
206 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

Super Neurons
Serkan Kiranyaz , Senior Member, IEEE, Junaid Malik , Mehmet Yamac , Mert Duman , Ilke Adalioglu ,

Esin Guldogan, Turker Ince , and Moncef Gabbouj , Fellow, IEEE

Abstract—Self-Organized Operational Neural Networks (Self-
ONNs) have recently been proposed as new-generation neural net-
work models with nonlinear learning units, i.e., the generative neu-
rons that yield an elegant level of diversity; however, like its prede-
cessor, conventional Convolutional Neural Networks (CNNs), they
still have a common drawback: localized (fixed) kernel operations.
This severely limits the receptive field and information flow between
layers and thus brings the necessity for deep and complex models.
It is highly desired to improve the receptive field size without in-
creasing the kernel dimensions. This requires a significant upgrade
over the generative neurons to achieve the “non-localized kernel
operations” for each connection between consecutive layers. In this
article, we present superior (generative) neuron models (or super
neurons in short) that allow random or learnable kernel shifts and
thus can increase the receptive field size of each connection. The ker-
nel localization process varies among the two super-neuron models.
The first model assumes randomly localized kernels within a range
and the second one learns (optimizes) the kernel locations during
training. An extensive set of comparative evaluations against con-
ventional and deformable convolutional, along with the generative
neurons demonstrates that super neurons can empower Self-ONNs
to achieve a superior learning and generalization capability with a
minimal computational complexity burden. PyTorch implementa-
tion of Self-ONNs with super-neurons is now publically shared.

Index Terms—Convolutional neural networks, generative
neurons, non-localized kernels, operational neural networks,
receptive field.

I. INTRODUCTION

G ENERALIZED Operational Perceptrons (GOPs) [1], [2],
[3], [4], [5] have been proposed as an advanced model of

biological neurons with varying nonlinear synaptic connections.
Thanks to such a diverse neuron model, GOPs have achieved
a superior learning capability on many challenging problems
surpassing conventional Multi-Layer Perceptrons (MLPs) and

Manuscript received 5 January 2023; revised 5 April 2023 and 20 June 2023;
accepted 22 July 2023. Date of publication 9 October 2023; date of current
version 23 January 2024. (Corresponding author: Serkan Kiranyaz.)

Serkan Kiranyaz is with the Electrical Engineering, College of Engineering,
Qatar University, Doha 2713, Qatar (e-mail: mkiranyaz@qu.edu.qa).

Junaid Malik, Mert Duman, Ilke Adalioglu, and Moncef Gabbouj are with the
Department of Computing Sciences, Tampere University, 33100 Tampere, Fin-
land (e-mail: junaid.malik@tuni.fi; mert.duman@tuni.fi; ilke.adalioglu@tuni.fi;
Moncef.gabbouj@tuni.fi).

Mehmet Yamac is with the Huawei Technologies Oy, 00620 Helsinki, Finland
(e-mail: mehmet.yamac@huawei.com).

Turker Ince is with the Electrical & Electronics Engineering De-
partment, Izmir University of Economics, 35330 İzmir, Turkey (e-mail:
turker.ince@izmirekonomi.edu.tr).

Esin Guldogan is with the Microsoft, 02150 Espoo, Finland (e-mail: esingul-
dogan@microsoft.com).

The optimized PyTorch implementation of Self-ONNs with super neurons is
publically shared in GitHub, https://github.com/MertDuman/sonn and also in
http://selfonn.net/.

Digital Object Identifier 10.1109/TETCI.2023.3314658

even Extreme Learning Machines (ELMs) with a significant
performance gap [1], [2], [3], [4], [5]. Following the GOPs’
main philosophy, Operational Neural Networks (ONNs) [6], [7],
[8], [9] have outperformed CNNs significantly, and achieved a
notable learning performance, even on those problems where
CNNs entirely fail. Yet, ONNs have the following limitations:
1) strict dependability to the operators in the operator set li-
brary, 2) requiring a prior search for the best operator set
for each layer/neuron which can be highly time-consuming.
Self-organized ONNs (Self-ONNs) [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21] have recently been pro-
posed to address these drawbacks with the generative neuron
model, which can optimize the nodal operators of each kernel
element. Such a capability indeed yields an ultimate neuron
heterogeneity that is far superior to what conventional ONNs can
offer. Generative neurons can, therefore, replace the traditional
“weight optimization” of convolutional neurons with the “nodal
function optimization” process. However, their kernels are still
“localized” or static, and hence each neuron’s receptive field
size is determined by its kernel size, and this severely limits the
amount of information acquired from the previous layer with
such limited and localized kernels. Obviously, using a larger
kernel size may be a solution for this; however, it will not only
create an increasing complexity issue, but it is also not feasible
to determine the optimal kernel size for each connection of the
neuron. The aim, therefore, should be to improve the receptive
field of each kernel connection by allowing each kernel location
to vary while keeping the kernel size the same. Moreover, it
would be more beneficial “to learn” or to optimize each kernel
location for each connection to the feature maps in the previous
layer.

The most prominent approach ever proposed to improve the
receptive field size was deformable CNNs [22], [23]. However,
the improvements over the regular convolutions were limited
or simply none because the kernels of each layer have to be
deformed in the same way. Therefore, it is rather a “relocation”
operation over each kernel element rather than improving the
receptive field size. Furthermore, deformable convolutions fur-
ther increase the network complexity (number of parameters)
and especially the memory overhead significantly. This is why
deformable neurons are usually used in only one or a few layers
of a (deep) CNN.

To address the aforementioned limitations and drawbacks,
the novel and significant contributions of this study can be
summarized as follows:
� To accomplish the aim of improving the receptive field

size with varying kernel locations, and even optimizing

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1551-3397
https://orcid.org/0000-0002-2750-4028
https://orcid.org/0000-0002-1681-6931
https://orcid.org/0000-0001-7593-6119
https://orcid.org/0009-0007-0858-1873
https://orcid.org/0000-0002-8495-8958
https://orcid.org/0000-0002-9788-2323
mailto:mkiranyaz@qu.edu.qa
mailto:junaid.malik@tuni.fi
mailto:mert.duman@tuni.fi
mailto:ilke.adalioglu@tuni.fi
mailto:Moncef.gabbouj@tuni.fi
mailto:mehmet.yamac@huawei.com
mailto:turker.ince@izmirekonomi.edu.tr
mailto:esinguldogan@microsoft.com
mailto:esinguldogan@microsoft.com
https://github.com/MertDuman/sonn
http://selfonn.net/

KIRANYAZ et al.: SUPER NEURONS 207

each kernel location, this study proposes a superior gen-
erative neuron model (i.e., super neurons in short) with
non-localized kernel operations for Self-ONNs.

� In this article, we propose two super neuron models, each of
which has a different kernel localization process: i) random
localization within a bias range set for each layer, ii) BP-
optimized locations of each kernel.

� While the first model randomly distributes the kernels in a
certain “receptive field, the second model simultaneously
optimizes kernel location and parameters. This study will
reveal the pros and cons of both super neuron models when
compared against the generative and convolutional neurons
over several challenging problems.

� Finally, an extensive set of experiments reveals that Self-
ONNs with super neurons can outperform equivalent or
significantly deeper CNNs in many challenging problems.

The rest of the article is organized as follows: Section II
will briefly present Self-ONNs with generative neurons while
the details of the BP training are presented in Appendix A.
Section III presents the two super neuron models with non-
localized kernel operations in detail and formulates the forward-
propagation (FP) and back-propagation (BP). Comparative eval-
uations among Self-ONNs with generative and super neurons
and CNNs over challenging problems are presented in both
Section IV and Appendix C. The computational complexity
analysis of these networks for both FP and BP is also presented in
Section IV. Finally, Section V concludes the article and suggests
topics for future research.

II. SELF-ORGANIZED OPERATIONAL NEURAL NETWORKS

In biological neurons, during the learning process, the neuro-
chemical characteristics and connection strengths of the synaptic
connections are altered, giving rise to new connections and
modifying the existing ones. Inspired by this a generative-neuron
model for Self-ONNs is formed where each kernel can have a
distinct nonlinear nodal-operator generated (optimized) during
training without any restrictions. As a result, each kernel element
of each generative neuron can “customize” its nodal operator
to maximize the learning performance. Both convolutional and
operational neurons have static (fixed) nodal operators (linear
and harmonic, respectively) while the generative neuron has
any arbitrary nodal function, Ψ, (including possibly standard
functions such as linear and harmonic functions) for each kernel
element of each connection.

The input map of the ith neuron at the layer l+1, xl+1
i for

conventional ONNs is composed as follows:

xl+1
i = bl+1

i +

Nl∑
k=1

oper2D
(
ylk, w

l+1
ik ,′ NoZeroPad′

)

xl+1
i (m,n)

∣∣(M−1,N−1)

(0,0)
= bl+1

i

+

Nl−1∑
i=1

(
P l+1
i

[
Ψl+1

i

(
ylk (m,n) , wl+1

ik (0, 0)
)
, . . . ,

Ψl+1
i

(
ylk (m+ r, n+ t) , wl+1

ik (r, t)
)
, . . .

])

(1)

where ylk are the final output maps of the previous layer
neurons operated with the corresponding kernels, wl+1

ik , with
a particular nodal function, Ψl+1

i such as linear (multiplica-
tion), sinusoid, exponential, Gaussian, chirp, Hermitian, etc.
A close look at (1) reveals the fact that when the pool op-
erator is a summation, i.e., P l+1

i = Σ, and the nodal opera-
tor is a linear function, Ψl+1

i (ylk(m+ r, n+ t), wl+1
ik (r, t)) =

ylk(m+ r, n+ t) × wl+1
ik (r, t), for all neurons, then the re-

sulting homogenous ONN will be identical to a CNN. Hence,
ONNs are a superset of CNNs as the GOPs are a superset of
Multi-layer Perceptrons (MLPs). Self-ONNs differ from ONNs
by the following two points:

1) each “fixed-in-advance” nodal operator function with
a scalar kernel element, Ψl+1

i (ylk(m+ r, n+ t), wl+1
ik

(r, t)), is approximated by the composite nodal opera-
tor, Ψ(ylk(m+ r, n+ t),wl+1

ik (r, t)), as expressed by the
Maclaurin series,

2) the scalar kernel parameter, wl+1
ik (r, t), of the kernel of

an ONN neuron, is replaced by a Q-dimensional array,
wl

ik(r, t).
In this way, any nodal operator function can be approximated

by the Maclaurin series near the origin as follows:

Ψ
(
y,wl+1

ik (r, t)
)
= wl+1

ik (r, t, 0)

+ wl+1
ik (r, t, 1) y + wl+1

ik (r, t, 2) y2

+ . . .+ wl+1
ik (r, t, Q) yQ (2)

wherewl+1
ik (r, t, q) = f(q)(0)

q! is the qth coefficient of the Q-order

polynomial. During BP training, eachwl+1
ik (r, t, q) is optimized

for the learning problem at hand. Thanks to this ability, there is
no need for any operator search for Self-ONNs and arbitrary
nodal operators can be customized by the training process This
results in enhanced flexibility and diversity over an ONN neuron
where only a standard nodal operator function has to be used for
all kernels, each connected to an output map of a neuron in the
previous layer.

Table I presents the formula abbreviations and mathematical
symbols used in this article. Back-Propagation (BP) training for
Self-ONNs1 is briefly formulated in Appendix A and further
details can be obtained from [10].

III. SUPER NEURONS WITH NON-LOCALIZED KERNEL

OPERATIONS

The starting point of this study is the generative neuron
model of Self-ONNs [10]. Like its predecessors, ONNs, and
CNNs, each kernel connection of a generative neuron to the
previous layer output maps is localized, i.e., for a pixel located
at (m,n) in a neuron at the current layer, all kernels are located
(centered) at the same location over the previous layer output
maps. Fig. 1 (bottom-left) illustrates this with 3× 3 kernels
where a pixel of the ith neuron in layer l+1, xl+1

i (m,n), is
computed using the 9 pixels of the previous layer output maps,

1The optimized PyTorch implementation of Self-ONNs with generative and
super neurons is publicly shared in http://selfonn.net/.

http://selfonn.net/

208 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

Fig. 1. Localized (top) vs. non-localized kernel operations (bottom) to create the pixel, xl+1
i (m,n), from the output maps of the previous layer neurons. At the

(bottom) right, randomly localized (uniformly distributed) kernels within a spatial bias range of Γ = 4 are shown. At the (bottom) left, the BP-optimized locations
of each kernel during a BP epoch with bias gradients, (Δαi

k,Δβi
k) (yellow vectors) are illustrated.

ylk(m+ r, n+ t) ∀r, t ∈ [−1, 1], for∀k ∈ [1, Nl] operated with
the kernels centered at the same location, (m,n), given that Nl

is the number of neurons in the previous layer, l. This gives rise
to an obvious limitation since such a static kernel is blinded to
the neighboring pixels outside of the kernel boundaries, ∀r, t ∈
[−1, 1] which may have the potential to contribute to the input
pixel, and hence should not be excluded. This study provides two
feasible solutions by proposing two super neuron models with
non-localized kernel operations as illustrated at the bottom of
the figure. We define two additional parameters, (αi

k, β
i
k) as the

spatial bias, that is the shift of the kernel from the pixel location,
(m,n), towards x- and y-direction. The spatial bias is, therefore,
defined for each kernel for both super-neuron models, i.e., in
Fig. 1, for the first model, the bottom-left illustration shows the
shifted kernel locations for the ith neuron input map at layer l+1
connected to the kth output neuron at layer l, and the bias values
are [αi

k, β
i
k] ∈ Z[±Γ] where the maximum range is determined

by the hyperparameter,Γ = 4pixels. Therefore, all3× 3kernels
are randomly located within a bias range of [−4, 4], and thus, all

pixels within the region of 11×11 pixels can contribute. In the il-
lustration, different colored kernels are for different connections
and their corresponding bias values within the 11 × 11 region
(the outer, red-dashed square) are randomly set in advance. For
instance, the bias for the 1st connection (black) is, αi

1 = 4, βi
1 =

3 pixels whereas for the 3rd connection (red), it isαi
3 = 0, βi

3 = 0,
respectively.

Finally, for the second model, the illustration at the bottom-
right shows the shifted kernel locations by the real-valued bias,
(αi

k, β
i
k) ∈ R[±Γ]. For this super-neuron model, the bias is iter-

atively optimized during BP training along with other network
parameters. At the end of the training, the bias will converge to
a (local) optimum point. So, the bottom-right illustration only
shows instantaneous localizations of the kernels at a particular
BP iteration.

To formulate a non-localized kernel for the ith neuron in layer
l+1, connected to the kth neuron in layer l with a bias in x- and
y-directions, αi

k and βi
k, respectively, we will instead shift the

output feature map in the previous layer in the opposite direction.

KIRANYAZ et al.: SUPER NEURONS 209

TABLE I
FORMULA ABBREVIATIONS AND DESCRIPTIONS

For this purpose, letT(αi
k,β

i
k) be the shift operator over ylk by the

bias, [αi
k, β

i
k]. First, we can perform the (opposite direction) shift

to obtain,ylk(m+ αi
k, n+ βi

k) and then operate with the original
Kx × Ky kernel, wl+1

ik in a localized manner as expressed in
(3). For generative neurons of Self-ONNs recall that Ψ is the
composite nodal function which is the Qth order Mac-Laurin
series. Over the 1D array of kernel elements, wl+1

ik (r, t), Ψ
is expressed in (4) where the DC bias term, wl+1

ik (r, t, 0), is
omitted. Therefore, each generative neuron has a 3D kernel
matrix where the qth coefficient of the kernel element (r, t) is
represented by wl+1

ik (r, t, q).

In the next sub-sections, we formulate the forward-
propagation (FP) for the two super-neuron models each of which
performs non-localized kernel operations, the former with ran-
dom bias and the latter with learnable (real-valued) bias through
BP. The details of BP training are covered in Appendices B and
C.

xl+1
i = bl+1

i +

Nl∑
k=1

oper2D

(
T(αi

k,β
i
k)(ylk),w

l+1
ik ,′ NoZeroPad′

)
xl+1
i (m,n)

∣∣(M−1,N−1)

(0,0)
= bl+1

i

+

Nl∑
k=1

(
P l+1
i

[
Ψ
(
ylk
(
m+ αi

k, n+ βi
k

)
,wl+1

ik (0,0)
)

, ..,Ψ
(
ylk
(
m+ αi

k + r, n+ βi
k + t

)
,wl+1

ik (r, t)
)
, . . .

])
∀r, t ∈ [0,Kx− 1] , [0,Ky − 1] (3)

Ψ
(
ylk
(
m+ αi

k + r, n+ βi
k + t

)
,wl+1

ik (r, t)
)

= wl+1
ik (r, t, 1) ylk

(
m+ αi

k + r, n+ βi
k + t

)
+ wl+1

ik (r, t, 2) ylk
(
m+ αi

k + r, n+ βi
k + t

)2
+ . . .+ wl+1

ik (r, t, Q) ylk
(
m+ αi

k + r, n+ βi
k + t

)Q
(4)

A. FP for Non-Localized Kernel Operations by the Random
Bias

In this super neuron model, the spatial bias consists of an
integer pair of shifts in x- and y-directions, (αi

k, β
i
k) ∈ Z[±Γ],

each of which is randomly created within the range limit, Γ,
for each kernel connection (to each output map in the previous
layer) of each super neuron in the network. Therefore, when
a Self-ONN is composed of super neurons that are configured
with the non-localized kernel operations by random spatial bias,
each super neuron will have an array of spatial bias pairs that
are randomly assigned in advance and used thereafter as the
network parameters. During the FP, the native output map(s) of
the input layer are acquired from the training data and the 2D
shifted output map(s) by the spatial bias, (αi

k, β
i
k) are computed

as follows:

�ylk = T(αi
k,β

i
k)(ylk) (5)

where l = 0 for the input layer. Then using (3) each input map
in the next hidden layer, xl+1

i , ∀i ∈ [1, Nl+1], can be computed.
Passing the input map through the activation operator, f(x), first
and then the pooling (if up- or down-sampling is performed in
that layer), the output map, yl+1

i , is created. Once again, using
(5), the shifted output map is created, and the FP proceeds to the
next layers. To accommodate such shifts, the boundaries of each
output map are zero-padded by Γ-zeros. In order to speed-up
both FP and BP, the qth power of the shifted outputs, (�ylk)

q
, can

also be computed only once (during FP) and stored to be used
repeatedly during BP. On the other hand, except for the output
maps of the super neurons in the output layer, there is no need to

210 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

Fig. 2. Composition of the shifted map, �ylk(m+ r, n+ t) = ylk(m+ αi
k +

r, n+ βi
k + t), by the bias, (αi

k, β
i
k) ∈ R.

store the original outputs, ylk, along with their powers since they
are only temporarily needed for non-localized kernel operations.

B. FP for Non-Localized Kernel Operations by the
BP-Optimized Bias

The BP optimization of each of the pair of bias shifts in
x- and y-directions requires that (αi

k, β
i
k) ∈ R and thus, the

individual gradients (sensitivities), Δαi
k = ∂E

∂αi
k

,Δβi
k = ∂E

∂βi
k

,

can be computed. In this case, the bias range, Γ, can still
be defined for practical reasons (e.g., (αi

k, β
i
k) ∈ R[±Γ]) so

that the boundaries of each output map can be zero-padded
by Γ-zeros in advance to accommodate the shifts within the
allocated memory of the map. As in the random bias approach,
during the FP, when an output map, ylk, is generated by activating
the input map, to create each input map in the next layer,
xl+1
i , ∀i ∈ [1, Nl+1], using (3), it will first be shifted by the

bias (set earlier by BP) before the 2D (nodal) operation, i.e.,
ylk → T(αi

k,β
i
k)(ylk). However, since (αi

k, β
i
k) ∈ R, the shifted

map,�ylk = T(αi
k,β

i
k)(ylk), will exist in the fractional grid as illus-

trated in Fig. 2. Since the shifted map location,�ylk(m+ r, n+ t),

is not on the integer grid, but somewhere within the sur-
rounding four grid locations, (mr

α, n
t
β), . . . , (m

r
α + 1, nt

β + 1)

where (mr
α = m+ �αi

k�+ r, nt
β = n+ �βi

k�+ t) and ∀r, t ∈
[0,Kx− 1], [0,Ky − 1] are the kernel indices. One can use
bilinear (over 4 pixels) or bicubic (over 16 pixels) interpola-
tion to express the shifted map location, �ylk(m+ r, n+ t). For
simplicity and speed, bilinear interpolation is used as expressed
in (6) shown at the bottom of this page. Hence (3) can now be
modified for FP with the shifted map location, �ylk(m+ r, n+ t)
by the fractional bias as in (7) shown at the bottom of this page,
where ζαi

k = αi
k − �αi

k� and ζβi
k = βi

k − �βi
k�.

Note that (7) is identical to (1), the one for generative neurons
except that the shifted (interpolated) map, ỹlk, is now used, which
is different from the original output map over which a bilinear
interpolation is performed. This is in fact equivalent to a low-pass
filtering operation over the actual output maps.

For brevity, BP formulations of the two super neuron models
are covered in Appendices B and C, respectively.

IV. RESULTS

In this section, we have tested Self-ONNs with super neu-
rons against both deep and shallow CNN models over three
challenging applications. In the next subsection, we performed
real-world image denoising experiments over the SIDD Medium
benchmark dataset [63] to perform comparative evaluations
against the deep (17-layer) Residual CNN (DnCNN [2]) and
(DnONN [1]). For the comparisons using the shallow models,
the two super neuron models proposed in this study will then
be evaluated against the generative neurons, conventional and
deformable [22], [23] convolutional neurons over the following
challenging problems: 1) Motion and Spatial Deblurring, and 2)
Face Segmentation. Finally, to validate the super neurons’ ability
to learn the true shift, a ”Proof-of-Concept” experimentation
using a Self-ONN with only one hidden super-neuron will be
presented in Appendix D.

A. Real-World Denoising

In real-world denoising experiments, we utilize the SIDD
Medium training dataset [63] which consists of 320 high-
resolution images. We use the same cropping strategy as adopted
in [9] to extract 160 k training patches. For testing, the SIDD
validation dataset is used which consists of 1280 noisy clean

�ylk (m+ r, n+ t) = ylk
(
mr

α, n
t
β

) (
1− ζαi

k

) (
1− ζβi

k

)
+ ylk

(
mr

α + 1, nt
β + 1

)
ζαi

kζβ
i
k

+ ylk
(
mr

α + 1, nt
β

)
ζαi

k

(
1− ζβi

k

)
+ ylk

(
mr

α, n
t
β + 1

) (
1− ζαi

k

)
ζβi

k (6)

xl+1
i = blk +

Nl∑
k=1

oper2D(wl
ki, �y

l
k,

′NoZeroPad′)

xl+1
i (m,n)

∣∣∣(M−1,N−1)

(0,0)
= blk +

Nl∑
k=1

(
P l+1
i

[
Ψ
(
�ylk (m,n) ,wl+1

ik (0,0)
)
, ..,Ψ

(
�ylk (m+ r, n+ t) ,wl+1

ik (r, t)
)
, . . .

])
(7)

KIRANYAZ et al.: SUPER NEURONS 211

TABLE II
AVERAGE PSNR LEVELS OF REAL-WORLD DENOISING FOR DEEP MODELS,

DNCNN AND DN-SELFONN WITH 17 LAYERS [2], AGAINST THE

SUPER-ONNS WITH 3 HIDDEN LAYERS OVER THE SIDD MEDIUM

BENCHMARK DATASET

TABLE III
COMPARISON OF THE TOTAL NUMBER OF MULTIPLY-ACCUMULATE

OPERATIONS FOR THE NETWORKS USED IN THIS STUDY

image pairs. In all the experiments, the training-to-validation
ratio is set to 9:1. For BP training, we use the ADAM optimizer
with the maximum learning rate set to 10−3. All the networks
were trained for 100 epochs and the model state which maxi-
mized the validation set performance was chosen for evaluation.
Model architectures were defined using FastONN [8] library and
Pytorch library [64]. All experiments were performed either on
an NVIDIA Tesla V100 or an NVIDIA TITAN RTX GPU.

The quantitative results for the real-world denoising problem
in terms of average PSNR levels are presented in Table II and the
visual results on the SIDD Validation dataset are shown in Fig. 3.
In order to test the hyper-parameter variations in Super-ONN
models over the performance, we have trained 5 Super-ONN
models:

1) Super-ONN (Q = 3): 3-layer Self-ONN with super neu-
rons and tanh activation functions.

2) Super-ONN (Q = 2) with ReLU: 3-layer Self-ONN with
super neurons and ReLU activation functions.

3) Super-ONN (Q = 3) LR-IN: 3-layer Self-ONN with su-
per neurons and ReLU activation functions followed by
instance normalization.

4) Super-ONN (Q = 2) Residual LR-IN: 3-layer Self-ONN
with super neurons, ReLU activation functions followed
by instance normalization and a residual input-output
connection.

5) Super-ONN (Q = 2) Reflection ReLU: 3-layer Self-ONN
with super neurons, ReLU activation functions, and re-
flection padding in the borders of the images.

The results in Table II clearly show that all Super-ONN
models significantly outperform both DnCNN and Dn-SelfONN
models regardless of their model variations. Especially the per-
formance gap over DnCNN exceeds 1.7 dB in PSNR despite
the fact that it has more than 5 times more layers and neurons.
This demonstrates the superior learning capability of the super
neurons over both generative and convolutional neurons.

Qualitatively speaking, the superior denoising performance
of Self-ONNs with super-neurons (Super-ONNs) is once again
visible in most output images shown in Figs. 3 and 4. Super-
ONNs not only achieve a sharper edge and texture restoration but
also recover the smooth regions better than the other networks.
In some results the results are indeed similar; however, this
overall shows that Super-ONNs can achieve a similar or better
restoration performance with less 3 to 4 times less parameters
and depth.

B. Results With Shallow Models

To test the true learning capability of the super neurons, espe-
cially against generative neurons, we further apply the following
severe restrictions and harsh conditions:

i) Very Low Resolution: 60 × 60 pixels,
ii) Compact/Shallow Models with only 2 hidden layers and

less than 25 neurons: Inx12x12xOut,
iii) Scarce Train Data: only 10% of the dataset is for training

and the rest is for testing (10xfold cross-validation)
iv) Limited kernel size (3 × 3 kernels except for the 2nd

problem)
For all problems, restriction (ii) is relaxed for the conventional

and deformable CNNs that have a configuration In × 48 ×
48xOut, hence labeled as “CNN × 4” and “DefCNN × 4”.
With 4 times more neurons than Self-ONNs (Inx12x12xOut),
such an unfair comparative evaluation is intended to show the
true learning capability of the super neurons. For Self-ONNs,
Q = 3, 5, and 7 at the 1st, 2nd hidden, and output layers, respec-
tively. Moreover, the first hidden layer applies sub-sampling
by ssx = ssy = 2, and the second one applies up-sampling
by usx = usy = 2. For each regression problem, we used the
Signal-to-Noise Ratio (SNR) evaluation metric, which is de-
fined as the ratio of the signal power to the noise power, i.e.,
SNR = 10log(σ2

signal/σ
2
noise). For the Image Transformation

problem, we performed 10 experiments each with 4 images
transformed to another 4. For Deblurring and Denoising, the
benchmark datasets are partitioned into the train (10%) and test
(90%) for 10-fold cross-validation. For each fold, all networks
are trained using Stochastic Gradient Descent (SGD) with a

212 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

Fig. 3. Some sample images with real-world noise (left), their zoomed sections (2nd column), and the corresponding outputs of the DnCNN (3rd column),
DnONN (4th column), and Super-ONN (right) from the validation set of SIDD dataset.

fixed learning parameter as presented in Table IV. Finally, 5
BP runs are performed and the network model that achieved the
minimum loss (MSE) during these runs is used for evaluation
(tested over the rest of the dataset).

1) Deblurring: Image deblurring [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36] can broadly be
categorized as kernel-based estimation [24], [25], [26], [27],
[28], [29], [30], or an end-to-end system [31], [32], [33], [34],
[35], [36]. Deep CNNs have been used for each category but

in this study, we shall evaluate the networks in an “end-to-end”
configuration, that does not have to estimate the blurring kernel,
rather the blurred image is directly transformed into the restored
(deblurred) image.

We expect that super neurons with non-localized kernel
operations to achieve a superior performance because image
deblurring usually requires a large receptive field for en-
hanced global knowledge [37] while conventional CNNs
(and Self-ONNs) can provide local knowledge limited

KIRANYAZ et al.: SUPER NEURONS 213

Fig. 4. Some sample images with AWGN corrupted images (left), their zoomed sections (2nd column), and the corresponding outputs of the DnCNN (3rd
column), DnONN (4th column), and Super-ONN (right) from the test partition of the KODAK dataset.

214 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

with the size of their filters. We consider two blurring
problems:
� Disc(ρ) blurring: A circular averaging filter (pillbox)

within the square matrix of size, 2× ρ+ 1.
� Motion (Λ,Θ) blurring: The linear motion of a camera

where Λ specifies the length of the motion and Θ specifies
the angle of motion in degrees in a counter-clockwise
direction.

In both problems, we aim to evaluate the learning capabil-
ity of the super neurons in Self-ONNs against the generative,
conventional, and especially deformable convolutional neuron
models under harsh conditions and for this reason, along with
the aforementioned restrictions, we apply a severe blurring with
the following parameter settings: ρ = 5,Λ = 11 and Θ = π/4.
Disc(ρ) basically applies an averaging of 11× 11 pixels and
Motion(Λ,Θ) approximates a linear motion of 11 pixels diago-
nally. Both blurring artifacts can sometimes cause such severe
image degradation that makes it difficult or even infeasible
to comprehend the content of the image (e.g., see Fig. 6).
Finally, for the random bias ranges for super neurons where
(αi

k, β
i
k) ∈ Z[±Γ], are set as Γ = {4, 4, 2} for the 1st, 2nd, and

output layers, respectively. Thus, with this setting, for instance,
the 1st layer super neurons will have the improved size of the
receptive fields as 11 × 11 pixels, which is significantly larger
than the original kernel size of 3x3 pixels.

Fig. 5 shows PSNR and SSIM plots of the best Disc-5 (top)
and motion (bottom) deblurring results per fold over the test
partitions. The Self-ONNs with generative neurons having no
bias are with the label ‘0-0-0’), and with super neurons having
random bias withinΓ = {4, 4, 2} are with the label ‘4-4-2’, and
with BP-optimized bias are with the label ‘Opt’, respectively.
The conventional and the two versions of the deformable CNNs
have the labels ‘CNN × 4’, ‘DefCNN × 4 v1’, and ‘DefCNN
× 4 v2’, respectively. The average PSNR and SSIM scores are
presented at the end of each corresponding plot.

In both problems, Self-ONNs achieve significantly higher
PSNR (around 1 dB) and SSIM (> 4%) levels as compared
to the three CNN models with four times more neurons. Though
both deformable CNNs achieve slightly higher PSNR and SSIM
scores than the conventional CNNs in the majority of the folds,
they fail to achieve a higher average performance due to the
lowest scores obtained in two folds, indicating a robustness
issue. Finally, in both problems, the Self-ONNs with super
neurons achieve more than 0.6 dB higher PSNR score on average
compared to Self-ONNs with generative neurons.

For a visual evaluation, Figs. 6 and 7 show a set of Disc-5
and motion-blurred (input) images, the target image, and the
corresponding outputs of CNN×4, Self-ONNs (with no, ran-
dom, and BP-optimized spatial biases) from the test partition.
We skipped the outputs from both deformable CNNs since
they have a very similar or occasionally worse visual quality
than the conventional CNN×4 model. The superior deblurring
performance of Self-ONNs with super neurons is visible in all
outputs.

2) Face Segmentation: Deep CNNs have often been used in
face and object segmentation tasks [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61]. In this study, we use the benchmark

Fig. 5. Best PSNR and SSIM scores for each Disc-5 (top) and Motion (bottom)
deblurring fold achieved by the corresponding Self-ONNs (with no, random and
BP-optimized spatial biases) and the three CNN×4 configurations over the test
set.

KIRANYAZ et al.: SUPER NEURONS 215

Fig. 6. Some typical original (target) and Disc-5 blurred (input) images and
the corresponding outputs of the CNN×4 and the three Self-ONNs (with no,
random and BP-optimized spatial bias) from the test partition.

FDDB face detection dataset [44], which contains 2000 images
with one or many human faces in each image. As per the
aforementioned restriction, all images are down-sampled to 60×
60 pixels and in this very low resolution, pixel-accurate face
segmentation becomes an even more challenging task.

Finally, for the random bias ranges for super neurons where
(αi

k, β
i
k) ∈ Z[±Γ], are set as Γ = {4, 4, 2} for the 1st, 2nd and

output layers, respectively. Thus, with this setting, for instance,
the 1st layer super neurons will have the improved size of the
receptive fields as 11 × 11 pixels, which is significantly larger
than the original kernel size of 3x3 pixels.

Fig. 8 shows F1 plots of the best (in training) Face Seg-
mentation results per fold over the test set. The average test
F1 scores achieved by the three Self-ONNs are 80.95% (no

Fig. 7. Some typical original (target) and Motion blurred (input) images and
the corresponding outputs of the CNN×4 and the three Self-ONNs (with no,
random and BP-optimized spatial bias) from the test partition.

bias), 83.83% (random bias), 84.22% (BP-optimized bias), re-
spectively whilst the CNN × 4 has the F1-score of 75.94%. In
both train and test partitions and all folds Self-ONNs achieve
significantly higher performance as compared to CNNs. This is
despite the fact that it has four times less neurons. In particular,
the average performance gap between CNNs and Self-ONNs
with super neurons is widened around 8% and 5.6% in train and
test partitions, respectively. Finally, the Self-ONNs with super
neurons can achieve higher than 3% (train) and 4% (test) on the
average than the corresponding performance of the Self-ONNs
with generative neurons.

For a visual evaluation, Fig. 9 shows some typical original
input images (first column), their (target) ground-truth face maps
(last column), and the corresponding outputs of the CNN × 4
and the three Self-ONNs (with no, random and BP-optimized

216 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

Fig. 8. Best F1 scores for each face segmentation fold achieved by the
corresponding Self-ONN (with no, random and BP-optimized spatial biases)
and CNNx4.

Fig. 9. Some typical original input images (first column) their (target) ground-
truth face maps (last column) and the corresponding outputs of the CNN × 4
and the three Self-ONNs (with no, random and BP-optimized spatial bias) from
the test partition.

Fig. 10. Illustration of a super-ONN where non-linear operation is accom-
plished with a set of individual convolutions over the shifted output maps and
their powers.

spatial bias) from the test partition. Obviously, the best face
segmentation results belong to the Self-ONNs with super neu-
rons while CNNs suffer from severe false-positive regions. The
super neurons with BP-optimized spatial bias yield the overall
best results with minimal false positives.

C. Computational Complexity Analysis

In this section, the computational complexity of the proposed
Self-ONNs with super neurons is analyzed with respect to the
parameter-equivalent Self-ONNs with generative neurons and
the three CNN models with 4 times more neurons. As assumed in
this study, when the pool operator is the “summation”, Pl

i = Σ,
in an FP of a Self-ONN with super neurons, (3) can be expressed
as follows:

xl
k = blk +

Nl−1∑
i=1

oper2D(�yl−1
i , wl

ki,
′NoZeroPad′)

xl
k (m,n)

∣∣(M−1,N−1)

(0,0)
= blk

+

Nl−1∑
i=1

⎛
⎝Kx−1∑

r=0

Ky−1∑
t=0

Ψ
(
�yl−1
i (m+r, n+t) ,wl

ki (r, t)
)⎞⎠ (8)

where Ψ is the (Taylor series) nodal operator function and
wl

ki(r, t) is a Q-dimensional array for the kernel element (r, t).
Putting the qth order 2D kernel, wl

ki〈q〉 (q = 1..Q), which is
composed of the kernel elements, wl+1

ik (r, t, q), then (8) can be
simplified as,

xl
k = blk

+

Q∑
q=1

{
Nl−1∑
i=1

conv2D
((

�yl−1
i

)q
, wl

ki 〈q〉 , ′NoZeroPad′
)}

(9)

KIRANYAZ et al.: SUPER NEURONS 217

Such a 2D convolutional representation of a generative neu-
ron’s input map formation is illustrated in Fig. 10. It is straight-
forward to see that this indeed resembles a multi-output and
multi-kernel convolutional neuron. When the shifted powers of
the output maps, (�yl−1

1)
q
, for q = 1, …, Q, are computed for

all hidden neurons in the network, (9) simply turns out to be
(Q×Nl−1) independent 2D convolutions. Like in conventional
CNNs, this can be implemented in a parallel manner, and hence,
it will roughly take a similar inference time. We can thus con-
clude that, in a parallelized implementation, a Self-ONN and a
CNN with the same configuration have similar computational
complexity. For both super neuron models, the number of pa-
rameters, PARs, in the Self-ONNs can be expressed as,

PARs =

L∑
1

PARs (l)

=

L∑
1

((
(Nl−1 × (Kl

x ×Kl
y ×Ql + 2)) + 1

) ∗Nl

)
(10)

For each network model, Table III presents the number of
network parameters, PARs and the memory overhead, which
is the additional memory needed during the FP besides the
network parameters and I/O buffers for feature maps. Besides
having 4 times more neurons, it is apparent from the table that all
CNN × 4 models have around 2.3 to 6 times more parameters
and 2.2 to 5 times higher computational complexity than the
Self-ONNs with super neurons that are configured with the
non-localized kernel operations by random spatial bias. Whilst
having a similar computational complexity, the only overhead
cost for super neurons over the generative neurons is about 1.22
times more parameters due to the spatial bias elements. This
is true for both models, randomized and BP-optimized bias;
however, super neurons with BP-optimized bias have around 1.1
times higher computational complexity than the models with no
bias (generative neurons) and random bias. This is due to the
bilinear interpolation performed to compute the shifted output
maps.

Particularly, for deformable CNN × 4 models, v1 and v2, the
memory overhead, MEM+, can be expressed as follows:

MEM+ =
L∑
1

MEMs (l)

=

L∑
1

(
K
(
Bs×Gs×Kl

x ×Kl
y ×W l

x ×W l
y

))
(11)

where K is constant (K = 2 for v1 and K = 3 for v2), Bs is
the batch size, Gs is the group size, W l

x and W l
y are the width

and height of the input feature map of the layer, l. The memory
overhead can, therefore, be infeasibly large, especially for deep
networks with practical settings. As an example, for a single
layer with 256 × 256 pixel feature maps, 3 × 3 kernels, and
Gs = Bs = 8, v1 and v2 versions of deformable CNNs will
require around 302 Mb and 452 Mb extra memory, respectively
only for a single layer.

V. CONCLUSION

The ancient neuron model from the 1950s [38] has been used
by the MLPs ever since, and later on shared by its popular
derivative, the conventional CNNs. As a linear model, it can
only perform linear transformations with “localized” kernels
making CNNs entirely homogenous with a static neuron model
in terms of transformation and localization. This study is inspired
by the well-known proverb, “doing the right thing at the right
place and the right time”. The Self-ONNs with the generative
neuron model can do the “right thing” by customizing each nodal
operator on the fly. So, the generative neurons can create the
best possible operator for the kernel of each connection during
BP training. However, generative neurons can neither locate the
“right place” for their kernels nor enhance their “receptive field”
bounded by the kernel size. To overcome this, the proposed super
neurons can be jointly optimized to do the right transformation
at the right (kernel) location of the right connection to max-
imize the learning performance. This study has proposed two
models for super neurons: randomized and BP-optimized kernel
localizations of each connection. Both models improve the size
of the receptive fields but only the latter one can seek the right
(kernel) location of each connection. However, we observe that
the underlying problem may not require the “right” location
and in this case, both approaches are expected to perform either
equally well or the former approach can work even slightly better
than the latter because it can optimize each nodal operator of each
kernel during the entire BP run without altering the location.
Whereas the latter approach jointly optimizes both the nodal
operator and the location (spatial bias) during the BP run, this is
a significantly harder task because the optimization of the nodal
operator cannot be finalized while the kernel keeps moving in
each BP iteration. In other words, the optimal nodal operator will
obviously be different for different kernel locations, and until
the location (the spatial bias) is converged the nodal operator
optimization cannot be finalized.

Both models of super neurons are evaluated against the con-
ventional and deformable convolutional neurons of CNNs and
generative neurons of Self-ONNs. First, shallow Self-ONNs
with super-neurons (Super-ONNs in short) have been tested
against deep models: DnCNN and DnONN in a Real-World
denoising problem. Despite being a significantly shallow model
with few neurons, Super-ONNs outperformed both deep models.
Then, to reveal the true learning capabilities of super neurons,
we purposefully selected challenging learning tasks and applied
harsh learning conditions and restrictions such as scarce train
data, shallow configurations with few neurons, and minimal
kernel size. Despite 4 times more learning units (neurons) being
used for all CNN models for comparative evaluations, the results
clearly show that Self-ONNs with super neurons can achieve
a superior learning and generalization capability thanks to the
improved receptive field size they can provide. The computa-
tional complexity analysis reveals that an elegant computational
efficiency is also achieved in terms of network parameters and
memory overhead. In most problems, a notable performance gap
is observed over the conventional Self-ONNs with generative
neurons without any significant computational burden.

218 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

We can foresee that further performance boost can be expected
for the Self-ONNs with super-neurons with the following im-
provements:
� instead of fixing to some naïve values for the two hyper-

parameters, Q and Γ, we are aiming to optimize each
parameter per layer,

� adapting a better optimization scheme for training, e.g.,
SGD with momentum [39], AdaGrad [40], RMSProp [41],
Adam [42] and its variants [43], all of which should be
adapted for Super-ONNs for proper functioning,

� and implementing other kernel operations such as scaling
and rotation.

These will be the topics for our future research. The optimized
PyTorch implementations of Self-ONNs and Super-ONNs are
publicly shared in [62].

APPENDIX

A. Training by Back Propagation for Self-ONNs With
Generative Neurons

For Self-ONNs, the contributions of each pixel in the M ×N
output map, ylk(m,n) on the next layer input map, xl+1

i (m,n),
can now be expressed as in (12) shown at the bottom of this
page. Using the chain rule, the delta error of the output pixel,
ylk(m,n), can therefore, be expressed as in (13) shown at the
bottom of this page, in the generic form of pool, P l+1

i , and com-
posite nodal operator function, Ψ, of each operational neuron

i ∈ [1, .., Nl+1] in the next layer. In (13), note that the first term,
∂xl+1

1 (m−r,n−t)

∂P l+1
i [..,Ψ(yl

k(m,n),wl+1
ik (r,t)),..]

= 1.

Let ∇ΨPl+1
i (m,n, r, t)=

∂P l+1
i [..,Ψ(yl

k(m,n),wl+1
ik (r,t)),..]

∂Ψ(yl
k(m,n),wl+1

ik (r,t))

and ∇yΨ(m,n, r, t) =
∂Ψ(yl

k(m,n),wl+1
ik (r,t))

∂yl
k(m,n)

. Then, (13)

simplifies to (14) shown at the bottom of this page. Note
further that Δylk, ∇Ψki

Pl+1
i and ∇yΨ have the same size,

M ×N while the next layer delta error, Δl+1
i , has the size,

(M −Kx + 1)× (N −Ky + 1), respectively. Therefore, to
enable this variable 2D convolution in this equation, the delta
error, Δl+1

i , is padded by zeros at all four boundaries (Kx − 1
zeros on left and right, Ky − 1 zeros on the bottom and top).
Thus, ∇yΨ(m,n, r, t) can simply be expressed as in (15)
shown at the bottom of this page.

Once the Δylk is computed, using the chain-rule, one can
express,

Δl
k =

∂E

∂xl
k

=
∂E

∂ylk

∂ylk
∂xl

k

=
∂E

∂ylk
f ′ (xl

k

)
= Δylk f ′ (xl

k

)
(16)

When there is a down-sampling by factors, ssx and ssy, then
the back-propagated delta-error should be first up-sampled to
compute the delta-error of the neuron. Let zero order up-sampled
map be: uylk = up

ssx,ssy
(ylk). Then (16) can be modified, as

follows:

Δl
k =

∂E

∂xl
k

=
∂E

∂ylk

∂ylk
∂xl

k

=
∂E

∂ylk

∂ylk
∂uylk

∂uylk
∂xl

k

xl+1
i (m− 1, n− 1) = . . .+ P l+1

i

[
Ψ
(
ylk (m− 1, n− 1) ,wl+1

ik (0,0)
)
, . . . ,Ψ

(
ylk (m,n) ,wl+1

ik (1,1)
)]

+ . . . xl+1
i (m− 1, n) = . . .+ P l+1

i

[
Ψ
(
ylk (m− 1, n) ,wl+1

ik (0,0)
)
, . . . ,Ψ

(
ylk (m,n) ,wl+1

ik (1,0)
)
, . . .

]
+ . . .xl+1

i (m,n) = . . .+ P l+1
i

[
Ψ
(
ylk (m,n) ,wl+1

ik (0,0)
)
, ..,Ψ

(
ylk (m+ r, n+ t) ,wl+1

ik (r, t) ,) . . .
)]

+ . . .

.

∴ xl+1
i (m− r, n− t)

∣∣(M−1,N−1)

(1,1)
= bl+1

i +

N1∑
k=1

P l+1
i

[
. . . ,Ψ

(
ylk (m,n) ,wl+1

ik (r, t)
)
, . . .

]
(12)

∴ ∂E

∂ylk
(m,n)

∣∣∣∣
(M−1,N−1)

(0,0)

= Δylk (m,n) =

Nl+1∑
i=1

⎛
⎜⎜⎝

Kx−1∑
r=0

Ky−1∑
t=0

∂E

∂xl+1
i (m−r,n−t)

× ∂xl+1
i (m−r,n−t)

∂P l+1
i [..,Ψ(yl

k(m,n),wl+1
ik (r,t)),..]

×∂P l+1
i [..,Ψ(yl

k(m,n),wl+1
ik (r,t)),..]

∂Ψ(yl
k(m,n),wl+1

ik (r,t))
× ∂Ψ(yl

k(m,n),wl+1
ik (r,t))

∂yl
k(m,n)

⎞
⎟⎟⎠
(13)

Δylk (m,n)
∣∣(M−1,N−1)

(0,0)
=

Nl+1∑
i=1

⎛
⎝Kx−1∑

r=0

Ky−1∑
t=0

Δl+1
i (m− r, n− t)×∇ΨPl+1

i (m,n, r, t)×∇yΨ (m,n, r, t)

⎞
⎠

Let ∇yP
l+1
i (m,n, r, t) = ∇ΨPl+1

i (m,n, r, t) ×∇yΨ (m,n, r, t) , then

Δylk =

Nl+1∑
i=1

Conv2Dvar
{
Δl+1

i ,∇yP
l+1
i (m,n, r, t)

}
(14)

∇yΨ (m,n, r, t) = wl+1
ik (r, t, 1) + 2wl+1

ik (r, t, 2) ylk (m,n) + . . .+Qwl+1
ik (r, t,Q) ylk(m,n)Q−1 (15)

KIRANYAZ et al.: SUPER NEURONS 219

= up
ssx,ssy

(
Δylk

)
βf ′ (xl

k

)
(17)

where β = 1
ssx.ssy since each pixel of ylk is now obtained

by averaging (ssx.ssy) number of pixels of the intermediate
output, uylk. Finally, when there is a up-sampling by factors, usx
and usy, then let the average-pooled map be: dylk = down

usx,usy
(ylk).

Then (17) can be updated as follows:

Δl
k =

∂E

∂xl
k

=
∂E

∂ylk

∂ylk
∂xl

k

=
∂E

∂ylk

∂ylk
∂dylk

∂dylk
∂xl

k

= down
usx,usy

(
Δylk

)
β−1f ′ (xl

k

)
(18)

As for the computation of the kernel and bias sensitivities,
recall the expression between an individual kernel weight array,
wl+1

ik (r, t), and the input map of the next layer, xl+1
i (m,n):

xl+1
i (m,n)

∣∣(M−1,N−1)

(1,1)
= bl+1

i

+

Nl−1∑
i=1

P l+1
i

[
Ψ
(
ylk (m,n) ,wl+1

ik (0,0)
)
, ..,

Ψ
(
ylk (m+ r, n+ t) ,wl+1

ik (r, t)) . . .
)
]

(19)

where the qth element of the array, wl+1
ik (r, t), contributes to

all the pixels of xl+1
i (m,n). By using the chain rule of partial

derivatives, one can express the weight sensitivities, ∂E

∂wl+1
ik

, in

(20) shown at the bottom of this page. A close look to (20)

reveals that, ∂Ψ(yl
k(m+r,n+t),wl+1

ik (r,t))

∂wl+1
ik (r,t,q)

= ylk(m+ r, n+ t)q ,

which then simplifies to (21) shown at the bottom of this
page, Note that in this equation, the first term, Δl+1

1 (m,n),
is independent from the kernel indices, r and t. It will be
element-wise multiplied by the other two latter terms, each with
the same dimension (M− Kx + 1)x(N − Ky + 1), and created
by derivative functions of nodal and pool operators applied over
the shifted pixels of ylk(m+ r, n+ t) and the corresponding
weight value, wl+1

ik (r, t).

If Pl+1
i = Σ, then

∂E

∂wl+1
ik

(r, t, q)

∣∣∣∣∣
(Kx−1,Ky−1,Q)

(0,0,1)

=

M−Kx∑
m=0

N−Ky∑
n=0

Δl+1
1 (m,n)× ylk(m+ r, n+ t)q

∴ ∂E

∂wl+1
ik

〈q〉 = conv2D
(
Δl+1

i ,
(
ylk
)q
, ′NoZeroPad′

)
(22)

∂E

∂blk
=
∑
m

∑
n

∂E

∂xl
k (m,n)

∂xl
k (m,n)

∂blk
=
∑
m

∑
n

Δl
k (m,n)

(23)

In (21) there is no need to register a 4D matrix for ∇wΨ =
ylk(m+ r, n+ t)q since it can directly be computed from the
outputs of the neurons. Moreover, when the pool operator is the
sum, then∇ΨPl+1

i (m,n, r, t) = 1 and (21) will simplify to (22)
where ∂E

∂wl+1
ik

〈q〉 is the qth 2D sensitivity kernel, which contains

the updates (SGD sensitivities) for the weights of the qth order
outputs in Maclaurin polynomial. Finally, the bias sensitivity
expressed in (23) is the same for ONNs and CNNs since the
bias is the common additive term for all.

Let wl+1
ik 〈q〉 be the qth 2D sub-kernel where q = 1..Q and

composed of kernel elements, wl+1
ik (r, t, q). During each BP

iteration, t, the kernel parameters (weights), wl+1
ik 〈q〉(t), and

biases, bli(t), of each neuron in the Self-ONN are updated until
a stopping criterion is met. Let, ε(t), be the learning factor at
iteration, t. One can express the update for the weight kernel and
bias at each neuron, i, at layer, l as follows:

wl+1
ik 〈q〉 (t+ 1) = wl+1

ik 〈q〉 (t)− ε (t)
∂E

∂wl+1
ik

〈q〉

bli (t+ 1) = bli (t)− ε (t)
∂E

∂bli
(24)

As a result, the pseudo-code for BP is presented in
Algorithm 1.

∂E

∂wl+1
ik

(r, t, q)

∣∣∣∣∣
(Kx−1,Ky−1,Q)

(0,0,1)

=

M−Kx+1∑
m=0

N−Ky+1∑
n=0

∂E

∂xl+1
1 (m,n)

× ∂xl+1
1 (m,n)

∂P l+1
i [Ψ(yl

k(m,n),wl+1
ik (0,0)),..,Ψ(yl

k(m+r,n+t),wl+1
ik (r,t))...)]

×∂P l+1
i [Ψ(yl

k(m,n),wl+1
ik (0,0)),..,Ψ(yl

k(m+r,n+t),wl+1
ik (r,t))...)]

∂Ψ(yl
k(m+r,n+t),wl+1

ik (r,t))

×∂Ψ(yl
k(m+r,n+t),wl+1

ik (r,t))
∂wl+1

ik (r,t,q)

(20)

where
∂xl+1

1 (m,n)

∂P l+1
i

[
Ψ
(
ylk (m,n) ,wl+1

ik (0,0)
)
, ..,Ψ

(
ylk (m+ r, n+ t) ,wl+1

ik (r, t)) . . .
)]

= 1 and
∂Ψ

(
ylk (m+ r, n+ t) ,wl+1

ik (r, t)
)

∂wl+1
ik (r, t, q)

= ylk(m+ r, n+ t)q

∴ ∂E

∂wl+1
ik

(r, t, q)

∣∣∣∣∣
(Kx−1,Ky−1,Q)

(0,0,1)

=

M−Kx∑
m=0

N−Ky∑
n=0

Δl+1
1 (m,n)×∇ΨPl+1

i (m+ r, n+ t, r, t)× ylk(m+ r, n+ t)q (21)

220 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

Algorithm 1: BP Training for Self-ONNs With Generative
Neurons.

Input: Self-ONN,
Stopping Criteria (maxIter,minMSE)

Output: Self-ONN∗ = BP(Self-ONN
,maxIter,minMSE)

1) Initialize network parameters randomly (i.e., ∼U(-a, a))
2) UNTIL a stopping criterion is reached, ITERATE:

a. For each mini-batch in the train dataset, DO:
i. FP: Forward propagate from the input layer to

the output layer to find qth order outputs, (ylk)
q

and the required derivatives and sensitivities for
BP such as f ′(xl

k), ∇yΨ
l+1
ki , ∇Ψki

Pl+1
i and

∇wΨ
l+1
ki of each neuron,k, at each layer, l.

ii. BP: Compute delta error at the output layer and
then using (14) and (16) back-propagate the error
back to the first hidden layer to compute delta
errors of each neuron, k, Δl

k at each layer, l.
iii. PP: Find the bias and weight sensitivities using

(22) and (23), respectively.
iv. Update: Update the weights and biases with the

(cumulation of) sensitivities found in previous
step scaled with the learning factor, ε, as in (49):

3) Return Self-ONN∗

B. BP for Non-Localized Kernel Operations by Random Bias

In a conventional BP, starting from the output (operational)
layer, the error is back-propagated to the 1st hidden layer. For the
sake of simplicity, for an image I in the training dataset suppose
that the error (loss) function is L2-loss or the Mean-Square-Error
(MSE) error function, E(I), is used can be expressed as,

E (I) =
1

|I|
∑
p

(
yL1 (Ip)− T (Ip)

)2
(25)

where Ip is the pixel p of the image I , T is the target output and
yL1 is the predicted output. The delta error in the output layer of
the input map can then be expressed in (26).

ΔL
1 =

∂E

∂xL
1

=
∂E

∂yL1

∂yL1
∂xL

1

=
2

|I|
(
yL1 (I)− T (I)

)
f ′ (xL

1 (I)
)

(26)
For Self-ONNs with super neurons, the contributions of

each shifted pixel in the output map, ylk(m+ αi
k, n+ βi

k), on
the next layer input map, xl+1

i (m,n), can now be expressed
as in (27) shown at the bottom of the next page, (highlighted
in red for clarity). So for the hidden operational layers, a
close look at (27) will reveal the fact that the contributions
of each pixel in the (M + 2Γ)× (N + 2Γ) shifted output
map, ylk(m+ αi

k, n+ βi
k) on the next layer input maps,

xl+1
i (m,n), i ∈ [1, Nl+1], depend solely on the bias of each

connection, (αi
k, βi

k). Therefore, the delta error of the output
pixel, ylk(m,n), should be computed for each connection and
then cumulated. Using the chain rule, the delta error of the
output pixel, ylk(m,n), can therefore, be expressed as in (28)
shown at the bottom of the next page, in the generic form

of pool, P l+1
i , and composite nodal operator function, Ψ, of

the ith super neuron, i ∈ [1, .., Nl+1]. In (28), note that the

first term, ∂xl+1
1 (m−r,n−t)

∂P l+1
i [..,Ψ(yl

k(m+αi
k,n+βi

k),w
l+1
ik (r,t)),..]

= 1. Let the

(shifted) 4D matrices ∇ΨPl+1
i (m+ αi

k, n+ βi
k, r, t) =

∂P l+1
i [..,Ψ(yl

k(m+αi
k,n+βi

k),w
l+1
ik (r,t)),..]

∂Ψ(yl
k(m+αi

k,n+βi
k),w

l+1
ik (r,t))

and

∇yΨ(m+ αi
k, n+ βi

k, r, t) =
∂Ψ(yl

k(m+αi
k,n+βi

k),w
l+1
ik (r,t))

∂yl
k(m+αi

k,n+βi
k)

.

Then, (28) simplifies to (29) shown at the bottom of the
next page, where ∇yΨ(m+ αi

k, n+ βi
k, r, t) can be directly

computed as,

∇yΨ
(
m+ αi

k, n+ βi
k, r, t

)
= wl+1

ik (r, t, 1)

+ 2wl+1
ik (r, t, 2) ylk

(
m+ αi

k, n+ βi
k

)
+ . . .

+Qwl+1
ik (r, t, Q) ylk

(
m+ αi

k, n+ βi
k

)Q−1
(30)

Now let ∇yP
l+1
i (m+ αi

k, n+ βi
k, r, t) = ∇ΨPl+1

i (m
+ αi

k, n+ βi
k, r, t) ×∇yΨ(m+ αi

k, n+ βi
k, r, t). In this

study, the summation is used as the pool operator for the sake of
simplicity, i.e.,Pl+1

i = Σ, so,∇ΨPl+1
i (m,n, r, t) = 1 and thus,

∇yP
l+1
i (m+ αi

k, n+ βi
k, r, t) = ∇yΨ(m+ αi

k, n+ βi
k, r, t)

then the delta error computed for the connection to the ith

neuron at layer l+1 can be expressed as,

T(αi
k,β

i
k)
(
Δylk

)
= Δylk

(
m+ αi

k, n+ βi
k

)
= Conv2Dvar

{
Δl+1

i ,T(αi
k,β

i
k) (∇yΨ)

}
(31)

Finally, the overall delta error for the output map, Δylk, is
computed as the cumulation of the back-shifted individual delta-
errors, i.e.,

Δylk (m,n)
∣∣(M−1,N−1)

(0,0)

=

Nl+1∑
i=1

T(−αi
k,−βi

k)
(
Δylk

(
m+ αi

k, n+ βi
k

))
(32)

Once the Δylk is computed, using the chain-rule, one can
finalize the back-propagation of the delta error from layer l+1
to layer l, as follows:

Δl
k =

∂E

∂xl
k

=
∂E

∂ylk

∂ylk
∂xl

k

=
∂E

∂ylk
f ′ (xl

k

)
= Δylk f ′ (xl

k

)
(33)

When there is a pooling (down-sampling) by factors, ssx, and
ssy, then the back-propagated delta-error by (33) should be first
up-sampled to compute the delta-error of the neuron. Let zero-
order up-sampled map be: uylk = up

ssx,ssy
(ylk). Then (33) can be

modified, as follows:

Δl
k =

∂E

∂xl
k

=
∂E

∂ylk

∂ylk
∂xl

k

=
∂E

∂ylk

∂ylk
∂uylk

∂uylk
∂xl

k

= up
ssx,ssy

(
Δylk

)
βf ′ (xl

k

)
(34)

where β = 1
ssx.ssy since each pixel of ylk is now obtained

by averaging (ssx.ssy) number of pixels of the intermediate

KIRANYAZ et al.: SUPER NEURONS 221

output, uylk. Finally, when there is an up-sampling by fac-
tors, usx, and usy, then let the average-pooled map be: dylk =
down
usx,usy

(ylk). Then (33) can be updated as follows:

Δl
k =

∂E

∂xl
k

=
∂E

∂ylk

∂ylk
∂xl

k

=
∂E

∂ylk

∂ylk
∂dylk

∂dylk
∂xl

k

= down
usx,usy

(
Δylk

)
β−1f ′ (xl

k

)
(35)

As for the computation of the sensitivities for kernel pa-
rameters, ∂E

∂wl+1
ik

(r, t, q)|(Kx−1,Ky−1,Q)
(0,0,1) , and bias, ∂E

∂blk
, (3) in-

dicates that the qth element of the array, wl+1
ik (r, t), con-

tributes to all the pixels of xl+1
i (m,n). Once again by using

the chain rule of partial derivatives, the sensitivities for ker-
nel parameters can be expressed in (36) shown at the bot-

tom of this page. Since ∂Ψ(yl
k(m+αi

k+r,n+βi
k+t),wl+1

ik (r,t))

∂wl+1
ik (r,t,q)

=

ylk(m+ αi
k + r, n+ βi

k + t)
q , Pl+1

i = Σ, and ∇ΨPl+1
i (m+

αi
k + r, n+ βi

k + t) = 1. then (36) simplifies to (37) shown at
the bottom of this page.

For the bias sensitivity, the chain rule yields:

∂E

∂blk
=

M−1∑
m=0

N−1∑
n=0

∂E

∂xl
k (m,n)

∂xl
k (m,n)

∂blk
=

M−1∑
m=0

N−1∑
n=0

Δl
k (m,n)

(38)

xl+1
i (m− 1, n− 1) = . . .+

P l+1
i

[
Ψ
(
ylk
(
m+ αi

k − 1, n+ αi
k − 1

)
,wl+1

ik (0,0)
)
, . . . ,Ψ

(
ylk
(
m+ αi

k, n+ βi
k

)
,wl+1

ik (1,1)
)]

+ . . .

xl+1
i (m− 1, n) = . . .+

P l+1
i

[
Ψ
(
ylk
(
m+ αi

k − 1, n+ αi
k

)
,wl+1

ik (0,0)
)
, . . . ,Ψ

(
ylk
(
m+ αi

k, n+ βi
k

)
,wl+1

ik (1,0)
)
, . . .

]
+ . . .

xl+1
i (m,n) = . . .+

P l+1
i
...

[
Ψ
(
ylk
(
m+ αi

k, n+ βi
k

)
,wl+1

ik (0,0)
)
, ..,Ψ(ylk

(
m+ αi

k + r, n+ αi
k + t

)
,wl+1

ik (r, t)) . . .)
]
+ . . .

∴ xl+1
i (m− r, n− t)

∣∣∣∣
(M−1,N−1)

(1,1)

= bl+1
i +

N1∑
k=1

P l+1
i

[
. . . ,Ψ

(
ylk
(
m+ αi

k, n+ βi
k

)
,wl+1

ik (r, t)
)
, . . .

]
(27)

∴ ∂E

∂ylk

(
m+ αi

k, n+ βi
k

)∣∣∣∣
(M−1,N−1)

(0,0)

= Δylk
(
m+ αi

k, n+ βi
k

)

=

Kx−1∑
r=0

Ky−1∑
t=0

∂E

∂xl+1
i (m−r,n−t)

× ∂xl+1
i (m−r,n−t)

∂P l+1
i [..,Ψ(yl

k(m+αi
k,n+βi

k),w
l+1
ik (r,t)),..]

×∂P l+1
i [..,Ψ(yl

k(m+αi
k,n+βi

k),w
l+1
ik (r,t)),..]

∂Ψ(yl
k(m+αi

k,n+βi
k),w

l+1
ik (r,t))

× ∂Ψ(yl
k(m+αi

k,n+βi
k),w

l+1
ik (r,t))

∂yl
k(m+αi

k,n+βi
k)

(28)

Δylk
(
m+ αi

k, n+ βi
k

)
=

Kx−1∑
r=0

Ky−1∑
t=0

Δl+1
i (m− r, n− t)×∇ΨPl+1

i

(
m+ αi

k, n+ βi
k, r, t

)×∇yΨ
(
m+ αi

k, n+ βi
k, r, t

)
(29)

∂E

∂wl+1
ik

(r, t, q)

∣∣∣∣∣
(Kx−1,Ky−1,Q)

(0,0,1)

=

M−Kx+1∑
m=0

N−Ky+1∑
n=0

⎛
⎜⎜⎜⎜⎜⎝

∂E

∂xl+1
1 (m,n)

× ∂xl+1
1 (m,n)

∂P l+1
i [..,Ψ(yl

k(m+αi
k+r,n+βi

k+t),wl+1
ik (r,t))...)]

×∂P l+1
i [..,Ψ(yl

k(m+αi
k+r,n+βi

k+t),wl+1
ik (r,t)),...)]

∂Ψ(yl
k(m+αi

k+r,n+βi
k+t),wl+1

ik (r,t))

×∂Ψ(yl
k(m+αi

k+r,n+βi
k+t),wl+1

ik (r,t))
∂wl+1

ik (r,t,q)

⎞
⎟⎟⎟⎟⎟⎠ (36)

∂E

∂wl+1
ik

(r, t, q)

∣∣∣∣∣
(Kx−1,Ky−1,Q)

(0,0,1)

=

M−Kx∑
m=0

N−Ky∑
n=0

Δl+1
1 (m,n)×∇ΨPl+1

i

(
m+ αi

k + r, n+ βi
k + t

)× ylk
(
m+ αi

k + r, n+ βi
k + t

)q

=

M−Kx∑
m=0

N−Ky∑
n=0

Δl+1
1 (m,n)× ylk

(
m+ αi

k + r, n+ βi
k + t

)q

∴ ∂E

∂wl+1
ik

〈q〉 = conv2D
(
Δl+1

i ,
(
T(α

i
k,β

i
k)
(
ylk
))q

, ′NoZeroPad′
)

(37)

222 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

C. BP for Non-Localized Kernel Operations by the
BP-Optimized Bias

Recall that (6) allows us to compute the derivatives of the
output map w.r.t the individual bias elements, as expressed in
(41). These derivatives will be needed in the BP formulation
that will be covered in this section.

The delta error in the output layer of the input map is the
same as in (25). With �ylk(m,n) = ylk(m+ αi

k, n+ βi
k) (28)

can be simplified as in (42) shown at the bottom of the next
page, and with Pl+1

i = Σ, it yields (43) shown at the bottom
of the page, where∇�yP

l+1
i (m,n, r, t) = ∇ΨPl+1

i (m,n, r, t)×
∇�yΨ(m,n, r, t) = ∇�yΨ(m,n, r, t) and ∇�yΨ(m,n, r, t) can
be directly computed as in (44) shown at the bottom of the next
page. Finally, the delta error of �ylk (from its contribution to xl+1

i

alone) can be computed as,

T(αi
k,β

i
k)
(
Δylk

)
= Δ�ylk = Conv2Dvar

{
Δl+1

i , (∇�yΨ)
}
(39)

Basically, in these equations, we are using the grid of�ylk(m,n)
- not the original grid of ylk. However, we need to compute
individual Δylk from the Δ�ylk for each connection in the next
layer so that we can cumulate them to compute the overall delta
error for ylk . To accomplish this, as in the earlier approach with
random (integer) bias, the overall delta error for the output map,
Δylk, will be computed as the cumulation of the back-shifted
individual delta-errors, Δ�ylk computed for each connection, i.e.,

Δylk (m,n)
∣∣(M−1,N−1)

(0,0)

=

Nl+1∑
i=1

T(−αi
k,−βi

k)
(
Δylk

(
m+ αi

k, n+ βi
k

))

=

Nl+1∑
i=1

T(−�αi
k�,−�βi

k�) (Δylk
(
mα, nβ

))
(40)

where mα = m+ �αi
k� and nβ = n+ �βi

k�. Since the bias
elements are not an integer, we should now use the reverse-
interpolation to compute first, Δylk(m+ �αi

k�, n+ �βi
k�) as

illustrated in Fig. 11. Once again using bilinear interpolation,
Δylk(mα, nβ) can be computed as expressed in (45) shown at
the bottom of the next page. As in the random bias approach,
the overall delta error for the output map, Δylk, is computed as
the cumulation of the back-shifted individual delta-errors using
(40). Once on the integer grid, it is straightforward to compute
Δylk using (32).

After the (overall)Δylk is computed, using (33) (or (34) or (35)
in case down- or up-sampling is performed), the delta error, Δl

k,
can be computed and hence, the back-propagation of the (delta)
error from layer l+1 to the kth neuron at layer l is completed.

Once the back-propagation of delta errors is completed, then
weight and bias sensitivities can be computed using (37) and
(38) with the same simplifications. Note that �ylk = T(αi

k,β
i
k)(ylk)

is the shifted (interpolated) output map as before with the only
difference that (αi

k, β
i
k) ∈ R.

Finally, for the spatial bias sensitivities, Δαi
k = ∂E

∂αi
k

,Δβi
k =

∂E
∂βi

k

, the spatial bias pair, (αi
k, β

i
k), shifts only the pixels of the

Fig. 11. Reverse interpolation from the shifted delta error, Δ�yl
k(m,n) =

Δyl
k(m+αi

k,n+ βi
k) by the bias, (αi

k,β
i
k) ∈ R, to the original delta er-

ror with integer shifts, Δyl
k(m+ �αi

k�,n+ �βi
k�) where (�αi

k�, �βi
k�) ∈

Z.

output map, ylk, to contribute to all pixels of xl+1
i . By using the

chain rule of partial derivatives, the sensitivities of the spatial
bias pair can be expressed in (46) shown at the bottom of the

next page. Let ∇α�y(m,n) =
∂�yl

k(m,n)

∂αi
k

, which was expressed
in (41), (46) finally simplifies to (47) shown at the bottom of
the next page, where Δαi

k is a scalar and ∇α�y ⊗Δ�ylk is the 2D
cross-correlation between ∇α�y and Δ�ylk.

∂�ylk (m+ r, n+ t)

∂αi
k

=
(
1− ζβi

k

) (
ylk
(
mr

α + 1, nt
β

)
−ylk

(
mr

α, n
t
β

))
+ ζβi

k

(
ylk
(
mr

α + 1, nt
β + 1

)− ylk
(
mr

α, n
t
β + 1

))
∂�ylk (m+ r, n+ t)

∂βi
k

=
(
1− ζαi

k

) (
ylk
(
mr

α, n
t
β + 1

)
−ylk

(
mr

α, n
t
β

))
+ ζαi

k

(
ylk
(
mr

α + 1, nt
β + 1

)− ylk
(
mr

α + 1, nt
β

))
(41)

Similarly, it is straightforward to show that the sensitivity,
Δβi

k = ∂E
∂βi

k

, can be expressed as,

Δβi
k =

∂E

∂βi
k

=

M−1∑
m=0

N−1∑
n=0

∇β�y (m,n)×Δ�ylk (m,n)

= ∇β�y ⊗Δ�ylk (48)

where ∇β�y(m,n) =
∂�yl

k(m,n)

∂βi
k

as expressed in (41). It is inter-
esting to see that both spatial bias sensitivities depend on the
cross-correlation of two distinct gradients, the shifted (interpo-
lated) output map delta error and its direct derivative w.r.t the

KIRANYAZ et al.: SUPER NEURONS 223

TABLE IV
TRAIN PARAMETERS OF A SELF-ONN WITH SUPER NEURONS

corresponding bias element. This means that during BP itera-
tions, the ongoing gradient descent operation, e.g., Stochastic
Gradient Descent (SGD), will keep updating the kernel location
until either correlation between these two gradients vanishes
(e.g., they become uncorrelated) or when the (magnitude of
the) delta errors diminishes eventually at the final stages of the
BP (e.g., convergence of the gradient descent). In other words,
the local optimal location of a particular kernel of a particular
connection -if exists for the particular problem at hand- will be
converged when either of the conditions is satisfied (i.e., when
Δαi

k,Δβi
k ≈ 0).

During each BP iteration, t, the kernel parameters,
wl+1

ik 〈q〉(t), and biases, bli(t), (spatial) bias pairs, αi
k(t), β

i
k(t),

of each super neuron in the Self-ONN are updated until a stop-
ping criterion is met. Let, ε(t) and γ(t) be the learning factors at

iteration, t, of weights and spatial bias pairs, respectively. One
can express the SGD update for the kernel parameters, bias, and
the kernel location of each super neuron, i, at the layer, l, in
(49) shown at the bottom of the next page. The parameters of a
Self-ONN for BP training via SGD are presented in Table IV.

To initiate the BP training by SGD over a dataset, a Self-ONN
is first configured according to the network parameters, i.e.,
number of layers (L) and hidden neurons (Nl), the kernel-size
(Kx,Ky), the pooling type and the (polynomial) order for each
layer/neuron are set in advance. Let Self-ONN(0) be the initially
configured network ready for BP training. In the pseudo-code
for BP training presented in Algorithm 1, five consecutive stages
in an iterative loop are visible: 1) BP initialization (Step 1), 2)
Forward-Propagation (FP) of each image in the batch where
native and shifted (interpolated) output maps, derivatives and

∂E

∂ylk

(
m+ αi

k, n+ βi
k

)∣∣∣∣
(M−1,N−1)

(0,0)

= Δylk
(
m+ αi

k, n+ βi
k

)
= Δ�ylk (m,n)

=

Kx−1∑
r=0

Ky−1∑
t=0

∂E

∂xl+1
i (m−r,n−t)

× ∂xl+1
i (m−r,n−t)

∂P l+1
i [..,Ψ(�yl

k(m,n),wl+1
ik (r,t)),..]

×∂P l+1
i [..,Ψ(�yl

k(m,n),wl+1
ik (r,t)),..]

∂Ψ(�yl
k(m,n),wl+1

ik (r,t))
× ∂Ψ(�yl

k(m,n),wl+1
ik (r,t))

∂�yl
k(m,n)

(42)

Δylk
(
m+ αi

k, n+ βi
k

)
= Δ�ylk (m,n) =

Kx−1∑
r=0

Ky−1∑
t=0

Δl+1
i (m− r, n− t)×∇�yΨ (m,n, r, t) (43)

∇�yΨ (m,n, r, t) = wl+1
ik (r, t, 1) + 2wl+1

ik (r, t, 2) �ylk (m,n) + . . .+Qwl+1
ik (r, t, Q) �ylk(m,n)Q−1 (44)

Δylk
(
mr

α, n
t
β

)
= Δ�ylk (m,n)

(
1− ζαi

k

) (
1− ζβi

k

)
+Δ�ylk (m− 1, n− 1) ζαi

kζβ
i
k+

Δ�ylk (m− 1, n) ζαi
k

(
1− ζβi

k

)
+Δ�ylk (m,n− 1)

(
1− ζαi

k

)
ζβi

k (45)

∂E

∂αi
k

= Δαi
k =

M−1∑
m=0

N−1∑
n=0

⎛
⎜⎝Kx−1∑

r=0

Ky−1∑
t=0

∂E

∂xl+1
i (m−r,n−t)

× ∂xl+1
i (m−r,n−t)

∂P l+1
i [..,Ψ(�yl

k(m,n),wl+1
ik (r,t)),..]

×∂P l+1
i [..,Ψ(�yl

k(m,n),wl+1
ik (r,t)),..]

∂Ψ(�yl
k(m,n),wl+1

ik (r,t))
× ∂Ψ(�yl

k(m,n),wl+1
ik (r,t))

∂�yl
k(m,n)

× ∂�yl
k(m,n)

∂αi
k

⎞
⎟⎠ (46)

Δαi
k =

∂E

∂αi
k

=

M−1∑
m=0

N−1∑
n=0

∇αy (m,n)

×
⎛
⎝Kx−1∑

r=0

Ky−1∑
t=0

Δl+1
i (m− r, n− t)×∇ΨPl+1

i

(
m+ αi

k, n+ βi
k, r, t

)×∇�yΨ
(
m+ αi

k, n+ βi
k, r, t

)⎞⎠

=

M−1∑
m=0

N−1∑
n=0

∇α�y (m,n)×Δ�ylk (m,n) = ∇α�y ⊗Δ�ylk (47)

224 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

Algorithm 2: Back-Propagation by SGD for Self-ONNs With Super Neurons.

Input: Self-ONN(0), Hyper Parameters, T rain Parameters : Stopping Criteria (maxIter,minMSE), �,Γ, ε, γ
Output: Self-ONN∗ = BP (Self-ONN(0), SGD, Hyper Parameters, T rain Parameters)

1) Initialize network parameters of each super neuron:
a. wl+1

ik 〈q〉(0) = U(−�,�), bli(t+ 1) = U(−�,�) for ∀i ∈ [1, Nl+1], ∀k ∈ [1, Nl], ∀q ∈ [1, Q]
b. αi

k(0) = U(−Γ,Γ), βi
k(0) = U(−Γ,Γ) for ∀i ∈ [1, Nl+1], ∀k ∈ [1, Nl]

2) UNTIL either stopping criterion is reached, ITERATE (t = 1 : maxIter):
a. For each batch in the train dataset, DO:

i. Init: Assign next item, Ip, directly as the output map(s) in the input layer neurons and using (6) create the shifted
output map(s) along with their powers, (�y0k)

q
, ∀q ∈ [1, Q1] where Q1 is the polynomial order of the super neurons

in the 1st hidden layer.
ii. FP: From the previous layer (shifted) output maps, compute each input map in the 1st hidden layer,

x1
i , ∀i ∈ [1, N1] using (7), then the native output maps, y1i and finally, the shifted output maps along with their

powers, (�y1i)
q ∀q ∈ [1, Q1].

iii. FP: Then compute the required derivatives and sensitivities for each hidden layer, such as f ′(xl
k), ∇yΨ

l
ik, and

∇wΨ
l
ik of each neuron, i, at each layer, l. (∇Ψik

Pl
i = 1)

iv. FP: Repeat (ii) until the output layer is reached. Compute the output map(s), yL1 (Ip), of the neurons in the output
layer and then, compute the MSE and delta error, ΔL

1 , using (25) and (26), respectively.
v. BP: For each hidden neuron at the last hidden layer, using (39) compute delta error for the shifted output map and

then using (45), perform reverse-interpolation (and shift) to compute the delta error of the actual output map for
each connection to the next layer.

vi. BP: Using (32) compute the overall delta error for the output map, Δylk, as the cumulation of the back-shifted
individual delta errors.

vii. BP: Finally, using (33) (or (34) or (35) in case down- or up-sampling is performed), compute the delta error at this
level, Δl

k.
viii. PP: Compute sensitivities for the kernel parameters, bias, and spatial bias pair using (37), (38), (47), and (48)

respectively.
ix. Update: Update for the kernel parameters, bias, and the kernel location of each super neuron in the network with the

(cumulation of) sensitivities found in step (viii) scaled with the current learning factors, ε(t) and γ(t), using (49).
3) Return Self-ONN∗

output MSE and delta error are computed (in Step 2.a, i –iii), 3)
Back-Propagation (BP) of the delta error from the output layer to
the first hidden layer (in Step 2.a, v –vii), 4) post-processing (PP)
where the kernel parameter and bias sensitivities, the sensitivities
of the spatial bias pair are computed for each image in the
batch and cumulated, and 5) Update: when all images in the
batch are processed, then the kernel, bias and the kernel location
of each super neuron in the network are updated and this is
repeated for the other batches and iterations. The pseudo-code
In Algorithm 1 can be used for a Self-ONN with super neurons
that are configured with the non-localized kernel operations by
random spatial bias, the following steps should be modified
accordingly. First, the initialization of bias elements should be
an integer in 1.b., i.e.,αi

k(0) = �U(−Γ−1,Γ+1)� and βi
k(0) =

�U(−Γ−1,Γ+1)� for ∀i ∈ [1, Nl+1], ∀k ∈ [1, Nl]. Then since
the spatial bias elements are integers now, (3) can be used instead

of (7) for FP. Steps 2.a.iv and 2.a.vii are identical for both
approaches. The main difference in BP is step 2.a.v where (31)
should be used instead of (39) for the delta error computed for the
connection to the ith neuron at layer l+1 and there is no need for
reverse interpolation, hence (45) is simply omitted. Obviously
for post-processing (PP) at step 2.a.vii, and Update at step 2.a.xi,
(47), (48), and (49) are, too, omitted since there is no gradient
computation for the spatial bias pair, αi

k, and βi
k, as they are

fixed as integers during step 1. Since the spatial bias elements
are integers now, (3) can be used instead of (7) for FP. Steps 2.a.iv
and 2.a.vii are identical for both approaches. The main difference
in BP is step 2.a.v where (31) should be used instead of (39) for
the delta error computed for the connection to the ith neuron at
layer l+1 and there is no need for reverse interpolation, hence
(45) is simply omitted. Obviously for post-processing (PP) at
step 2.a.vii, and update at step 2.a.xi, (47), (48), and (49) are,

wl
ik 〈q〉 (t+ 1) = wl

ik 〈q〉 (t)− ε (t) ∂E
∂wl

ik

〈q〉 , q ∈ [1, Q] , i ∈ [1, Nl] , k ∈ [1, Nl−1]

bli (t+ 1) = bli (t)− ε (t) ∂E
∂bli

, i ∈ [1, Nl]

αi
k (t+ 1) = αi

k (t)− γ (t)Δαi
k, i ∈ [1, Nl] , k ∈ [1, Nl−1]

βi
k (t+ 1) = βi

k (t)− γ (t)Δβi
k, i ∈ [1, Nl] , k ∈ [1, Nl−1] (49)

KIRANYAZ et al.: SUPER NEURONS 225

Fig. 12. Sample Self-ONN with a single (hidden) super neuron over the toy problem. The perfect regression of the target is illustrated (SNR = �) for an ideal
case.

Fig. 13. Four “proof of concept” verification experiments where the target images are created with random shifts are shown at each row. The 2nd and 3rd columns
show bar plots of the kernels and the 4th column shows the plots of the cumulative bias elements (hidden and output super neurons) in each BP iteration with a
blue point. The cumulative,

∑
(α0

0,β
0
0), and target shifts (α,β) are shown with the red circles on the plot. The BP is stopped at the iteration when the SNR is

reached to 35 dB.

too, omitted since there is no gradient computation for the spatial
bias pair, αi

k, and βi
k, as they are fixed as integers.

D. Proof of Concept

In order to validate the super neurons’ ability to learn the true
shift using BP-optimization of the spatial bias pair, a Self-ONN
network with one hidden layer and a single neuron is trained
over a toy problem where the network aims to learn to regress
(transform) an input image to an output image, which is the
shifted version of the input image by (α, β) ∈ Z[−Γ,Γ], i.e.,
y20(m,n) = y00(m+ α, n+ β). Therefore, with this setup, we
can now validate whether the super neurons with the non-
localized kernels are able to learn the true shift collectively

during the BP training, and if so, whether the Self-ONN is able
to generate the target (shifted) image perfectly well. Fig. 12
illustrates this over a sample image where the output image is the
shifted version of the input image with (α = 6, β = −7) pixels.
In this ideal regression case, the cumulative bias shift of the two
super neurons in x- and y-directions indeed is equal to the target
shift, i.e.,

∑
(α0

0, β
0
0) = (6,−7) where the 1st order learned

kernels are impulses, i.e., w1
00(r, t) = w2

00(r, t) = δ(r, t). Since
this is a validation experiment where the cumulative bias con-
vergence is compared against the actual shift, we keep Q = 1 to
avoid the higher-order (nonlinear) operations and thus to achieve
a perfect reconstruction by linear convolution.

The ideal regression case illustrated in Fig. 12 shows the con-
figuration of only one of the possible BP-optimized super neu-
rons in a Self-ONN. Another ideal output can also be achieved,

226 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

for instance, when
∑

(α0
0, β

0
0) = (5,−8) and the 1st order

learned kernels are impulses arew1
00(r, t) = δ(r, t), w2

00(r, t) =
δ(r− 1, t− 1) or w1

00(r, t) = δ(r− 1, t− 1), w2
00(r, t) =

δ(r, t), or even,w1
00(r, t) = δ(r− 1, t), w2

00(r, t) = δ(r, t− 1).
In this case, the cumulative bias shifts are converged to the close
vicinity of the actual shift (with an offset of (11) pixels) while the
kernels of the hidden and output super neurons with the shifted
impulses accommodate for the offset left out by the biases.

Over the 40 input images randomly selected in the Pascal
dataset, we created the target images with random shifts by
Γ = 8 pixels. Fig. 13 shows four examples of this verification
experiment where the input, output, and target images are shown
in the first and the last two columns, respectively. The 2nd and
3rd columns show bar plots of the kernels and the 4th column
shows the plots of the cumulative bias elements (hidden and
output super neurons) in each BP iteration with a blue point.
The cumulative,

∑
(α0

0, β
0
0), and target shifts, (α, β),are shown

with the red circles on the plot. The spatial bias pair is initially
set as, (α0

0, β
0
0) = (0, 0). The BP iterations are stopped when

the regression SNR reaches 35 dB. In all experiments including
the four shown in the figure, the cumulative bias converged to
the close vicinity of the actual shift and we observed that
offsets such as (0, 1), (1, 0) or (1, 1) pixelsare accommodated
by the 2x2 kernels with shifted impulses. This is also visible in
the figure where the offset is (1, 1) pixels. In the experiments
shown in the first and third rows, the kernel functions in the
1st and 2nd (output) layers are: w1

00(r, t)
∼= δ(r− 1, t− 1) and

w2
00(r, t)

∼= δ(r, t) while the one in the fourth row, they are:
w1

00(r, t)
∼= δ(r, t− 1) and w2

00(r, t)
∼= δ(r− 1, t). Since the

early stopping criterion is set as SNR = 35 dB, the kernels
are only approximating the (shifted) impulses. A common ob-
servation in all experiments is that the spatial bias elements
usually converged during the early stages of the BP, i.e., within
around 20–50 iterations while the optimization of the kernels
was initiated afterwards.

In brief, such a “Proof of Concept” demonstration shows a
unique capability of the super neurons in a regression problem,
i.e., only with a single hidden neuron, from an arbitrary input
image, the network can perfectly regress the output image which
is the shifted version of the input image. Such an image trans-
formation is not possible for any conventional CNNs, or even
Self-ONNs with generative neurons, unless the effective recep-
tive field is expanded by using sufficiently deep and complex
networks.

ACKNOWLEDGMENT

Open Access funding provided by the Qatar National Library.
The work is partially funded by Funding from Academy of Fin-
land project AWcHA and Business Finland project AMALIA.

REFERENCES

[1] S. Kiranyaz, T. Ince, A. Iosifidis, and M. Gabbouj, “Generalized model of
biological neural networks: Progressive operational perceptrons,” in Proc.
Int. Joint Conf. Neural Netw., 2017, pp. 2477–2485.

[2] S. Kiranyaz, T. Ince, A. Iosifidis, and M. Gabbouj, “Progressive operational
perceptrons,” Neurocomputing, vol. 224, pp. 142–154, 2017.

[3] D. T. Tran, S. Kiranyaz, M. Gabbouj, and A. Iosifidis, “Progressive opera-
tional perceptron with memory,” Neurocomputing, vol. 379, pp. 172–181,
2019, doi: 10.1016/j.neucom.2019.10.079.

[4] D. T. Tran, S. Kiranyaz, M. Gabbouj, and A. Iosifidis, “Heterogeneous
multilayer generalized operational perceptron,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 31, no. 3, pp. 710–724, Mar. 2020.

[5] D. T. Tran, S. Kiranyaz, M. Gabbouj, and A. Iosifidis, “Knowledge transfer
for face verification using heterogeneous generalized operational percep-
trons,” in Proc. IEEE Int. Conf. Image Process., 2019, pp. 1168–1172.

[6] S. Kiranyaz, T. Ince, A. Iosifidis, and M. Gabbouj, “Operational neural
networks,” Neural Comput. Appl., vol. 32, pp. 6645–6668, Mar. 2020,
doi: 10.1007/s00521-020-04780-3.

[7] S. Kiranyaz, J. Malik, H. B. Abdallah, T. Ince, A. Iosifidis, and M. Gabbouj,
“Exploiting heterogeneity in operational neural networks by synaptic
plasticity,” Neural Comput. Appl., vol. 33, pp. 7997–8015, Jan. 2021,
doi: 10.1007/s00521-020-05543-w.

[8] J. Malik, S. Kiranyaz, and M. Gabbouj, “FastONN–Python based open-
source GPU implementation for operational neural networks,” 2020,
arXiv:2006.02267.

[9] J. Malik, S. Kiranyaz, and M. Gabbouj, “Operational vs convolutional
neural networks for image denoising,” 2020, arXiv:2009.00612.

[10] S. Kiranyaz, J. Malik, H. B. Abdallah, T. Ince, A. Iosifidis, and
M. Gabbouj, “Self-organized operational neural networks with gen-
erative neurons,” Neural Netw., vol. 140, pp. 294–308, Mar. 2021,
doi: 10.1016/j.neunet.2021.02.028.

[11] J. Malik, S. Kiranyaz, and M. Gabbouj, “Self-organized operational neural
networks for severe image restoration problems,” Neural Netw., vol. 135,
pp. 201–211, Jan. 2021, doi: 10.1016/j.neunet.2020.12.014.

[12] O. C. Devecioglu, J. Malik, T. Ince, S. Kiranyaz, E. Atalay, and M.
Gabbouj, “Real-time glaucoma detection from digital fundus images
using Self-ONNs,” IEEE Access, vol. 9, pp. 140031–140041, 2021,
doi: 10.1109/ACCESS.2021.3118102.

[13] T. Ince et al., “Early bearing fault diagnosis of rotating machinery by
1D self-organized operational neural networks,” IEEE Access, vol. 9,
pp. 139260–139270, 2021, doi: 10.1109/ACCESS.2021.3117603.

[14] S. Kiranyaz et al., “Blind ECG restoration by operational cycle-GANs,”
IEEE Trans. Biomed. Eng., vol. 69, no. 12, pp. 3572–3581, Dec. 2022,
doi: 10.1109/TBME.2022.3172125.

[15] M. Uzair, S. Kiranyaz, and M. Gabbouj, “Global ECG classifi-
cation by self-operational neural networks with feature injection,”
IEEE Trans. Biomed. Eng., vol. 70, no. 1, pp. 205–215, Jan. 2023,
doi: 10.1109/TBME.2022.3187874.

[16] M. Gabbouj et al., “Robust peak detection for holter ECGs
by self-organized operational neural networks,” IEEE Trans. Neu-
ral Netw. Learn. Syst., early access, pp. 1–12, Mar. 28, 2022,
doi: 10.1109/TNNLS.2022.3158867.

[17] A. Degerli, S. Kiranyaz, M. E. H. Chowdhury, and M. Gabbouj, “OSeg-
Net: Operational segmentation network for COVID-19 detection using
chest X-ray images,” in Proc. IEEE Int. Conf. Image Process., 2022,
pp. 2306–2310.

[18] M. Ahishali, S. Kiranyaz, I. Ahmad, and M. Gabbouj, “SRL-SOA: Self-
representation learning with sparse 1D-operational autoencoder for hyper-
spectral image band selection,” in Proc. IEEE Int. Conf. Image Process.,
2022, pp. 2296–2300.

[19] A. Rahman et al., “Robust biometric system using session invariant
multimodal EEG and keystroke dynamics by the ensemble of Self-
ONNs,” Comput. Biol. Med., vol. 142, Mar. 2022, Art. no. 105238,
doi: 10.1016/j.compbiomed.2022.105238.

[20] J. Malik, O. C. Devecioglu, S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-
time patient-specific ECG classification by 1D self-operational neural
networks,” IEEE Trans. Biomed. Eng., vol. 69, no. 5, pp. 1788–1801,
May 2022, doi: 10.1109/TBME.2021.3135622.

[21] J. Malik, S. Kiranyaz, and M. Gabbouj, “BM3D vs 2-layer ONN,” in Proc.
IEEE Int. Conf. Image Process., 2021, pp. 1994–1998.

[22] J. Dai et al., “Deformable convolutional networks,” in Proc. IEEE Int.
Conf. Comput. Vis., 2017, pp. 764–773, doi: 10.1109/ICCV.2017.89.[21].

[23] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable ConvNets v2: More
deformable, better results,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 9300–9308.

[24] A. Chakrabarti, “A neural approach to blind motion deblurring,” in
Proc.14th Eur. Conf. Comput. Vis., 2016, pp. 221–235.

[25] D. Gong et al., “From motion blur to motion flow: A deep learning solution
for removing heterogeneous motion blur,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 2319–2328.

[26] M. Noroozi, P. Chandramouli, and P. Favaro, “Motion deblurring in the
wild,” in Proc. 39th German Conf. Pattern Recognit., 2017, pp. 65–77.

https://dx.doi.org/10.1016/j.neucom.2019.10.079
https://dx.doi.org/10.1007/s00521-020-04780-3
https://dx.doi.org/10.1007/s00521-020-05543-w
https://dx.doi.org/10.1016/j.neunet.2021.02.028
https://dx.doi.org/10.1016/j.neunet.2020.12.014
https://dx.doi.org/10.1109/ACCESS.2021.3118102
https://dx.doi.org/10.1109/ACCESS.2021.3117603
https://dx.doi.org/10.1109/TBME.2022.3172125
https://dx.doi.org/10.1109/TBME.2022.3187874
https://dx.doi.org/10.1109/TNNLS.2022.3158867
https://dx.doi.org/10.1016/j.compbiomed.2022.105238
https://dx.doi.org/10.1109/TBME.2021.3135622
https://dx.doi.org/10.1109/ICCV.2017.89.[21]

KIRANYAZ et al.: SUPER NEURONS 227

[27] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Sch ¨olkopf, “Learn-
ing to deblur,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 7,
pp. 1439–1451, Jul. 2016.

[28] J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural
network for non-uniform motion blur removal,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 769–777.

[29] U. Schmidt, C. Rother, S. Nowozin, J. Jancsary, and S. Roth, “Discrim-
inative non-blind deblurring,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2013, pp. 604–611.

[30] C. J. Schuler, H. C. Burger, S. Harmeling, and B. Scholkopf, “A machine
learning approach for non-blind image deconvolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2013, pp. 1067–1074.

[31] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas, “Deblur-
GAN: Blind motion deblurring using conditional adversarial networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8183–8192.

[32] S. Nah, T. H. Kim, and K. M. Lee, “Deep multi-scale convolutional neural
network for dynamic scene deblurring,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 3883–3891.

[33] S. Ramakrishnan, S. Pachori, A. Gangopadhyay, and S. Raman, “Deep
generative filter for motion deblurring,” in Proc. IEEE Int. Conf. Comput.
Vis. Workshops, 2017, pp. 2993–3000.

[34] X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia, “Scale-recurrent network
for deep image deblurring,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 8174–8182.

[35] J. Zhang et al., “Dynamic scene deblurring using spatially variant recurrent
neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 2521–2529.

[36] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard
artifacts,” Distill, vol. 1, 2016, Art. no. e3. [Online]. Available: http://
distill.pub/2016/deconv-checkerboard

[37] S. Sahu, M. K. Lenka, and P. K. Sa, “Blind deblurring using deep learning:
A survey,” 2019, arXiv:1907.10128.

[38] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.

[39] N. Qian, “On the momentum term in gradient descent learn-
ing algorithms,” Neural Netw., vol. 12, pp. 145–151, 1999,
doi: 10.1016/S0893-6080(98)00116-6.

[40] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” in Proc. 23rd Conf. Learn.
Theory, 2010, pp. 257–269.

[41] T. Tieleman and G. Hinton, “Lecture 6.5 - RMSProp, neural networks for
machine learning | coursera,” (n.d.).

[42] K. Diederik and J. L. Ba, “ADAM: A method for stochastic optimization,”
in Proc. Amer. Inst. Phys. Conf., 2014, pp. 58–62, doi: 10.1063/1.4902458.

[43] S. Ruder, “An overview of gradient descent optimization algorithms,”
2016.

[44] V. Jain and E. Learned-Miller, “FDDB: A benchmark for face detection
in unconstrained settings,” Univ. Massachusetts, Boston, MA, USA, Tech.
Rep. UM-CS2010-009, 2010.

[45] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 1125–1134.

[46] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 2223–2232.

[47] V. Jain and S. Seung, “Natural image denoising with convolutional net-
works,” in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 769–776.

[48] S. Lefkimmiatis, “Non-local color image denoising with convolutional
neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 3587–3596.

[49] D. Yang and J. Sun, “BM3D-Net: A convolutional neural network for
transform-domain collaborative filtering,” IEEE Signal Process. Lett.,
vol. 25, no. 1, pp. 55–59, Jan. 2018, doi: 10.1109/LSP.2017.2768660.

[50] Y. Chen, W. Yu, and T. Pock, “On learning optimized reaction diffusion
processes for effective image restoration,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2015, pp. 5261–5269.

[51] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, 2010.

[52] S. Kiranyaz, M.-A. Waris, I. Ahmad, R. Hamila, and M. Gabbouj, “Face
segmentation ın thumbnail images by data-adaptive convolutional segmen-
tation networks,” in Proc. Int. Conf. Image Process., 2016, pp. 2306–2310.

[53] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance aware
semantic segmentation,” in Proc. Comput. Vis. Pattern Recognit., 2017,
pp. 4438–4446.

[54] T. Lin et al., “Microsoft COCO: Common objects in context,” in Proc. Eur.
Conf. Comput. Vis., 2014, pp. 740–755.

[55] H. Zhu, F. Meng, J. Cai, and S. Lu, “Beyond pixels: A comprehensive sur-
vey from bottom-up to semantic image segmentation and cosegmentation,”
J. Vis. Commun. Image Representation, vol. 34, pp. 12–27, 2016.

[56] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec.,
2015, pp. 3431–3440.

[57] O. Ronneberger, P. Fischer, and T. Brox, “UNet: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Interv., 2015, pp. 234–241.

[58] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431–3440, doi: 10.1109/CVPR.2015.7298965.

[59] E. Learned-Miller, G. B. Huang, A. RoyChowdhury, H. Li, and G. Hua,
“Labeled faces in the wild: A survey,” in Advances in Face Detection and
Facial Image Analysis. Berlin, Germany: Springer, 2016, pp. 189–248.

[60] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” 2015, arXiv. 1511.07122.

[61] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation
using adversarial networks,” 2016, arXiv. 1611.08408.

[62] Self-ONNs, 2021. [Online]. Available: http://selfonn.net/
[63] A. Abdelrahman, S. Lin, and M. S. Brown, “A high-quality denoising

dataset for smartphone cameras,” in Proc. IEEE Comput. Vis. Pattern
Recognit., 2018, pp. 1692–1700.

[64] “Torch.nn.functional.grid_sample PyTorch 1.9.0 documentation,” 2018.
Accessed: Aug. 24, 2021. [Online]. Available: https://pytorch.org/
docs/stable/generated/torch.nn.functional.grid_sample.html#torch.nn.
functional.grid_sample

Serkan Kiranyaz (Senior Member, IEEE) is cur-
rently a Professor with Qatar University, Doha, Qatar.
He authored or coauthored two books, seven book
chapters, ten patents/applications, more than 100
journal articles in several IEEE Transactions and
other high impact journals, and more than 120 papers
in international conferences. His principal research
field is machine learning and signal processing. He
made significant contributions on bio-signal analy-
sis, classification and segmentation, computer vision
with applications to recognition, classification, mul-

timedia retrieval, evolving systems and evolutionary machine learning, swarm
intelligence, and evolutionary optimization.

Junaid Malik received the bachelor’s degree in elec-
trical engineering from NUST, Islamabad, Pakistan,
in 2013, and the M.Sc. degree in information tech-
nology from the Tampere University of Technology,
Tampere, Finland, in 2017. He is also with SAMI
Research Group as a Doctoral Researcher. His re-
search interests include object segmentation, image
restoration, and operational neural networks.

Mehmet Yamac received the B.S. degree in electrical
and electronics engineering from Anadolu University,
Eskisehir, Turkey, in 2009, and the M.S. degree in
electrical and electronics engineering from Bogaziçi
University, Istanbul, Turkey, in 2014. He is currently
working toward the Ph.D. degree with the Depart-
ment of Computing Sciences, Tampere University,
Tampere, Finland. He was a Research and Teaching
Assistant with Bogazici University from 2012 to 2017
and a Researcher with Tampere University from 2017
to 2020. He is currently a Senior Researcher with

Huawei Technologies Oy, Tampere. He has coauthored more than 35 papers,
two of them nominated for the Best (or Student Best) Paper Award in EUVIP
2018 and EUSIPCO 2019. His research interests include computer and machine
vision, machine learning, and compressive sensing.

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://dx.doi.org/10.1016/S0893-6080(98)00116-6
https://dx.doi.org/10.1063/1.4902458
https://dx.doi.org/10.1109/LSP.2017.2768660
https://dx.doi.org/10.1109/CVPR.2015.7298965
http://selfonn.net/
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html#torch.nn.functional.grid_sample
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html#torch.nn.functional.grid_sample
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html#torch.nn.functional.grid_sample

228 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

Mert Duman received the B.S. degree from Bilkent
University, Ankara, Turkey, in 2020. He is working
toward the M.Sc. degree in machine learning with
Tampere University, Tampere, Finland. He is cur-
rently a Researcher with the Signal Analysis and
Machine Intelligence Group, Tampere University. His
research interests include generative models, image
restoration, artificial neuron design, anomaly detec-
tion, zero-shot learning, and data analysis.

Ilke Adalioglu received the B.S. degree in electrical
and Electronics engineering from Bilkent University,
Ankara, Turkey, in 2021. She is working toward the
M.Sc. degree in signal processing and machine learn-
ing with Tampere University, Tampere, Finland. She
is currently a Researcher with the Signal Analysis and
Machine Intelligence Research Group. Her research
interests include machine learning, signal processing,
image analysis, and processing of biomedical data.

Esin Guldogan received the M.S. and Ph.D. degrees
from the Signal Processing Department, Tampere
University of Technology, Tampere, Finland, in 2003
and 2009, respectively. Her research interests include
machine learning, computer vision, imaging algo-
rithms, and 3D image processing.

Turker Ince received the B.S. degree in electrical
engineering from the Bilkent University, Ankara,
Turkey, in 1994, the M.S. degree in electrical en-
gineering from Middle East Technical University,
Ankara, Turkey, in 1996, and the Ph.D. degree in
electrical engineering from the University of Mas-
sachusetts, Amherst (UMass- Amherst), in 2001.
From 1996 to 2001, he was a Research Assistant with
the Microwave Remote Sensing Laboratory, UMass-
Amherst. He was a Design Engineer with Aware, Inc.,
Boston, from 2001 to 2004, and Texas Instruments,

Inc., Dallas, from 2004 to 2006. In 2006, he joined the Faculty of Engineering
with the Izmir University of Economics, Turkey, where he is currently a Professor
with Electrical & Electronics Engineering Department. His research interests
include machine learning, signal processing, biomedical engineering, predictive
analytics, and remote sensing.

Moncef Gabbouj (Fellow, IEEE) is currently a Pro-
fessor with the Department of Computing Sciences,
Tampere University, Tampere, Finland. He was an
Academy of Finland Professor. His research inter-
ests include Big Data analytics, multimedia anal-
ysis, artificial intelligence, machine learning, pat-
tern recognition, nonlinear signal processing, video
processing, and coding. Dr. Gabbouj is a Fellow
of the Asia-Pacific Artificial Intelligence Associa-
tion. He is a Member of the Academia Europaea,
Finnish Academy of Science and Letters, and Finnish

Academy of Engineering Sciences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

