SNN classifiers were used
to reduce the overhead of extracting SNN architecture using
evolutionary algorithms. This work does not target improving
the processing efficiency of SNNs; in fact, they use an ensemble
of 50 SNNs to implement a toy application (UCI handwritten
digits). In [10], HybridSNN was proposed as an adaptable ar-
chitecture that is made of a homogeneous ensemble of SNNs,
ranging from single-layer SNNs to convolutional SNNs. The
goal of this approach is to stabilize and facilitate the training of
SNN (in a modular and biologically plausible way). Although
this approach also can improve the processing efficiency of
SNNs, it does not directly target reducing the memory overhead
of SNNs. The HybridSNN can learn architectural patterns with
wide layers (layers with large number input or output features)
and hence increased memory overhead.

Sparsely-gated mixture-of-experts (SG-MoE): Our work has
a similar (but simpler) approach to the work of SG-MoEs [11],
[12], [13] while targeting a different goal. These papers aim
at skipping computations and hence increase the processing
efficiency of ANNs. Although this also can be valid for our
approach, we aim at utilizing the notion of expertise to system-
atically decrease the width of the specialized SNN models, and
hence reduce the memory operations and increase the utilization
of memory hierarchy. Note that with some modifications to the
training in our approach, we can also utilize the same approach
for a novel computation skipping in SNNs. In addition, the work
that deploys the SG-MoE in image classification applications
relies on vision transformers [12], such that the input image is
applied sequentially as patches. Each patch can be processed by
a small set of models from the whole set of MoEs (e.g., some
patches visually present the background, other patches present
specific geometrical shapes, etc). In our work, we implement the
specialty for the SNNs without patching the input image, such
that we consider the whole input image as a patch that can be
processed by a specialized SNN.

Other general approaches to improve the processing effi-
ciency of SNNs: A group of work re-used the network compres-
sion techniques via pruning and quantization for SNNs [14],
[15], [16]. These techniques reduce the model size by reducing
the neurons count (e.g., eliminating neurons with low firing
rates), reducing the synaptic connectivity, or reducing the bit
size of the network’s parameters. These compression techniques
still do not push the energy and latency of an SNN to a fun-
damentally low level; for example, unstructured pruning is a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEBDEH et al.: EFFICIENT PROCESSING OF SPIKING NEURAL NETWORKS VIA TASK SPECIALIZATION 3

common technique used to remove redundancy, while it does
not fully benefit from sparse tensor accelerators [17] which
require structured input data (matrices and vectors). Therefore,
compression techniques are mainly useful for improving the
storage and memory requirements of the SNNs, which indirectly
improve the energy and latency.

Another group solutions penalize the SNN during train-
ing to reduce the spikes count [18], [19]. These solutions al-
low the SNNs to make better utilization of sparse and asyn-
chronous computing hardware. However, as our results show (in
Section V; evaluation), reducing the spikes count alone does
not necessarily reflect the efficiency of processing an SNN. The
energy consumption and latency depend on both the spikes count
per layer and the width of the next layer.

Other work targets reducing the number of time steps [20],
[21], [22]. These techniques are especially useful for SNNs
converted from ANNs. Reducing the number of time steps is
equivalent to reducing the sequential sub-inferences required
for complete SNN inference. As fewer sequential sub-inferences
are required, this improves the overall energy and latency. On
the other hand, although reducing the time steps improves the
efficiency of a specific SNN, time steps alone is not a metric
for latency as well as energy. For example, an SNN with low
spiking activity and a high number of steps can be faster and
more energy-efficient than an SNN with a low number of time
steps but high spiking activity.

Another promising group of techniques utilizes special encod-
ings to reduce the energy and latency of SNN [23], [24], [25],
[26]. These encodings rely on using a sparse representation of
the input data to reduce the overall spike count in the SNN. For
example, in delay encoding, each input feature is represented
by two spikes, where the amplitude of the feature is represented
by the number of time steps between these two spikes. On the
other hand, this low number of spikes in the input results in
vanishing outputs in deep layers of SNNs, which makes training
deep SNNs difficult [23]. Moreover, representing information
using a low number of spikes makes the inference more prone
to error [23], [24].

III. BACKGROUND

This section briefly presents a background on SNNs, encoding
the input and the reading output in SNNs, and finally the training
algorithms for SNNs.

A. Spking Neural Networks (SNNs)

SNNs are similar to conventional ANNs except that they
use spiking neurons. As shown in Fig 1, the spiking neuron
receives a spike as an input (SL−1[t]), which accumulates with
time in an internal state variable called the membrane potential
(vL[t]). If the membrane potential exceeds a threshold value
(vLth), the spiking neuron produces an output spike (SL[t]). The
state of membrane potential decays with time using a decaying
function; in Fig. 1, the decaying function is a linear function
with a decaying factor (α). One can think of the operation of
the spiking neuron as an accumulator of dot product operations
(correlations) between a stored feature vector (the set of weights

Fig. 1. Spiking neuron receives spikes as input and produces spikes as output.
The input spikes are accumulated in the membrane potential (vL(t)), and an
output spike is generated if vL(t) > vth.

connected to the spiking neuron) and a set of boolean feature
vectors applied sequentially (one vector is applied to the spiking
neuron in every time step). In addition, the decaying factor plays
a role in forming short- and long- term memories within the
SNN [2]. These aspects allow the SNNs to learn spatio-temporal
patterns at the neuron level [2].

B. Data Encodings in SNNs

SNNs are dynamic networks that are capable of processing
input data in spatio-temporal manner. This allows for different
ways of organizing input data and different ways to interpret
the output data. This makes SNNs applicable to a wide range of
applications.

In image classification application, an input image can be
encoded in different ways such as rate encoding, delay encoding
and direct encoding [27]. In rate encoding, each pixel value is
encoded into multiple one-bit values (spikes). The frequency of
these spike encodes the intensity of every pixel; i.e., higher value
pixels are encoded by more spikes, each of which is applied in
a single time step. Delay encoding encodes each pixel value
into two spikes of specific temporal distance. For example, if
the pixel value is higher, the distance between the two encoding
spikes will be large. This type of encoding is energy efficient as
it uses only one spike per pixel. Finally, direct encoding applies
the whole input image as it is, while the first layer automatically
encodes the pixels to spikes. We adopt the direct encoding in our
approach as it produces higher accuracy in image classification
applications [24].

The output of an SNN can be also interpreted differently. The
most common way in the static image classification application
is to dedicate one output spiking neuron per class. At the end of
the inference operation, the output neuron that fires spikes the
most corresponds to the result of the inference. We adopt this
way of interpreting the output in our work. Another less common
way to interpret the output is by assigning the output label to the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

neuron that fires first (or last). This approach is usually used
along with delay encoding at the input.

C. Training SNNs

Backpropagation through time (BPTT) is commonly used for
the supervised training of SNNs. However, the training of SNNs
using BPTT is more challenging than ANNs. The Heaviside
activation function used by the spiking neurons vanishes the
gradients during backpropagation. Therefore, surrogate gradient
descent (SGD) replaces the derivative of the Heaviside function
with a smoother function during the backward step [28], [29].

There are also other techniques that can be used to train the
SNNs such as the biologically-inspired learning, i.e., Spike-
timing-dependent plasticity (STDP) [30] or ANN-to-SNN con-
version techniques [31], [32]. These techniques either work
with shallow SNNs (such as the STDP learning) or produce
SNNs with inefficient spiking activity (such as ANN-t-SNN
conversion) [28]. Therefore, we adopt in this work the use of
BPTT to train the SNNs.

IV. SPECIALIZED SPIKING NEURAL NETWORKS

This section presents the main parts of the proposed approach
including: reducing SNN width via specialization, the design of
specialized tasks, training and structuring the specialized SNNs,
and aggregating their results. Finally, this section presents the
potentials of specialization in reducing the memory overhead of
SNNs.

A. Reducing the Width of the SNN Model

The problem of wide SNNs: Powerful SNNs that target im-
age classification tasks are usually deep and wide [23]. Wide
layers are capable of memorizing more features, which gives
the backpropagation algorithm a more relaxed optimization
space to find a solution. On the other hand, a wide layer has
larger dependencies that result in more memory operations and
increased data shuffling within the memory hierarchy.

Replacing the wide SNN with narrow SNNs: Motivated by this,
we propose replacing a baseline SNN with multiple independent
SNNs each with a narrower width than a baseline SNN. This
allows us to significantly reduce the number of memory oper-
ations as well as to better load the computations to more local
memories. The proposed approach maintains the total number
of features. For example, the number of features (neurons) of
the first layer in the baseline SNNs is maintained across the
first layers of all narrow SNNs. Moreover, the propose approach
maintains the generalization capacity by maintaining the depth
of the baseline SNN; i.e., every narrow SNN has the same depth
as the baseline SNN. These two aspects in the proposed approach
allow us maintaining the structural properties of the baseline
SNN.

Task specialization: On the other hand, narrowing the width of
an SNN reduces the memorization capacity of the SNN, which
makes the training more difficult. This challenge is alleviated by
simplifying the classification task, which relaxes the memoriza-
tion requirements. Therefore, we split the image classification

task into multiple simpler tasks, each of which is executed by
a narrow specialized SNN. We refer to each specialized SNN
as a sub-SNN which performs a sub-task. The next subsection
presents more details the design of the specialized sub-tasks.

B. Designing the Specialized Tasks

We specialized every sub-SNN to detect one class in the
image classification application, i.e., each sub-SNN is a binary
classifier for one class. Image classification applications usually
have classes that are mutually-exclusive, such that every class
corresponds to one visual object. Based on this, there must be
a level of independence between the visual features represented
by every class, especially at deeper layers ([33] suggested that
the mutual information between the output layer and a hidden
layer increases with depth). Conventionally, a single SNN is
used to classify all classes. This imposes every layer to learn
the specific features of every class. During the inference, this
imposes computing all features corresponding to all classes,
while the input image belongs to one class. Instead of that, we
use a specialized SNN (sub-SNN) for each class in the image
classification problem. Therefore, each sub-SNN will learn the
most relevant features from the images of the corresponding
class. This allows us to remove all unnecessary computations
for irrelevant features (the features for other classes) with all
corresponding dependencies. Therefore, we reduce the overall
memory overhead (less memory operations and better utilization
of the memory hierarchy).

As we specialize based on the number of classes, the dataset
is divided based on the number of classes. For example, if the
dataset contains 10 classes, we re-organize the dataset into 10
specialized sets of data. Each specialized set (the specialized
task) is used to train one of the sub-SNNs. Each specialized set
is created by resampling the original datasets by over-sampling
the target class while under-sampling the rest of classes. For
example, if a specialized set is used to train the sub-SNN for
detecting class 1, the samples corresponding to class 1 equals to
50% of the total samples, while the other 50% of the samples
are sampled equally from other classes. These specialized sets
of data is used to train the specialized sub-SNNs. More details
on training the sub-SNNs are discussed in next subsection.

C. Training Via Heterogeneous Batching

As described in the previous subsection, each sub-SNN is
trained by a specialized set of data. This specialized set of data
contains two classes of samples: (1) the target class samples
and (2) the samples corresponding to the other classes or the
alien class samples. For example, if we have CIFAR10 dataset
as the baseline dataset, one sub-SNN is specialized in detecting
the airplane object. The corresponding specialized set of data
contains: (1) The target class data which contains samples of the
airplane object, while (2) the alien class data contains samples
from other objects (i.e., automobile, bird, cat, etc). One way to
organize the training batches in this specialized set of data is by
sampling 50% of the samples from the target class and the other
50 from the alien class.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEBDEH et al.: EFFICIENT PROCESSING OF SPIKING NEURAL NETWORKS VIA TASK SPECIALIZATION 5

Fig. 2. Training each sub-SNN with heterogeneous sets of batches. Set 1 contains 50% of the samples from the target object and the other 50% from all alien
objects. The samples in set 2 are sampled with equal percentages from all objects. Set 3 is the same as Set 1 except that this set contains larger batches.

On the other hand, this way of sampling the training batches is
not effective with small batch size. In fact, the new distribution of
samples makes training unstable; every (small) batch contains
very few samples from each object in the alien class, which
results in a relatively high variance between different samples.
This makes the accuracy difficult to converge to acceptable
values. Therefore, we need a technique to sort the training data
in a way that reduces the variations between different batches.

Larger batches: One way to reduce the variations between
epochs is by increasing the batch size so that it contains enough
samples from every object in the alien class. However, large
batches cause the loss to converge to a local minimum which
results in low accuracy.

The sum of weighted gradients: Another way is to weight and
accumulate the gradients of more samples in the alien class. In
this approach, every batch contains equally distributed samples
from every object (e.g., 32 samples from all objects). After that
the following steps are applied: (1) the gradient is computed for
all samples (32×10 samples), (2) the gradients corresponding to
each object are averaged (the result is 10 different gradients), (3)
the gradients corresponding to the alien class are averaged (each
averaged gradient corresponding to the alien class is weighted
by 1/9), (4) the final values are summed and the sub-SNN
parameters are updated. Even though this approach produces
high accuracy, it is time-consuming (for example, a conventional
batch of 64 samples is scaled to 320 in this approach).

Heterogeneous batching: As shown in Fig. 2, we adopted
a hybrid solution that is a composite of the aforementioned
approaches. Instead of the sum of weighted gradients, we train
using heterogeneous set of batches. The first set of batches is
composed of 50% of the samples from the target class and other
50% from the alien class. The second set is composed of samples
equally distributed among all classes. This set of batches has

more samples corresponding to the alien class. Therefore, the
gradients of this batch is scaled by 1/c (c is the total number of
objects in both classes). The training is performed by alternating
between these two sets of batches at the epoch level rather than at
the iteration level; i.e, the set of batches alternate at every epoch
(e.g., set1 is applied at even epochs and set2 on odd epochs).
Finally, as alternating between different batches still produces
fluctuations in the learning curve, after some epochs, a new set
of large batches is applied with 50%-50% distribution (similar to
the first set of batches but with a larger batch size). These sets of
large batches are applied once the loss reaches a desired value.
With this training approach, the accuracy becomes similar to the
approach of weighted sum of gradients but with faster training
time.

D. Sub-SNN Structuring

A classification task of C classes is divided into C sub-
classification tasks, each of which is executed by a sub-SNN.
The baseline SNN architecture is split into C sub-SNNs where
each sub-SNN is specialized in detecting only one class. Fig 3
shows the workflow of structuring each sub-SNN.

Initially, a given baseline SNN architecture is trained on
the whole dataset. The purpose of training this baseline SNN
architecture is to reuse the trained weights when creating the
specialized sub-SNNs.

Each sub-SNN is initially structured by halving the width
of every layer in the baseline SNN architecture (i.e., a scale
factor of 2). This is done by removing half of the feature maps
in every layer. To be able to benefit from the trained weights
in the baseline SNN, halving the width is implemented by
zeroing the weights (or convolution kernels) corresponding to
the feature maps with the least activity. This ensures that the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 3. Sub-SNN is structured by reducing the width of the baseline SNN,
then training it on a subset of the dataset, then comparing the sub-SNN accuracy
to the baseline SNN. This process is repeated utill the scaled sub-SNN does not
meet the accuracy of the baseline SNN.

most relevant features to the specialized task is maintained. If
a desired accuracy is reached, the baseline SNN architecture
is replaced with the new SNN architecture of halved width.
After that, the same process is repeated until we reach an SNN
architecture that cannot have narrower widths but maintains the
baseline accuracy. In fact, we choose in our experiments a scale
factor of 2 to speed up the training process. Other fine-tuned
scaling techniques for the width can also be adopted.

For classes containing objects of similar difficulty, this pro-
cess results in scaling down the sub-SNN width by 1/C on
average as will be shown in the evaluation section. In addition,
the efficiency of a sub-SNN inference can be further improved by
splitting it into further subnetworks trained on more specialized
data (i.e., dividing the data corresponding to class c into further
subsets).

E. Introducing Dependencies Between the Deepest Features
Via Simple Aggregation Function

The previously described structuring and training are per-
formed for each sub-SNN independent from other sub-SNNs.
Although this improves the overall computational efficiency,
it reduces the overall accuracy. In fact, more dependencies at
low-level features give the baseline SNN more information to
produce diverse higher-level features. This allows the fully-
connected classifiers to amplify the spiking activity for the
neurons (features) of the target class and attenuate the activity
of other neurons. This aspect is less feasible when training each
sub-SNNs; i.e., the narrower layers of the sub-SNNs allow less
features to be learnt at the early layers.

Fig. 4 shows the average spiking activity of the output neuron
of every sub-SNN for objects from different classes. As seen in
this figure, some sub-SNNs generate, with a high probability,
false positives for some objects. This means that employing a
trivial decision-making from the sub-SNNs, e.g., tracking the
output of the sub-SNN that fires, does not result in sufficient
accuracy.

Aggregating the results of the sub-SNNs: Even though some
sub-SNN generates false positives with high probability, these
false positives correspond to specific objects (not distributed
for all objects). We utilized this consistency in false positives

Fig. 4. This figure shows the spiking intensity of different sub-SNNs (in this
example we have 10) when samples from different objects is applied (here we
have 10 objects).

Fig. 5. Abstraction of different typical computing architectures.

to combine the deepest features (i.e., the output of every sub-
SNN) using a simple aggregation function. This introduced
dependencies at the output retains the overall accuracy of the
baseline SNN, while significantly improving the computational
efficiency due to the elimination of dependencies at low-level
features. To not introduce a computational overhead, a simple
weighted average voting aggregation function is used. For every
final output (the output corresponding to each class), this func-
tion takes every output of the specialized sub-SNN, multiplies it
by weight and adds it to the final output. This assigns a weighted
dependency to every sub-SNN based on the target output class.
The values of these weights are separately trained after training
all sub-SNNs; i.e., the training dataset is reused along with the
trained sub-SNNs to train these weights to produce the final
classification results.

F. The Efficiency Potential of Using Sub-SNNs

The proposed approach has three potential ways to be utilized
for the efficient processing of the SNNs. These potentials can
be observed with the use of the computing architectures in
Fig. 5. The simple architecture can utilize the reduced number of
memory and computation operations, which reduces the overall
latency and energy; ultra-low power microcontrollers (such as
TI MSP430) are typical examples of a simple architecture. The
temporal architecture can utilize the reduced reuse distance of
the sub-SNNs due to the narrower layer’s width. This allows
part of the memory operations to access data in the efficient
intermediate memory. Examples of this architecture are the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEBDEH et al.: EFFICIENT PROCESSING OF SPIKING NEURAL NETWORKS VIA TASK SPECIALIZATION 7

Algorithm 1: Executing a FC layer L in SNN.

computing systems with on-chip and off-chip memories. Fi-
nally, architectures with multiple processing elements can utilize
the new level of parallelism the sub-SNNs introduce; i.e., the
computations of every sub-SNN are completely independent of
other sub-SNNs, allowing each sub-SNN to run on a separate
processing element. Examples of spatial architectures include
multi-core processors and neuromorphic chips.

V. EVALUATION

In this section, we present experimental results to evaluate the
performance of the proposed approach. It is worth mentioning
that our energy and latency evaluations were not performed
using real hardware platforms as our approach is hardware
independent.

A. Evaluation Methodology

Experimental setup: We used snnTorch to integrate the SNNs
under PyTorch. We evaluated our proposed approach for image
classification problems using MNIST and CIFAR10 datasets and
also for speech commands classification using Google speech
commands V2 (we used 13 classes picked). We evaluated our
work on 4 baseline architectures: (1) MLP trained on MNIST,
(2) VGG9 trained on CIFAR10, (3) VGG9 with skip connections
(called here resnet) on CIFAR10, (4) Google speech commands
(called here Key Word Spotting - KWS) trained on 3 fully
connected layers (3FCLs). In every architecture, all neurons are
homogeneous, i.e., they have the same threshold and decaying
factor. We used our sub-SNN structuring approach to structure
the VGG9, RESNET and 3FCLs baseline architectures, while
we trivially structured sub-SNNs from the baseline MLP by
scaling its width by 1/10. We used direct encoding for all our
experiments as it achieves higher accuracy [24]. For the KWS,
we used a spectrogram of 90x40 as the input. In addition, for
training, we used a maximum of 16 time steps to train all
architectures. This number of steps is reduced for all archi-
tectures during inference. We trained all networks using BPTT
with surrogate gradient functions, and used threshold-dependent
batch normalization (tdBN) proposed in [37].

Figures of merit: We evaluated our proposed approach by
comparing the accuracy, inference energy and latency with the
baseline SNNs. The inference energy and latency were com-
puted by extracting the number of memory, add, compare, and
branch instructions per inference. The number of instructions
was estimated from the structure of the SNN and the firing
activity (the number of spiking neurons step). Our evaluation

TABLE I
EVALUATED BASELINE SNN ARCHITECTURES

considers that the SNN implementation skips ineffectual instruc-
tions; in particular, skips all memory and computing operations
that correspond to a non-spiking input. As an example, the
execution algorithm of an FC layer in an SNN is shown in
Algorithm 1. Updating the neurons of a layer (i.e., vLj and SL

j)
starts only if an input neuron spikes (i.e., SL−1

i = 1). In other
words, all computations and memory accesses corresponding to
a non-spiking input are skipped.

Host computing systems: The energy and latency per instruc-
tions are modeled based on two simple hardware architectures,
which allow us to evaluate our approach in terms of the num-
ber of memory operations and the efficiency of each memory
operation. The first architecture has a single core and a main
memory (first architecture in Fig 5). This architecture has only
one type of memory operation, which always accesses data
from the main memory. The second architecture is a temporal
architecture (second architecture in Fig. 5), which consists of a
simple core, an intermediate memory and a main memory. This
architecture is similar to the previous architecture except that
it has two different types of memory operations: (1) Inefficient
memory operation that accesses the data from the main memory,
and (2) efficient memory operation that accesses data from the
intermediate memory. The utilization of the intermediate mem-
ory, which is proportional to the efficient memory operations,
is modeled in our evaluation as output layer size. For example,
in Algorithm 1, re-accessing vL0 at the next spiking input occurs
after accessing vLj for all j. This applies also to convolutional
layers, except that a part of the output neurons (in every feature
map) is accessed when an input neuron spikes. Table I shows the
energy and latency models used for evaluation: the main memory
was modeled as DRAM, the intermediate memory was modeled
as an SRAM, and the other computations were modeled as an
average core instruction.

B. Results

Accuracy: Table II presents the accuracy results of our exper-
iments. For MNIST-MLP and KWS-3FCLs, the accuracy after
aggregating the results of all sub-SNN is not affected compared
the baseline architecture. This shows that for simple applica-
tions, the accuracy after sub-structuring the baseline architecture
is maintained. For CIFAR10-VGG9 and CIFAR10-RESNET,
the accuracy is degraded compared to the baseline architec-
tures. The dataset used in these experiments is relatively more
complex than the other datasets. Therefore, our results show
that the accuracy of our approach degraded with increasing the
complexity of the dataset. On the other hand, this degradation in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

TABLE II
ACCURACY (%) ON DIFFERENT NETWORKS AND DATASETS

accuracy decrease when using more complex architectures (e.g.,
our approach has an accuracy of 80% for CIFAR10-RESNET
and 73% for CIFAR10-VGG9, while the accuracies of baseline
architectures almost remain constant). Finally, it is worth men-
tioning that, as shown in Table II, the average accuracy of all
sub-SNNs before the aggregation function is close or even higher
than the baseline accuracy. This implies that the aggregation
function contributes to the degradation of the accuracy in some
of the experiments.

Number of spikes per step: Fig. 6 shows the number of spikes
per step for every layer. In our proposed approach, we calculated
the number of steps for two types of execution schemes: (1)
when all sub-SNNs are executed in parallel, and (2) when the
sub-SNNs are executed sequentially. For parallel execution of
sub-SNNs, the number of spikes per step for a specific layer
is added for all sub-SNNs, while for sequential execution, the
average is taken for every layer. Fig. 6(a), (c), (e) and (g) show
that the number of spikes per step for the parallel sub-SNNs is on
average similar to the baseline SNN; in some layers the number
of spikes is higher for parallel sub-SNNs and lower for other
layers. This means that the specialized SNNs require computing
a similar number of features compared to the baseline SNNs. The
sequentially executed sub-SNNs produce much lower number
of spikes per step compared to the baseline SNN. This means
that there is much lower number of operations needed by step.
Fig. 6(b), (d), (f) and (h) shows the percentage of the spiking
neurons per step (the number of spikes per step normalized by
the layer width) for both the parallelly and sequentially executed
sub-SNNs. On average, the proposed approach increases the
number of active neurons per layer; this can be seen in most
layers in Fig. 6(b), (d), (f) and (h). It is worth mentioning here
that the number of spikes or the active neurons per layer does
not precisely reflect the energy and latency. The energy and
latency also depend on the structure of the SNN as will be shown
next.

Fig. 6. Spikes per step: (a) MNIST-MLP, (c) CIFAR10-VGG9, (e) CIFAR10-
RESNET, (g) KWS-3FCLs. Normalized spikes per step: (b) MNIST-MLP, (d)
CIFAR10-VGG9, (f) CIFAR10-RESNET, (h) KWS-3FCLs.

Energy and latency: Figs. 7 and 8 show the energy and latency
results when executing the baseline SNN and the sub-SNNs on
a simple architecture without an intermediate memory and the
same architecture with different sizes of intermediate memory.
These results are shown in the logarithmic scale to be able to
visualize the difference between the baseline SNNs and the
sub-SNNs. The results show at least one order of magnitude gain
in both energy and latency. The execution on an architecture with
no intermediate memory shows the gain of our approach in terms
of the number of memory operations. In addition, compared
to the baseline SNN, the sub-SNNs make better utilization
of an intermediate memory. This is because narrower layers
have smaller reuse distances. E.g., a spike in an input layer
requires updating all membrane potentials in the output layer.
This means that a membrane potential at one layer is reused after
updating the states of all membrane potentials in the same layer,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEBDEH et al.: EFFICIENT PROCESSING OF SPIKING NEURAL NETWORKS VIA TASK SPECIALIZATION 9

Fig. 7. Energy: (a) MNIST-MLP, (b) CIFAR10-VGG9, (c) CIFAR10-
RESNET, (d) KWS-3FCLs.

Fig. 8. Latency: (a) MNIST-MLP, (b) CIFAR10-VGG9, (c) CIFAR10-
RESNET, (d) KWS-3FCLs.

making the reuse distance proportional to the layer’s width.
Moreover, better utilization of the intermediate memory relaxes
the requirements on the memory size; i.e., the runtime memory
requirements).

Summary of results: Our evaluation showed that our ap-
proach has no impact on the accuracy for a simple application
such as (e.g., CIFAR10-VGG9 and CIFAR10-RESNET). The
degradation of accuracy is observed to be reduced under more
complex architectures (e.g., our approach performed better for
resnet architecture compared to VGG9 for the same dataset).
Our approach improves the inference energy and latency by
more than one order of magnitude in terms. In addition, the
narrower widths of sub-SNNs allow them to better utilize an

intermediate memory of different sizes compared to the baseline
SNN. This allows the proposed approach to relax the runtime
memory requirements of the SNNs.

VI. DISCUSSION AND FUTURE WORK

Scaling application complexity: Our approach considerably
reduces the memory overhead of SNNs; at least, for one or-
der of magnitude for both energy and latency. On the other
hand, our results show a limitation in approach when scaling
the complexity of the application. This urge a need in future
work to investigate the applications that can benefit from the
improvements in energy and latency of our approach without
sacrificing the accuracy. Another important aspect to investigate
is the design of a more complex aggregation function that in-
creases the accuracy without introducing a large computational
overhead.

Training burden: Although our proposed approach improves
the inference energy and latency, it introduces a burden during
training. First, training sub-SNNs requires a re-arrangement of
data to create three sets of batches for every sub-SNN. This cre-
ates a huge memory and/or latency during the training. Second,
the sub-SNNs structuring further makes training inefficient. We
have to retrain each sub-SNN for different widths to achieve
acceptable accuracy. Therefore, we plan in future work to pro-
pose different techniques to train and structure the sub-SNNs to
reduce the burden in the training process.

Network pruning: Our approach shares some properties with
structured pruning. In particular, removing the dependencies at
the low-level features is similar to removing the weights between
these features. However, our approach is different than pruning
in multiple aspects. First, our approach preserves the total num-
ber of features in the baseline SNN. This allows the sub-SNNs
to have the same redundancy as the baseline SNN, which allows
our approach to be integrated with pruning techniques; we plan
in future work to further optimize the sub-SNNs by integrating
network compression techniques into our approach. Second, our
approach structures the sub-SNNs by consistently reducing the
width, which does not only reduce the dependencies but also
reduces the reuse distance, which allows the proposed approach
to make better utilization of the memory hierarchy; we plan in the
future to further specialize the sub-SNNs to reduce their widths
even more. Finally, our approach allows us to conditionally
execute the sub-SNNs, such that if a sub-SNN detects its object,
the execution terminates and the other sub-SNNs are skipped.
This allows us to significantly reduce the number of memory
and computational operations. We aim to implement conditional
execution in future work.

Hardware implementation and intensive evaluations: Our
evaluations were based on simplified hardware models. More
accurate results can be achieved with an implementation on
real hardware. Real hardware can be a resource-constrained
microcontroller, a neuromorphic chip, FPGA, etc. We plan in
the future to test on a variety of hardware resources to have a
more realistic idea of the latency and energy gains. Moreover,
we also plan to evaluate the proposed approach with other input
encoding schemes, datasets, and network architectures.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Utilizing the proposed approach on DNNs: It is worth men-
tioning that the proposed approach can also be extended to
DNNs. We choose SNNs as they are considered an efficient
replacement for DNNs. In addition, SNNs have a larger memory
burden than DNNs, i.e., each spiking neuron in any layer requires
a variable to store the membrane potential, which cannot be
removed from the memory after completing the execution of
the layer’s computations. Therefore, our proposal naturally fits
the SNNs. On the other hand, we aim to deploy our proposal
approach in DNNs and evaluate any possible gain in terms of
energy and latency.

The impact of the number of sub-SNNs: With the current ver-
sion of our work, the number of the sub-SNNs is automatically
decided by the number of classes in the image classification
application. On the other hand, some image classification appli-
cations require a large number of classes. In this case, fine-tuning
the specialized sub-SNN for every class might have a large
training overhead or wide layers for some complex classes.
Therefore, we might need some sub-SNNs to specialize on more
detecting and classifying multiple classes with more mutual
visual features. We plan to investigate this part in future work.

VII. CONCLUSION

We proposed an approach that performs a classification task
using multiple specialized SNNs collaboratively. This special-
ization is utilized to reduce the dependencies at low-level fea-
tures, which reduces the number of memory operations, in-
creases the efficiency of memory operations, and increases the
level of parallelism. This makes the proposed approach more
energy efficient and faster than the conventional SNNs. We
achieved at least a 10x reduction in energy and latency without
affecting the accuracy or the memorization capacity of the
SNNs. This shows that replacing dependencies from shallow to
deeper features allows us to significantly improve the processing
efficiency of SNNs. In future work, we aim to integrate our pro-
posed approach with other approaches that aim at increasing the
efficiency of the SNNs, such as network pruning, quantization,
sparse-spiking approaches, and efficient data representations. In
addition, further investigation of the proposed approach on real
hardware is needed.

REFERENCES

[1] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine in-
telligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607–617, 2019.

[2] X. She, S. Dash, and S. Mukhopadhyay, “Sequence approximation using
feedforward spiking neural network for spatiotemporal learning: Theory
and optimization methods,” in Proc. Int. Conf. Learn. Representations,
2022. [Online]. Available: https://openreview.net/forum?id=bp-LJ4y_XC

[3] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for
deep continuous local learning (DECOLLE),” Front. Neurosci., vol. 14,
2020, Art. no. 424.

[4] N. Rathi et al., “Exploring neuromorphic computing based on spiking
neural networks: Algorithms to hardware,” ACM Comput. Surv., vol. 55,
no. 12, pp. 1–49, 2023.

[5] B. Rueckauer, C. Bybee, R. Goettsche, Y. Singh, J. Mishra, and A. Wild,
“NxTF: An API and compiler for deep spiking neural networks on Intel
Loihi,” ACM J. Emerg. Technol. Comput. Syst., vol. 18, no. 3, pp. 1–22,
2022.

[6] Y. Kim, Y. Li, A. Moitra, R. Yin, and P. Panda, “Sharing leaky-integrate-
and-fire neurons for memory-efficient spiking neural networks,” Front.
Neurosci., vol. 17, 2023, doi: 10.3389/fnins.2023.1230002.

[7] G. Neculae, O. Rhodes, and G. Brown, “Ensembles of spiking neural
networks,” 2020, arXiv:2010.14619.

[8] N. Rathi and K. Roy, “STDP based unsupervised multimodal learn-
ing with cross-modal processing in spiking neural networks,” IEEE
Trans. Emerg. Topics Comput. Intell., vol. 5, no. 1, pp. 143–153,
Feb. 2021.

[9] D. Elbrecht, S. R. Kulkarni, M. Parsa, J. P. Mitchell, and C. D.
Schuman, “Evolving ensembles of spiking neural networks for neu-
romorphic systems,” in Proc. IEEE Symp. Ser. Comput. Intell., 2020,
pp. 1989–1994.

[10] J. Shen, Y. Zhao, J. K. Liu, and Y. Wang, “HybridSNN: Combining
bio-machine strengths by boosting adaptive spiking neural networks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 9, pp. 5841–5855,
Sep. 2023.

[11] N. Shazeer et al., “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” 2017, arXiv:1701.06538.

[12] C. Riquelme et al., “Scaling vision with sparse mixture of experts,” in
Proc. Adv. Neural Inf. Process. Syst., 2021, vol. 34, pp. 8583–8595.

[13] Z. Chen et al., “Mod-squad: Designing mixtures of experts as modular
multi-task learners,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., 2023, pp. 11828–11837.

[14] R. Vidya Wicaksana Putra and M. Shafique, “tinySNN: Towards memory-
and energy-efficient spiking neural networks,” 2022, arXiv:2206.08656.

[15] Y. Kim, Y. Li, H. Park, Y. Venkatesha, R. Yin, and P. Panda, “Exploring
lottery ticket hypothesis in spiking neural networks,” in Proc. Eur. Conf.
Comput. Vis., 2022, pp. 102–120.

[16] Y. Kim, Y. Li, H. Park, Y. Venkatesha, A. Hambitzer, and P. Panda,
“Exploring temporal information dynamics in spiking neural networks,”
in Proc. AAAI Conf. Artif. Intell., 2023, pp. 8308–8316.

[17] A. Parashar et al., “SCNN: An accelerator for compressed-sparse convo-
lutional neural networks,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 2, pp. 27–40, 2017.

[18] R. Yin, A. Moitra, A. Bhattacharjee, Y. Kim, and P. Panda, “SATA:
Sparsity-aware training accelerator for spiking neural networks,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 42, no. 6,
pp. 1926–1938, Jun. 2023.

[19] B. Na, J. Mok, S. Park, D. Lee, H. Choe, and S. Yoon, “AutoSNN: Towards
energy-efficient spiking neural networks,” in Proc. Int. Conf. Mach. Learn.,
2022, pp. 16253–16269.

[20] G. Datta, H. Deng, R. Aviles, and P. A. Beerel, “Towards energy-efficient,
low-latency and accurate spiking LSTMs,” 2022, arXiv:2210.12613.

[21] Y. Kim, Y. Li, H. Park, Y. Venkatesha, and P. Panda, “Neural architecture
search for spiking neural networks,” in Proc. Eur. Conf. Comput. Vis.,
2022, pp. 36–56.

[22] Y. Li, A. Moitra, T. Geller, and P. Panda, “Input-aware dynamic timestep
spiking neural networks for efficient in-memory computing,” 2023,
arXiv:2305.17346.

[23] Y. Kim and P. Panda, “Optimizing deeper spiking neural networks
for dynamic vision sensing,” Neural Netw., vol. 144, pp. 686–698,
2021.

[24] Y. Kim, H. Park, A. Moitra, A. Bhattacharjee, Y. Venkatesha, and P. Panda,
“Rate coding or direct coding: Which one is better for accurate, robust,
and energy-efficient spiking neural networks?,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2022, pp. 71–75.

[25] A. J. Leigh, M. Heidarpur, and M. Mirhassani, “Selective input sparsity
in spiking neural networks for pattern classification,” in Proc. IEEE Int.
Symp. Circuits Syst., 2022, pp. 799–803.

[26] Y. Li and Y. Zeng, “Efficient and accurate conversion of spiking neural
network with burst spikes,” 2022, arXiv:2204.13271.

[27] D. Auge, J. Hille, E. Mueller, and A. Knoll, “A survey of encoding
techniques for signal processing in spiking neural networks,” Neural
Process. Lett., vol. 53, no. 6, pp. 4693–4710, 2021.

[28] J. K. Eshraghian et al., “Training spiking neural networks using lessons
from deep learning,” 2021, arXiv:2109.12894.

[29] M. Zhang et al., “Rectified linear postsynaptic potential func-
tion for backpropagation in deep spiking neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 5, pp. 1947–1958,
May 2022.

[30] W. Gerstner and W. M. Kistler, “Mathematical formulations of Hebbian
learning,” Biol. Cybern., vol. 87, no. 5, pp. 404–415, 2002.

[31] E. Hunsberger and C. Eliasmith, “Spiking deep networks with LIF neu-
rons,” 2015, arXiv:1510.08829.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://openreview.net/forum{?}id$=$bp-LJ4y_XC
https://dx.doi.org/10.3389/fnins.2023.1230002

LEBDEH et al.: EFFICIENT PROCESSING OF SPIKING NEURAL NETWORKS VIA TASK SPECIALIZATION 11

[32] Q. Xu, Y. Li, J. Shen, J. K. Liu, H. Tang, and G. Pan, “Constructing deep
spiking neural networks from artificial neural networks with knowledge
distillation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2023, pp. 7886–7895.

[33] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” 2017, arXiv:1703.00810.

[34] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[35] A. Pal, Y. Zhang, and D. D. Yau, “Monolithic and single-functional-unit
level integration of electronic and photonic elements: FET-LET hybrid 6T
SRAM,” Photon. Res., vol. 9, no. 7, pp. 1369–1378, 2021.

[36] S. Kargar and F. Nawab, “Challenges and future directions for energy, la-
tency, and lifetime improvements in NVMs,” Distrib. Parallel Databases,
vol. 41, pp. 163–189, 2022.

[37] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going deeper with directly-
trained larger spiking neural networks,” in Proc. AAAI Conf. Artif. Intell.,
2021, pp. 11062–11070.

Muath Abu Lebdeh received the B.Sc. degree
in electronic engineering and the M.Sc. degree in
computer engineering from Khalifa University, Abu
Dhabi, UAE. He is currently working toward the
Ph.D. degree with the Department of Information
Engineering and Computer Science, University of
Trento, Trento, Italy. His research interests include
neuromorphic computing, energy-efficient systems,
and emerging computer architectures.

Kasim Sinan Yildirim (Member, IEEE) is currently
an Associate Professor with the Department of In-
formation Engineering and Computer Science, Uni-
versity of Trento, Trento, Italy. His research interests
include low-power and networked embedded sensing
systems. He is interested in various aspects of such
systems, including wireless sensing, embedded oper-
ating systems and runtimes, architectural support, and
intermittent computing, and tiny machine learning.

Davide Brunelli (Senior Member, IEEE) received the
M.S. (cum laude) and Ph.D. degrees in electrical en-
gineering from the University of Bologna, Bologna,
Italy, in 2002 and 2007, respectively. He is currently
an Associate Professor of electronics with the Depart-
ment of Industrial Engineering, University of Trento,
Trento, Italy. He has authored or coauthored more
than 280 research papers in international conferences
and journals on ultra-low-power embedded systems,
energy harvesting, and power management of VLSI
circuits. He holds several patents and is annually

ranked among the top 2% of scientists according to the “Stanford World Ranking
of Scientists” from 2020. His research interests include new techniques of energy
scavenging for IoT and embedded systems, the optimization of low-power
and low-cost consumer electronics, and the interaction and design issues in
embedded personal and wearable devices. He is a member of several TPC
conferences in the Internet of Things (IoT) and power management and is an
Associate Editor for the IEEE.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

