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Abstract—Programmers are allowed to solve problems using
multiple programming languages, resulting in the accumulation
of a huge number of multilingual solution codes. Consequently,
identifying codes from this vast archive of multilingual codes is a
challenging and non-trivial task. Considering the codes’ complexity
compared to natural languages, conventional language models have
had limited success. Deep neural network models have achieved
state-of-the-art performance in programming-related tasks. How-
ever, the multilingual code classification based on the problem
name or algorithm remains an open problem. This paper presents
a novel multilingual program code classification model for the
code classification task based on algorithms and problem names.
First, a layered bidirectional long short-term memory model is
designed to better understand the complex code context. Second,
preprocessing, tokenization, and encoding processes are performed
on real-life datasets. Next, clean and trainable formatted data are
prepared. Finally, experiments are conducted on real-life datasets
(e.g., sorting, searching, graphs and trees, numerical computations,
basic data structures, and their combinations) with optimized hy-
perparameter settings. The results show that the proposed model
can effectively improve the code classification accuracy compared
to other baseline models.

Index Terms—Multilingual program code, code classification,
bidirectional lstm (bi-lstm), layered bi-lstm, programming
learning.

I. INTRODUCTION

PROGRAMMING is one of the key techniques for de-
veloping the modern information technology. Millions of

codes are regularly generated in industrial and academic insti-
tutions [1], [2]. Programmers solve a single programming prob-
lem using different algorithms and programming languages and
consider the instructions and constraints of the problem when
writing the code. As a result, diverse and multilingual source
codes1 are regularly accumulated and pushed out to the cloud

Manuscript received 2 June 2023; revised 3 October 2023; accepted 14
October 2023. This work was supported by the Japan Society for the Promotion
of Science (JSPS) KAKENHI under Grant 23H03508. (Corresponding author:
Md. Mostafizer Rahman.)

Md. Mostafizer Rahman is with the Department of Computer and Information
Systems, The University of Aizu, Fukushima 965-0006, Japan, and also with In-
formation and Communication Technology Cell, Dhaka University of Engineer-
ing & Technology, Gazipur 1707, Bangladesh (e-mail: mostafiz26@gmail.com).

Yutaka Watanobe is with the Department of Computer and Information
Systems, The University of Aizu, Fukushima 965-0006, Japan (e-mail: yutaka@
u-aizu.ac.jp).

Digital Object Identifier 10.1109/TETCI.2023.3336920
1The terms source code, solution code, and program code are used synony-

mously.

repository [3]. The manual classification of the huge number of
diverse multilingual source code is a challenging and non-trivial
task. Although many engineering models and approaches have
been proposed to guide development, code writing is often
expensive and error-prone [4]. Thus, it is important to develop
a classification model that can better recognize the features and
context of diverse codes to assist programmers. In particular,
from a programming education perspective, the code classifica-
tion model can provide students, teachers, and instructors with
additional benefits in finding or recognizing relevant codes based
on algorithms/problem names from large code repositories to
accelerate programming learning. In software engineering (SE),
in turn, the code classification model can help find appropriate
modules to speed up software development. The model can
be used at the functional-level in the software development
phases.

A considerable number of industrial and academic studies
on programming-related tasks to assist and alleviate the vari-
ous programming challenges faced by programmers, especially
coding. Some examples are: automatic localization of errors
in solution codes [5], [6], [7], [8], editing changes in solution
codes [9], [10], [11], [12], code refactoring [13], [14], [15],
mathematics-based formal methods and techniques for gener-
ating solution code according to the code specification [16],
[17], [18], code completion [19], identification of errors (e.g..,
logical and syntactic) in solution codes [20], code evaluation
and repair [21], and classification of codes based on errors,
algorithms, languages, domains (e.g., network, game, word,
and science), and code snippets [3], [22], [23], [24], [25], [26].
Classification methods are typically divided into two families:
supervised learning (SL) and unsupervised learning (UL) [27].
In SL, the models are trained with known pair of tuples (e.g.,
< input, label >). Let χ = {χ1, χ2, χ3, . . . , χn} be the set of
solution codes and τ = {τ1, τ2, τ3, . . . , τn} be the set of the cor-
responding labels (problem name/algorithm) of set χ. Based on
this definition, the output function of SL is written as τ = Φ(χ),
where Φ is a mapping function and the τ output depends on
the χ input. In contrast, UL models are trained without known
corresponding input data labels, and the data are processed by
mathematical methods based on their similarity features [2]. In
practice, collecting sufficient labeled data for a given task is often
expensive and time-consuming. In order to obtain meaningful
results with SL, sufficient and high-quality data are required
for model training; otherwise, low-quality data may adversely
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affect its effectiveness. This problem is especially important in
classification tasks with complex data and often referred to as
the “cold start problem” [27].

In recent years, deep neural network (DNN) models have
achieved profound success in various tasks, including computer
vision [28], image classification with a bidirectional long short-
term memory (Bi-LSTM) network [29], [30], high-dimensional
anomaly detection [31], [32], healthcare services using the data
of Internet-of-Things systems [33], and online learning algo-
rithms with a long short-term memory (LSTM) network [34].
Furthermore, many approaches have been proposed to better
understand the program code [35]. Watanobe et al. [36] proposed
a source code classification model using convolutional neural
networks. The source codes in the C++ programming language
were used in their experiments. Bi-LSTM and LSTM language
models were also employed for the source code classification
tasks [19], [20], [21]. Stochastic language models (SLMs) have
achieved widespread success in natural language processing
(NLP), speech recognition, language translation, and handwrit-
ing recognition [19]. The performance of SLMs (e.g., n-gram,
bi-gram, skip-gram, and glove [37], [38]) heavily depends on
a rich text corpus. However, considering the program code
complexity, the different code structures using different pro-
gramming languages, and code corpus limitation, SLMs have
not achieved the same significant results as like NLP tasks.

As a remedy, recurrent neural networks (RNNs) have been
introduced. RNNs have a built-in network memory that can
store past information [39], but they cannot process long-term
dependent information because the gradient exponentially in-
creases or decreases during training. This problem is referred to
as the “gradient vanishing and exploding” problem [40], [41]. It
prevents the capturing of long-term dependent information and
significantly degrades the RNN performance in real-world im-
plementations [42]. To address the problem, the LSTM network
has been introduced. It has a novel network architecture with
four control gates (i.e., input, output, forget, and cell state) that
can be used to overcome the “gradient vanishing and exploding”
problem [42], [43]. Despite the good performance of the LSTM,
it only processes the information in one direction from past
to future, which means that the LSTM is unidirectional [44].
Resolving this problem required the introduction of Bi-LSTM
network [45] that processes information in both forward and
backward directions. In Bi-LSTM, two independent hidden
layers (i.e., forward and backward) are connected to the same
input. The results of these two layers are concatenated for the
output. In practice, Bi-LSTM models have shown a much better
performance compared to LSTM [44].

In this paper, we propose ann-layered Bi-LSTM model for the
program code classification tasks. Inn-layered Bi-LSTM model,
an n number of Bi-LSTM layers is used, where the output of
the hidden state of each Bi-LSTM layer is given as the input to
the next Bi-LSTM layer. The “weight update” formula is similar
with that in the original Bi-LSTM. The deep layered architec-
ture of the n-layered Bi-LSTM model allows the extraction of
more complex features based on previous layers. This layered
Bi-LSTM model mechanism understands the complex context
and features of data. The solution codes contain functions,

classes, keywords, tokens, characters, numbers, operators, and
variables with long- and short-term dependencies; hence, the
n-layered Bi-LSTM model structure can accurately capture the
dependencies and the complex context of solution codes.

We validate the performance of the proposed n-layered
Bi-LSTM model by creating several datasets (i.e., sorting,
searching, graphs and trees, numerical computations, basic data
structures and their combination) with real-life solution codes
collected from an online judge system. The datasets are com-
posed of multilingual (i.e., approximately 15 programming
languages) and solution codes with various algorithms, which
ensure the high diversity of the datasets. The experimental results
suggest that the performance of the state-of-the-art models (i.e.,
LSTM and Bi-LSTM) on our dataset is significantly inferior to
that of the n-layered Bi-LSTM model. Moreover, the network
hyperparameters are fine-tuned during the model experiments.
The evaluation results indicate that none of the compared state-
of-the-art models outperform the n-layered Bi-LSTM model.

The main contributions of this study are as follows:
� We propose a noveln-layered Bi-LSTM model for the code

classification task. We introduce herein a new input supply
from one Bi-LSTM layer to another. The deep structure of
then-layered Bi-LSTM model can understand the complex
context and features of the solution codes.

� The experimental results show a substantial improvement
of the classification task on highly diverse solution codes
compared to other state-of-the-art models (e.g., LSTM and
Bi-LSTM).

� We create datasets using real-life solution codes that can
be useful for other programming-related studies such as
code generation, refactoring, code translation, and error
detection.

The remainder of this paper is organized as follows: Section II
describes the background and the theoretical foundations of the
NLP and DNN models closely related to this study; Section III
presents the problem statements and the motivation of our study;
Section IV explains the details of our proposed program code
classification approach. Section V provides the datasets, eval-
uation metrics, implementation details, results, and discussion;
and Section VII concludes this study with a note on the future
work.

II. BACKGROUND AND THEORETICAL FOUNDATION

This section provides a brief introduction to the background
and theoretical foundations of this study. Hence, the mathemat-
ical representations of the SLM, RNNs, LSTM, and Bi-LSTM
models for the sequential language modeling tasks are presented.

A. n-Gram Language Model

The n-gram model is a popular language model in NLP
tasks. It predicts the next words based on the word sequence
probability. Let a = {a1, a2, a3, . . . , an} be the set of words of
sequence a, where ai is a single word. The probability of the
entire word sequence ψ(a) is calculated as follows by the chain
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rule of probability.

ψ(an1 ) = ψ(a1)ψ(a2|a1)ψ(a3|a21)ψ(a4|a31) · · ·ψ(an|an−1a )

=
n∏

j=1

(aj |aj−11 ) (1)

If the probability of a word ψ(ai) depends on the preced-
ing words ψ(ai−11 ), it can be described through the Markov
Assumption.

ψ(ai|ai−11 ) ≈ ψ(ai|ai−1) (2)

The n-gram uses (3) as the conditional probability of the next
word in a sequence. In the following equation, N is used to
indicate the n-gram size, such asN = 2 for bi-gram,N = 3 for
tri-gram, and so on.

n∏
j=1

(aj |aj−11 ) ≈
n∏

j=1

(aj |aj−1j−N+1) (3)

In practice, smoothing techniques are used to estimate the max-
imum likelihood using (4), where ϕ(·) computes the count of
words.

ψ(aj |aj−1j−N+1) =
ϕ(aj−1j−N+1aj)

ϕ(aj−1j−N+1)
(4)

The language model’s performance can be evaluated using the
cross-entropy (Ce) calculation, where a lower Ce value indicates
a better language model, and vice versa [46].

Ce ≈ − 1

n

n∑
j=1

log2ψ(aj |aj−1j−N+1) (5)

B. Recurrent Neural Networks

An RNN is a neural network that can process dependent
sequential datax(t) = x(1), x(2), x(3), . . . , x(T − 1), x(T ) by
using its ingrained network “memory”. This “memory” cap-
tures all previously calculated information. The basic RNN
structure is described by the following set of equations [34]:

ht = d(U (h)xt +G(h)ht−1) (6)

ŷt = e(V (y)ht) (7)

where xt ∈ R
j is the input vector; ht ∈ R

k is the hidden state
vector; and ŷt ∈ R

k is the output vector. Functions d(.) and
e(.) are used for the non-linearity and output of the network.
The widely used functions are tanh(.) and softmax(.). The
coefficient weight matrices of U , G, and V are U ∈ R

j×k,
G ∈ R

k×k, and V ∈ R
k×k, respectively.

1) Gradient Vanishing and Exploding: Two processes are
executed in a single time step: (i) forward, and (ii) backward
passes. In the forward pass, the loss function (℘t), hidden layer
state (ht), and output (ŷt) are computed. The loss between the
estimated (ŷt) and true (yt) labels is calculated using ℘t. The
total loss is described as L =

∑
i ℘i(ŷt,yt). In the backward

pass, the loss function gradient for each weight matrix (δL/δU ,
δL/δG, δL/δV ) is computed to update weight matrices U ,

G, and V using the backpropagation algorithm (i.e., backprop-
agation through time). In the backward pass, the gradients are
backpropagated through time and layers. All past contributions
are summed up to the current contribution:

δL

δG
=

T∑
i=0

δ℘i

δG
=

T∑
i=0

(
p∏

i=m+1

δhi

δhi−1

)
δhm

δG
(8)

where the contribution of a state (at time stepm) to the gradient
of the total loss L is calculated. Equation (8) has two erratic
cases during backpropagation: (i) if

∥∥ δhi

δhi−1

∥∥
2
< 1, the gradient

vanishes or disappears; and (ii) if
∥∥ δhi

δhi−1

∥∥
2
> 1, the gradient

explodes.

C. Long Short-Term Memory Neural Networks

LSTM networks are specialized RNNs and used in various
complex problem domains, such as speech recognition and ma-
chine translation. LSTMs can remember long dependent input
sequences and overcome the gradient vanishing and explosion
problems [42]. The LSTM architecture is described by the
following set of equations [42]:

c̆t = d(U (c)xt +G(c)ht−1 + b(c)) (9)

f t = σ(U (f)xt +G(f)ht−1 + b(f)) (10)

it = σ(U (i)xt +G(i)ht−1 + b(i)) (11)

ct = it � c̆t + f t � ct−1 (12)

ot = σ(U (o)xt +G(o)ht−1 + b(o)) (13)

ht = ot � d(ct) (14)

where ct ∈ R
k is the state vector; xt ∈ R

j is the input vector;
and ht ∈ R

k is the output vector. Here, ct, f t, it, and ot

are the cell state, forget, input, and output gates, respectively.
c̆t ∈ R

k is the candidate state obtained by the nonlinear function.
Function d(.) stands for the tanh(.) function and is applied
pointwise to the input vectors. Similarly, function σ(.) stands
for the sigmoid function and is applied pointwise to the vector
elements. The coefficient weight matrices and vectors are as
follows: U (c) ∈ R

j×k, G(c) ∈ R
k×k, b(c) ∈ R

k, U (f) ∈ R
j×k,

G(f) ∈ R
k×k, b(f) ∈ R

k, U (i) ∈ R
j×k, G(i) ∈ R

k×k, b(i) ∈
R

k, U (o) ∈ R
j×k, G(o) ∈ R

k×k, and b(o) ∈ R
k.

D. Bidirectional Long Short-Term Memory Neural Networks

Bi-LSTM extends the unidirectional LSTM with a new hidden
layer that passes information in the backward direction [45].
Thus, the forward hidden layer (

−→
H ) starts with the first token

of the sequence, while the backward hidden layer (
←−
H ) starts

with the last token. In other words, the connection flow from
one hidden layer to another hidden layer is in a reverse temporal
order.

The internal structure of the Bi-LSTM model is useful for
understanding the complex context of dependent information,
such as time series and language modeling tasks. Fig. 1 presents
the basic architecture of the Bi-LSTM. The Bi-LSTM model
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Fig. 1. Basic Bi-LSTM architecture.

architecture [45] is described by the following set of equations:
−→
h t = d(U (fw)xt +G(fw)−→h t−1 + b(fw)) (15)

←−
h t = d(U (bw)xt +G(bw)←−h t+1 + b(bw)) (16)

where the coefficient weight matrices and vectors are as follows:
U (fw) ∈ R

j×k, G(fw) ∈ R
k×k, b(fw) ∈ R

k, U (bw) ∈ R
j×k,

G(bw) ∈ R
k×k, and b(bw) ∈ R

k. Function d(.) is an activation
function usually set to the hyperbolic tangent function (i.e.,
tanh(.)). Also, the function d(.) applies input vectors pointwise.

Here, two hidden states (
−→
h t and

←−
h t) are concatenated asht and

fed to the output layer.

ht =
−→
h t ⊕←−h t (17)

where ht ∈ R
j×2k is the weight matrix of the hidden state.

Finally, the output ot ∈ R
j×q is computed in the output layer

(q: number of outputs) described as follows:

ot = e(htV
(o) + b(o)) (18)

where the coefficient weight matrices and vectors are as follows:
V (o) ∈ R

2k×q and b(o) ∈ R
q . Function e(.) is the activation

function of the output layer, which is typically set to the softmax
function (i.e., softmax()).

III. PROBLEM STATEMENT AND MOTIVATION

In recent years, DNN models have achieved great success
in NLP tasks [47], [48] due to the richness of the natural
language corpus. The structure of natural languages is the same,
which helps in the collection of a large corpus. In contrast,
programming problems can be solved using many programming
languages. Programmers write codes in their own style. There
are no predefined ways to solve programming problems. Conse-
quently, the heterogeneity of code structures and programming
languages and the complexity of codes are not comparable to
natural languages. Fig. 2 shows an example of a problem (se-
lection sort) solved with three different programming languages
(i.e., Java, C++, and Python). The variables, operators, methods,
classes, keywords, input/output functions, header functions, and
code composition of these solutions are completely different,
making programming codes even more complex and diverse.
For example, the number of heterogeneity/complexity features
of a code can be described as follows:H =

∑L
l=1(f + k + h+

s+ v + · · · ), whereL is the number of programming languages;
f = i, i ∈ Z, 1 ≤ i ≤ n is the number of functions; k = j, j ∈

Algorithm 1: Overall Process of the Code Classification
Approach.

1: Input: Solution Codes χ = {χ1, χ2, χ3, . . . , χn}
2: Output: Classification of the solution code based on the

class label
3: Initialize list I[] for word tokenization,

λ = {comments, whitespaces, tabs}
4: for each code s ∈ χ do
5: Initialize list ω[] for words
6: for each string/word ϑ ∈ s do
7: if ϑ ∈ λ then
8: Remove the word ϑ from code s
9: else

10: Assign words ω[]←− ϑ
11: end if
12: end for
13: for each word ϑ ∈ ω do
14: Assign token number for each word

I[]←− �, � ∈ Z, 1 ≤ � ≤ n
15: end for
16: end for
17: Embedding layer converts the sequence of token

numbers I[] of the codes into the Embedding matrix
E ∈ R

v×d according to (19)
18: Vectorized code sequences (E) are propagated into the

n-layered Bi-LSTM and processed according to
Algorithm 2.

19: High-dimensional vector representation y
(n)
t of the code

sequences goes to the dense layer for further processing
according to Fig. 4.

20: Predicts the class label of the solution code using
Softmax at the output layer according to (41).

Z, 1 ≤ j ≤ n is the keywords; h = g, g ∈ Z, 1 ≤ g ≤ n is the
number of header functions; s = l, l ∈ Z, 1 ≤ l ≤ n is the num-
ber of structures; and v = m, j ∈ Z, 1 ≤ m ≤ n is the number
of variables. Therefore, understanding these huge complex and
diverse codes with DNN models is a difficult and non-trivial
task compared to using natural languages. We are motivated
to address the problem of “how the DNN model can better
understand the diverse and complex codes” by developing a
novel DNN model with a very deep structure. The deep structure
helps to gain an in-depth understanding of code features through
repeated input data (or codes) learning.

IV. PROPOSED APPROACH

The proposed code classification approach consists of two
main phases, namely code preprocessing and classification, with
the n-layered Bi-LSTM model. Algorithm 1 describes the over-
all code classification process as a pseudocode. The overview
of the proposed method and the architecture of the n-layered
Bi-LSTM model are described below.
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Fig. 2. Motivational example: A selection sort problem is solved with three different programming languages (Java, C++, and Python).

Fig. 3. Overview of the proposed code classification model.

A. Overview of the Classification Model

Fig. 3 presents an overview of the proposed model, where
the left part shows the code preprocessing, and the right part
is used for the model training and classification processes. The
code preprocessing aims to remove irrelevant information from
the original solution codes. It is considered as one of the most
vital and primary tasks for the solution code classification. We
obtained the ideal format of solution codes by following the
code preprocessing steps of these studies [19], [20], [44]. To
this end, we removed all irrelevant information (e.g., comments,
tabs, spaces, and line breaks) from the solution codes for the
model training and evaluation. Each solution code was then
converted into a sequence of token words. Each token word
was assigned a unique token number or integer index. Let
W = {w1, w2, w3, . . . , wv} be the set of word sequences of
a solution code and the corresponding mapping number be
O = {o1, o2, o3, . . . , ov}. To train the model, the lengths of the
code sequences were kept the same by padding or truncation.

Meanwhile, the classification process starts with the embed-
ding layer used to convert each integer index into a real-valued

feature vector. These real-valued feature vectors of the code
tokens are combined to form a matrix, called the embedding
matrix [49]. Each row of the embedding representation indicates
the original word of the code sequence. Note that the embedding
representation in the matrix is identical for the same words. The
embedding matrix is described by (19).

Ev,d =

⎛
⎜⎜⎜⎜⎜⎜⎝

e1,1 e1,2 · · · e1,d

e2,1 e2,2 · · · e2,d
...

...
. . .

...

ev−1,1 ev−1,2 · · · ev−1,d
ev,1 ev,2 · · · ev,d

⎞
⎟⎟⎟⎟⎟⎟⎠

(19)

where E ∈ R
v×d is the embedding matrix; v is the vocabulary

size of the solution codes; and d is the embedding dimension
of the dense vector. In this paper, the dimension (v × d) (i.e.,
10, 000× 200) of the embedding matrix E ∈ R

v×d is used
as the pretrained word embedding vector. Next, the vector-
ized code information (i.e.,< solution code, target label >) is
propagated to the DNN layers (i.e., n-layered Bi-LSTM and
dense layer/fully connected layer) for feature learning of the
solution codes. Finally, the output layer is used for the solution
code classification.

B. Architecture of the N-Layered Bi-LSTM Neural Network

In this section, we present our proposed n-layered Bi-LSTM
model architecture. A multilayer or stacking architecture of Bi-
LSTM neural networks further improves the classification or re-
gression performance [50], [51]. Moreover, existing works [52],
[53], [54] have shown that deep hierarchical architectures with
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Fig. 4. Graphical architecture of the n-layered Bi-LSTM with input, embedding, dense, and output layers.

several hidden layers are more efficient than shallow ones be-
cause they can build higher-level representations of dependent
sequential data. The layered Bi-LSTM architecture can provide
a higher prediction performance by obtaining richer contextual
information of the solution codes from both past and future
sequences. The deep architectures consist of multiple hidden
layers, where the output of one hidden layer is used as the input to
the subsequent hidden layer. This layered mechanism enhances
the neural network performance. We adopt this concept in this
work. Fig. 4 illustrates the graphical architecture of the proposed
n-layered Bi-LSTM for the code classification task.

In this scheme, the solution codes are first preprocessed in the
input layer, where the lengths of the token sequences of each
code are the same. Next, an embedding matrix (E ∈ R

v×d) is
created based on the code sequences in the embedding layer used
as the input to the deep n-layered Bi-LSTM. In this architecture,
for a particular time step t, the input is given to the hidden
layers in the forward direction to learn information from the
past. The same input data are fed to the hidden layers in the
reverse direction to learn future information. The output yt is
obtained by concatenating the initial outputs of both the forward
and reverse layers. The hidden units of the upper (next) layers
take the output of the lower (previous) layers to determine the
detailed contextual information from the solution codes. For
example, y(1)t is the output of the 1-layered Bi-LSTM used as
the input for the 2-layered. Algorithm 2 describes the complete
n-layered Bi-LSTM algorithm as a pseudocode. The n-layered
Bi-LSTM is connected to the dense or fully-connected layer
to further process the contextual representation of the solution
codes. Finally, the output layer classifies the class label of the
solution code using softmax.

Remark 1: In the n-layered Bi-LSTM architecture, the output
of the lower layer becomes the input of the next layer.

For a given time step t, the output of the first layer of the
n-layered Bi-LSTM architecture is defined by the following set
of equations. First, the forward layer of 1-layered Bi-LSTM.

i
(1f )
t = σ(U

(1f )
i xt +G

(1f )
i h

(1)
t−1 + b

(1f )
i ) (20)

f
(1f )
t = σ(U

(1f )
f xt +G

(1f )
f h

(1)
t−1 + b

(1f )
f ) (21)

Algorithm 2: n-Layered Bidirectional LSTM (Bi-LSTM).

1: Input: Embedding vectors E ∈ R
v×d using tokenized

code sequences i ∈ I according to (19).
2: Output: y(n)

t : high-dimensional vector representation of
code sequences, where t is the time step, and n is the
number of layers in the Bi-LSTM.

3: for n = 1 : N do
4: Calculate forward hidden state h

(nf )
t of the n-layered

Bi-LSTM according to (38)
5: Calculate backward hidden state h

(nb)
t of the

n-layered Bi-LSTM according to (39)
6: Concatenation of the both hidden states

y
(n)
t = V (n)

y h
(nf )
t + V (n)

y h
(nb)
t of the n-layered

Bi-LSTM according to (40)
7: end for
8: Return y

(n)
t

o
(1f )
t = σ(U

(1f )
o xt +G

(1f )
o h

(1)
t−1 + b(1f )o ) (22)

c̆
(1f )
t = d(U

(1f )
c xt +G

(1f )
c h

(1)
t−1 + b(1f )c ) (23)

c
(1f )
t = i

(1f )
t � c̆

(1f )
t + f

(1f )
t � c

(1f )
t−1 (24)

h
(1f )
t = o

(1f )
t � d(c(1f )t ) (25)

where U
(1f )
i , U

(1f )
f , U

(1f )
o , and U

(1f )
c ∈ R

j×k and G
(1f )
i ,

G
(1f )
f , G

(1f )
o , and G

(1f )
c ∈ R

k×k are the coefficient weight

matrices to learn. b(1f )i , b(1f )f , b(1f )o , and b(1f )c ∈ R
k are the bias

vectors. Second, the backward layer of the 1-layered Bi-LSTM
is described as follows:

i
(1b)
t = σ(U

(1b)
i xt +G

(1b)
i h

(1)
t+1 + b

(1b)
i ) (26)

f
(1b)
t = σ(U

(1b)
f xt +G

(1b)
f h

(1)
t+1 + b

(1b)
f ) (27)

o
(1b)
t = σ(U (1b)

o xt +G(1b)
o h

(1)
t+1 + b(1b)o ) (28)

c̆
(1b)
t = d(U (1b)

c xt +G(1b)
c h

(1)
t+1 + b(1b)c ) (29)

c
(1b)
t = i

(1b)
t � c̆

(1b)
t + f

(1b)
t � c

(1b)
t−1 (30)
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h
(1b)
t = o

(1b)
t � d(c(1b)t ) (31)

whereU (1b)
i ,U (1b)

f ,U (1b)
o , andU (1b)

c ∈ R
j×k andG(1b)

i ,G(1b)
f ,

G(1b)
o , and G(1b)

c ∈ R
k×k are the coefficient weight matrices to

learn. b(1b)i , b(1b)f , b(1b)o , and b(1b)c ∈ R
k are the bias vectors.

Briefly, (25) and (31) are reformulated as

h
(1f )
t = d(U (1f )xt +G(1f )h

(1f )
t−1 + b(1f )) (32)

h
(1b)
t = d(U (1b)xt +G(1b)h

(1b)
t+1 + b(1b)) (33)

y
(1)
t = V (1)

y h
(1f )
t + V (1)

y h
(1b)
t + b(1)y (34)

whereV (1)
y ∈ R

2k×q is the coefficient weight matrix, and b(1)y ∈
R

q is the bias vector. The output of the lower layer is fed to the
next subsequent layer (Fig. 4). Thus, the output (y(1)

t ) of the
1-layered Bi-LSTM is fed to the second layer (i.e., 2-layered
Bi-LSTM). Equations (32)–(34) are written below for the 2-
layered Bi-LSTM. Note that the input of the 2-layered Bi-LSTM
is xt = y

(1)
t .

h
(2f )
t = d(U (2f )xt +G(2f )h

(2f )
t−1 + b(2f )) (35)

h
(2b)
t = d(U (2b)xt +G(2b)h

(2b)
t+1 + b(2b)) (36)

y
(2)
t = V (2)

y h
(2f )
t + V (2)

y h
(2b)
t + b(2)y (37)

whereV (2)
y ∈ R

2k×q is the coefficient weight matrix, and b(2)y ∈
R

q is the bias vector. Similarly, the n-layered Bi-LSTM is
described as follows, where the input is xt = y

(n−1)
t :

h
(nf )
t = d(U (nf )xt +G(nf )h

(nf )
t−1 + b(nf )) (38)

h
(nb)
t = d(U (nb)xt +G(nb)h

(nb)
t+1 + b(nb)) (39)

y
(n)
t = V (n)

y h
(nf )
t + V (n)

y h
(nb)
t + b(n)y (40)

where V (n)
y ∈ R

2k×q is the coefficient weight matrix, and

b(n)y ∈ R
q is the bias vector. Finally, a softmax layer is added

on top of the output layer to model the multi-class probabilities,
and described as follows:

softmax(Y )i =
eY i∑C
j=1 e

Y j

(41)

where C is the number of classes, and numerator eY i is the
exponential function applied to each element of Y . Denomi-
nator

∑C
j=1 e

Y j is the sum of the exponential functions of all
elements.

V. EXPERIMENTAL RESULTS

We conducted a series of experiments on seven different
datasets and their combination to evaluate the code classification
performance of our proposed model. The datasets, evaluation
matrices, implementation details, and results are elaborated in
detail in the subsequent sections.

Fig. 5. Overview of the dataset creation phases.

A. Datasets

The datasets used in our experiments are extracted from
the Aizu Online Judge (AOJ) system [55], [56]. The grow-
ing resources of the AOJ system have been used by various
ML/AI-based projects in recent years. For example, IBM and
Google DeepMind have used the solution codes of AOJ in
their CodeNet [57] and AlphaCode [58] projects, respectively.
Fig. 5 provides an overview of the dataset creation using the
AOJ system. First, we extract the solution codes from the AOJ
based on different algorithms and problem names. Second,
duplicate solution codes and irrelevant elements are removed
from the codes. Third, a cross-validation of the solution codes is
performed to ensure that the codes are in order after removing
the irrelevant elements. Finally, the datasets are created.

We use seven different datasets in the experiments, namely
Sorting, Searching, Graph & Tree (G&T), Numerical Computa-
tion (NC), Basic Data Structures (BDS), and their combinations.
The dataset combination is used in the experiments to increase
the dataset diversity and complexity. We assign a ground truth
value or label to the solution codes based on the algorithm used or
the problem name. For example, the solution codes of Counting
Sort are labeled as Counting Sort. The sorting dataset contains
solution codes for various sorting algorithms (e.g., Bubble Sort,
Insertion Sort, Selection Sort, Merge Sort, Counting Sort, Shell
Sort, and Quick Sort). Similarly, the Searching, G&T, BDS, and
NC datasets contain the solution codes of various algorithms
and problems in each category. Table I presents the statistics for
these datasets.

B. Evaluation Metrics

In classification spaces, the classifier performance is usually
defined by the confusion matrix with respect to the classifier.
The accuracy, recall (sensitivity), precision, and F1-score (recall
and precision) are calculated from the confusion matrix entries.
We follow the standard evaluation approach [19], [49], [59] for
our code classification task. First, the multi-class classification
accuracy described below is defined as the average number of
correct predictions relative to the total number of predictions.

A =
1

N

|C|∑
k=1

∑
x:f(x)=k

Q(f(x) = f̂(x)) (42)

whereQ is the function that returns 1 if the class is true and 0, oth-
erwise.C is the number of classes.f(x) ∈ C = {1, 2, 3, . . . , n}.

The program code datasets may contain various data imbal-
ances. Advanced evaluation metrics are adopted to obtain an
unbiased performance evaluation for the imbalanced datasets.
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TABLE I
STATISTICAL OVERVIEW OF THE DATASETS AND THEIR DISTRIBUTIONS FOR MODEL TRAINING AND VALIDATION

In addition to the accuracy, precision, recall, and F1-score, we
also perform calculations for the macro, micro, and weighted
settings. The micro-average is calculated across all samples,
summing all true positives (TP), false negatives (FN) and false
positives (FP). Thus, the micro-precision (P μ), recall (Rμ), and
F1-score (F1μ) are calculated by (43)–(45):

P μ =

∑|C|
k=1 TPk∑|C|

i=k(TPk + FPk)
(43)

Rμ =

∑|C|
k=1 TPk∑|C|

k=1(TPk + FNk)
(44)

F1μ =
2× P μ ×Rμ

P μ +Rμ
(45)

A higher F1μ score indicates a better overall performance
of the classification model. Therefore, it is not sensitive to
individual classes because an imbalanced class data distribution
can misrepresent the overall performance of the classification
model. However, the macro-average takes into account the
performance of individual classes. A higher macro F1-score
means a better model performance for the individual classes.
If the class data distribution is imbalanced, the macro-average is
more appropriate than the micro-average. The macro-precision
(P ρ), recall (Rρ), and F1-score (F1ρ) are calculated using the
following set of (46)–(48):

P ρ =
1

|C|
|C|∑
k=1

TPk

TPk + FPk
=

∑|C|
k=1 P k

|C| (46)

Rρ =
1

|C|
|C|∑
k=1

TPk

TPk + FNk
=

∑|C|
k=1 Rk

|C| (47)

F1ρ =
2× P ρ ×Rρ

P ρ +Rρ
(48)

The weighted average F1-score, on the other hand, is com-
puted from the mean of all F1-scores of the individual classes
considering the support of the individual classes. “Support”
refers to the number of class instances. The term “weight” refers
to the ratio of instances of each class to the sum of all instances.
The weighted-precision (P ω), recall (Rω), and F1-score (F1ω)
are calculated as follows in (49)–(51):

P ω =
1

|S|
|C|∑
k=1

TPk

TPk + FPk
× |sk| =

∑|C|
k=1 P k × |sk|
|S|

(49)

Rω =
1

|S|
|C|∑
k=1

TPk

TPk + FNk
× |sk| =

∑|C|
k=1 Rk × |sk|
|S|

(50)

F1ω =
1

|S|
|C|∑
k=1

F1k × |sk| (51)

where |sk| is the support of the k class, and |S| is the sum of all
supports. The Cohen Kappa (κ) [59] score is used to evaluate the
classification model’s performance and calculated as follows:

κ =
φo − φe
1− φe (52)

where φo is the observed probability indicating the classifica-
tion model accuracy (or perfect match), and φe represents the
model prediction and actual class value by random matching.
The Area Under Receiver Operating Characteristic Curve (ROC
AUC) [60] is employed to evaluate our multi-class classification
model. In this context, two strategies are considered for the
classification model evaluation: “one-vs-one (OvO)” and “one-
vs-rest (OvR)”. Here, OvO calculates the average of the pairwise
ROC AUC score, and OvR computes the average score for
each class against other classes. These results seem particularly
optimistic when there is a strong class imbalance, that is, the
number of minority class instances is small.

C. Implementation Details

We use different hyperparameters in the proposed n-layered
Bi-LSTM model to achieve better results. A program code is
usually a collection of complex instructions, including mathe-
matical operations, methods, functions, variables, keywords, and
tokens. They are interrelated in a program code. The selection of
optimal hyperparameters is greatly important in understanding
complex code interrelationships. We employ three (n = 3) Bi-
LSTM layers as part of the DNN architecture. The Adam [61] is
applied as the network optimization method. Different numbers
are used for the batch size (β), (i.e., β = {16, 32, 64}) and the
learning rate (η) (i.e., η = {0.001, 0.005, 0.01}). The activation
functions in the dense layer are sigmoid (Λ(z) = 1

1+e−z ), tanh

(Λ(z) = 1−e−2z
1+e−2z ), and relu (Λ(z) = max(0, z)). We also con-

duct experiments with and without a dropout layer, where the
dropout layer is placed before the dense layer. The dropout (ξ)
values are 0.1 and 0.3. The sparse categorical cross entropy is
used as the loss function (L) of the classification model described
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TABLE II
HYPERPARAMETER SETTINGS

in (53).

L(w) = −
C∑

c=1

yc · log(ŷc) (53)

where w is the model parameter; C is the number of classes;
and yc and ŷc are the true and predicted labels, respectively.
Table II presents the other hyperparameters. All experiments
on the proposed classification model are implemented on a
Keras+TensorFlow framework with Python 3 and Google Com-
pute Engine backend in Google Colab.

D. Results

Tables III–VI present the quantitative classification results
(%) of the macro-precision (P ρ) and recall (Rρ) and the
weighted-precision (P ω) and recall (Rω) of the proposed n-
layered Bi-LSTM and other state-of-the-art models over the
seven datasets. The hyperparameter settings (i.e., learning rate
η = 0.001, epoch = 50, batch sizes β = {16, 32, 64}, activa-
tion functions Υ = {tanh, sigmoid, relu }, and dropout ξ =
{none}) are applied in these experiments. It is observed that
the LSTM model fails to achieve better results compared to
the Bi-LSTM and 2- and 3-layered Bi-LSTM models. The
LSTM model particularly achieved low P ρ, Rρ, P ω , and Rω

scores in the NC, G&T, and Sorting + Searching + G&T
datasets. The LSTM model also fails to provide good results
with different hyperparameters for the Searching dataset. In
contrast, the 2-layered Bi-LSTM model achieves better P ρ,
Rρ, P ω, and Rω scores compared to the LSTM and Bi-LSTM
models.

Figs. 6–9 show the average F1ρ and F1ω scores for each
dataset. It can be seen that the 2-layered Bi-LSTM model
outperforms the other models, achieving an average F1ρ score
of 96.10± 0.60 and an F1ω score of 97.10± 0.25. The Bi-
LSTM model achieves an average F1ρ score of 95.00± 0.45
and an F1ω score of 96.20± 0.45. The LSTM model yields
an average F1ρ score of 87.00± 0.70 and an F1ω score
of 89.00± 0.10 due to the long-term dependencies, diversity,
and complex context of the solution codes greatly affecting

Fig. 6. Average F1ρ and F1ω scores using the LSTM model.

Fig. 7. Average F1ρ and F1ω scores using the Bi-LSTM model.

Fig. 8. Average F1ρ and F1ω scores using the 2-layered Bi-LSTM model.

Fig. 9. Average F1ρ and F1ω scores using the 3-layered Bi-LSTM model.

the LSTM performance. The Bi-LSTM solves the problems to
some extent and significantly improves the classification results.
However, this performance is worse than that of the layered
Bi-LSTM. The LSTM and Bi-LSTM models struggle to produce
better results compared to the layered Bi-LSTM models on
the G&T, Sorting + Searching, and Sorting + Searching +
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TABLE III
QUANTITATIVE CLASSIFICATION RESULTS (%) OF THE MACRO- P ρ AND Rρ AND THE WEIGHTED- Pω AND Rω USING THE LSTM

TABLE IV
QUANTITATIVE CLASSIFICATION RESULTS (%) OF THE MACRO- P ρ AND Rρ AND THE WEIGHTED- Pω AND Rω USING THE BI-LSTM

G&T datasets. The deep layered architecture enables the layered
Bi-LSTM model to better learn the complex context of large
diverse codes. Considering the same hyperparameter settings,
the A, κ, and OvR AUC ROC scores for all models over the
seven datasets are also calculated (Table VII). The results show
that the 2-layered Bi-LSTM model outperforms the other models
with an average A of 97.00± 0.10, κ of 96.29, and OvR of
99.68. Although the 3-layered Bi-LSTM model achieves rela-
tively better results (A of 96.30± 0.07) than the LSTM (A of
90.19± 0.50), it is not as good as the 2-layered Bi-LSTM. These
results show that the 2-layered Bi-LSTM model is more suitable
for the current datasets. Thus, we avoid 3- and more-layered
Bi-LSTM models in further experiments.

We evaluate the model performance using different hyperpa-
rameters (e.g., β, Υ, η, and ξ), as shown in Figs. 10, 11, 12,
and 13. The experiments provide various additional insights.
Figs. 10, 11, and 13 depict that hyperparameters (β, Υ, and
ξ) only have light effects on the F1ρ score when consid-
ered. Similar performance trends observed in the calculated
A and F1ω scores. By contrast, a significant impact on the
F1ρ score is found when different learning rates (e.g., η =
{0.001, 0.005, 0.01}) are considered for all the models across
the seven datasets, as shown in Fig. 12. The F1ρ scores are
significantly improved when η is set to 0.001 compared to
η = 0.005 and η = 0.01, implying that slowing down the η
improves the model performance. The average F1ρ scores for
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TABLE V
QUANTITATIVE CLASSIFICATION RESULTS (%) OF THE MACRO- P ρ AND Rρ AND THE WEIGHTED- Pω AND Rω USING THE 2-LAYERED BI-LSTM

TABLE VI
QUANTITATIVE CLASSIFICATION RESULTS (%) OF THE MACRO- P ρ AND Rρ AND THE WEIGHTED- Pω AND Rω USING THE 3-LAYERED BI-LSTM

Fig. 10. Comparison of the F1ρ scores with different batch sizes (β) when Υ = {sigmoid, tanh, relu}, epoch = 50, ξ = none, and η = 0.001.
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TABLE VII
QUANTITATIVE CLASSIFICATION RESULTS (%) OF THE ACCURACY, KAPPA, AND ROC AUC SCORES USING THE LSTM, BI-LSTM, 2-LAYERED BI-LSTM, AND

3-LAYERED BI-LSTM MODELS

Fig. 11. Comparison of the F1ρ scores with different activation functions (Υ) when β = {16, 32, 64}, epoch = 50, ξ = none, and η = 0.001.

Fig. 12. Comparison of the F1ρ scores with different learning rates (η) when β = 32, Υ = {sigmoid, tanh, relu}, epoch = 50, and ξ = none.

the 2-layered Bi-LSTM model are 95.77, 91.50, and 86.31 with
η values of 0.001, 0.005, and 0.01, respectively.

Figs. 14, 15, and 16 compare the F1ρ, F1ω , and A scores
based on a set of hyperparameters for the LSTM, Bi-LSTM,
and 2-layered Bi-LSTM, respectively. The results illustrate
that the learning rate (η) significantly affects the F1ρ, F1ω ,
and A scores with a specific set of hyperparameters (β = 32,
Υ = relu, epoch = 50, and ξ = none). Note that F1μ and A

produce the same results due to the similar evaluation criteria for
the classification model. Therefore, only A is considered during
the evaluation and F1μ is excluded. Considering the diversity,
data volume, and complexity of the Sorting + Searching +
G&T dataset, the 2-layered Bi-LSTM model achieves better
F1ρ, F1ω , and A scores than the other two models when
η = 0.001 with other hyperparameters. These results indicate
that the 2-layered Bi-LSTM model outperforms the LSTM and
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Fig. 13. Comparison of the F1ρ scores with different dropouts (ξ) when β = 32, Υ = {sigmoid, tanh, relu}, epoch = 50, and η = 0.001 .

Fig. 14. F1ρ, F1ω , and A scores for the LSTM model with the set of hyperparameters η = {0.001, 0.005, 0.01}, β = 32, Υ = relu, epoch = 50, and
ξ = none.

Fig. 15. F1ρ, F1ω , and A scores for the Bi-LSTM model with the set of hyperparameters η = {0.001, 0.005, 0.01}, β = 32, Υ = relu, epoch = 50, and
ξ = none.

Fig. 16. F1ρ,F1ω , andA scores for the 2-layered Bi-LSTM model with the set of hyperparametersη = {0.001, 0.005, 0.01},β = 32,Υ = relu,epoch = 50,
and ξ = none.
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TABLE VIII
QUANTITATIVE RESULTS (%) FOR CLASSIFICATION WITH THE SOTA MODELS

Bi-LSTM models on all three evaluation metrics F1ρ, F1ω ,
and A across the seven datasets.

Furthermore, we conducted additional experiments using
state-of-the-art (SOTA) models, specifically the Gated Recurrent
Unit (GRU), Bidirectional GRU (Bi-GRU), and LSTM with At-
tention, employing the Sorting + Searching + G&T dataset. For
consistency across all SOTA models, we set the hyperparameter
values as follows: epoch = 50, Υ = ReLu, β = 64, ξ = none,
and η = 0.001. The results of these experiments are presented in
Table VIII. Notably, the LSTM with Attention model achieved
F1ρ, F1ω , and A scores of 92.76%, 96.19%, and 96.20%,
respectively, surpassing the performance of the other SOTA
models.

However, it is worth mentioning that even though the LSTM
with Attention model performed well, it still fell short when
compared to the layered Bi-LSTM models. The 3-layered Bi-
LSTM model, in particular, outperformed all other SOTA mod-
els, achieving F1ρ, F1ω , and A scores of 93.42%, 96.55%,
and 96.56%, respectively. These results further underscore the
effectiveness of the proposed layered Bi-LSTM model compared
to SOTA models.

VI. DISCUSSION

A. Performance Analysis

We propose herein an n−layered Bi-LSTM model for
the program code classification task that takes into account
the complex context and diversity of program codes. We evaluate
the model performance by training, validating, and testing the
model using real-world program codes. The quantitative classi-
fication results (Tables III–VI) show that the layered Bi-LSTM
model achieves better classification results compared to the
LSTM and Bi-LSTM models. Table VII illustrates that the
2-layered Bi-LSTM model achieves approximately 0.32% and
6.27% higher A compared to the Bi-LSTM and LSTM models,
respectively. In addition to A, the 2-layered Bi-LSTM model
also obtains higherκ and OvR scores. However, despite the good
performance of these models, a notable performance difference
is observed between the F1ρ and F1ω scores for most datasets
(Figs. 6−9). Underlying this difference is the class imbalance in
the test data. That is, some classes contain many instances, while
some have relatively few instances. Fig. 17 presents the compu-
tation time (in second) for the model training for each dataset.
It is seen that the 3-layered Bi-LSTM model takes more time
than the other models. In other words, increasing the number
of layers requires more time for model training. However, the

Fig. 17. Computational time comparison for model training when β =
{16, 32, 64}, Υ = relu, epoch = 50, ξ = none, and η = 0.001.

overall classification results of the proposed 2-layered Bi-LSTM
model fully reflect its superiority over the other state-of-the-art
models.

B. Impact of Hyperparameters

The DNN model performance is highly dependent on
the optimal hyperparameters. Choosing the optimal pa-
rameters is a non-trivial task because it requires heavy
parameter fine-tuning. We utilize different hyperparame-
ter sets during the model training and evaluation to
achieve better results. Tables III–VII present the model
performances based on different hyperparameter settings.
Figs. 10–13 depict the classification results of the LSTM, Bi-
LSTM, and 2-layered Bi-LSTM models based on various values
of parameters β, Υ, η, and ξ. In particular, Fig. 12(c) shows
the effects of the η changes on the model performance. The
2-layered Bi-LSTM model exhibits an improved performance
of approximately 4.27% with η = 0.001 when compared to
that with η = 0.005 and approximately 9.46% with η = 0.001
when compared with η = 0.01. On the other hand, Figs. 10,
11, and 13 illustrate the limited effect of the parameters on the
model performance across all datasets. Figs. 14-16 show the
comparative results of the F1ρ, F1ω , and A scores using η
values of 0.001, 0.005, and 0.01, respectively, with a specific
hyperparameter set. The results demonstrate the importance of
selecting optimal hyperparameters for the model performance.

C. Scalability of the n−layered Bi-LSTM Model

We observe the model performance by combining three dif-
ferent datasets to prepare the Sorting + Searching + G&T dataset
to ensure higher complexity, data size, and diversity. Table VII
shows that the 2-layered Bi-LSTM, 3-layered Bi-LSTM, Bi-
LSTM, and LSTM models achieveA scores of 96.48%, 96.28%,
96.06%, and 95.77%, respectively, for the Sorting + Searching +
G&T dataset with a Υ→ Sigmoid. Similar trends are observed
for the Sorting + Searching dataset, where the 2- and 3-layered
Bi-LSTM models obtain higher A scores. This is due to the fact
that the layered Bi-LSTM model considers a higher number of
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TABLE IX
TRAINABLE PARAMETERS FOR THE MODEL TRAINING

TABLE X
QUANTITATIVE RESULTS (%) FOR LANGUAGE CLASSIFICATION TASKS USING

REAL-WORLD DATASETS

trainable parameters of the program codes for the model training,
which allows it to learn a deeper code context (Table IX).

The 2-layered Bi-LSTM model specifically considers an
average of 0.961 million more trainable parameters than the
Bi-LSTM model, while the 3-layered Bi-LSTM model considers
an average of 1.92 million more trainable parameters. In addition
to considering a higher number of trainable data parameters,
the layered structure and the propagation of the trainable data
from one layer to another help the model to better understand
the dependencies and correlations of the variables, functions,
classes, tokens, and keywords of codes. However, the layered
architecture can also be useful in other application domains,
where tasks involve complex, diverse, and large datasets. In
such cases, a layered Bi-LSTM model can be adopted by simply
expanding the number of layers (e.g., n = 3, 4, 5, · · · ).

In addition, we conducted experiments using real-world dat-
asets to showcase the scalability of the proposed n-layered Bi-
LSTM model. We utilized two real-world datasets sourced from
Project_CodeNet [62] for language classification tasks. First, we
performed experiments with the Project_CodeNet_LangClass
(PCL) dataset [63], which contains program code written in ten
(10) programming languages, including ‘Haskell’, ‘JavaScript’,
‘C#’, ‘C++’, ‘PHP’, ‘C’, ‘D’, ‘Rust’, ‘Java’, and ‘Python’. For
these experiments, we set hyperparameter values as follows:
epoch = 50, Υ = ReLu, β = 64, ξ = none, and η = 0.001 for
all models. The results of the language classification tasks are
presented in Table X. Notably, the LSTM model did not yield
favorable results compared to the Bi-LSTM and 2-layered Bi-
LSTM models. The Bi-LSTM model achieved F1ρ, F1ω , and
A scores of 96.18%, 95.14%, and 95.23%, respectively. In con-
trast, the 2-layered Bi-LSTM model achieved 100% accuracy
across all evaluation metrics, outperforming the performance of
other models. It is worth noting that while the data size in the
Project_CodeNet_LangClass dataset is not particularly large,

TABLE XI
MODEL PERFORMANCE WITH AND WITHOUT DENSE LAYER

the proposed layered Bi-LSTM model still produced exceptional
results.

Furthermore, we conducted a similar experiment with an-
other real-world dataset known as Mini_Project_CodeNet
(MPC) [64], which comprises approximately 8,819 solution
codes written in six (06) different programming languages,
including ‘C++’, ‘Java’, ‘Ruby’, ‘Go’, ‘Python’, and ‘C’. The
number of solution codes in this dataset significantly exceeds
that of PCL dataset. In this experiment, the Bi-LSTM model
achieved F1ρ, F1ω , and A scores of 97.02%, 96.75%, and
96.76%, respectively, as shown in Table X. Conversely, the
2-layered Bi-LSTM model obtained F1ρ, F1ω, and A scores
of 97.47%, 97.24%, and 97.25%, respectively, surpassing the
performance of the Bi-LSTM model. Intriguingly, the 3-layered
Bi-LSTM model achieved even better results than the 2-layered
Bi-LSTM. This outcome underscores that the layered model
possesses a deeper understanding of the code, enabling more
accurate classification based on the programming languages
used.

D. Ablation Studies

Since the proposed n-layered Bi-LSTM model comprises
various components, including layers and hyperparameters, all
of which significantly impact the overall model performance, it
becomes crucial to assess the individual contributions of these
components. In light of this context, we conducted a series of
ablation tests aimed at elucidating the effects of these compo-
nents on the model’s performance. It’s worth noting that these
ablation tests are carried out using the 2-layered Bi-LSTM model
on the Searching dataset. Initially, we investigated the influence
of the Dropout Layer on model performance. When the dropout
value is set to ξ = 0.1, the model achieved F1ρ, F1ω , and A
scores of 95.55%, 93.64%, and 93.62%, respectively. For ξ =
0.3, the model attained F1ρ, F1ω , and A scores of 95.00%,
93.21%, and 93.18%, respectively. However, when the Dropout
Layer is entirely removed, the model yielded even better results,
with F1ρ, F1ω , and A scores of 95.76%, 93.97%, and 93.95%,
respectively. These results indicate that the dropout layer in the
proposed layered model has a relatively minor impact, leading
us to conduct subsequent experiments without the dropout layer.

Furthermore, we conducted experiments both with and with-
out the Dense Layer, as summarized in Table XI. With the
dense layer, the 2-layered Bi-LSTM model achievedA scores of
93.95%, 93.57%, and 93.90% for the activation functionsReLu,
Sigmoid, and Tanh, respectively. Conversely, when the dense
layer is removed, the model obtained an A score of 93.24%. It
is evident that the model’s performance is adversely affected
in the absence of the Dense Layer, indicating its significant
contribution to the overall model performance.
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E. Suitability for Programming Learning and
Software Engineering

The proposed layered Bi-LSTM model yields significant re-
sults in classifying real-world program codes based on their
algorithm or problem names. Searching and recognizing pro-
gram codes from large code repositories are challenging task
for programmers, especially for students. In this case, the pro-
posed classification model can provide programmers/students
with additional advantages in searching for and recognizing the
desired program codes in large repositories. This model can
ease programmers’ programming method and improve his/her
technical skills. The experimental results show that the proposed
classification model classifies complex and diverse codes with
a higher degree of accuracy. Furthermore, the model can be
assimilated with existing programming learning platforms (e.g.,
OJ systems). Meanwhile, in SE, the reuse of software modules is
one of the most important processes required to realizes a faster
development. Accordingly, searching and recognizing software
modules are the key tasks, to which the proposed model can be
applied. The model can also be extended to various SE tasks,
such as defect detection and code refactoring and review. In ad-
dition, the proposed model (classification of algorithms/codes)
can be a foundation for many other machine learning models for
coding tasks.

VII. CONCLUSION

In this paper, a layered Bi-LSTM model for the program code
classification is proposed. The architecture and the theory of
the layered Bi-LSTM model were also described. The deep ar-
chitecture of the layered Bi-LSTM model can classify complex,
large, and diverse program codes with a high degree of accuracy.
The experimental results on seven real-world datasets, namely
Sorting, Searching, NC, G&T, Sorting + Searching, NC+BDS,
and Sorting + Searching + G&T, showed that the 2-layered
Bi-LSTM model outperforms state-of-the-art models like the
LSTM and the Bi-LSTM. Furthermore, the dataset diversity and
complexity were increased when multiple datasets (i.e., Sorting
+ Searching, NC+BDS, and Sorting + Searching + G&T) were
combined to verify the model performance. Accordingly, the
2-layered Bi-LSTM model achieves better classification results
than the other models. Various hyperparameters (e.g., β, Υ, ξ,
and η) were fine-tuned to achieve better results with the models.
We also investigated the suitability of the proposed model in the
domains of programming learning and software engineering.

In the future, the proposed model can be considered as a
language model for generating correct codes against erroneous
ones. In this case, the code pairs< erroneous , correct > can be
used for model training, validation, and evaluation. Furthermore,
the model can generate the corresponding correct codes for the
given erroneous ones.
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