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Abstract—The conventional dendritic neuron model (DNM) is a
single-neuron model inspired by biological dendritic neurons that
has been applied successfully in various fields. However, an increas-
ing number of input features results in inefficient learning and
gradient vanishing problems in the DNM. Thus, the DNM struggles
to handle more complex tasks, including multiclass classification
and multivariate time-series forecasting problems. In this study,
we extended the conventional DNM to overcome these limitations.
In the proposed dendritic neural network (DNN), the flexibility
of both synapses and dendritic branches is considered and for-
mulated, which can improve the model’s nonlinear capabilities
on high-dimensional problems. Then, multiple output layers are
stacked to accommodate the various loss functions of complex tasks,
and a dropout mechanism is implemented to realize a better balance
between the underfitting and overfitting problems, which enhances
the network’s generalizability. The performance and computa-
tional efficiency of the proposed DNN compared to state-of-the-
art machine learning algorithms were verified on 10 multiclass
classification and 2 high-dimensional binary classification datasets.
The experimental results demonstrate that the proposed DNN is a
promising and practical neural network architecture.

Index Terms—Dendritic neuron model, dendritic neural
network, dropout mechanism, multiclass classification.

I. INTRODUCTION

ARTIFICIAL neural networks (ANN) are a subset of ma-
chine learning (ML) models inspired by the structure and

function of biological neurons [1]. ANNs comprise intercon-
nected nodes or artificial neuron models organized in layers,

Manuscript received 31 August 2023; accepted 20 December 2023. Date of
publication 8 March 2024; date of current version 27 May 2024. This work was
supported by JST CREST under Grant JPMJCR22D1, Grant JSPS KAKENHI,
and Grant JP22H00551, Japan. (Corresponding authors: Cheng Tang; Akimasa
Hirata.)

Cheng Tang and Atsushi Shimada are with the Faculty of Information Sci-
ence and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
(e-mail: tang@ait.kyushu-u.ac.jp; atsushi@limu.ait.kyushu-u.ac.jp).

Junkai Ji is with the College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen 518060, China (e-mail: jijunkai@szu.edu.cn).

Yuki Todo is with the Faculty of Electrical and Computer Engineer-
ing, Kanazawa University, Kanazawa 920-1192, Japan (e-mail: yktodo@
se.kanazawau.ac.jp).

Weiping Ding is with the School of Information and Technology, Nantong
University, Nantong 226019, China (e-mail: dwp9988@163.com).

Akimasa Hirata is with the Department of Electrical and Mechanical En-
gineering, Nagoya Institute of Technology, Nagoya 466-0061, Japan (e-mail:
ahirata@nitech.ac.jp).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TETCI.2024.3367819, provided by the authors.

Recommended for acceptance by Prof. M. Gong.
Digital Object Identifier 10.1109/TETCI.2024.3367819

and they can mimic the human brain in processing complex data
inputs to produce output predictions [2]. The development of
ANNs has a long and rich history that spans several decades of
research and innovation in computer science, mathematics, and
cognitive neuroscience [3].

In 1943, McCulloch and Pitts pioneered the first computa-
tional neuron model inspired by biological neurons and based
on binary logic and threshold functions [4]. This model, which is
referred to as the McCulloch-Pitts neuron, formed the basis for
many early ANNs and laid the foundation for the computational
neuroscience field. In 1958, Rosenblatt developed an early ANN,
which is well-known as a perceptron that could perform basic
pattern recognition tasks [5]. Despite its early success in binary
classification tasks, the perceptron has several limitations that
hinder its performance in more complex applications [6]. For
example, the perceptron cannot handle linearly indivisible data.
In other words, the perceptron can only classify input data in
the input space that can be separated by linear boundaries or
hyperplanes [7]. However, the perceptron paved the way for
more sophisticated ANNs, e.g., multilayer neural networks and
deep learning techniques that can handle complex and high-
dimensional data [8]. Currently, ANNs are used extensively in
many applications, including speech recognition [9], [10], image
processing [11], [12], natural language processing [13], [14], and
robotics [15], [16].

There are more than 104 neurons per cubic millimeter in the
human brain. Neurons primarily comprise dendrites, one axon,
and one soma body [17]. In total, approximately 1011 neurons
and 1015 connections are integrated into complex neural net-
works that perform various brain functions. Note that dendrites
are more than simple passive information conduits. They are
active computational units that can process and convert signals
from other neurons or sensory cells [18], and produce local
spikes that propagate back to the cell body and modulate the
output response of the neuron [19]. The dendritic branches of
neurons are very complex and variable, each receiving inputs
from various sources and locations. The inputs received by
dendrites can be excitatory, which means that they depolarize
dendrites and make them more likely to excite action potentials,
or inhibitory, implying that they hyperpolarize dendrites and
make them less likely to excite action potentials [20]. In addition
to computational functions, dendrites play a critical role in
plasticity, i.e., the nervous system’s ability to adapt based on
learning. Dendritic plasticity occurs at multiple levels, including
changes in dendritic morphology, dendritic excitability, and
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synaptic strength [21], and these changes can be induced by
various forms of synaptic activity and can strengthen or weaken
specific synaptic connections [22]. The changes in synaptic
strength are believed to be the cellular basis of learning and
memory in the brain, and they are critical for forming new
neural connections and reorganizing existing connections [23].
Dendritic plasticity is regulated by complex interplay between
intrinsic dendritic properties and extrinsic factors, e.g., neuro-
modulators and growth factors [24]. With their branching and
spines, the unique structure of dendrites allows them to integrate
information from multiple synaptic inputs, which enables them
to detect and respond to patterns of activity that can induce
plasticity [25]. Overall, dendritic plasticity is essential for the
brain’s ability to adapt to changing environments and to form
and modify neural circuits [26].

Inspired by biological dendritic neurons, we have previously
proposed a simple neuronal model featuring a dendritic struc-
ture [27]. The synaptic layer, dendritic layer, membrane layer,
and soma body collectively form the main structures of the
dendritic neuron model (DNM). Consistent with neurobiological
observations in the brain, the structure of the DNM exhibits
sufficient plasticity to discard useless synapses and redundant
dendrites after training; thus, it can produce a unique dendritic
structure for each task [28]. The DNM has been used to solve sev-
eral vision problems, e.g., motion recognition [29], orientation
detection, and depth rotation [30]. Subsequently, the model was
improved by introducing simple and powerful multiplication
and summation operations rather than soft-minimum and max-
imum functions in the dendritic and membrane layers, respec-
tively [31]. The neuronal architecture of the DNM was verified
to be completely hardwareized by logic circuits consisting of
comparators and logic gates (e.g., AND, OR, and NOT gates),
which is a breakthrough for the DNM in the pattern recogni-
tion field [32]. Compared with other ML methods that require
floating-point computation, logic circuits perform computation
in binary, which results in extremely fast processing time at
minimal computational costs [33]. In addition, the DNM serves
as a support for the hypothesis that logical computation can re-
alize synaptic interactions on dendrites. Consequently, research
on the neuronal architecture and learning algorithms of DNM
has gained momentum and been successfully applied to solve
problems in various fields [34], e.g., medical diagnosis [35],
credit assessment [36], and other classification problems [37].
The DNM has also been applied to solve various time-series fore-
casting problems, e.g., epidemic transmission propensity [38],
wind speed prediction [39], and stock price movement [40].

However, the single-neuron structure limits DNM perfor-
mance significantly and makes it difficult to handle more com-
plex problems. Combining multiple DNMs has been successful
in the object motion direction detection task; however, it is still
of limited help in terms of unleashing the capabilities of the
DNM [41]. With the advancements of computational resources,
especially advances in graphics processing units (GPUs) and
data processing units (DPUs), it is necessary to improve the
DNM as a deep neural network rather than a single-neuron
model. Thus, in this paper, we propose a DNM-based dendritic
neural network (DNN). Differing from the conventional DNM,

Fig. 1. Structure of dendritic neuron model and four synaptic states. The
trained synapse can evolve to the four states in the right half of the figure.

the proposed DNN includes multiple membrane layers and soma
bodies; thus, it can produce multiple outputs to better handle
complex problems. In addition, the flexible synaptic structure
enriches the nonlinear capability of the DNN, thereby making it
more proficient in handling increasingly complex problems. The
inherent properties of the DNM ensure that the gradient van-
ishing problem intensifies as the number of features increases;
therefore, a dropout mechanism is designed and implemented
to mitigate gradient vanishing as an optional strategy in the
proposed DNN. The proposed DNN is applied to 10 multi-
class classification and 2 high-dimensional binary classification
problems to examine its effectiveness. In summary, the primary
contributions of this study are summarized as follows.

1) The DNN model is proposed to extend the DNM from a
single-neuron model to a neural network to handle more
complex problems effectively.

2) The flexible synaptic structure enhances the ability of
the proposed DNN to handle nonlinear tasks. Flexible
synapses consider each feature sufficiently and allow the
proposed DNN to realize an effective balance between
underfitting and overfitting.

3) A dropout mechanism designed specifically for the pro-
posed DNN provides an effective adjustable strategy to
mitigate the gradient vanishing problem caused by cumu-
lative multiplication.

4) The dendritic structure with multiple soma bodies enables
sufficient adaptation to more diverse loss functions. In
addition, it is feasible to concatenate multiple outputs into
a fully-connected network or input them into a new DNN
to construct a deep neural network.

The remainder of this paper is organized as follows. Section II
reviews the structure of the DNM and its unique properties. The
proposed DNN is described in detail in Section III. Section IV
describes the datasets, experimental setup, and performance
metrics used to evaluate the DNN. An analysis of the experi-
mental results is summarized in Section IV. Finally, conclusions
and future work are discussed in Section V.

II. RELATED WORKS

A. Dendritic Neuron Model

The DNM is a feedforward neuron model that mimics biologi-
cal dendritic neurons, primarily comprising synapses, dendrites,
a membrane, and a soma body. As shown in the left-hand panel of
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Fig. 1, multiple synapses are attached to the same dendrite, and
multiple dendrites are summarized into a membrane layer and a
cell body. To be specific, synapses are responsible for processing
the input information as signal-receiving units and can evolve
into four synaptic states after training. Dendrites collect and
process information from all synapses connected to them and
transmit this information to the membrane. The dendritic signals
are accumulated in the membrane and are carried into the soma
body, which is responsible for producing the final output. The
conventional DNM can be expressed mathematically as follows:

1) Synaptic Layer:

Si,j =
1

1 + e−d(wi,jxi−bi,j)
, (1)

2) Dendritic Layer:

Dj =

I∏
i=1

Si,j , (2)

3) Membrane Layer:

M =

J∑
j=1

Dj , (3)

4) Soma Body:

O =
1

1 + e−λ(M−θsoma)
, (4)

where i ∈ [1, 2, . . ., I] and j ∈ [1, 2, . . ., J ]. Here, I and J
represent the number of synapses on each dendrite and the
number of dendrites, respectively, and wi,j and bi,j refer to the
connection weights and biases of each synapse, which are opti-
mized according to the learning algorithm. d is a distance factor,
which is set to a constant value in the conventional DNM. λ and
θsoma denote the steepness factor and activation threshold of the
soma body, respectively, which are also predefined constants in
the conventional DNM. The activation threshold of each synapse
can be formulated as follows:

θi,j =
wi,j

bi,j
. (5)

B. Synaptic Evolution

wi,j and bi,j can be modified during training and solidified
into four synaptic states after the learning process is completed.
The four synaptic states are presented in the right-hand side of
Fig. 1, which can be expressed as follows:

1) Direct Connection:

{(wi,j , bi,j)|wi,j > bi,j > 0}, (6)

2) Inverse Connection:

{(wi,j , bi,j)|wi,j < bi,j < 0}, (7)

3) Constant 1 Connection:

{(wi,j , bi,j)|wi,j > 0 > bi,j ∪ 0 > wi,j > bi,j}, (8)

4) Constant 0 Connection:

{(wi,j , bi,j)|wi,j < 0 < bi,j ∪ 0 < wi,j < bi,j}. (9)

In the synaptic state of the direct connection, the output
approaches 1 when the input xi reaches the corresponding
threshold θi,j and approximates 0 otherwise. In contrast, in the
synaptic state of the inverse connections, when the input xi ex-
ceeds the corresponding threshold θi,j , its output is 0; otherwise,
it is 1. In the synaptic states with constant 1 and constant 0
connections, regardless of the input xi, the outputs are always 1
and 0. The DNM is consistent with biological dendritic neurons,
with outputs 0 and 1 corresponding to biological excitatory and
inhibitory signals, respectively.

C. Dendritic Neuron Model Analysis

The conventional DNM is a feedforward multiple-input
single-output neuron model that has been widely utilized to solve
classification and prediction problems [42], [43], [44]. When
handling binary classification problems, benefiting from cumu-
lative multiplication in dendritic layers, the evolved structure can
be simplified according to a neuronal pruning strategy, which
corresponds to plasticity in biology [45]. Specifically, synapses
with a constant 1 connection can be eliminated, and all dendrites
containing synapses with constant 0 connections can be removed
completely.

However, cumulative multiplication exacerbates the gradient
vanishing problem, which makes it difficult for the DNM to
solve tasks with many features. Any value multiplied by 0 is
equal to 0; thus, even if there is only a single synapse with a
constant 0 connection on a dendrite, all other synapses on that
dendrite will become meaningless. The dendrite will degener-
ate, and its output is constantly 0. As the number of features
in the dataset increases, so does the number of synapses on
the dendrites. Simultaneously, the risk of dendrites containing
synapses that fall into saddle points increases, which makes it
difficult for the DNM to solve problems containing too many
features [46]. Previous studies have investigated ways to mitigate
synapses falling into saddle points; however, the main focus of
these studies was learning algorithms [47], [48], [49]. Although
the DNM performs well when handling traditional multi-input
single-output tasks, it is difficult for a single DNM to handle
more complex tasks, e.g., multi-output problems. In addition,
the solidified structure prevents DNMs from being developed as
deep learning techniques because it is difficult to stack DNMs
or connect them to other ANN models.

The proposed DNN is designed to improve the conventional
DNM in terms of its structure. The flexibility of the synapses
allows the proposed DNN to have a stronger nonlinear ability
to handle more features, and the dropout mechanism enhances
the ability of synapses to jump out of the saddle point during the
learning process. In addition, expansion of the output layer (i.e.,
the soma body) enables the proposed DNN to solve multi-output
problems efficiently and provides the ability to stack and connect
multiple DNNs to other ANNs.

D. Ensemble Dendritic Neuron Models

The DNM is a neuron model designed for binary classification
problems; thus, it is practical to collaborate with multiple DNMs
when handling multiclass classifications. Generally, one of the
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Fig. 2. EDNMs with the One-vs-Rest decomposition scheme. The dataset is
binary divided multiple times based on the classes to train individual DNM.

basic concepts involved in solving a multiclass classification
task is to decompose the problem into multiple binary classifica-
tions. There are three classical decomposition schemes, i.e., the
One-vs-One, One-vs-Rest, and Many-vs-Many schemes [50].
Here, the One-vs-One scheme involves one-to-one pairing of N
classes in the dataset, resulting in N(N − 1)/2 binary classifi-
cations, and ultimately the most predicted class as the decision
outcome based on the N(N − 1)/2 classification results [51].
The One-vs-Rest scheme involves training N classifiers by
alternating one of the N classes as the positive side and the
samples of all other classes as the negative side. Here, if only a
single classifier is predicted as positive, the corresponding class
label is adopted as the final result, and if multiple classifiers are
labeled as positive, the confidence interval is considered, and the
one with the highest confidence level is selected as the result [52].
The Many-vs-Many scheme involves taking turns with several
classes as positive and several classes as negative according to
a specific encoding scheme, e.g., error correcting output codes,
and both the One-vs-One and One-vs-Rest schemes are special
cases of the Many-vs-Many scheme [53]. Inevitably, the number
of classifiers to be utilized in the One-vs-One scheme is greater
than that of the One-vs-Rest scheme; however, each classifier in
the One-vs-One scheme requires samples from only two classes,
whereas each classifier in the One-vs-Rest scheme requires all
samples. As a result, the storage and computational costs of
the One-vs-Rest scheme are higher. The performance depends
primarily on the particular data features and distribution; but the
two schemes generally exhibit comparable performance in the
majority of cases [54].

Thus, the proposal for an ensemble of dendritic neuron models
(EDNM) based on the One-vs-Rest scheme is natural, and each
DNM in the EDNMs is responsible for identifying one of the
categories in the dataset [55]. As shown in Fig. 2, the dataset
is repeated three times according to the three classes, and one
of the classes is selected to distinguish it from the other two

Fig. 3. Structure of proposed DNN for multiclass classification. The dataset
is fed directly into the DNN, which optimizes the model structure and conserves
computational resources.

classes each time. The final solid black circle represents the
loss function. Note that the cross-entropy function is utilized in
this study. As discussed previously, significant effort has been
dedicated to EDNMs; however, this method suffers from the
following limitations and challenges.

1) It is necessary for each individual DNM to handle all
samples from all classes, which is a significant waste of
data storage and computational resources.

2) The dendrites of the DNM have a significant impact on
the final output, whereas the dendrites of each DNM
contribute very little to the other DNMs.

3) A new DNM must be added for each additional class in
the dataset. This structure lacks flexibility, which increases
the redundancy and inefficiency of dendrites.

4) EDNMs are an extension of the conventional DNM specif-
ically designed to solve multiclass classification problems,
which limits the generalizability and evolvability of the
model.

III. MATERIAL

A. Dendritic Neural Network

As a neural network-based extension of the conventional
DNM, the proposed DNN primarily includes synapses, den-
drites, membranes, and soma bodies, as shown in Fig. 3. In
addition, the flexibility of the proposed DNN allows it to handle
more complex tasks. The mathematical details of the proposed
DNN are expressed as follows:

1) Synaptic Layer:

Si,j =
1

1 + e−di,j(wi,jxi−bi,j)
, (10)

2) Dendritic Layer: refer to (2).
3) Membrane Layer:

Mn =

J∑
j=1

vj,nDj , (11)

4) Soma Body:

On =
1

1 + e−λ(Mn−θsoma)
, (12)

where di,j denotes the distance parameter of the synapses,
which enhances the flexibility of the synaptic connections. Here,
each synapse has its own distance parameter, and the flexible
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switch controls whether it participates in the optimization pro-
cess, where “True” means that the di,j is considered a parameter
that requires optimization. In addition, vj,n represents the con-
nection strength between the j-th dendrite and n-th membrane,
which increases the flexibility of the dendrites. Introducing
synaptic and dendritic flexibility allows the proposed DNN to
acquire stronger nonlinear capabilities than the conventional
DNM when handling complex problems.

B. Dropout Mechanism

In ML, when a model involves too many parameters and
too few samples to learn, the trained model is prone to over-
fitting [56]. As a common problem of ML, overfitting will likely
result in unusable models. An ensemble of models is generally
employed, which means that multiple models are combined for
training to solve this problem. However, training and testing
multiple models is time consuming. The dropout mechanism
effectively mitigates overfitting by reducing the interactions
of the feature detection units, thereby improving the neural
network’s performance [57], [58]. In the hidden layer of other
feedforward neural networks, the local neuron is essentially a
weighted summation of the neurons in the preceding hidden
layer. The standard dropout mechanism randomly discards dif-
ferent neurons in the hidden layer, which is similar to shaping
different networks. The dropout operation enables the neural
network to perform a weighted summation of many different
neural networks. Different overfitting is generated in these net-
works, and the “opposite fitting” can counteract each other to
reduce the overall overfitting. In addition, the retained weights
must be rescaled during training to reduce the impact of neuron
dropout on the input of the next hidden layer.

Differing from the overfitting problem in traditional ML tech-
niques, gradient vanishing is an important factor that limits the
performance of the proposed DNN. As discussed in Section II-B,
the trained synapses can evolve into four synaptic states, in which
direct and inverse connections are considered valid, whereas
constant 1 and constant 0 connections are considered invalid.
Due to the cumulative multiplicative function in the dendritic
layer, even a single synapse with a constant 0 connection on
the dendrite can result in the degeneration of the connected
dendrite. In addition, the sigmoid function in the synapse limits
the output of the synaptic layer to between 0 and 1, which
further exacerbates the gradient vanishing as the number of
features increases. Thus, the proposed DNN includes a dropout
mechanism, which is described as follows:

S̃i,j =

{
1, rand < p
Si,j , otherwise

, (13)

where p indicates the dropout rate.
As shown in Fig. 4, the dropout mechanism is utilized as an

adjustable mechanism to train the proposed DNN. Specifically,
the gradient vanishing problem can be reduced significantly by
ignoring some of the synapses during training (i.e., setting the
value of some synapses to 1). Due to the cumulative multiplica-
tion in dendrites, the dropout mechanism in the proposed DNN
does not require the rescaling of weights, and the preserved

Fig. 4. Dropout mechanism in proposed DNN. The introduction of the
Dropout mechanism enables more dendrites to escape degradation.

synapses directly inherit the original values. The dropout mech-
anism causes synapses to not always work in the DNN; thus,
parameter updates are no longer dependent on the interaction
between synapses with fixed relationships, which prevents some
features from only being effective under certain conditions. In
addition, eliminating synapses with a constant 0 connection
state makes it possible for dendrites to avoid degeneration,
which allows them to contribute more to the DNN. The dropout
mechanism enables the proposed DNN’s sensitivity to some
particular cue fragments and to extract information from other
cues even if a particular cue is lost. As a result, the proposed
DNN is forced to learn more robust features.

C. Learning Algorithm

In this study, the proposed DNN is employed as a multiclass
classifier; thus, the cross-entropy function is adopted as the loss
function, which can be formulated as follows:

E = −
N∑

n=1

Tn · log
(

eOn∑N
n=1e

On

)
, (14)

where Tn andOn denote the target and actual outputs of the n-th
soma body, respectively. According to the error, the synaptic and
dendritic parameters can be optimized according to the Widrow-
Hoff delta learning rule, which is expressed as follows:

di,j(t+ 1) = di,j(t)− η� ∂E

∂di,j
, (15)

wi,j(t+ 1) = wi,j(t)− η� ∂E

∂wi,j
, (16)

bi,j(t+ 1) = bi,j(t)− η� ∂E

∂bi,j
, (17)

vj,n(t+ 1) = vj,n(t)− η� ∂E

∂vj,n
, (18)
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where η indicates the learning rate parameter. Following the
chain rule in calculus [59], the partial differential derivatives in
the above equations can be decomposed as follows:

∂E

∂di,j
=

∂E

∂On

∂On

∂Mn

∂Mn

∂Dj

∂Dj

∂Si,j

∂Si,j

∂di,j
, (19)

∂E

∂wi,j
=

∂E

∂On

∂On

∂Mn

∂Mn

∂Dj

∂Dj

∂Si,j

∂Si,j

∂wi,j
, (20)

∂E

∂bi,j
=

∂E

∂On

∂On

∂Mn

∂Mn

∂Dj

∂Dj

∂Si,j

∂Si,j

∂bi,m
, (21)

∂E

∂vj,n
=

∂E

∂On

∂On

∂Mn

∂Mn

∂vj,n
, (22)

∂E

∂On
= On − Tn, (23)

∂On

∂Mn
= λ ·On · (1−On), (24)

∂Mn

∂Dj
= vj,n, (25)

∂Mn

∂vj,n
= Dj , (26)

∂Dj

∂Si,j
=

Dj

Si,j
, (27)

∂Si,j

∂wi,j
= xi · Si,j · (1− Si,j), (28)

∂Si,j

∂bi,j
= −Si,j · (1− Si,j). (29)

In addition, as an enhanced optimization strategy of adaptive
moment estimation (i.e., the Adam optimizer) [60], the AdamW
optimizer is implemented to reduce intrinsic fluctuations in the
learning process and accelerate the convergence speed [61],
which can be described as follows:

gξ(t+ 1) = λξ(t) +∇F (ξ(t)) , (30)

where ξ is the parameter to be optimized. Here, ∇F and λ

denote the corresponding partial differential derivatives and
weight decays, respectively. The new gradient update formulas
of the AdamW optimizer depending on the momentum mξ and
velocity vξ are expressed as follows:

mξ(t+ 1) = β1 ·mξ(t) + (1− β1) · gξ(t+ 1), (31)

vξ(t+ 1) = β2 · vξ(t) + (1− β2) · g2ξ (t+ 1), (32)

m̂ξ(t+ 1) =
mξ(t+ 1)

1− βt+1
1

, (33)

v̂ξ(t+ 1) =
vξ(t+ 1)

1− βt+1
2

. (34)

ξ(t+ 1) = ξ(t)− ηt+1

(
αm̂ξ(t+ 1)√
v̂ξ(t+ 1) + ε

+ λξ(t)

)
, (35)

where β1 and β2 are two constants that are generally set to 0.9
and 0.999, respectively. Note that the initial values of mξ(0) and

TABLE I
DESCRIPTION OF THE DATASETS

vξ(0) are set to 0. Here, ε represents an infinitesimally small
positive quantity.

IV. EXPERIMENT

A. Experimental Setup

To evaluate the performance of the proposed DNN compre-
hensively, 10 multiclass classification and 2 high-dimensional
binary classification datasets from the UCI Machine Learn-
ing Repository (https://archive.ics.uci.edu/) were used in our
experiments, including the Balance Scale (Balance), Cleve-
land Heart Disease (CHD), Contraceptive Method Choice
(CMC), Dry Bean (DB), Internet Firewall (Firewall), Hepatitis
C Virus (HCV), Iris, Seed, Thyroid Disease (Thyroid), and Wine
datasets [62]. The details of these datasets are given in Table I. In
these experiments, 70% of the samples from each dataset were
used for training, and the remaining samples were used to test
the performance of the compared models.

Note that there are four adjustable user-predefined parameters
in the proposed DNN, i.e., the number of dendrites, dropout
rate, flexible switch, and batch size. Thus, sixteen DNNs with
different parameter settings were employed for parameter sensi-
tivity analysis, and EDNMs with the One-vs-Rest scheme were
adopted to measure the improvement realized by the proposed
DNN. In addition, the proposed DNN was compared to 10
existing ML methods to demonstrate its effectiveness. Here,
each experiment was run 20 times independently, and the results
are presented as the mean and standard deviation to emphasize
the confidence of the results.

B. Performance Metrics

For common classification metrics were used to measure the
performance of the classifiers: accuracy, precision, F1 score,
and Cohen’s kappa (κ). The corresponding metrics for each label
were calculated, and they were weighted and summed according
to the proportion of their sample size in the total sample size,
which is expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (36)

Precision = Precision1·w1 + Precision2·w2 + · · ·
+PrecisionN · wN , (37)

F1 = F11 · w1 + F12·w2 + · · ·+ F1N · wN , (38)

https://archive.ics.uci.edu/
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κ = {2 · (TP · TN − FN · FP )}/{(TP + FP )·
(FP + TN) + (TP + FN) · (FN + TN)}, (39)

where the corresponding performance metrics for each label are
calculated as follows:

PrecisionN =
TPN

TPN + FPN
, (40)

F1N =
2 · PrecisionN · RecallN
PrecisionN +RecallN

, (41)

Recall = Recall1 · w1 + Recall2 · w2 + · · ·
+RecallN · wN , (42)

RecallN =
TPN

TPN + FNN
. (43)

Here, TP and TN represent true positive and true negative,
and FP and FN denote false positive and false negative,
respectively.

In addition, nonparametric statistical tests were conducted to
verify the differences between the methods. Here, the Friedman
test was applied to compare and rank DNNs with different
parameters, where the significance level α was set to 0.05 [63].
In addition, the Bonferroni-Dunn procedure was employed as
a post hoc test to characterize the statistical results, which can
compensate for the lack of controlling family-wise error rates
for unadjusted p values [64]. The Wilcoxon signed-rank test
was utilized to determine whether significant differences could
be observed between the proposed DNN and the compared
ML methods, where the significance level α was also set to
0.05 [63].

C. Comparison of DNNs

Based on previous studies, the number of dendrites in the
DNM is typically set close to the number of input features
(I) [65], and the number of dendrites in EDNMs is I ×N . To
measure the performance of DNNs systematically, the number
of dendrites in DNNs was set to increment from I to I ×N .
Considering that the DNNs in our experiments are not deep
DNNs with a large number of dendrites, the dropout rate was set
to two levels, i.e., 0 and 0.05. In addition, the flexible switch also
has two states, i.e., true and false. In these experiments, batch
size was adaptive, the parameters were modified 200 times in
each iteration, and the batch size was set to 1 when the number
of samples from the dataset was less than 200. The number of
epochs was set to 1000 for all methods. Additional details about
the parameter settings are given in Table II.

The accuracy, precision, F1 score, and κ results of the com-
pared DNNs with different parameter settings obtained the 10
datasets are shown in Tables SI and SII, where the best results
for each metric are shown in bold. As can be seen, the DNNs
achieved competitive results in most cases, and DNNs with more
dendrites obtained better performance. The increased flexibility
generally improves the performance of DNNs, which allowed
them to outperform the original DNNs on most datasets. The

TABLE II
PARAMETER SETTINGS OF DNNS

performance of the DNNs incorporating only the dropout mech-
anism was enhanced with an increasing number of dendrites,
which is in line with expectations. The DNNs with both high
flexibility and the dropout mechanism have a more complex
neural network structure; thus, their performance was slightly
unsatisfactory with fewer dendrites. Theoretically, the perfor-
mance of DNNs can be improved further by adjusting parameter
settings, e.g., increasing the number of dendrites and epochs to
realize sufficient learning. From these results, we conclude that
the proposed DNN can solve multiclass classification tasks. In
addition, introducing flexibility effectively improves the nonlin-
ear capability of the proposed DNN, thereby enabling it to solve
complex tasks efficiently.

In addition, the statistical results of DNNs in terms of each
performance metric are summarized in Table III . As can be
seen, the FDNN-4 model obtained the best performance in terms
of accuracy and precision, and the FDNN-2 model achieved
the best results in terms of the F1 score and κ metrics. For
the accuracy and precision metrics, the FDNN-4 model was
significantly superior to the DDNN-1, DDNN-2, and DFDNN-1
models, and the FDNN-2 model outperformed the DDNN-1,
DDNN-2, and DFDNN-1 models significantly in terms of F1
score and κ. There was no significant difference between the
DNNs with other parameter settings and those with the best
performance. The relatively optimal parameter settings for each
dataset are listed in Table IV . The dropout mechanism can
lead to the DNN underfitting in some simple tasks; however,
it can provide a solution to prevent overfitting when solving
more complex tasks. Theoretically, the underfitting problem can
be solved by setting the number of epochs appropriately, while
increasing the number of dendrites and setting suitable dropout
parameters can prevent overfitting. Determining appropriate pa-
rameter settings for different tasks can improve the performance
of the proposed DNN effectively. In summary, the competitive
results obtained on most datasets suggest that the DNNs can
solve numerous multiclass classification tasks without relying
on hyperparameter settings, and the fine hyperparameter design
provides the potential to further improve the performance of the
proposed DNN.
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TABLE III
STATISTICAL RESULTS OF DNNS

TABLE IV
OPTIMAL PARAMETER SETTINGS OF DNNS

D. Comparison of ML Methods

To further validate the classification performance of the pro-
posed DNN, EDNMs, and 10 ML methods were compared
experimentally, including ensemble decision trees using the
One-vs-Rest scheme, ensemble epsilon support vector ma-
chines (EeSVMs), and ensemble nu support vector machines
(EnSVMs) with different kernel functions using the One-vs-Rest
scheme, i.e., EDTs, EeSVMs-L (with a linear kernel), EeSVMs-
P (with a polynomial kernel), EeSVMs-R (with a radial basis
function kernel), EeSVMs-S (with a sigmoid kernel), EnSVMs-
L (with a linear kernel), EnSVMs-P (with a polynomial kernel),
EnSVMs-R (with a radial basis function kernel), EnSVMs-S

TABLE V
PARAMETER INITIALIZATION RANGES OF THE ML METHODS

(with a sigmoid kernel), and the multilayer perceptron (MLP).
The hyperparameter settings of all methods are listed in Table V.

Tables SIII and SIV compare the accuracy, precision, F1 score,
and κ results of the DNN, EDNMs, and ML methods obtained
on the 10 experimental datasets. As can be seen, the proposed
DNN achieved the best results in nearly all performance metrics
on all datasets, with the exception of the accuracy metric on
the CHD dataset and all metrics on the Firewall dataset. On
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TABLE VI
STATISTICAL RESULTS OF THE COMPARED ML METHODS

the Firewall dataset, the EDTs achieved the best results for all
performance metrics, with DNNs ranking second for all metrics.
In addition, the statistical results of the Wilcoxon signed-rank
test are shown in Tables SIII and SIV, where “-” indicates that the
DNN cannot be compared with itself. As shown, the proposed
DNN significantly outperformed the vast majority of the com-
pared ML methods in terms of nearly all metrics on all datasets.
Specifically, the proposed DNN significantly outperformed all
other ML methods in terms of accuracy, precision, F1 score, and
κ on the Balance, CMC, DB, and Seed datasets. On the CHD
dataset, the proposed DNN and EeSVMs-S achieved comparable
results, and the DNN was significantly better than all other
ML methods in terms of the other performance metrics. On the
Firewall dataset, the proposed DNN significantly outperformed
all other ML methods (except the EDTs) in terms of all perfor-
mance metrics. In addition, we found that the EDNMs achieved
similar results to the proposed DNN on the HCV, Iris, Thyroid,
and Wine datasets, and EnSVMs-S obtained results that were
comparable to those of the proposed DNN on the Wine dataset.
No significant difference was observed between the proposed
DNN and EnSVMs-L in terms of the precision and κ metrics on
the Wine dataset. Thus, we conclude that the proposed DNN has
a more appropriate neural network structure that can utilize the
dendritic information more effectively than a simple ensemble
of DNMs. Introducing flexibility and the dropout mechanism en-
ables the proposed DNN to solve complex tasks more effectively.
Compared with many other multiclass classifiers based on ML
methods, the excellent multiclass classification capabilities of
the proposed DNN demonstrate that it is a promising multiclass
classifier.

The statistical results of the Friedman test are summarized in
Table VI, and the results show that the proposed DNN ranked

first among the compared ML methods. The proposed DNN
is significantly superior to the EDTs, EeSVMs-L, EeSVMs-P,
EeSVMs-R, EeSVMs-S, EnSVMs-L, EnSVMs-P, EnSVMs-R,
EnSVMs-S, and MLP models in terms of the accuracy, precision,
F1 score, and κ metrics. Benefiting from having more dendrites,
the EDNMs achieved performance that is comparable to that of
the proposed DNN, and no significant difference was observed
between the EDNMs and DNN. The MLP model also obtained
competitive performance because it has more hidden layers.
Based on these results, we conclude that, compared to existing
ML methods, the proposed DNN is an excellent neural network.
Ensemble models that combine binary classification models
as units significantly limit the performance of numerous ML
methods in terms of solving multiclass classification problems.
Although EDNMs can provide competitive performance on
some datasets, the flexible and concise architectural design of
the proposed DNN provides better computational efficiency.

E. Extension

In this section, we investigate the performance of the proposed
DNN when applied to binary classification datasets with more
features. The Breast dataset contains 569 samples with 30 fea-
tures, and the Parkinson dataset consists of 195 samples, each
of which contains 22 features. A comparison of the accuracy,
precision, F1 score, and κ results obtained by the proposed
DNN, EDNMs, and nine ML methods on 2 datasets is shown in
Table VII. In this evaluation, the number of output layers was
set to two for the MLP. In addition, two individual units were
utilized to collaborate in the ensemble models. As shown in
Table VII, the proposed DNN obtained better results than the
compared ML methods in terms of accuracy, precision, and F1



TANG et al.: DENDRITIC NEURAL NETWORK: A NOVEL EXTENSION OF DENDRITIC NEURON MODEL 2237

TABLE VII
COMPARISON OF RESULTS ON BREAST AND PARKINSON DATASETS

score. On the Breast dataset, the EnSVMs-R model achieved the
best results, and the proposed DNN was slightly inferior in terms
of κ. These statistical results suggest that the proposed DNN
significantly outperformed the EDTs, EeSVMs-L, EeSVMs-P,
EeSVMs-R, EeSVMs-S, EnSVMs-L, EnSVMs-P, EnSVMs-R,
EnSVMs-S, MLP, and EDNMs models on the Breast and Parkin-
son datasets in terms of accuracy, precision, and F1 score. Thus,
we conclude that introducing flexibility and the dropout mech-
anism enhances the proposed DNN’s ability to solve multiclass
classification problems and improves its performance on binary
classification datasets with more features.

V. CONCLUSION

In this paper, we have proposed the DNN architecture, which
extends the single-neuron model of the conventional DNM to a
feedforward neural network structure that can process multiple
inputs and produce multiple outputs. The added flexibility en-
hances the adaptability of the model to different loss functions
and enables the construction of deep neural networks. The
proposed DNN architecture represents a more appropriate neural
network structure than a simple ensemble of DNMs because it
enables more effective utilization of dendritic information. In
addition, the synaptic flexibility enhances its nonlinear capa-
bility, thereby making it more efficient when solving complex
tasks. Although introducing the dropout mechanism may result
in underfitting on some simpler tasks, it allows the proposed
DNN to prevent overfitting in more complex tasks. To address
underfitting, it is theoretically possible to increase the amount of
learning. In contrast, overfitting can be prevented by increasing
the number of dendrites and setting appropriate dropout parame-
ters. Thus, designing appropriate parameter settings for different
tasks is crucial in terms of improving the performance of the
proposed DNN. To evaluate the effectiveness of the proposed
DNN architecture, we applied it to 10 multiclass classification

and 2 high-dimensional binary classification problems. Com-
pared with representative multiclass classification methods, the
proposed DNN exhibited competitive classification performance
and satisfactory computational efficiency. These results suggest
that the proposed DNN is a promising ANN with practical
application potential in various classification tasks. In future
research, we plan to investigate the application of the proposed
DNN to other more complex problems and design strategies
to further optimize its performance. In addition, the effects of
various neural network parameter settings on the performance
of the proposed DNN in various tasks will be verified to an-
alyze the architectural differences between it and other neural
networks.
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