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Abstract—In real-world applications that involve complex data
dependencies, it would be essential to proceed with machine learn-
ing tasks in an adaptable manner. This article presents a novel
Mutually Adaptable Learning (MAL) approach that allows for,
on the one hand, extracting the most crucial information from
data, and on the other hand, maximally utilizing it through model
learning, in a mutually adaptable manner. We elaborate our MAL
approach by explaining how it determines the necessity for the
adaptation of both features and the learning model, integratively
adapts between feature selection and model learning, and optimally
achieves the learning objective. To systematically validate the ef-
fectiveness of MAL, we conduct comprehensive experiments on
challenging learning tasks from two representative domains: spa-
tiotemporal prediction and chaotic behavioral prediction, where
the complex data dependencies are general encountered. Results
demonstrate that MAL outperforms existing learning methods.
Moreover, we show that the formulated objective can be attained
under an information-theoretic guarantee. With both empirical
and theoretical supports, MAL offers an effective solution to the
problem of feature and model adaptation to achieve desired learn-
ing objective for given complex tasks.

Index Terms—Complex data dependency, Mutually Adaptable
Learning (MAL), feature and model adaptation, information-
theoretic analysis.

I. INTRODUCTION

W ITH the availability of a vast amount of data and the
rapid development of computing resources and storage

devices, how to extract useful information from the available
data and then make the best use of it is becoming increasingly
important to various learning tasks. However, learning from
data is never an easy mission due to complex dependencies and
relationships among multiple variables caused by their nonlinear
interactions (referred to as synergistic effects). Two typical
application domains that show such complex dependencies and
synergistic effects are spatiotemporal prediction [12], [13], [43],
[48] and chaotic behavioral prediction [2], [6], [53], involving
analyzing the underlying relationships among multiple variables
over time and making the subsequent inference or prediction on
the target variable (Fig. 1(a)).
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In spatiotemporal prediction tasks such as traffic predic-
tion [13], disease prediction [21], and climate forecasting [48]
(Figs. 1(b) and 4 show an example of traffic prediction), there
exist complex dependencies among data within and between
temporal and spatial dimensions at multiple scales (e.g., tempo-
rally at yearly, monthly, weekly, daily, and hourly resolutions,
as well as spatially at country, province, city, district, and street
levels). As such spatiotemporal dependencies manifest at vary-
ing scales and are not directly observable, their impacts on the
target variable are difficult to be quantitatively characterized by
existing learning models with one-off, fixed structures.

Another typical and interesting application that well demon-
strates the complexity of data relationships is predicting the
dynamical behaviors of chaotic systems. In many representative
chaotic systems such as the Lorenz system [6] and the double
or triple pendulum system [2], we can observe highly nonlinear
dynamics (as shown in Figs. 1(c) and 5), which are hard to
predict, due to their extreme sensitivities to small perturbations
in conditions. Existing time series models and deep recurrent
neural network (DRNN) models have been designed to capture
short-term dependencies or periodic long-term dependencies
with predefined model structures, and thus have shown certain
limitations in predicting such chaotic dynamics with irregular
long-term dependencies and high-order correlations [53].

The above learning tasks have several critical computational
challenges in common. Firstly, the observations in these tasks
are complex — highly nonlinear, heterogeneous, and/or high-
dimensional. As a result, it is difficult to determine which part
of the observations is the most informative one with respect
to the learning task. Further, the input variables and the target
variable are nonlinearly coupled and interacting, resulting in
complex synergistic effects and substantial irregularities of the
relationships between observations and the target variable. This
brings significant challenges to modeling intrinsic data depen-
dencies. More importantly, the complexity of observations, the
underlying data dependencies at multiple scales, and the sensi-
tivities of target variable to small perturbations on observations
make existing predefined one-off models too rigid to capture the
subtleties of the data and the task.

To address the aforementioned challenges in an effective and
efficient manner, we need to answer the following critical ques-
tion: Given a learning task, how can the learning procedure
carry out the task with the right information, through the
right model, at the right time? In other words, how can the
learning procedure, on the one hand, extract the most crucial
information from the complex data, and on the other hand, utilize
the extracted information to the maximum extent by constructing
appropriate learning models, in a flexible and adaptable manner?
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Fig. 1. Schematic illustration of the research problem studied in this paper. (a) An overview of the research problem: learning the complex dependencies
and relationships among multiple variables over time (i.e., X) and making the subsequent inference or prediction on the target variable Y. (b) Spatiotemporal
prediction, where the multi-scale dependencies of data along both spatial and temporal dimensions are hard to capture and thus bring challenges to the task.
(c) Chaotic behavioral prediction, where the sensitivities to small perturbations caused by the system nonlinearity make the accurate prediction extremely difficult.
Note that although the same MAL approach is used to learn the architectures for the tasks of spatiotemporal prediction and chaotic behavioral prediction, the
constructed architectures on these two tasks could be different, as illustrated in the center of (b) and (c). The reason is that the intrinsic challenges of data dependency
learning in these two tasks differ. The proposed MAL approach, therefore, needs to extract different kinds of information from data to make accurate predictions
by selecting the most appropriate basic units and constructing the corresponding learning architectures for given tasks.

To answer this question in a systematic way, in this article,
we design, demonstrate, and analyze a novel approach called
Mutually Adaptable Learning (MAL), aiming at addressing the
following three problems: (P1) How to design the learning
method? (P2) How to validate the learning effectiveness? and
(P3) How to guarantee the learning capacity?

A. Related Work

This article aims to propose a novel MAL approach for com-
plex data dependency learning via mutually adaptable feature
selection and model update. In what follows, we review some
related work in feature selection, automated model generation,
and their applications in data dependency learning.

1) Feature Selection: Feature selection aims to select the
most informative subset of features for the subsequent learning
tasks. Typical feature selection methods can be categorized into
three main categories: (i) filter methods, which rank the useful-
ness of features based on their scores in predefined statistical
tests and select the features with the highest scores [37], [50];
(ii) wrapper methods, which usually use a search strategy, e.g.,
the genetic algorithm [25] or reinforcement algorithm [33], to
identify the optimal feature set by evaluating the performance of

prediction models on the selected feature set; and (iii) embedded
methods, which integrate the processes of feature selection into
the training process of the predictive models, and thus are gener-
ally more effective than filter methods and embedded methods,
making embedded methods widely used [41], [44]. Most of
the aforementioned feature selection methods are heuristically
designed to search for the optimal feature subset in a one-way
manner. However, the valuable features in terms of prediction
vary from situation to situation. An informative feature may
become redundant after incorporating another feature, or a less
informative feature may become helpful when combined with
another feature. Therefore, an adaptable way to select the opti-
mal set of features, together with the procedure of model adap-
tation, is highly desired, especially when encountering learning
tasks with complex observations.

Some recent studies focused on streaming feature selec-
tion problems for Big Data [1], [54], which could partially
address the aforementioned challenge by dynamically delet-
ing old features or including new features. One representative
work along this direction was conducted by Zhou et al. [59].
They proposed an online group streaming feature selection
method, which first selects features interacting with each other
and then uses the regularization and elastic net for feature
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grouping. However, these streaming feature selection methods
do not explicitly consider the varying importance of features,
which could be well handled by our approach via mutual
adaptation.

2) Automated Model Generation: Automated model gen-
eration aims to automatically create a learning model with
minimum manual efforts. The pipeline of automated model
generation consists of two components: the search space and
the optimization methods [15], [51]. The search space defines
the scope of structures of models (traditional models or deep
neural network (DNN) models) that can be explored while the
optimization methods determine two types of hyper-parameters
in models: hyper-parameters for training and those for model de-
sign. To generate complex DNN models, optimization methods
further involve architecture optimization, which searches for the
architecture with the best performance.

For DNN models, the technique used for automated model
generation is called neural architecture search (NAS). The
search space of NAS can be divided into four categories:
entire-structured [60], cell-based [58], hierarchical [31], and
morphism-based [8]. Regarding the hyper-parameter optimiza-
tion in NAS, representative methods include grid and random
search [3], [17], Bayesian optimization [42], and gradient-based
optimization [35]. For architecture optimization, typical meth-
ods include random search [26], evolutionary algorithms [47],
Bayesian optimization [22], reinforcement learning [60], and
gradient descent for differential structures [32].

The high computational cost is one of the main challenges
of NAS. Progressive automated learning has shown promising
performance in reducing the computational cost, resulting in
efficient NAS [9], [30]. Kiranyaz et al. proposed a progressive
method for searching connections with fixed type of percep-
trons [23], which, however, is still computationally expensive as
it searches at the unit of perceptron and thus cannot scale well
to large datasets with numerous features. Kiranyaz et al. further
developed a self-organized variant with generative neurons that
can adapt the nodal operator of each connection [24]. Xu et al.
proposed to use random sampling from the super network to
reduce the redundancy in exploration, thus improving the search
efficiency [49]. However, these methods generally used the fixed
structure between the cells and the homogeneous cell type for
the upper and lower layers, and thus were less applicable when
various kinds of dependencies at multiple scales exist and need
to be captured via different types of cells or blocks. Our mutually
adaptable learning approach can address this challenging issue
by using a gradual adaption strategy, in which the most useful
information, in each step, can be extracted and represented with
properly selected units.

Furthermore, the structure searching process in the existing
automated model generation methods is performed in a black-
box manner. It is, therefore, difficult to understand the properties
of each learning step and, thus, to theoretically guarantee the
final outcome. Recent studies revealed that the evaluation of can-
didate architecture’s learning performance in each step is essen-
tial in model searching [10], [56]. To address this problem, in the
proposed approach, we develop an information-theoretic-based
learning objective for model adaptation, so that the performance

in each step can be analytically examined, and the achievability
of the objective can be guaranteed.

3) Feature Selection and Model Generation for Data De-
pendency Learning: Learning complex data dependency has
attracted much research attention due to its ubiquity in various
domains such as spatiotemporal prediction [13], [16] and chaotic
behavioral prediction [6], [7]. For an effective learning process,
the selection of the feature space and the construction of the
learning model are of critical importance [39], [57].

In addition to employing existing feature selection methods,
many learning models utilize manually designed features. For
example, in spatiotemporal prediction, regarding the spatial
features, Li et al. incorporated the road network structure into
the recurrent neural network (RNN) model, utilizing the states
of the nearby locations for traffic forecasting [28]; regarding the
temporal features, Zhang et al. constructed the recent, periodic,
and long-term features for crowd flow prediction [55]. However,
manual feature design requires domain-specific knowledge,
which is generally difficult or even impossible to obtain in many
scenarios [37], [39].

In terms of the learning model, various DNN models have
demonstrated impressive performance in different applications
of spatiotemporal prediction [28], [29], [40] and chaotic be-
havioral prediction [6], [7]. To enhance the applicability of
learning models and to reduce the demand for experienced
human experts, some recent studies have aimed to automate
the process of learning model generation in complex learning
problems. Li et al. applied NAS to spatiotemporal datasets and
showed that the learned architecture outperforms the existing
models [27]. However, the proposed model still required an ini-
tial spatiotemporal feature extractor, which needs extra manual
effort and may exclude the feature subspace with potentially
useful information.

Moreover, current studies only focus on the adaptation of
model structure but ignore the progressive exploration of the
intrinsic dependency among complex data, which is of great im-
portance in various learning tasks. Without a clear understanding
of the underlying relationships between the complex data and
the learning task, it still remains a mystery how to dynamically
extract the most crucial information from data and utilize it
to the maximum extent by adaptively constructing appropriate
learning models.

B. Our Contributions

This article tackles the aforementioned challenges in complex
data dependency learning by designing, demonstrating, and an-
alyzing a novel MAL approach to address the three fundamental
problems raised before Section I-A. Specifically, we summarize
the contributions of this work as follows:

1) Architectural Design of MAL: To address (P1), we elab-
orate our MAL approach, which is composed of two
components: feature selection and model learning. Guided
by the formulated learning objective and a residual learn-
ing strategy, the proposed MAL adapts between feature
selection and model learning in an integrative way, so as
to optimally achieve the target. Finally, we quantitatively
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characterize the learning ability of the proposed design of
MAL via information capacity analysis.

2) Systematic Validation of MAL: To address (P2), we com-
pare the performance of MAL with state-of-the-art learn-
ing methods through a set of experiments in two typical
domains with complex data dependency: spatiotempo-
ral prediction and chaotic behavioral prediction. Results
demonstrate that MAL not only outperforms existing
methods, but more importantly, offers an explicit guidance
to construct desired architectures according to the given
tasks and datasets.

3) Information-Theoretic Analysis of MAL: To address (P3),
we first rewrite the learning objective in an equivalent form
from the information-theoretic perspective to measure
the amount of information to be obtained from the data
with respect to a given learning task. Armed with the
information-theoretic measure, we show that the formu-
lated objective is achievable and the learning procedure is
able to converge.

C. Organization of the Paper

The rest of the article is organized as follows. Section II
elaborates the details of MAL, including the approach overview,
the detailed procedure, and the learning behavior analysis.
Section III demonstrates extensive experimentations on real-
world learning tasks to validate the effectiveness of MAL.
Section IV introduces the information-theoretic framework to
re-formulate the objective of MAL, enabling the quantitative
measurement of the amount of information to be obtained from
the data, and proves the convergence of MAL. Section V con-
cludes the article.

II. ARCHITECTURAL DESIGN OF MUTUALLY ADAPTABLE

LEARNING

In this section, we elaborate the architecture of MAL. First,
we formally state the problem by providing its mathematical
definition. Then we give an overview of the MAL architec-
ture, followed by the specific procedure for adaptively learning
features and models. After that, we present the optimization
procedure. Finally, we analyze the capacity of the proposed
approach in extracting useful information for prediction.

A. Problem Statement

LetX ∈ �Tx×Dx denote the feature set of multiple covariates,
where Tx is the length of time lag of a sample and Dx is the size
of the covariate features; and Y ∈ �Ty×Dy denote the target
variable, where Ty is the horizon of prediction and Dy is the
dimension of the output. We aim to learn a model to accurately
estimate Y using the features extracted from X:

min ‖Y − Ŷ‖, Ŷ = f(X̂), X̂ = s(X), (1)

where ‖ · ‖ denotes the norm operator used to measure the
difference between the ground truth and the prediction, f(·)
is the mapping function, s(·) is the feature selection function,
X̂ denotes the features selected from the given feature set, and

TABLE I
NOTATIONS AND DESCRIPTIONS

Ŷ denotes the estimation of Y. For example, in spatiotemporal
prediction, Y is the value of variables to be predicted at time
step t and X is the covariate features up to time step t− 1. The
notations used in this article are described in Table I.

When encountering the data with complex dependency, an
ideal learning approach should be able to identify and select the
most important information from the data and make the best use
of it by adaptively constructing the learning model. Here, the
word “adaptive” or “adaptable” means that the features to be
selected, the learning model, and the objective function should
be able to self-update so as to optimally achieve the overall
learning target. Specifically, the proposed mutually adaptable
learning (MAL) can be defined as follows:

Definition 1. Mutually Adaptable Learning (MAL): Let X̂m,
fm, and cm be the selected feature set, the learning mapping
function, and the prediction accuracy at the learning step m, re-
spectively. Subsequently, during the learning step m+ 1, MAL
aims to update the selected feature set from X̂m to X̂m+1 and
the mapping function from fm to fm+1, so that a better cm+1

can be achieved (compared with cm).

B. Overview of the MAL Architecture

Fig. 2 provides an overview of the MAL architecture. Given
the input variables X, MAL aims to learn a model to predict
the target variable Y. To achieve this goal, the proposed MAL
approach iteratively selects features using the formulation given
in the upper box of Fig. 2(a) and adapts the learned model using
the objective function shown in the bottom box of Fig. 2(a),
so as to gradually refine the information extracted from data
and capture the complex dependencies among the data. In each
iteration, a new block with the newly selected features (the darker
yellow/blue area on the right of Fig. 2(b)) will be constructed and
added into the existing model and selected feature set (the lighter
yellow/blue area on the left of Fig. 2(b)). Each block, consisting
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Fig. 2. Overview of the architecture of the proposed Mutually Adaptable Learning (MAL). MAL aims to learn a model from the given input variables to make
prediction or inference on the target variable. (a) MAL iteratively selects features and adapt the learned model so as to gradually refine the information extracted
from data and capture the complex dependencies among the data. The procedure will continue until convergence. (b) Illustration of the feature selection and model

adaptation of the proposed MAL from step m to step m+ 1. The symbol⊕ in the bottom right box denotes the operation h(m) = g
(m)
i (x̂(m) + ĥ(m)) given in

the bottom left box of Model Adaptation.

of a feature indicator vector (the top box of Fig. 2(b)) and a base
unit (BU) selected from a BU candidate pool (the bottom box
of Fig. 2(b)), extracts the useful information from the input data
and generates a representation h used for prediction.

C. Feature Selection

In MAL, each block is intended to extract a subset of features
that contain a specific type of useful information for prediction.
Therefore, we formulate an indicator vector maskv(m) ∈ �D to
indicate the importance of features/variables for the mth block
and introduce a sparse regularizer on it, as shown in the top box
of Fig. 2(a). Specifically, the embedding layer for the mth block
is written as:

x̂(m) = Emb(m)((v(m) ⊗ 1)�X), (2)

where Emb(m)(·) denotes the embedding function of the mth

block, ⊗ is the Kronecker product, � is the Hadamard product,
and 1 ∈ �1×T is the vector of all 1 s. To select a compact set of
useful features or variables from the high-dimensional space, we
introduce the l1 norm regularization onv(m) during the training.
In this work, we implement the Emb(m)(·) as a linear function.
The extension to nonlinear cases is straightforward.

D. Model Adaptation – Base Unit Selection

After feature selection, we build the BUs in each block
to generate the hidden representation from the masked input
features needed for the prediction. According to the universal
approximation theorem [19], a neural network (NN) with h
hidden units can approximate the function with h data points.
Therefore, in the following, we use three typical NN models, i.e.,
the RNN (shown in the first row of the bottom box of Fig. 2(b)),
the convolutional NN (CNN, shown in the middle row of the
bottom box of Fig. 2(b)), and the multilayer perceptron (MLP,
shown in the last row of the bottom box of Fig. 2(b)), as examples
of BUs to demonstrate the feasibility and validity of our design.
Note that other models, such as the graph neural networks, can
also be used as BUs according to various learning requirements
and scenarios. And it is not surprising that the inclusion of
more types of BUs could further enhance the representation and
learning capabilities of the architecture, as certain types of BUs
have their own strengths in capturing or characterizing specific
categories of information from complex data.

As each type of BU has its unique capacities in characterizing
different dependencies, we attempt to automate the choice of
BU according to the information to be captured. In various
real-world learning tasks, the complex data dependencies are
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generally hidden and difficult to be explicitly expressed. As a
result, in our design, rather than formulating the explicit repre-
sentation of data dependencies, we aim to automatically capture
such dependencies via loss minimization, i.e., the BU with the
smallest loss is the most efficient one to extract the synergistic
information from input data and thus should be selected in the
current step and integrated into the learning architecture. The
rationale behind this design is that if the complex dependencies
between data can be well captured, then the prediction should
be accurate, that is, the prediction error should be small.

Specifically, during the learning, we pretrain all types of BUs
in the first few epochs. After that, we adopt the “winner-gets-
training” strategy, i.e., for each batch of training data, we first
evaluate the loss (that is, the prediction error) for each type of BU
on the current batch, and then only the BU with the smallest loss
will be updated (using back-propagation) on the current batch
of data. Finally, we select the candidate with the highest training
frequency after multiple epochs as the final BU for this block.
For instance, if the ith BU is chosen, the hidden representation
is generated as:

h(m) = g
(m)
i (x̂(m)), (3)

where g
(m)
i is the function parameterized by the ith BU for the

mth block.

E. Model Adaptation – Block Construction

To construct an expressive representation and reduce the
redundancy between different blocks, we sequentially construct
and connect the blocks to guarantee that each of them will
take into account the structures of previous blocks during the
learning, as shown in the right of the bottom box of Fig. 2(b).
As the blocks are sequentially added, we label them based on
their order of appearance as blocks1, 2, . . . ,M . In such a setting,
the latter blocks can access the representations of the preceding
blocks – as shown in the bottom box of Fig. 2(b) – block m+ 1
can access the representations of blocks 1, . . . ,m. As a result,
for blocks with index greater than 1 (i.e., when m ≥ 2), the
hidden representation in (3) is updated to the following:

h(m) = g
(m)
i (x̂(m) + ĥ(m)),

ĥ(m) =

m−1∑
j=1

W j→mh(j),

(4)

where W j→m denotes the connection from the jth block to the
mth block. To control the complexity of the learning model,
we remove the connections whose weight matrix’s F -norm is
smaller than a threshold δc.

F. Overall Optimization

As described in the last subsection, we iteratively construct a
new block for generating informative representations and then
integrate the outputs from multiple blocks to generate the overall

Algorithm 1: Mutually Adaptable Learning (MAL).

prediction expressed as:

ŷ =
M∑

m=1

o(m)(h(m)), (5)

where o(m) denotes the output function of the block m. In
this study, we use the linear output function: o(m)(h(m)) =
W(m)h(m), because it has an analytical solution for updating
the output layer. HereW(m) is a matrix. One can also extend this
linear function to nonlinear ones according to various learning
requirements.

We use a residual learning strategy, in which the existing
blocks are fixed when learning the new block. The loss function
for joint feature selection and model adaptation over all the
training samples is given as follows:

min

N∑
n=1

L(yn, ŷn), where ŷn =

M∑
m=1

o(m)(h(m)
n ), (6)

where N is the number of training samples. We can then use the
back-propagation to update the selected features and parameters
of BUs within the block. After learning the new block, we
selectively post-tune the existing blocks to make all blocks
more integrative. Specifically, we update the blocks whose
generated hidden representation has relatively high mutual in-
formation with that of the new block. Based on the following
Proposition 1, adding a new block will not affect the existing
blocks that are independent of the new block; updating only
the highly related blocks is sufficient for the entire model.
The detailed procedure of the proposed MAL is described in
Algorithm 1. The code for implementing MAL and the datasets
used in our experiments are available at https://github.com/
tanqi-github/Mutually-Adaptable-Learning.

Proposition 1: Consider a block such that:h(1) = gθ1(x) and
∂I(y;h(1))/∂θ1 = 0. With fixed h(1), the MAL learns h(2)

so that ∂I(y; [h(1),h(2)])/∂θ2 = 0. If two blocks are indepen-
dent, then ∂I(y; [h(1),h(2)])/∂θ1 = 0. Here I(·; ·) denotes the

https://github.com/tanqi-github/Mutually-Adaptable-Learning
https://github.com/tanqi-github/Mutually-Adaptable-Learning


246 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 1, FEBRUARY 2024

mutual information, and θ1 and θ2 are the parameters of these
two blocks.

Proof:

∂I(y; [h(1),h(2)])

∂θ1
=

∂[I(y;h(1)) + I(y;h(2)|h(1))]

∂θ1

=
∂I(y;h(2)|h(1))

∂θ1

=
∂I(y;h(2))

∂θ1
= 0.

(7)

The second equality holds because ∂I(y;h(1))
∂θ1 = 0. The third

equality holds because we have I(h(1);h(2)) = 0, thus
I(y;h(1);h(2)) = 0. As a result, we have I(y;h(2)|h(1)) =
I(y;h(2))− I(y;h(1);h(2)) = I(y;h(2)). �

G. Information Capacity Analysis

After presenting the structure and the optimization procedure
of MAL, we analyze its information capacity, i.e., the capacity
of extracting useful information to predict target variable. To
achieve this goal, we first define the information capacity and
per parameter information capacity as follows.

Definition 2. Information capacity and Per parameter infor-
mation capacity: Information capacity is defined as I(y;h) and
per parameter information capacity is defined as I(y;h)/nc,
where nc is the parameter size of the BU.

Information capacity: We analyze the information capacity of
different BUs in capturing the information along the temporal di-
mension. Let θi ∈ Θi be the parameter set of the ith type of BU.
The information capacity of a specific parameter set is defined as
cθi = {I(gθi(x);xk), k = 1, . . . , D}. For a fixed structure, the
possible values of the information capacity that a BU can have
are limited. Thus, we let Fθi = {cθi , θi ∈ Θi} be the feasible
region of such information capacity. The learning process can
be regarded as the procedure of searching the optimal informa-
tion capacity c∗ from Fθi to optimize the learning objective.
Therefore, one type of BU will be considered as better than
the others if its feasible region covers the optimal information
capacity with fewer parameters. Without loss of generality, in
the following analysis we consider univariate input and a single
hidden unit. We first introduce a Lemma to analyze the mutual
information between the inputs and the learned representation
for a linearized model.

Lemma 1: Assume xi ∼ N(0, σ2
i ); if z =

∑D
i=1 βixi, βi >

0, then I(z;xi) =
1
2 log(1 +

β2
i σ

2
i∑D

j=1,j �=i β
2
jσ

2
j

).

Proof: Because z =
∑D

i=1 βixi, z ∼ N(0,
∑D

i=1 β
2
i σ

2
i ),

then H(z) = 1
2 log(2πe

∑D
i=1 β

2
i σ

2
i ). Therefore, we can

rewrite z = βixi + ε, ε =
∑D

j=1,j �=i βjxj , and thus ε ∼ N

(0,
∑D

j=1,j �=i β
2
jσ

2
j )). Note that ε can be regarded as the noise

term in terms of xi, thus p(z|xi) = N(0,
∑D

j=1,j �=i β
2
jσ

2
j ) and

H(z|xi) =
1
2 log(2πe

∑D
j=1,j �=i β

2
jσ

2
j ). As a result, we have
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2 log(1 +
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Fig. 3. Information capacity of various base units with specific settings.
(a) CNN with left weighting l = 0.4 and right weighting r = 0.6. (b) RNN
with Wh = 0.95 and Wx = 1. (c) MLP with sparse weightings. (d) MLP with
random weightings.

We now discuss and analyze the information capacity of the
MLP, CNN, and RNN separately.
� MLP: As all of the features are first vectorized and then

fed into the MLP, the length of the path from each feature
to the hidden representation is the same, which makes it
easy and flexible to capture the information in arbitrary
temporal distance by adapting the weight of each feature
as βi in Lemma 1.

� CNN: We consider the temporal causal convolutional
network proposed in [36] as an example. We study a
stack of dilated causal convolutional layers as shown
in the Fig. 3 of [36], with 4 layers, exponential dila-
tion (1,2,4 and 8), and the kernel size of 2. Without
loss of generality, we consider univariate input and a
single hidden unit. For the dilated causal network, the
hidden state is calculated as h =

∑
τ=1 βτxt−τ , βτ =∏4

d=1 l
(1( τ

2d−1 � mod 2))

d r
(1−1( τ

2d−1 � mod 2))

d , where 1(·) is
the indicator function. Substituting it into the Lemma 1,
we can obtain the mutual information between the hidden
representation and time-lagged inputs.

� RNN: We consider the vanilla RNN as an example, whose
iterative function can be written as ht = tanh(Whht−1 +
Wxxt). As ht and xt are scalars, Wh and Wx are both
scalars as well. According to Lemma 1, if we assume
that σi = 1, then we have I(ht;xt) =

1
2 log(1 +

Wx

Wh
) and

I(ht;ht−1) = 1
2 log(1 +

Wh

Wx
). Combining these two equa-

tions we have

I(ht;xt−τ ) =
1

2
log

(
1 +

(1−Wh)W
τ
h

(1−W τ
h )Wx

)
. (8)

Fig. 3 shows the information capacity of various BUs with
specific settings. We can observe that the information capacity
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patterns for different BUs are different, allowing us to select
appropriate BUs to capture different types of information among
the data.

Parameter size: Assuming that the input feature dimension
is D, the length of input feature is T , the hidden size is sh, the
kernel size of CNN is sk, and the number of layers is l, then the
parameter sizes of different BUs are:
� MLP: DshT l.
� CNN: Dshskl.
� RNN: (sh +D)shl.
Per parameter information capacity: Usually we have sh �

D and sk ≥ 3, so the parameter size of an RNN is smaller than
that of a CNN. As a result, an RNN is generally more efficient in
capturing the short-range information while a CNN is effective in
capturing long-range information. In contrast, an MLP is capable
of characterizing both short-range and long-range information.
However, its parameter sizes will be huge when the length of the
input is large.

III. SYSTEMATIC VALIDATION OF MAL

In this section, we evaluate the effectiveness of the proposed
approach by comparing it with the state-of-the-art methods on
various tasks and datasets in two typical domains: spatiotem-
poral prediction and chaotic behavioral prediction, where com-
plex nonlinear dependencies and relationships are frequently
encountered. Note that the intrinsic challenges in spatiotemporal
prediction and chaotic behavioral prediction are different. In
spatiotemporal prediction, the multi-scale data dependencies are
very hard to capture; while in chaotic behavioral prediction, the
sensitivity to small perturbations in chaotic dynamical systems
is the main challenge. Facing different challenges, we, therefore,
select different baseline methods for performance comparison
in these two different fields. More details will be provided in the
following subsections.

A. Spatiotemporal Prediction

Spatiotemporal prediction is one of the most representative
application domains, as it usually shows complex dependencies
of data along both spatial and temporal dimensions at multiple
scales. Therefore, we first apply our approach to three typical
spatiotemporal prediction tasks: traffic prediction, infectious
disease prediction, and climate forecasting.

Data description: We first describe the datasets used in these
three tasks.
� Traffic prediction: The traffic jam index data were collected

by the Shanghai Urban and Rural Construction and Traffic
Development Academy in April 2015. The dataset was
released by the organizing committee of the Shanghai
Open Data Apps (Season Information Technology Co. Ltd.
Shanghai Open Data Apps (2015).1 The dataset contains
2,160 time instants and 68 spatial regions.

� Disease prediction: Weekly estimates of influenza activity
for 29 countries were released by Google.2 We used the

1http://soda.datashanghai.gov.cn/
2http://www.google.org/flutrends

data from the years 2006 to 2015. We further collected the
temperature data for these 29 countries.3

� Climate forecasting: This dataset was collected in the Cen-
tral Region of the United States of America, and included
the weekly air temperature data at 2 meters height and
the precipitation data from the North American Regional
Reanalysis (NARR).4 We selected the data from the years
1980 to 2017 in the spatial region of the USA defined by the
coordinates (Lon: −97.095E – −91.476E, Lat: 37.829 N
– 40.2632 N).

Baseline methods for comparison: We compare the perfor-
mance of our approach with the following representative meth-
ods.
� Long short-term memory (LSTM) [18]: It is a traditional

RNN model to capture the long-range and short-range
temporal dependencies of data.

� Sparse group Lasso neural network (SGNN) [41]: It trains
a compact DNN using group sparsity for feature selection
and prediction.

� Dual-stage attention-based RNN (DARNN) [38]: It uses
the attention model first on the variable dimension and
then on the temporal dimension to extract the important
variables and time slices.

� Temporal attention-augmented bilinear network
(TABL) [45]: It is composed of bilinear modules to
capture the relationship in both spatial and temporal
modes. The temporal attention is incorporated after the
bilinear modules to select important time slices.

� MLCNN: Multi-level construal neural network (ML-
CNN) [11]: It is a multitask-like model that includes a
shared recurrent component for the near and distant time
horizon tasks to improve the performance of the current
time horizon task.

Settings and results: We evaluate the one-step-ahead predic-
tion accuracy of different methods, i.e., the temporal horizon of
the target variable is 1. The length of the time lag of a sample
feature is 48 (each represents 10 minutes) in traffic prediction, 60
(each represents one week) in disease prediction, and 60 (each
represents one week) in climate forecasting.

The prediction of the target variable in each spatial location is
regarded as one learning task. In each task, we use the data sam-
ples in the first 70% time steps for training the prediction model
and the remaining 30% for testing. We compare the performance
of different methods in terms of the RMSE and the mean absolute
error (MAE). Table II shows the RMSE and MAE values of
our approach and those of the aforementioned five models on
three spatiotemporal prediction tasks. By selecting the useful
features and making use of them to refine the learning model
in an adaptable and integrative manner, the proposed approach
achieves the best performance among all of the methods in all
three tasks. Note that the values in the Google-Flu data range
from 0 to 10555. Therefore, it is reasonable to have relatively
large RMSE values of all methods in this dataset.

Fig. 4 illustrates the performance of our approach in the task
of Shanghai traffic jam prediction. Fig. 4(a) shows the bubble

3https://climateknowledgeportal.worldbank.org/
4https://www.esrl.noaa.gov/psd/data/gridded/data.narr.monolevel.html

http://soda.datashanghai.gov.cn/
http://www.google.org/flutrends
https://climateknowledgeportal.worldbank.org/
https://www.esrl.noaa.gov/psd/data/gridded/data.narr.monolevel.html
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Fig. 4. Illustration of one typical spatiotemporal prediction task: traffic jam prediction in Shanghai. (a) The bubble map of traffic jam data in a certain 10 minutes
on an enlarged map. (b) The bubble maps of the traffic jam data over time. (c) Comparison between the ground truth (the blue line) and MAL’s prediction (the
orange line) of traffic jam over time in two sample locations.

TABLE II
PERFORMANCE COMPARISON (IN TERMS OF RMSE AND MAE) BETWEEN THE

PROPOSED MAL AND FIVE REPRESENTATIVE MODELS LSTM [18],
SGNN [41], DARNN [38], TABL [45], AND MLCNN [11]) FOR THREE

SPATIOTEMPORAL PREDICTION TASKS: TRAFFIC PREDICTION, DISEASE

PREDICTION, AND CLIMATE FORECASTING

map of traffic jam indices of all locations in a certain 10 minutes
on an enlarged map while Fig. 4(b) provides the maps at multiple
time points. Fig. 4(c) demonstrates MAL’s prediction of traffic
jam over time in two sample locations, together with the ground
truth. We can observe that the prediction (the orange line) is
close to the ground truth (the blue line) in terms of both overall
trend and individual values, reflecting the ability of the proposed
approach in capturing complex dependencies of spatiotemporal
data and making accurate predictions accordingly.

B. Chaotic Behavioral Prediction

In this part, we evaluate the performance of the proposed
approach on chaotic behavioral prediction, which is another
representative domain of complex data dependency learning

demonstrating the highly nonlinear behaviors governed by the
differential equations of chaotic systems. With the complex
nonlinearity, even very similar initial states of the system could
generate quite different future dynamics, making accurate pre-
diction difficult.

Task description: We consider three classical chaotic systems
in our evaluation. They are the Lorenz system, double pendulum
system, and triple pendulum system.
� Lorenz system: It is a system governed by ordinary differ-

ential equations, with chaotic solutions for certain values
of parameters and initial conditions. The differential equa-
tions can be written as: ẋ = σ(y − x), ẏ = x(ρ− z)− y,
ż = xy − βz. In this task, our target is to predict the coor-
dinates of all three dimensions at different time instants.

� Double (triple) pendulum systems: A double (triple) pen-
dulum system is a physical system with a pendulum con-
nected to another one (two) pendulums at its end, showing
highly nonlinear dynamical behavior with a strong sensitiv-
ity to initial conditions [2], [46], [52]. In these experiments,
we consider the coordinates of the trajectory as the target
variables to be predicted.

Baseline methods for comparison: We compare the perfor-
mance of our approach with two methods, one being the classical
LSTM, the other being the representative echo state network
(ESN). The ESN [20] is a kind of recurrent neural networks
that performs particularly well and has been widely used in
chaotic system modeling. Among ESN and its variants [14],
[34], the RC-ESN [6], which is a state-of-the-art method in
the ESN family, has reported advanced performance in chaotic
behavioral prediction. Therefore, we adopt the RC-ESN as a
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TABLE III
PERFORMANCE COMPARISON (IN TERMS OF RMSE AND MAE) OF THE

PROPOSED MAL AND TWO REPRESENTATIVE MODELS (LSTM [18] AND

RC–ESN [6]) IN THREE CHAOTIC BEHAVIORAL PREDICTION TASKS: LORENZ

SYSTEM, DOUBLE PENDULUM SYSTEM, AND TRIPLE PENDULUM SYSTEM

baseline method in our performance comparison. The RC-ESN
utilizes the input data to drive an RNN, so as to induce a nonlinear
response function in each node of this “reservoir” network. It
then trains a linear combination of all these nonlinear response
functions as the output of the model.

Settings and results: For the Lorenz system, we set σ =
10, ρ = 28, β = 8/3 in the differential equations to generate the
chaotic time series. For the double and triple pendulum systems,
we set the masses of the pendulums, i.e., m1 and m2, to be 1 and
the lengths of the limbs, i.e., l1 and l2, to be 1 as well. For all
three systems, we sample at a fixed discrete time step dt = 0.01.
We use the first 15,000 time steps for training and the remaining
10,000 time steps for testing. Following the settings in [6], the
reservoir size of the RC–ESN model is set to 5,000 and the size
of the hidden layers of LSTM is set to 50. For our approach,
we set the hidden size for each block as 400 and train only the
output layer for prediction. For all methods, we predict the target
variable at 20 time steps ahead.

Table III provides the comparison results of the prediction
performance of LSTM, RC–ESN, and MAL on three chaotic
systems. Equipped with the capacity of progressive adaptation
of both features and models, MAL performs better than the
classical LSTM and the popular RC–ESN in all three tasks.

On the left of Fig. 5(a)–(c), we visualize the dynamical be-
haviors of three typical chaotic systems: Lorenz system, double
pendulum system, and triple pendulum system, respectively; on
the right of these sub-figures, we show the corresponding pre-
diction results generated by the proposed MAL (the orange line)
together with the ground truth (the blue line) of the future time
series of these three chaotic systems. Similar to the results shown
in the traffic prediction, our forecasting on the chaotic behaviors
is also close to the ground truth, showing MAL’s capacity in
capturing the complex and irregular long-term dependencies
caused by the extreme sensitivities to small perturbations and
the nonlinear coupling and interactions of variables in such
challenging chaotic systems.

C. Discussion

In addition to the quantitative evaluation of MAL’s perfor-
mance, we further analyze and discuss its behavior during the
learning procedure. Specifically, we use the traffic prediction
task as an example to investigate the progression of MAL’s
learning procedure.

Fig. 5. Illustration of MAL’s predictions of chaotic behaviors of (a) Lorenz
system, (b) double pendulum system, and (c) triple pendulum system.

First, we observe the performance enhancement of MAL
along with the progress of learning. Fig. 6 shows the normalized
testing error (NTE) with the increase in block number at 14
uniformly selected locations. For the prediction of each loca-
tion, the NTE with M blocks, denoted as NTEM , is calcu-
lated as NTEM = [RMSE]M−min([RMSE])

max([RMSE])−min([RMSE]) , where [RMSE] is
a 10× 1 vector, with the M -th element, [RMSE]M , being the
RMSE value of the model with M blocks (M = 1, . . . , 10).
As seen from Fig. 6, the testing error of the proposed MAL
keeps decreasing as the number of blocks increases, showing
the effectiveness of the proposed learning strategy. Moreover,
the learning performance becomes stable when the number of
blocks reaches 5, demonstrating the validity of our convergence
analysis.

Then we explore the progression of block update during
the learning procedure. Specifically, we examine the features
selected by different blocks as well as the change of feature
importance along the learning procedure. We use salience maps
to reveal the selected features and their importance. Fig. 7 shows
the selected features (the solid circles at the corresponding
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Fig. 6. Normalized testing error on 14 locations with the increase of block
number in the traffic prediction task. The blue solid line indicates the mean
value of the normalized testing error on 14 locations, and two dashed lines
indicate the maximum and minimum normalized testing errors on 14 locations,
respectively. The orange region shows the area within one standard deviation.

Fig. 7. Salience maps of three learned blocks. (a) The first block (with the
RNN BU selected). (b) The second block (with the MLP BU selected). (c) The
third block (with the RNN BU selected). The y-axis indicates the time lag and
the x-axis indicates different features (i.e., locations). The solid circle indicates
that the corresponding feature is significant (salience value > 0.1) while its size
indicates the magnitude of the salience value. The plot with the dashed bounding
box on the top right corner of the first subfigure is the magnified version of the
small plot on the lower left corner.

Fig. 8. Salience maps of the first learned block (with the RNN BU selected)
at the (a) first iteration, (b) second iteration, and (c) third iteration. The y-axis
indicates the time lag and the x-axis indicates different features (i.e., locations).
The solid circle indicates that the corresponding feature is significant (salience
value > 0.1) while its size indicates the magnitude of the salience value. The
plot with the dashed bounding box on the top right corner of each subfigure
is the magnified version of the small plot on the lower left corner of the same
subfigure.

positions) and the feature importance (the size of the solid circle)
in the first (Fig. 7(a)), second (Fig. 7(b)), and third (Fig. 7(c))
learned blocks. We can observe that different blocks select
different types of features. The features selected by the first
RNN block capture the global short-range dependencies; the
features extracted by the second MLP block capture the long-
term dependencies; and the features identified by the third RNN
block capture the local short-range dependencies. Moreover,
even existing blocks are able to update themselves during the
learning procedure. Fig. 8 illustrates the selected features and
their importance for the first RNN block in the first (Fig. 8(a)),

second (Fig. 8(b)), and third (Fig. 8(c)) learning iterations. As
the learning process continues, this RNN block gradually tends
to update its ability to capture the short-term dependencies, as it
is found that the features selected by the second MLP block are
sufficient for characterizing the long-term dependencies.

Note that in our experiments, although the proposed MAL
selects and incorporates the CNN as the BU in several cases,
the number of times the CNN has been selected as the BU is
fewer than that of RNN. The possible reason is that most of the
applications used for validation are temporal tasks. Compared
with CNN, RNN is more effective in capturing the temporal
dependency and thus has been more frequently selected as the
BU. While the RNN is relatively powerful in characterizing
temporal information, CNN could be potentially beneficial in
some scenarios. As shown in Fig. 3(a), the CNN captures both
the periodic information with decay trend and the strong local
information (τ < 3). This indicates that the CNN, as a basic unit,
is useful when the proposed MAL needs to extract the periodic
patterns with trends or rich local patterns.

IV. INFORMATION-THEORETIC ANALYSIS OF MAL

In this section, we conduct the information-theoretic analy-
sis of MAL, including the information-theoretic perspective of
the learning objective, the information-characterized synergistic
effects, and the convergence of the learning procedure.

A. Information-Theoretic-Based Learning Objective

To quantitatively characterize the amount of information
carried by the data and objectively determine the information
needed for a given learning task, we examine the learning
objective from an information-theoretic perspective.

The prediction accuracy, denoted by c, measures the gap
between the prediction made by the learning model and the
ground truth. Probabilistically, the prediction accuracy can be
expressed in the form of the likelihood function q(Y|X,Θ).
Here we use Θ to denote the parameter set of the prediction
function that generates the prediction from X. From this as-
pect, the learning objective can be regarded as maximizing the
following log-likelihood:

max
Θ

E[log q(Y|X,Θ)]. (9)

We can further express Θ as Θ = {a, θ}, in which a ∈ {0, 1}D
is the selection indicator vector corresponding to a set of selected
features, with aj = 1 indicating that the jth feature is selected
and 0 otherwise, and θ is the parameter set of the model.
Therefore, we can also denote X̂ (the set of selected features)
as Xa and the set of unselected features as Xā. In the following
proposition, we connect the proposed learning objective with
the mutual information and conditional entropy.

Proposition 2: Optimizing the formulated learning objective,
i.e., maxΘ E[log q(Y|X,Θ)], is equivalent to jointly optimiz-
ing maxa(I(Y;Xa)) and maxθ(H(Y|Xa)−H(Y|fθ(Xa))),
where I(Y;Xa) denotes the mutual information between the
target variable and the selected feature set, and H(Y|Xa) and
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H(Y|fθ(Xa)) denote the conditional entropy of Y given Xa

and that given fθ(X
a), respectively.

Proof: According to [5], the scaled log-likelihood in (9) can
be rewritten as:

l = E[log q(Y|Xa
i , θ)]

= E[log
q(Y|Xa

i , θ)

p(Y|Xa
i )

+ log
p(Y|Xa

i )

p(Y|Xi)
+ log p(Y|Xi)]

= H(Y|Xa)−H(Y|fθ(Xa))− I(Xā;Y|Xa)−H(Y|X)

= H(Y|Xa)−H(Y|fθ(Xa)) + I(Y;Xa)−H(Y). (10)

In (10), the term H(Y) is a constant. Therefore, the objective
of maximizing E[log q(Y|Xa

i , θ)] is equivalent to maximizing
H(Y|Xa)−H(Y|fθ(Xa)) + I(Y;Xa). �

Building upon the connection between the learning objec-
tive and the mutual information, we will further show that the
learning objective is achievable (i.e., bounded). The objective
function in (10) can be further rewritten as:

H(Y|Xa)−H(Y|fθ(Xa)) + I(Y;Xa)−H(Y)

= H(Y)−H(Y|fθ(Xa))−H(Y)

= I(Y; fΘ(X))−H(Y). (11)

Therefore, the original objective is equivalent to
maxΘ I(Y; fΘ(X)). To derive the upper bound of
I(Y; fΘ(X)), we first introduce the following lemma:

Lemma 2: For three random variables z1, z2, z3, if z1 and z3
are conditionally independent given z2, i.e., (z1 ⊥⊥ z3)|z2, then
I(z1; z3) ≤ I(z1; z2).

Proof: The following equality holds:

I(z1; [z2, z3]) = I(z1; z2) + I(z1; z3|z2)
= I(z1; z3) + I(z1; z2|z3). (12)

Because (z1 ⊥⊥ z3)|z2, we know that I(z1; z3|z2) = 0. Thus we
have I(z1; z3) = I(z1; z2)− I(z1; z2|z3) ≤ I(z1; z2). Using a
similar procedure, we obtain I(z1; z3) ≤ I(z2; z3). �

Because fΘ(X) is generated from X, then (fΘ(X) ⊥⊥ Y)|X.
According to Lemma 1, we have I(Y; fΘ(X)) ≤ I(Y;X), i.e.,
I(Y; fΘ(X)) is bounded by I(Y;X). Therefore, we only need
to prove that I(Y;X) is upper bounded. In the general case, the
temporal data with multiple variables can be concatenated into
vector representations, and thus, in the following analysis, we
use y and x to denote the target variable and input variables,
respectively. Assume that y is the observation of the latent state
gy and x is the observation of the latent state gx; then, we have
the following theorem.

Theorem 1: I(y;x) is bounded if any of the three terms,
p(x|gx), p(y|gy), or p(gy|gx), is stochastic.

Proof: According to the Markov blanket [4], in the
model of x← gx → gy → y, we have (x ⊥⊥ y)|gx and
(gx ⊥⊥ y)|gy . According to Lemma 1, we have I(x;y)
≤ I(x;gx), I(x;y) ≤ I(y;gx), I(gx;y) ≤ I(gx;gy)
and I(gx;y) ≤ I(y;gy). In summary, I(x;y) ≤
min[I(x;gx), I(y;gx), I(gx;y), I(gx;gy), I(y;gy)]. If any
of the three terms, p(x|gx), p(y|gy), or p(gy|gx), is stochastic,

then the corresponding mutual information I(x;gx), I(y;gy),
or I(gx;gy) is bounded; so I(x;y) is bounded. �

B. Characterization of Synergistic Effects

In this subsection, we first show the existence of synergistic
effects in complex data, which is a critical challenge in learning
tasks. Based on that, we further prove that MAL is able to capture
such synergistic effects in a progressive way.

Proposition 3: In learning tasks with complex depen-
dency, there exist synergistic effects such that I(y; [x1,x2]) >
I(y;x1) + I(y,x2).

Proof: Consider

⎡
⎢⎣ y

x1

x2

⎤
⎥⎦ ∼ N

⎛
⎜⎝
⎡
⎢⎣μy

μ1

μ2

⎤
⎥⎦ ,

⎡
⎢⎣Σy Σy1 Σy2

Σ1y Σ1 Σ12

Σ2y Σ21 Σ2

⎤
⎥⎦
⎞
⎟⎠.

Without loss of generality, assume dim(y) = 1. We then have

I(y;x1) = H(y)−H(y|x)

=
1

2
ln (2πeΣy)− 1

2
ln
(
2πe(Σy − ΣT

1yΣ
−1
1 Σ1y)

)

= −1

2
ln

(
1− ΣT

1yΣ
−1
1 Σ1y

Σy

)
. (13)

Similarly, we have:

I(y;x2) = −1

2
ln

(
1− ΣT

2yΣ
−1
2 Σ2y

Σy

)
,

I(y; [x1,x2]) = −1

2
ln

(
1−

[
Σ1y

Σ2y

]T [
Σ1 Σ12

Σ21 Σ2

]−1 [
Σ1y

Σ2y

]
Σy

)
.

(14)

Next, we use two typical cases to show the existence of syner-
gistic effects.

Case 1: We show the existence of the synergistic effects
even if x1 and x2 are independent. Let Σy = 1, Σ1 = I,
Σ2 = I, Σ12 = 0 (independence of x1 and x2), Σy1 = 0.2 ∗
1, and Σy2 = 0.2 ∗ 1. We then have I(y;x1) + I(y;x2) =
− 1

2 ln(1− 0.04|x1|)− 1
2 ln(1− 0.04|x2|) and I(y;x2|x1) =

− 1
2 ln(1− 0.04(|x1|+ |x2|)), where |x1| and |x2| are the di-

mensions of x1 and x2, respectively. Without loss of gener-
ality, let |x1| = |x2| = 10, then I(y;x1) + I(y;x2) = 0.5108
and I(y; [x1,x2]) = 0.8047. Obviously, we have I(y;x1) +
I(y;x2) < I(y; [x1,x2]) in this case, i.e., the synergistic effects
exist.

Case 2: We show that the synergistic effects also ex-
ist even if y and any of the x1, x2 are independent. Let
Σy = 1, Σ1 = I, Σ2 = I, Σ12 = 0.2 ∗ I, Σy1 = 0.2 ∗ 1, and
Σy2 = 0 (independence of y and x2). We then have I(y;x2)
= 0 and I(y; [x1,x2]) = − ln(1− Σy1(I− Σ12Σ12)

−1ΣT
y1) =

0.8959. Again, we have I(y;x1) + I(y;x2) < I(y; [x1,x2]),
showing the existence of synergistic effects in this case. �

Remark: We further analyze the condition under which the
data inter-relation Σ12 gives rise to the synergistic effects.
Without loss of generality, we assume that x1, x2, and y are
univariate variables with unit variance, for simplicity of notation.
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We then use σ∗ for a univariate variable to replace Σ∗, and we
have σ11 = σ22 = σ33 = 1. We then have:

I(y;x1) + I(y;x2) = −1

2
ln
(
1− σ2

y1 − σ2
y2 + σ2

y1σ
2
y2

)
,

I(y; [x1, x2]) = −1

2
ln

(
1− σ2

y1 + σ2
y2 − 2σ12σy1σy2

(1− σ2
12)

)
.

(15)

Letting
σ2
y1+σ2

y2−2σ12σy1σy2

(1−σ2
12)

> σ2
y1 + σ2

y2 − σ2
y1σ

2
y2, we have

(σ2
y1 + σ2

y2 − σ2
y1σ

2
y2)σ

2
12 − 2σy1σy2σ12 + σ2

y1σ
2
y2 > 0,

(16)
which is a general quadratic function of σ12. The roots for the

quadratic function are
σy1σy2±σy1σy2

√
(1−σ2

y1)(1−σ2
y2)

σ2
y1+σ2

y2−σ2
y1σ

2
y2

.

In fact, what we are interested in is the synergistic gain of inte-
grating two information sources from different steps of MAL for
prediction, i.e., GY (x1,x2) = I(x2;y|x1)− I(x2;y).5 There-
fore, in the following, we demonstrate that MAL can capture
such synergistic effects with respect to the adaptation of features
and the model.

Theorem 2: For h1 = argmax I(y;h1), there exists h2 =
argmax I(y;h2|h1), such that I(y; [h1,h2]) > I(y;h1) +
I(y;h2). Here h1 and h2 denote the latent representations
learned by MAL at two consecutive iterations, respectively.

Proof: Consider that

[
y

x

]
∼ N

([
μy

μx

]
,

[
Σy Σyx

Σxy Σx

])
,

h1 = Φ1x, and h2 = Φ2x, where Φ1 and Φ2 are matrices. We
then have⎡
⎢⎣ y

h1

h2

⎤
⎥⎦ ∼ N

⎛
⎜⎝
⎡
⎢⎣ μy

Φ1μx

Φ2μx

⎤
⎥⎦ ,

⎡
⎢⎣ Σy ΣyxΦ

T
1 ΣyxΦ

T
2

Φ1Σxy Φ1ΣxΦ
T
1 Φ1ΣxΦ

T
2

Φ2Σxy Φ2ΣxΦ
T
1 Φ2ΣxΦ

T
2

⎤
⎥⎦
⎞
⎟⎠ .

(17)
Substituting the covariance into (13) and (14), we can obtain
I(y; [h1,h2]), I(y;h1) and I(y;h2). Using a similar procedure
to that of the proof of Proposition 3 and the remark following
it, we can prove the existence of synergistic effects and the
corresponding condition for their emergence. �

We further show that such synergistic effects will be taken into
consideration by MAL in adapting the existing model. Consider
a model z = Φ1h1 +Φ2h2, |h1| = |h2| = k. We have:

I(y; z) = H(y)−H(y|z) = 1

2
log

[
det(Σy)

det(Σy − ΣyzΣ−1z Σzy)

]

= −1

2
log

(
1− v

Σy

)
,

(18)
where v = (Φ1Σ1y + Φ2Σ2y)

T (Φ1Σ1Φ
T
1 + Φ2Σ2Φ

T
2 +

2Φ1Σ12Φ
T
2 )
−1(Φ1Σ1y +Φ2Σ2y),Σi (i = 1, 2) is the variance

of hi, and Σij is the covariance of hi and hj . For simplicity,
we introduce a regularization term such that Φ1 +Φ2 = I . We

5This gain occurs because I(y; [x1,x2])− I(y;x1)− I(y;x2) =
I(x2;y|x1)− I(x2;y).

then have:
∂v

∂Φ1
|Φ1=I = 2(Σ1y − Σ2y)Σ

−1
1 Σ1y − 2Σ1yΣ

−1
1 Σ1y

+ 2Σ1yΣ
−1
1 Σ12Σ

−1
1 Σ1y. (19)

If ∂v
∂Φ1
|Φ1=I < 0, i.e.,

Σ12 < (Σy1Σ
−1
1 )−1(Σy2Σ

−1
1 Σ1y)[(Σy1Σ

−1
1 )−1]T , (20)

then the optimal solution for Φ1, i.e., argΦ1
max I(y; z), will

fall into the region where β2 > 0. This condition is similar to
that of data synergy in (16), indicating that the model adaptation
in MAL will explore the synergy within the data to generate
synergistic representations by updating not only the new block
but also the existing blocks.

C. Convergence of MAL

In this subsection, we show the feasibility of MAL by proving
its convergence.

Proposition 4: For∀ε > 0,∃Mε > 0 such thatM (M > Mε)
learning blocks can achieve:

|I(y;x)− I(y; {gθi(x), i = 1, . . . ,M})| < ε, (21)

given that each learning block can approximate the function with
h data points.

Proof: Assuming that the existing model has m learning
blocks, then MAL aims to improve the performance by adding
a new learning block, which is parameterized using the function
Tθm+1

(x). Let q and r be the functions of the existing blocks
and of the new block, respectively, defined as: q = [Tθi(x), i =
1 : m], x ∼ Px and r = Tθm+1

(x), x ∼ Px. We then have

I(y; {Tθi , i = 1, . . . ,m+ 1}) = KL(Pyqr||PyPqr)

= EPyqr

[
log

Pyqr

PyPqr

]
≈ EP̂yqr

[
log

Pyqr

PyPqr

]
, (22)

where P∗ denotes the true distribution of the random multi-
variate variable and P̂∗ denotes the empirical distribution from
the samples. As q and r are both generated from the empiri-
cal distribution of x, we have the following upper bound for
I(y; {Tθi , i = 1, . . . ,m+ 1}):

I(y; {Tθi , i = 1, . . . ,m+ 1}) ≤ I(y;x), (23)

which is equivalent to the following:

EP̂yqr

[
log

Pyqr

PyPqr

]
≤ EP̂yx

[
log

Pyx

PyPx

]
. (24)

The equality holds when
Pr|yq

Pr|q
=

Py|x
Py|x

. We then show that the
objective function is monotonically increasing. Assuming the
function T is bijective, we have:

I(y; [q, r]) = KL(Pyqr||PyPqr)

= E

[
log

Pyq

PyPq

]
+ E

[
log

Pr|yq
Pr|q

]

= I(y;q) + KL(Pry|q||Pr|qPy|q)

≥ I(y;q). (25)
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If each block can approximate the function with h data points,
then we can choose a function R̂ that is able to approximate
the h data points of the empirical distribution. We then have
KL(Pry|q||Pr|qPy|q) > 0. Thus, there exists a positive value
a such that KL(Pry|q||Pr|qPy|q) ≥ a, i.e., the gap |I(y;x)−
I(y; {gθi(x), i = 1, . . . ,m})|will decrease by at least the value
of a in each iteration. If we further add (I(y;x)− I(y;q)−
ε)/a blocks, the gap will be smaller than ε. Therefore, if we
set M = m+ (I(y;x)− I(y;q)− ε)/a, then the inequality in
(21) will hold. �

We further discuss the lower bound of the convergence rate.
Let ȳ = y − o(q), where o(·) is the output function as defined
in (5), then we have H(y|q) = H(ȳ). As mentioned above, R
fits at least sh data points with sh hidden units. Subsequently,
the conditional entropy decreases by sh/N

m on average, where
Nm is the sample size with residual greater than 0. In each
iteration, the function R is learned to optimize the following
objective: minR H(y|q, r) = H(y|q)− I(y, r|q). Therefore,
the objective conditional entropy H(y|q, . . . ) decreases at least
exponentially with the rate H(y|q,r)

H(y|q) = 1− sh/N
m.

V. CONCLUSION

In this article, we investigated a fundamental yet challenging
problem in machine learning: given a learning task, how can
the learning approach carry out the task with the right infor-
mation through the right model at the right time? To answer
this question, we proposed a novel learning approach, MAL,
which refines the feature selection and model learning in an
iterative way. In so doing, the optimum of the objective function
with respect to the given learning task and dataset is guaranteed
to be attained. Then we systematically evaluated the validity
of the proposed approach on two challenging domains with
complex data dependencies and relationships: spatiotemporal
prediction and chaotic behavioral prediction. To analyze the
learning behavior of MAL, we further re-formulated the learning
objective from the information-theoretic perspective to quantify
the information of data features and the model capacity. Based
on our information-theoretic analysis, we demonstrated that the
developed objective is progressively achievable and the learning
approach is able to converge.

In our future work, we will extend the current work along the
following three directions. First, in the current design, we only
adopt three basic structures (i.e., RNN, MLP, and CNN) as the
primitive units. In fact, the design is flexible to involve more
advanced structures such as the graph neural networks. In the
future, we will enrich the type of basic units and explore the inte-
gration of various advanced structures into our design. Second,
when more advanced structures are involved, and a large number
of basic units are selected to learn complex dependencies, the
training cost might be increased exponentially. Therefore, we
plan to design novel learning strategies or optimization algo-
rithms to accelerate the model training, making it practically
efficient. Last but not the least, we will extend our design to more
complex applications in various scenarios by taking into account
domain-specific factors, so as to enable tailor-made solutions to
real-world challenges.
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