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Skeletal Video Anomaly Detection Using Deep
Learning: Survey, Challenges, and Future Directions

Pratik K. Mishra , Alex Mihailidis , and Shehroz S. Khan

Abstract—The existing methods for video anomaly detection
mostly utilize videos containing identifiable facial and appearance-
based features. The use of videos with identifiable faces raises
privacy concerns, especially when used in a hospital or community-
based setting. Appearance-based features can also be sensitive
to pixel-based noise, straining the anomaly detection methods to
model the changes in the background and making it difficult to focus
on the actions of humans in the foreground. Structural information
in the form of skeletons describing the human motion in the videos
is privacy-protecting and can overcome some of the problems posed
by appearance-based features. In this paper, we present a survey of
privacy-protecting deep learning anomaly detection methods using
skeletons extracted from videos. We present a novel taxonomy of
algorithms based on the various learning approaches. We conclude
that skeleton-based approaches for anomaly detection can be a
plausible privacy-protecting alternative for video anomaly detec-
tion. Lastly, we identify major open research questions and provide
guidelines to address them.

Index Terms—Skeleton, body joint, human pose, anomaly
detection, video.

I. INTRODUCTION

ANOMALOUS events pertain to unusual or abnormal ac-
tions, behaviours or situations that can lead to health,

safety and economical risks [1]. Anomalous events, by defi-
nition, are largely unseen and not much is known about them in
advance [2]. Due to their rarity, diversity and infrequency, col-
lecting labeled data for anomalous events can be very difficult or
costly [1], [3]. With the lack of predetermined classes and a few
labelled data for anomalous events, it can be very hard to train
supervised machine learning models [1]. Therefore, a general
approach in majority of anomaly detection algorithms is to train a
model that can best represent the ’normal’ events or actions, and
any deviations from it can be flagged as an unseen anomaly [4].
Anomalous behaviours among humans can be attributed at an
individual level (e.g., falls [5]) or multiple people in a scene (e.g.,
pedestrian crossing [6], violence in a crowded mall [7]). In the
context of video-based anomaly detection, the general approach
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is to train a model to learn the patterns of actions or behaviours
of individual(s), background and other semantic information in
the normal activities videos, and identify significant deviations
in the test videos as anomalies. However, anomaly detection is
a challenging task due to the lack of labels and often times the
unclear definition of an anomaly [2].

The majority of video-based anomaly detection approaches
use RGB videos where the people in the scene are identifiable.
While using RGB camera-based systems in public places (e.g.,
malls, airports) is generally acceptable, the situation can be
very different in personal dwelling, community, residential or
clinical settings [8]. In a home or residential setting (e.g., nursing
homes), individuals or patients can be monitored in their per-
sonal space that may breach their privacy. The lack of measures
to deal with the privacy of individuals can be a bottleneck in
the adoption and deployment of the anomaly detection-based
systems [9]. However, monitoring of people with physical, cog-
nitive or aging issues is also important to improve their quality
of life and care. Therefore, as a trade-off, privacy-protecting
video modalities can fill that gap and be used in these settings
to save lives and improve patient care. Wearable devices face
compliance issues among certain populations, where people
may forget or in some cases refuse to wear them [10]. Some
of the privacy-protecting camera modalities that has been used
in the past for anomaly detection involving humans include
depth cameras [5], [11], thermal cameras [12], and infrared
cameras [13], [14]. While these modalities can partially or
fully obfuscate an individual’s identity, they require specialized
hardware or cameras and can be expensive to be used by general
population. Skeletons extracted from RGB camera streams using
pose estimation algorithms provide a suitable solution of privacy
protection over RGB and other types of cameras [15]. Skeleton
tracking only focuses on body joints and ignores facial identity,
full body scan or background information. The pixel-based fea-
tures in RGB videos that mask important information about the
scene are sensitive to noise resulting from illumination, viewing
direction and background clutter, resulting in false positives
when detecting anomalies [16]. Furthermore, due to redundant
information present in these features (e.g., background), there
is an increased burden on methods to model the change in those
areas of the scene rather than focus on the actions of humans in
the foreground. Extracting information specific to human actions
can not only provide a privacy-protecting solution, but can also
help to filter out the background-related noise in the videos
and aid the model to focus on key information for detecting
abnormal events related to human behaviour. The skeletons
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represent an efficient way to model the human body joint
positions over time and are robust to the complex background,
illumination changes, and dynamic camera scenes [17]. In ad-
dition to being privacy-protecting, skeleton features are com-
pact, well-structured, semantically rich, and highly descriptive
about human actions and motion [17]. Anomaly detection using
skeleton tracking is an emerging area of research as awareness
around privacy of individuals and their data grows. However,
skeleton-based approaches may not be sufficient for situations
that explicitly need facial information for analysis, including
emotion recognition [18], [19], pain detection [20] or remote
heart monitoring [21], to name a few.

In recent years, deep learning methods have been developed
to use skeletons for different applications, such as action recog-
nition [48], medical diagnosis [24], and sports analytics [49].
The use of skeletons for anomaly detection in videos is an under-
explored area, and concerted research is needed [24]. The human
skeletons can help in developing privacy-preserving solutions
for private dwellings, crowded/public areas, medical settings,
rehabilitation centers and long-term care homes to detect anoma-
lous events that impact health and safety of individuals. Use of
this type of approach could improve the adoption of video-based
monitoring systems in homes and residential settings. However,
there is a paucity of literature on understanding the existing tech-
niques that use skeleton-based anomaly detection approaches.
We identify this gap in the literature and present one of the
first surveys on the recent advancements in using skeletons for
anomaly detection in videos. We identified the major themes
in existing work and present a novel taxonomy that is based
on how these methods learn to detect anomalous events. We
also discuss the applications where these approaches were used
to understand their potential in bringing these algorithms in a
personal dwelling, or long-term care scenario.

II. LITERATURE SURVEY

We adopted a narrative literature review for this work. The
following keywords (and their combinations) were used to
search for relevant papers – skeleton, human pose, body pose,
body joint, anomaly detection, and video. These keywords were
searched on scholarly databases, including Google Scholar,
IEEE Xplore, Elsevier and Springer. We mostly reviewed papers
between year 2016 to 2023; therefore, the list may not be
comprehensive. In this review, we only focus on the recent
deep learning-based algorithms for skeletal video anomaly de-
tection and do not include traditional machine learning-based
approaches. There are works [50], [51] on detecting anomalous
behaviour using supervised approaches, however, it is outside
the scope of this review as it focuses on unsupervised anomaly
detection approaches. We did not adopt the systematic or scoping
review search protocol for this work; therefore, our literature
review may not be exhaustive. However, we tried our best to in-
clude the latest development in the field to be able to summarize
their potential and identify challenges. In this section, we provide
a survey of skeletal deep learning video anomaly detection
methods. We present a novel taxonomy to study the skele-
tal video anomaly approaches based on learning approaches

into four broad categories, i.e., reconstruction, prediction, their
combinations and other specific approaches. Table Iprovides a
summary of 29 relevant papers, based on the taxonomy, found
in our literature search. Unless otherwise specified, the values
in the last column of the table refer to AUC(ROC) values
corresponding to each dataset in the reviewed paper. Six papers
use reconstruction approach, six papers use prediction approach,
seven papers use a combination of reconstruction and prediction
approaches, five papers use a combination of reconstruction
and clustering approaches, and five papers use other specific
approaches.

A. Reconstruction Approaches

In the reconstruction approaches, generally, an autoencoder
(AE) or its variant model is trained on the skeleton information of
only normal human activities. During training, the model learns
to reconstruct the samples representing normal activities with
low reconstruction error. Hence, when the model encounters
an anomalous sample at test time, it is expected to give high
reconstruction error.

Gatt et al. [22] used Long Short-Term Memory (LSTM)
and 1-Dimensional Convolution (1DConv)-based AE models
to detect abnormal human activities, including, but not limited
to falls, using skeletons estimated from videos of a publicly
available dataset. Temuroglu et al. [23] proposed a skeleton
trajectory representation that handled occlusions and an AE
framework for pedestrian abnormal behaviour detection. The
pedestrian video dataset used in this work was collected by
the authors, where the training dataset was composed of nor-
mal walking, and the test dataset was composed of normal
and drunk walking. The pose skeletons were treated to handle
occlusions using the proposed representation and combined
into a sequence to train an AE. They compared the results of
occlusion-aware skeleton keypoints input with keypoints with-
out occlusion flags, keypoint image heatmaps and raw pedestrian
image inputs. The authors used average of recall and specificity
to evaluate the models due to the unbalanced dataset and found
that occlusion-aware input achieved the highest results. Suzuki
et al. [24] trained a Convolutional AE (CAE) on good gross
motor movements in children and detected poor limb motion as
an anomaly. Motion time-series images [52] were obtained from
skeletons estimated from the videos of kindergarten children
participants. The motion time-series images were fed as input
to a CAE, which was trained on only the normal data. The
difference between the input and reconstructed pixels was used
to localize the poor body movements in anomalous frames.
Jiang et al. [25] presented a message passing Gated Recurrent
Unit (GRU) encoder-decoder network to detect and localize the
anomalous pedestrian behaviours in videos captured at the grade
crossing. The field-collected dataset consisted of over 50 hours
of video recordings at two selected grade crossings with different
camera angles. The skeletons were estimated and decomposed
into global and local components before being fed as input to
the encoder-decoder network. The localization of the anomalous
pedestrians within a frame was done by identifying the skeletons
with reconstruction error higher than the empirical threshold.
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TABLE I
SUMMARY OF REVIEWED PAPERS

They manually removed wrongly detected false skeletons as
they claim that the wrong detection issue was observed at only
one grade crossing. However, an approach of manual removal
of false skeletons is impractical in many real world applications
where the data is very large, making the need of an automated
false skeleton identification and removal step imperative. In their

following work [26], the authors improved the performance of
detecting abnormal pedestrian behaviors at grade crossings us-
ing a generative adversarial network (GAN)-based framework.
Two LSTM-based branches within the generator were used to
analyze both local and global motion patterns simultaneously,
reconstructing the corresponding inputs in the temporal domain.
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The discriminator was a fully connected neural network and
produced a score representing the likelihood of inputs being
an anomaly. Fan et al. [27] proposed an anomaly detection
framework which consisted of two pairs of generator and dis-
criminator. The generators were trained to reconstruct the normal
video frames and the corresponding skeletons, respectively.
The discriminators were trained to distinguish the original and
reconstructed video frames and the original and reconstructed
skeletons, respectively. The video frames and corresponding
extracted skeletons served as input to the framework during
training; however, at test time, decision was made based on only
reconstruction error of video frames.

Challenges: AEs or their variants are widely used in many
video-based anomaly detection methods [5]. The choice of the
right architecture to model the skeletons is very important.
Further, being trained on the normal data, they are expected
to produce higher reconstruction error for the abnormal inputs
than the normal inputs, which has been adopted as a criterion
for identifying anomalies. However, this assumption does not
always hold in practice, that is, the AEs can generalize well
that it can also reconstruct anomalies well, leading to false
negatives [53].

B. Prediction Approaches

In prediction approaches, a network is generally trained to
learn the normal human behaviour by predicting the skeletons
at the next time step(s) using the skeletons representing normal
human actions at past time steps. During testing, the test samples
with high prediction errors are flagged as anomalies as the
network is trained to predict only the skeletons representing
normal actions.

Rodrigues et al. [28] suggested that abnormal human activities
can take place at different timescales, and the methods that
operate at a fixed timescale (frame-based or video-clip-based)
are not enough to capture the wide range of anomalies occurring
with different time duration. They proposed a multi-timescale
1DConv encoder-decoder network where the intermediate layers
were responsible to generate future and past predictions corre-
sponding to different timescales. The network was trained to
make predictions on normal activity skeletons input. The predic-
tion errors from all timescales were combined to get an anomaly
score to detect abnormal activities. Luo et al. [16] proposed
a spatio-temporal Graph Convolutional Network (GCN)-based
prediction method for skeleton-based video anomaly detection.
The body joints were estimated and built into skeleton graphs,
where the body joints formed the nodes of the graph. The spatial
edges connected different joints of a skeleton, and temporal
edges connected the same joints across time. A fully connected
layer was used at the end of the network to predict future skele-
tons. Zeng et al. [29] proposed a hierarchical spatio-temporal
GCN, where high-level representations encoded the trajectories
of people and the interactions among multiple identities while
low-level skeleton graph representations encoded the local body
posture of each person. The method was proposed to detect
anomalous human behaviours in both sparse and dense scenes.
The inputs were organized into spatio-temporal skeleton graphs

whose nodes were human body joints from multiple frames
and fed to the network. The network was trained on the in-
put skeleton graph representations of normal activities. Optical
flow fields and size of skeleton bounding boxes were used
to determine sparse and dense scenes. For dense scenes with
crowds, higher weights were assigned to high-level represen-
tations while for sparse scenes, the weights of low-level graph
representations were increased. During testing, the prediction
errors from different branches were weighted and combined
to obtain the final anomaly score. Fan et al. [30] proposed a
GRU feed-forward network that was trained to predict the next
skeleton using past skeleton sequences and a loss function that
incorporated the range and speed of the predicted skeletons.
Pang et al. [31] proposed a skeleton transformer to predict future
pose components in video frames and considered error between
predicted pose components and corresponding expected values
as anomaly score. They applied a multi-head self-attention
module to capture long-range dependencies between arbitrary
pairwise pose components and the temporal convolutional layer
to concentrate on local temporal information. Huang et al. [32]
proposed a spatio-temporal graph transformer to encode the
hierarchical graph embeddings of human skeletons for jointly
modeling the interactions between individuals and the corre-
lations among body joints within a single individual. Input to
the transformer was provided as global and local graphs. Each
node in the global graph encoded the speed of an individual
as well as the relative position and interaction relations be-
tween individuals. Each local graph encoded the pose of an
individual.

Challenges: In these methods, it is difficult to choose how far
in future (or past) the prediction should be made to achieve opti-
mum results. This could potentially be determined empirically;
however, in the absence of a validation set such solutions remain
elusive. The future prediction-based methods can be sensitive to
noise in the past data [54]. Any small changes in the past can
result in significant variation in prediction, and not all of these
changes signify anomalous situations.

C. Combinations of Learning Approaches

In this section, we discuss the existing methods that utilize
a combination of different learning approaches, namely, re-
construction and prediction approaches, and reconstruction and
clustering approaches.

1) Combination of Reconstruction and Prediction Ap-
proaches: Some skeletal video anomaly detection methods
utilize a multi-objective loss function consisting of both re-
construction and prediction errors to learn the characteristics
of skeletons signifying normal behaviour and identify skele-
tons with large errors as anomalies. Morais et al. [17] pro-
posed a method to model the normal human movements in
surveillance videos using human skeletons and their relative
positions in the scene. The human skeletons were decomposed
into two sub-components: global body movement and local
body posture. The global movement tracked the dynamics of
the whole body in the scene, while the local posture described
the skeleton configuration. The two components were passed as
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input to different branches of a message passing GRU single-
encoder-dual-decoder-based network. The branches processed
their data separately and interacted via cross-branch message
passing at each time step. Each branch had an encoder, a
reconstruction-based decoder and a prediction-based decoder.
The network was trained using normal data, and during testing,
a frame-level anomaly score was generated by aggregating
the anomaly scores of all the skeletons in a frame to identify
anomalous frames. In order to avoid the inaccuracy caused by
incorrect detection of skeletons in video frames, the authors left
out video frames where the skeletons cannot be estimated by
the pose estimation algorithm. Hence, the results in this work
was not a good representation of a real-world scenario, which
often consists of complex-scenes with occluding objects and
overlapping movement of people. Boekhoudt et al. [7] utilized
the network proposed by Morais et al. [17] for detecting hu-
man crime-based anomalies in videos using a newly proposed
crime-based video surveillance dataset. Similar to the work by
Morais et al. [17], Li and Zhang [33] proposed a dual branch
single-encoder-dual-decoder GRU network that was trained on
normal behaviour skeletons estimated from pedestrian videos.
The two decoders were responsible for reconstructing the input
skeletons and predicting future skeletons, respectively. However,
unlike the work by Morais et al. [17], there was no provision
of message passing between the branches. Li et al. [34] pro-
posed a single-encoder-dual-decoder architecture established on
a spatio-temporal Graph CAE (GCAE) embedded with a LSTM
network in hidden layers. The two decoders were used to recon-
struct the input skeleton sequences and predict the unseen future
sequences, respectively, from the latent vectors projected via the
encoder. The sum of maximum reconstruction and prediction er-
rors among all the skeletons within a frame was used as anomaly
score for detecting anomalous frames. Wu et al. [35] proposed a
GCN-based encoder-decoder architecture that was trained using
normal action skeleton graphs and keypoint confidence scores as
input to detect anomalous human actions in surveillance videos.
The skeleton graph input was decomposed into global and local
components. The network consisted of three encoder-decoder
pipelines: the global pipeline, the local pipeline and the con-
fidence score pipeline. The global and local encoder-decoder-
based pipelines learned to reconstruct and predict the global and
local components, respectively. The confidence score pipeline
learned to reconstruct the confidence scores. Further, a Support
Vector Data Description (SVDD)-based loss was employed
to learn the boundary of the normal action global and local
pipeline encoder output in latent feature space. The network
was trained using a multi-objective loss function, composed of
a weighted sum of skeleton graph reconstruction and prediction
losses, confidence score reconstruction loss and multi-center
SVDD loss. Luo et al. [36] proposed a single-encoder-dual-
decoder memory enhanced spatial-temporal GCAE network,
where spatial-temporal graph convolution was used to encode
discriminative features of skeleton graphs in spatial and temporal
domains. The memory module recorded patterns for normal
behaviour skeletons. Further, the encoded representation was
not fed directly into the reconstructing and predicting decoders
but was used as a query to retrieve the most relevant memory

items. The memory module was used to restrain the reconstruc-
tion and prediction capability of the network on anomalies. Li
et al. [37] proposed memory-augmented Wasserstein GAN with
gradient penalty to predict future human skeleton trajectories
from a given past and reconstruct the given past simultaneously.
While the discriminator attempted to fit the Wasserstein distance
between the distribution of real and generated samples, the
generator tried to minimize the Wasserstein distance to draw
the distribution of real and generated samples closer. A memory
module was applied in the generator to mitigate the strong
generalization ability.

2) Combination of Reconstruction and Clustering Ap-
proaches: Some skeletal video anomaly detection methods uti-
lize a two-stage approach to identify anomalous human actions
using spatio-temporal skeleton graphs. In the first pre-training
stage, a GCAE-based model is trained to minimize the recon-
struction loss on input skeleton graphs. In the second fine-tuning
stage, the latent features generated by the pre-trained GCAE en-
coder is fed to a clustering layer and a Dirichlet Process Mixture
model is used to estimate the distribution of the soft assignment
of feature vectors to clusters. Finally at the test time, the Dirichlet
normality score is used to identify the anomalous samples.
Markovitz et al. [38] identified that anomalous actions can be
broadly classified in two categories, fine and coarse-grained
anomalies. Fine-grained anomaly detection refers to detecting
abnormal variations of an action, e.g., abnormal type of walking.
Coarse-grained anomaly detection refers to defining particular
normal actions and regarding other actions as abnormal, such as
determining dancing as normal and gymnastics as abnormal.
They utilized a spatio-temporal GCAE to map the skeleton
graphs representing normal actions to a latent space, which was
soft assigned to clusters using a deep clustering layer. The soft-
assignment representation abstracted the type of data (fine or
coarse-grained) from the Dirichlet model. After pre-training of
GCAE, the latent feature output of the encoder and clusters were
fine-tuned by minimizing a multi-objective loss function con-
sisting of both the reconstruction loss and clustering loss. They
leveraged ShanghaiTech [55] dataset to test the performance of
their proposed method on fine-grained anomalies, and NTU-
RGB+D [56] and Kinetics-250 [57] datasets for coarse-grained
anomaly detection performance evaluation. Cui et al. [39] pro-
posed a semi-supervised prototype generation-based method
for video anomaly detection to reduce the computational cost
associated with graph-embedded networks. Skeleton graphs for
normal actions were estimated from the videos and fed as input
to a shift spatio-temporal GCAE to generate features. It was
not clear which pose estimation algorithm was used to estimate
the skeletons from video frames. The generated features were
fed to the proposed prototype generation module designed to
map the features to prototypes and update them during the
training phase. In the pre-training step, the GCAE and prototype
generation module were optimized using a loss function com-
posed of reconstruction loss and generation loss of prototypes.
In the fine-tuning step, the entire network was fine-tuned using a
multi-objective loss function, composed of reconstruction loss,
prototype generation loss and cluster loss. Later, Liu et al. [40]
used self-attention augmented graph convolutions for detecting
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abnormal human behaviours based on skeleton graphs. Skeleton
graphs were fed as input to a spatio-temporal self-attention
augmented GCAE and latent features were extracted from the
encoder part of the trained GCAE. After pre-training of GCAE,
the entire network was fine-tuned using a multi-objective loss
function consisting of both the reconstruction loss and clustering
loss. Chen et al. [41] proposed a multiscale spatial temporal
attention GCN, which included an encoder to extract features, a
reconstruction decoder branch to optimize encoder, and a clus-
tering layer branch to obtain anomaly scores. During training,
the decoder is used to optimize the encoder by minimizing
the reconstruction error. However, during testing, the decoder
is discarded, and only the clustering layer is used to generate
the anomaly score. It used three scales of human skeleton
graphs, namely, joint, part and limb. Spatial attention graph
convolution operation was carried out on each scale, and the
output features of three scales were weighted and summed
to constitute the multiscale skeleton features. Yan et al. [42]
proposed a deep memory storage clustering method based on
GCAE to implement the real-time updating of pseudo-labels
and network parameters. It consisted of a feature extraction,
autoencoder, clustering, memory storage, self-supervision and
scoring modules. The feature extraction module [38] and the
autoencoder module were used to form the reconstructed pose
sequence. The reconstructed sequence was then sent to the mem-
ory storage module for storage, and the soft cluster assignment
was performed on each sample through the k-means clustering
method [58]. The autoencoder, clustering, and memory storage
modules were used to update the pseudo-labels and network
parameters iteratively.

Challenges: The combination-based methods can carry the
limitations of the individual learning approaches, as de-
scribed in Section II-A and II-B. Further, in the absence
of a validation set, it is difficult to determine the optimum
value of combination coefficients in a multi-objective loss
function.

D. Other Approaches

This section discusses the methods that leveraged a pre-
trained deep learning model to encode latent features from the
input skeletons and used approaches such as, clustering and
multivariate gaussian distribution, in conjunction for detecting
human action-based anomalies in videos.

Yang et al. [43] proposed a two-stream fusion method to detect
anomalies pertaining to body movement and object positions.
YOLOv3 [59] was used to detect people and objects in the video
frames. Subsequently, skeletons were estimated from the video
frames and passed as input to a spatio-temporal GCN, followed
by a clustering-based fully connected layer to generate anomaly
scores for skeletons. The information pertaining to the bounding
box coordinates and confidence score of the detected objects was
used to generate object anomaly scores. Finally, the skeleton
and object normality scores were combined to generate the final
anomaly score for a frame. Nanjun et al. [45] used the skeleton
features estimated from the videos for pedestrian anomaly detec-
tion using an iterative self-training strategy. The training set con-
sisted of unlabelled normal and anomalous video sequences. The

skeletons were decomposed into global and local components,
which were fed as input to an unsupervised anomaly detector,
iForest [60], to yield the pseudo anomalous and normal skeleton
sets. The pseudo sets were used to train an anomaly scoring
module, consisting of a spatial GCN and fully connected layers
with a single output unit. As part of the self-training strategy,
new anomaly scores were generated using previously trained
anomaly scoring module to update the membership of skeleton
samples in the skeleton sets. The scoring module was then re-
trained using updated skeleton sets, until the best scoring model
was obtained. However, the paper doesn’t discuss the criteria to
decide the best scoring model. Tani and Shibata [46] proposed
a framework for training a frame-wise Adaptive GCN (AGCN)
for action recognition using single frame skeletons and used the
features extracted from the AGCN to train an anomaly detection
model. As part of the proposed framework, a pretrained action
recognition model [61] was used to identify the frames with
large temporal attention in the Kinetics-skeleton dataset [62]
as the action frames to train the AGCN. Further, the trained
AGCN was used to extract features from the normal behaviour
skeletons identified in the ShanghaiTech Campus dataset [17]
to model a multivariate gaussian distribution. During testing,
the Mahalanobis distance was used to calculate the anomaly
score under the multivariate gaussian distribution. Sato et al. [47]
proposed a user prompt-guided zero-shot learning framework
for the detection of abnormal human behaviour events. A multi-
layer perceptron feature extractor was pretrained on large-scale
action recognition datasets [63], [64] using contrastive learning
between the skeleton features and the text embeddings extracted
from action class names. The distribution of skeleton features of
the normal actions was modeled during training while freezing
the weights of feature extractor. During inference, the anomaly
score was computed using distribution and the text prompts of an
unseen action. Javed et al. [44] proposed a unified framework for
learning suitable frames of interest to cut down on redundant data
and a two-stream feature block with a hyper-gated fusion model
to take advantage of skeleton graph and video frame features.
Soft assignments were later processed through a clustering
layer, where probabilities were assigned to the instances and
a normality score was calculated using the Dirichlet Process
Mixture model [65].

Challenges: The performance of these methods rely on the
pre-training strategy of the deep learning models used to learn
the latent features and the choice of training parameters for the
subsequent machine learning models.

III. DISCUSSION

This section leverages Table I and synthesizes the information
and trends that can be inferred from the existing work on skeletal
video anomaly detection.

A. Datasets

ShanghaiTech [55] and CUHK Avenue [66] were the most
frequently used video datasets to evaluate the performance of the
skeletal video anomaly detection methods. The ShanghaiTech
dataset has videos of people walking along a sidewalk of the
ShanghaiTech university and anomalous frames contain bikers,
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TABLE II
CHARACTERISTICS OF SKELETAL VIDEO ANOMALY DETECTION DATASETS

Fig. 1. One normal and one anomalous frame from each of the skeletal video anomaly detection datasets.

skateboarders and people fighting. It has 330 training videos
and 107 test videos. However, not all the anomalous activities
are related to humans. A subset of the ShanghaiTech dataset
that contained anomalous activities only related to humans was
termed as HR ShanghaiTech and was used in many papers. The
CUHK Avenue dataset consists of short video clips looking at
the side of a building with pedestrians walking by it. Concrete
columns that are part of the building cause some occlusion.
The dataset contains 16 training videos and 21 testing videos.
The anomalous events comprise of actions such as “throwing
papers’, “throwing bag’, “child skipping’, “wrong direction’ and
“bag on grass’. Similarly, a subset of the CUHK Avenue dataset
containing anomalous activities only related to humans, called

HR Avenue, has been used to evaluate the methods. Other video
datasets that have been used include UTD-MHAD [69],
UMN [68], UCSD Pedestrian [6], IITB-Corridor [28],
UCF-Crime [67], HR Crime [7], NTU-RGB+D [56],
RWF-2000 [70] and Kinetics-250 [57]. Table II presents a
summary of the characteristics of these datasets and Fig. 1
presents one normal and one anomalous frame from these
datasets. Among the datasets used in the reviewed papers, some
of the datasets were originally not meant for but instead adopted
for the task of video anomaly detection. Hence, we only provide
details for the datasets that were originally meant for video
anomaly detection in Table II and Fig. 1. From the type of
anomalies present in these datasets, it can be inferred that the
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existing skeletal video anomaly detection methods have been
evaluated mostly on individual human action-based anomalies.
Hence, it is not clear how well can they detect anomalies that
involve interactions among multiple individuals or interactions
among people and objects.

B. Number of People in the Scene

Most of the papers (27 out of 29), detected anomalous human
actions for multiple people in the video scene. Other two papers
detected irregular body postures and poor body movements in
children, respectively, for single person in the video scene. The
usual approach was to estimate the skeletons for the people in the
scene using a pose estimation algorithm, and calculate anomaly
scores for each of the skeletons. The maximum anomaly score
among all the skeletons within a frame was used to identify the
anomalous frames. A single video frame could contain multiple
people, among which not all of them were performing anoma-
lous actions. Hence, taking the maximum anomaly score of all
the skeletons helped to nullify the effect of people with normal
actions on the final decision for the frame. Further, calculating
anomaly scores for individual skeletons helped to localize the
source of anomaly within a frame.

C. Fields of Application

The definition of anomalous human behaviours can differ
across various applications. While most of the existing papers
focused on detecting anomalous human behaviours in general,
five papers focused on detecting anomalous behaviours for
specific applications, including drunk walking [23], poor body
movements in children [24], abnormal pedestrian behaviours at
grade crossings [25], [26] and crime-based anomalies [7]. More-
over, the nature of anomalous behaviours can vary depending
upon various factors, such as span of time, crowded scenes,
and specific action-based anomalies. Some papers identified
and addressed the need to detect specific types of anomalies,
namely, multi-timescale anomalies occurring over different time
duration [28], anomalies in both sparse and crowded scenes [29],
fine and coarse-grained anomalies [38] and body movement and
object position anomalies [43].

D. Choice of Pose Estimation Algorithm

Alphapose [71] and Openpose [72] were the most common
choice of pose estimation algorithm for extraction of skeletons
for the people in the scene. Other pose estimation methods that
have been used were Posenet [73], PPN [74] and HRNet [75].
However, in general, the papers did not provide any rationale
behind their choice of the pose estimation algorithm.

E. Model Type

The type of models used in the papers can broadly be
divided into two types, sequence-based and graph-based mod-
els. The sequence-based models that have been used include
1DConv-AE, LSTM-AE, GRU, and Transformer. These models
treated skeleton keypoints for individual people across multiple
frames as time series input. The graph-based models that have

been used involve GCAE and GCN. The graph-based models
received spatio-temporal skeleton graphs for individual people
as input. The spatio-temporal graphs were constructed by con-
sidering body joints as the nodes of the graph. The spatial edges
connected different joints of a skeleton, and temporal edges
connected the same joints across time.

F. Evaluation Metrics

The choice of a suitable threshold for anomaly detection can
vary across different applications as most applications come with
different costs for false alarms and missed anomalies [76], [77].
As such, having a metric capable of evaluating the performance
of anomaly detection methods across diverse application scenar-
ios, or equivalently, across a wide array of decision thresholds
is highly desirable. The Area Under Curve (AUC) of Receiver
Operating Characteristic (ROC) curve computes the fraction of
detected anomalies, averaged over the full range of decision
thresholds. It is the standard evaluation measure used in anomaly
detection [76] and also the most common metric used to evaluate
the performance among the existing skeletal video anomaly
detection methods. The highest AUC(ROC) values reported for
the commonly used ShanghaiTech [55] and CUHK Avenue [66]
datasets across different methods in Table I were 0.83 and 0.92,
respectively. A direct comparison may not be possible due to the
difference in the experimental setup and train-test splits across
the reviewed methods; however, it gives some confidence on
the viability of these approaches for skeletal video anomaly
detection. Other performance evaluation metrics include F score,
accuracy, Equal Error Rate (EER) and AUC of Precision-Recall
(PR) Curve. EER signifies the percentage of misclassified frames
when the false positive rate equals to the miss rate on the ROC
curve. While AUC(ROC) can provide a good estimate of the
classifier’s performance over different thresholds, it can be mis-
leading in case the data is imbalanced [78]. In anomaly detection
scenario, it is common to have imbalance in the test data, as the
anomalous behaviours occur infrequently, particularly in many
medical applications [79], [80]. The AUC(PR) value provides
a good estimate of the classifier’s performance on imbalanced
datasets [78]; however, only one of the papers used AUC(PR)
as an evaluation metric.

IV. CHALLENGES

A. Pose Estimation Algorithms

In general, the efficiency of the skeletal video anomaly de-
tection algorithms depends upon the accuracy of the skeletons
estimated by the pose-estimation algorithm. If the pose estima-
tion algorithm misses certain joints or produces artifacts in the
scene, then it can increase the number of false alarms. There are
various challenges associated with estimating skeletons from
video frames [81]: (i) complex body configuration causing self-
occlusions and complex poses, (ii) diverse appearance, including
clothing, and (iii) complex environment with occlusion from
other people in the scene, various viewing angles, distance from
camera and truncation of parts in the camera view. This can lead
to a poor approximation of skeletons and can negatively impact



MISHRA et al.: SKELETAL VIDEO ANOMALY DETECTION USING DEEP LEARNING 1081

Fig. 2. Openpose (top row) and alphapose (bottom row) output on different datasets.

the performance of the anomaly detection algorithms. Further,
there is an associated high cost of powerful hardware required
for extracting skeletons using deep learning methods. Methods
have been proposed to address some of these challenges [82],
[83]; however, extracting skeletons in complex environments
remains a difficult problem. The two most commonly used pose
estimation algorithms in the reviewed papers are Openpose [72]
and Alphapose [71]. Multi-person pose estimation can be cate-
gorized into top-down and bottom-up methods [81]. Top-down
methods [71], [84] usually employ human detectors to obtain
bounding boxes for humans in the input frame and then utilize
existing single-person pose estimators to predict body joints.
This method highly depends upon the precision of human detec-
tion algorithms, and the run-time is proportional to the number
of persons in the input frame. Bottom-up methods [72] directly
approximate all the body joints of all the humans in the input
frame and assemble them into individual skeletons. However,
the grouping of joints in a complex scene is a challenging task.
Openpose is a bottom-up method and Alphapose is a top-down
method. Fig. 2 presents the skeleton output of openpose and
alphapose on different dataset frames. Some of the existing
methods manually remove inaccurate and false skeletons [17],
[25] to train the model, which is impractical in many real-world
applications where the amount of available data is very large.
There is a need for an automated false skeleton identification
and removal step when estimating skeletons from videos.

B. Types of Anomalies

The anomalous human behaviours of interest and their dif-
ficulty of detection can vary depending upon the definition of
anomaly, application, time span of the anomalous actions, and
presence of single/multiple people in the scenes. For example, in
the case of driver anomaly detection application, the anomalous
behaviours can include talking on the phone, dozing off or
drinking [14]. The anomalous actions can span over different
time lengths, ranging from few seconds to hours or days, e.g.,
jumping and falls [85] are short-term anomalies, while loitering
and social isolation [86] are long-term events. More focus is
needed on developing methods that can identify both short and
long-term anomalies. Sparse scene anomalies can be described
as anomalies in scenes with less number of humans, while dense

scene anomalies can be described as anomalies in crowded
scenes with a large number of humans [29]. It is comparatively
difficult to identify anomalous behaviours in dense scenes than
sparse scenes due to tracking multiple people and finding their
individual anomaly scores [17]. Thus, there is a need to develop
methods that can effectively identify both sparse and dense scene
anomalies. With the development of algorithms for handling dif-
ferent types of anomalies, there is a need for datasets composed
of the specific type of anomalies to ensure efficient training
and evaluation. This can be handled by either having separate
datasets for specific types of anomalies or general datasets with
a distribution of multiple types of anomalies.

C. Hardware

The skeletons collected using Microsoft Kinect (depth) cam-
era has been used in the past studies [87], [88]. However, the
defunct production of the Microsoft Kinect camera [89] has
led to hardware constraints in the further development of skele-
tal anomaly detection approaches. Other commercial products
include Vicon [90] with optical sensors and TheCaptury [91]
with multiple cameras. But they function in very constrained
environments or require special markers on the human body.
New cameras, such as ‘Sentinare 2’ from AltumView [92],
circumvent such hardware requirements by directly processing
videos on regular RGB cameras and transmitting skeletons
information in real-time.

D. Tracking Skeletons

The existing approaches for skeletal video anomaly detec-
tion involve spatio-temporal skeleton graphs [16] or temporal
sequences [17], which are constructed by tracking an individual
across multiple frames. However, this is challenging in scenarios
where there are multiple people within a scene. The entry and
exit of people in the scene, overlapping of people during move-
ment and presence of occluding objects make tracking people
across frames a very challenging task.

E. Choice of Threshold

There can be deployment issues in these methods because
the choice of threshold is not clear. In the absence of any
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validation set (containing both normal and unseen anomalies)
in an anomaly detection setting, it is very hard to fine-tune
an operating threshold using just the training data (comprising
of normal activities only). To handle these situations, outliers
within the normal activities can be used as a proxy for unseen
anomalies [85], [93]; however, inappropriate choices can lead to
increased false alarms or missed alarms. Domain expertise can
be utilized to adjust a threshold, which may not be available in
many cases.

F. Decision Granularity

There is a need to address the challenges associated with
the granularity and the decision-making time of the skeletal
video anomaly detection methods for real-time applications. The
existing methods mostly output decisions on a frame level, which
becomes an issue when the input to the method is a real-time
continuous video stream at multiple frames per second. This
can lead to alarms going off multiple times a second, which can
be counter-productive. One solution is for the methods to make
decisions on a time-window basis, each window of length of a
specified duration. However, this brings in the question about
the optimal length of each decision window. A short window
is impractical as it can lead to frequent and repetitive alarms,
while a long window can lead to missed alarms, and delayed
response and intervention. Domain knowledge can be used to
make a decision about the length of decision windows.

V. FUTURE DIRECTIONS

Skeletons can be used in conjunction with optical flow [94]
to develop privacy-protecting approaches to jointly learn from
temporal and structural modalities. Approaches based on feder-
ated learning (that do not combine individual data, but only the
models) can further improve the privacy of these methods [95].
Segmentation masks [96] can be leveraged in conjunction with
skeletons to occlude humans while capturing the information
pertaining to scene and human motion to develop privacy-
protecting anomaly detection approaches.

The skeletons signify motion and posture information for the
individual humans in the video; however, they lack information
regarding human-human and human-object interactions. Infor-
mation pertaining to interaction of the people with each other
and the objects in the environment is important for applications
such as, violence detection [7], theft detection [7] and agitation
detection [80] in care home settings. Skeletons can be used
to replace the bodies of the participants, while keeping the
background information in video frames [97] to analyze both
human-human and human-object interaction anomalies. Further,
object bounding boxes can be used in conjunction with human
skeletons to model human-object interaction while preserving
the privacy of humans in the scene. The information from
other modalities (e.g. wearable devices) along with skeleton
features can be used to develop multi-modal anomaly detection
methods to improve the detection performance. Further, the
generated embeddings of relevant supervised approaches [98],
[99] can be used to fine tune skeletal video anomaly detection
models.

As can be seen in Table I, the existing skeletal video anomaly
detection methods and available datasets focus towards detecting
irregular body postures [16], and anomalous human actions [31]
in mostly outdoor settings, and not in proper healthcare settings,
such as personal homes and long-term care homes. This a gap
towards real world deployment, as there is a need to extend
the scope of detecting anomalous behaviours using skeletons
to in-home and care home settings, where privacy is a very
important concern. This can be utilized to address important ap-
plications, such as fall detection [100], agitation detection [80],
[97], and independent assistive living. This will help to develop
supportive homes and communities and encourage autonomy
and independence among the increasing older population and
dementia residents in care homes. While leveraging skeletons
helps to get rid of facial identity and appearance-based infor-
mation, it is important to ask the question if skeletons can be
considered private enough [101], [102] and what steps can be
taken to further anonymize the skeletons. Another potential area
of investigation for real-world deployment of privacy-protecting
anomaly detection systems would be to perform video data
acquisition, skeletal tracking (e.g., MediaPipe [103]) and model
inferencing in real-time. However, there may be challenges
around integrating cloud services, on-chip embedding of AI
algorithms, the latency of reaction time, internet stability and
false positive rates.

VI. CONCLUSION

In this paper, we provided a survey of recent works that
leverage the skeletons or body joints estimated from videos
for the anomaly detection task. The skeletons hide the facial
identity and overall appearance of people and can provide vital
information about joint angles [104], speed of walking [105],
and interaction with other people in the scene [17]. Our litera-
ture review showed that many deep learning-based approaches
leverage reconstruction, prediction error and their other combi-
nations to successfully detect anomalies in a privacy protecting
manner. This review suggests the first steps towards increasing
adoption of devices (and algorithms) focused on improving
privacy in a residential or communal setting. It will further
improve the deployment of anomaly detection systems to im-
prove the safety and care of people. The skeleton-based anomaly
detection methods can be used to design privacy-preserving
technologies for the assisted living of older adults in a care
environment [106] or enable older adults to live independently
in their own homes to cope with the increasing cost of long-term
care demands [107]. Privacy-preserving methods using skeleton
features can be employed to assist with skeleton-based rehab
exercise monitoring [108] or in social robots for robot-human
interaction [109] that assist older people in their activities of
daily living.
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