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Abstract—This paper presents an indoor localization approach
that determines the absolute position of a mobile robot platform
with centimeter precision by fusing RFID localization results
based on cost-effective, standard passive UHF RFID technol-
ogy with the robot’s odometry data. The mobile robot platform
is equipped with a multistatic UHF RFID interrogation system,
and several RFID tags are arbitrarily placed within the localiza-
tion environment, serving as landmarks. The RFID localization
concept is based on phase evaluations. To overcome the problem
of ambiguous position estimations due to the 2π -phase ambiguity
of the RFID signal phase and mitigate the linearization problem
of the nonlinear system, a novel algorithm based on an iterative
multihypothesis Kalman filter is introduced. A realistic simula-
tion setup is developed to validate the proposed filter algorithm.
By tracking a UHF RFID-equipped mobile robot platform in
a real-world office environment, the proposed approach is also
practically tested in terms of real-time capability, everyday suit-
ability, and multipath resistance. Given that centimeter precision
is only achieved in environments with weak multipath propaga-
tion, the RFID localization results are fused with odometry data
provided by the robot. This effectively compensates for offset
and drift in the odometry sensor, achieving a root-mean-square
localization error of 2.7 cm.

Index Terms—Autonomous robot, global localization, indoor
positioning, Industry 4.0, Internet of Things, iterative unscented
Kalman filter, MIMO, multihypothesis Kalman filtering, phase-
based localization, radio frequency identification, RFID robot,
self-localization, synthetic aperture, UHF RFID.

I. INTRODUCTION

SELF-LOCALIZATION has become an essential technol-
ogy, especially with the deployment of autonomous robots

in a variety of applications. In this paper, we focus on the
self-localization of autonomous UHF RFID-equipped robots,
which have emerged as a powerful platform in the digital
transformation of industry (often called the Fourth Industrial
Revolution, 4IR, or Industry 4.0), with the first commercial
robots already available for purchase [1].
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A. UHF RFID and Self Localization

The use of UHF RFID has become widespread since its
introduction in the EPCglobal Class-1 Gen2 standard [2], with
an estimated market size of USD 10.7 billion in 2021 and a
compound annual growth rate of 10.2% [3]. Its prevalence
originates from the fact that it offers an increased reading
range and higher data rate compared with low-frequency and
high-frequency RFID standards. Since passive tags do not
require any maintenance and are very inexpensive to manufac-
ture, this technology is particularly well suited to economically
implement the Internet of Things in environments with large
quantities of items [4]. Every tag provides a virtual fingerprint
in the form of a unique Electronic Product Code (EPC) that
is physically applied to the actual item. While this technology
has been used primarily for identification in the past, a growing
body of literature is now recognizing its great potential in the
fields of indoor tracking, navigation, and positioning [5]–[7].

Autonomous robots equipped with UHF RFID readers are
able to fully embrace these possibilities. By freely navigat-
ing through an unknown environment while locating tagged
goods from a distance of up to 10 meters, these robots
provide a cost-effective solution for autonomous stocktak-
ing in smart warehouses [8], [9], big storage facilities, and
even libraries [10], thus reducing the costs of inventory
discrepancies and providing online stock data.

The mobile robot platform presented in [11], which is also
used in this paper, is capable of locating tagged goods with
a root-mean-square error (RMSE) of 1.45 cm. To achieve this
remarkable grade of localization accuracy, it is essential to
know the position of the mobile robot precisely throughout the
entire recording. Typically, proprioceptive data (e.g., odometry
data) are retrieved for this purpose. Unfortunately, this is not
sufficient for long trajectories, as error accumulates over time
when a dead reckoning approach is applied [12]. Therefore,
exteroceptive sensor data are used to oppose the characteristic
drift of the estimated trajectory by data fusion. Obtaining this
data in indoor environments often requires expensive hard-
ware [12], such as cameras [13], sonars [14], and laser range
finders [15].

Autonomous robot platforms are often already equipped
with UHF RFID readers for inventory purposes, which can
also be utilized for self-localization. Tags that have been
distributed around the trajectory of the robot can then serve
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as landmarks with known positions. Since this approach
completely eliminates the need for additional exteroceptive
sensors, it greatly reduces the overall costs and therefore con-
siderably increases the economic efficiency of autonomous
inventory robots, accelerating the emergence of Industry 4.0.

B. State of the Art

UHF RFID-based localization systems can be divided into
three categories: systems that evaluate tag readability [16],
received signal strength (RSSI) [17], or the phase information
of the received tag responses. Systems based on readability
solely utilize the information about which tag is respond-
ing at the current robot position and are thus the most
basic localization technique. The RSSI-based approach also
considers the amplitude of the tag signal for position estima-
tion. However, both metrics are highly dependent on several
factors, including chip sensitivity, the tagged item material,
and the tag model. Additionally, these metrics often require
complex calibration procedures that are very sensitive to envi-
ronmental changes [18]. A phase-based approach typically
outperforms the above methods because of its higher sensitiv-
ity and robustness when confronted with multipath propagation
phenomena, as these phenomena especially occur in indoor
environments [19].

In [5] and [19], a detailed overview of the most recent publi-
cations in the field of phase-based UHF RFID self-localization
algorithms is presented. Among other publications, a precise
localization system based on a data fusion approach using
wheel encoders and a UHF RFID system with custom tags
is presented, which achieves an accuracy of approximately
4 cm [20], [21]. Unfortunately, custom tags are rather imprac-
tical because of the additional costs incurred when used
in large quantities. In [18] and [22], commercial tags were
placed on the ceiling and floor, necessitating the installa-
tion of additional upward- and downward-pointing antennas,
whereas typical inventory systems require side-facing anten-
nas. Moreover, floor-mounted tags can be easily destroyed
by roaming vehicles and humans, whereas ceiling-mounted
tags may be inaccessible in tall buildings, such as ware-
houses. Additionally, the presented publications do not utilize
the full 360◦ phase information and therefore waste a lot of
localization potential.

By contrast, this paper presents a localization system based
on a multiple-input and multiple-output (MIMO) 360◦ cost-
effective iterative multihypothesis unscented Kalman filter
(IMUKF), which evaluates the phase data of commercial
tags attached to the surrounding walls, enabling the usage of
side-facing antennas, which are typically mounted on inven-
tory robots [23]. This paper offers exclusive insight into the
performance of the standalone RFID localization approach
in a high-multipath real-world office scenario, allowing for
a deeper understanding of the opportunities and limitations
of this technology. To sustain the high-precision localization
of the mobile robot platform, even in harsh environments,
the IMUKF is used in a hybrid odometry RFID data fusion
approach, compensating for the drift caused by erroneous
odometry data. This leads to highly accurate localization

results without incurring additional hardware costs from
expensive exteroceptive sensors.

The remaining parts of this paper are organized as fol-
lows: Section II discusses the underlying theory of the hybrid
localization principle, including a closer look at the UHF
RFID-based robot localization and the data fusion approach
using proprioceptive odometry data, followed by a detailed
description of the system architecture in Section III. An eval-
uation of the IMUKF algorithm is provided in Section IV
using a simulation setup with close approximation to the real
measurement scenario. In Section V, the simulated RFID-
only localization algorithm and the novel hybrid data fusion
approach are tested with actual measurement data in a demand-
ing use case scenario. Finally, the results are summarized and
future research directions are discussed in Section VI.

II. HYBRID ROBOT LOCALIZATION BASED ON UHF RFID
LANDMARKS AND PROPRIOCEPTIVE ODOMETRY DATA

Both a UHF RFID system and odometry data acquired
by means of wheel encoders are available for localizing the
mobile robot platform. When the robot’s starting position
and orientation are known, the odometry sensors are able
to momentarily provide highly accurate results exceeding the
performance of the UHF RFID system by several orders
of magnitude. However, given that odometry sensors only
measure changes in position and orientation, even minimal
deviations in the detected robot pose, which occur due to slip
during turning maneuvers or when crossing door thresholds,
lead to considerable localization errors of up to several meters
when measuring over long periods of time. These deviations
can only be compensated by absolute position measurements,
such as the exteroceptive localization results of the UHF RFID
system. Thus, we present a hybrid approach that uses both
exteroceptive RFID data and proprioceptive odometry data to
maintain the high accuracy of odometry sensors over long
localization periods. In the following section, we first describe
the UHF RFID-based localization principle before considering
the data fusion using odometry measurements in more detail.

A. Localization Scenario

Fig. 1 shows a typical robot localization scenario in which a
mobile robot platform is equipped with N antennas, shown as
blue points at the positions �rant,n, moving along a trajectory
of unknown position �rti at the time t = ti. Furthermore, K
tags are mounted in our global localization environment at
known positions �rtag,k, which serve as landmarks. We define
the tag-to-antenna distance as

dant-tag,n/mk = ‖ #»r ant,n/m − #»r tag,k‖2, (1)

for the n/m-th receiving (RX) and transmitting (TX) antennas
and the k-th tag, where ‖·‖2 defines the Euclidean norm, with
n, m ∈ N and n �= m for our bistatic scenario. Therefore, the
received signal for a time stamp t = ti is given as

#»x ti

(
#»r tag,k

) = #»
A ti

(
#»r tag,k

)
#»a ti

(
#»r tag,k

)

= #»
A ti

(
#»r Tag,k

)[
e−jϕk,1, e−jϕk,2 , . . . , e−jϕk,U

]T
, (2)
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Fig. 1. Localization scenario: N antennas, shown as blue dots, move along a trajectory and receive responses from K tags located at the red markers.

where
#»
A ti(

#»r tag,k) is the amplitude of the k-th vector and is
set to one, and ϕk,u is the detected signal phase of the k-
th tag using the u-th signal path. The phase steering vector
#»a ti(

#»r tag,k) contains the signal phases of all U possible signal
paths for a time t = ti, which are all possible antenna-to-
tag and tag-to-antenna combinations according to the MIMO
principle, as described in [11]. Finally, the signal phase is
given by

ϕk,u =
(

2π
dant-tag,nk + dant-tag,mk

λc
+ϕoffset,u

)
mod 2π, (3)

where the phase offset ϕoffset,u of the u-th MIMO path is
caused by the cables, the switch matrix, the antennas, and
the listener.

This offset is assumed to be independent of the tag index
k, as only small variations in the phase shift caused by
different tags have been observed in the course of several
measurements. Moreover, the dependence of the phase offset
on the propagation angle due to the angle-dependent radia-
tion patterns of the antennas and tags can be neglected. This
assumption is valid, given that, first, the radiation pattern
of the meandered dipole tag antennas is comparable to an
ideal dipole [24], [25], leading to concentrically propagated
waves [26]. Second, the maximum phase change within the
main lobe of the robot-mounted antennas is 3◦, as found in
simulations. This deviation is negligible compared to other
noise effects, such as multipath. Finally, no significant detun-
ing effect was observed over several weeks, indicating the
phase offset to be constant over time. Hence, ϕoffset,u depends
only on the MIMO channel index u and can therefore be
compensated for by a low-effort calibration, as described in
Section V-A.

B. Localization Principle

The proposed algorithm solves the global localization
problem in real time by using a motion model and phase

measurements according to (2) at a known time stamp t = ti
to predict a new robot position.

This algorithm, based on a Bayes filter, is capable of solv-
ing 2π phase ambiguity (which typically results in ambiguous
robot position estimation) and is implemented in the form of
an IMUKF. The process of robot localization starts by find-
ing the rough initial robot position. This position is obtained
using the standard synthetic-aperture radar (SAR) algorithm,
as presented in [11], by creating a set of hypothetical phases
ϕ̃k,l,u according to (3) for an assigned grid on the search
space at L hypothetical robot positions �rhyp,l. Furthermore, the
steering vector for this set of phases is given by

#»a ti

(
#»r hyp,l

) =
[
e−jϕ̃k,l,1, e−jϕ̃k,l,2, . . . , e−jϕ̃k,l,U

]T
. (4)

Finding the maximum value of the beamformer output power
by evaluating the first received Iinit signals leads to the esti-
mated starting position of the robot according to

#»

r̂ start =
argmax(p( #»a ti(

#»r hyp,l))), with

p
(

#»a ti

(
#»r hyp,l

)) = 1
(
tIinit − t0

)
U

·
∣∣∣∣∣

Iinit∑

i=0

Kdet∑

k=0

#»ati

(
#»r hyp,l

)H #»x ti

(
#»r Tag,k

)
∣∣∣∣∣

2

, (5)

and the number of detected tags Kdet. In contrast to the SAR
algorithm proposed in [11], the robot is not moving; thus,
the spatial sampling theorem is not satisfied. Hence, the robot
position found is likely not the correct robot position. This
is why multiple weighted unscented Kalman filters (UKFs)
are initialized at the Y most likely robot starting positions to
track the movement of the robot while always taking incoming
phase measurements into account and updating filter weights.
The positional ambiguity is then solved by removing all filters
with low weights until the most likely UKF remains, pointing
to the robot’s real position. If the uncertainty of the filter’s
position estimation strongly increases, a set of new UKFs are
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initialized around the last actual robot position to remove the
filter uncertainty caused by 2π phase ambiguity and noise
effects, such as multipath or phase noise.

C. Bayes Filter Algorithm

Before the filter equations are given for the real-time global
localization problem, the basic Bayes filter will be described
briefly.

The predicted position and velocity of the robot at the time
t = ti result from the previously measured values #»x t0:ti−1

according to

bel
(

#»r ti

) = p
(

#»r ti | #»x t0:ti−1

)
, (6)

where #»r ti = [xrobot, yrobot, vx,robot, vy,robot]T is the state
vector describing the position [xrobot, yrobot]T and velocity
[vx,robot, vy,robot]T of the robot, and #»x t0:ti−1 is the phase mea-
surement vector from the time t0 to ti−1 [27]. The uncertainty
of the predicted state vector is corrected in the update step,
using the latest phase measurements p( #»x ti | #»r ti) according to

bel
(

#»r ti

) = η · p
(

#»x ti | #»r ti

) · bel
(

#»r ti

)
, (7)

where η is a normalization factor to meet the requirements of
a probability density function. The maximum of the resulting
function is the best estimate of the robot’s state vector [28].

D. Iterative Multihypothesis UKF

In the following sections, we first explain the prediction
and update step of the UKF — based on the fundamentals of
Kalman filtering and the unscented transformation [28]–[32].
Given the improved approximation of the nonlinear system
equations and the resulting lower risk of filter divergence, we
subsequently extend upon this step with the theoretical under-
pinnings of the iterative UKF (IUKF). Finally, we derive a
multihypothesis approach to solve the 2π phase ambiguity of
the position estimate.

1) Unscented Kalman Filter:
Prediction: Based on the state transition function f , the new

state vector
#»

r̃ rv,ti , defined here as a random vector, is predicted
from the previously estimated state vector of the last time
stamp by adding normally distributed noise #»v ti−1 according
to

#»

r̃ rv,ti = f
(

#»

r̂ rv,ti−1

)
+ #»v ti−1, (8)

where ti is the current time stamp, and the state transition
function is defined as

f
(

#»

r̂ rv,ti−1

)
=

⎛

⎜⎜
⎝

1 0 ti − ti−1 0
0 1 0 ti − ti−1
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

#»

r̂ rv,ti−1 . (9)

In the UKF algorithm, this is realized by creating 2l+1 sigma
points Xs

ti−1
, as described in [28], from the last estimated state

vector
#»

r̂ rv,ti−1 , with s = 0, . . . , 2l and l being the dimension-
ality of the state vector. Then, these are transformed to the
sigma points of the prediction according to

Ys
ti = f

(
Xs

ti−1

)
. (10)

using

#»

r̃ ti =
2l∑

s=0

ws
m,tiYs

ti (11)

and

P̃ti =
2l∑

s=0

ws
c,ti

[
Ys

ti − #»

r̃ ti

][
Ys

ti − #»

r̃ ti

]T + Qti , (12)

with the weights ws
m,ti and ws

c,ti defined in [28]. The mean
#»

r̃ ti
(the new predicted position and velocity of the robot) and the
covariance P̃ti (describing the uncertainty of the prediction) of
the predicted state vector

#»

r̃ rv,ti are calculated. The term Qti is
added to express the uncertainty caused by using a non-ideal
motion model to predict the new robot position and velocity.

Update: As the update step is performed in the measure-
ment space, the update of the robot’s predicted state vector
begins with the transition of the vector into the measure-
ment state using the state transition function h. The expected
measurement vector is therefore given by

#»

x̃ rv,ti = h
(

#»

r̃ rv,ti

)
+ #»wti , (13)

where #»wti is a normally distributed vector representing the
noise of the measurement. The state transition function h
applies (3) to obtain the expected phase value of the u-th
MIMO channel, given the predicted state vector

#»

r̃ rv,ti . In the
UKF algorithm, this transition is accomplished by transform-
ing the predicted sigma points Ys

ti to the measurement space
according to

Zs
ti = h

(Ys
ti

)
. (14)

Again, the mean
#»

x̃ ti and covariance P̃x̃x̃,ti of the expected
measurement vector

#»

x̃ rv,ti are calculated according to

#»

x̃ ti =
2l∑

s=0

ws
m,tiZs

ti (15)

and

P̃x̃x̃,ti =
2l∑

s=0

ws
c,ti

[
Zs

ti − #»

x̃ ti

][
Zs

ti − #»

x̃ ti

]T + Rti , (16)

where Rti describes the uncertainty of the vector #»wti in the
form of a covariance matrix, which takes into account the
noise of the measurement.

With these parameters, the cross-covariance matrix P̃r̃x̃,ti is
calculated according to

P̃r̃x̃,ti =
2l∑

s=0

ws
c,ti

[
Ys

ti − #»

r̃ ti

][
Zs

ti − #»

x̃ ti

]T
, (17)

which enables the calculation of the Kalman gain, given as

#»
Kti = P̃r̃x̃,ti P̃

−1
x̃x̃,ti . (18)

Then, the residuum of the prediction and the measurement

#»y res,ti =
[

#»x ti − #»

x̃ ti

]
(19)
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with the measurement vector #»x ti of time stamp ti is multi-
plied by the Kalman gain. The result is a correction vector,
which takes into account the noise effects of the prediction
and the measurement. Adding the correction vector to the first
predicted state leads to the mean

#»

r̂ ti of the estimated state
vector

#»

r̂ rv,ti according to
#»

r̂ ti = #»

r̃ ti + #»
K ti

#»y res,ti . (20)

The uncertainty of this estimated state is expressed by the
covariance matrix P̂ti , given by

P̂ti = P̃ti − #»
Kti P̃x̃x̃,ti

#»
K T

ti , (21)

which is the difference of the covariance matrix from the
prediction step P̃ti and the Kalman gain-weighted covariance
matrix of the measurement.

As the proposed filter evaluates only one phase measure-
ment at a time, the residuum #»y res,ti can also be represented
by a scalar yres,ti with variance σ 2

UKF.
2) Solving Multimodal Probability Densities (The

Multihypothesis UKF): The 2π ambiguity of the phase
leads to a multimodal probability density, which cannot be
solved by a UKF that is based on a unimodal noise probability
density. Thus, an incorrect robot starting position cannot be
avoided without further signal processing techniques. As
mentioned previously, we therefore initiate Y UKFs at the
likely starting positions and weigh them according to the
residuum of the prediction and measurement from above.

Every initialized UKF filter tries to track the robot when
it starts moving by using the UKF algorithm’s predict and
update step. The filter with the highest weight, which for the
c-th filter is given by

γti,c = γti−1,cηukfe
− y2

res,ti,c

2σ2
UKF , (22)

tracks the real robot position, where ηukf is the speed of the
filter to converge, and σ 2

UKF is the variance of the residuum
yres,ti,c [20]. Both ηukf and σ 2

UKF are empirically optimized
for the best possible filter behavior using several simulations.
When the weights are lower than the minimum threshold, the
corresponding filters are deleted until a final filter remains and
tracks the correct robot position.

To achieve even more robustness against noise effects, the
factors γti,c/γti−1,c are stored and averaged over a set period of
time. If the average falls below a given limit and the number of
remaining filters is lower than NUKF,min, a post-initialization
process begins, and X new filters are initialized around the last
known robot’s position.

3) Improving the Localization Accuracy Due to Non-
Linearities (The Iterative UKF): The UKF approximates the
system transfer function by third-order Taylor series lineariza-
tion [33]; thus, errors occur due to the 2π ambiguity. This can
lead to a situation where the filter diverges [34], but the risk
of divergence can be reduced by executing the filter equa-
tions iteratively. In this scenario, a phase measurement at a
time t = ti will be evaluated until new phase data arrive at the
filter input. A pause between two phase measurements is com-
mon according to the EPCglobal GEN-2 Standard [2]. This

approach still meets the requirement of real-time capability
and increases localization accuracy by reducing linearization
error.

Based on the basics of iterative Kalman filtering [35]–[40],
the algorithm developed herein carries out these steps:

1. The last estimated state vector given as
#»

r̂ rv,ti,g−1
becomes the new prediction, and the sigma points Xs

ti,g
are calculated, where g − 1 with g ∈ N is the last step of
the iteration. After building the weights, the mean (i.e.,
the predicted position and velocity)

#»

r̃ ti,g is given.
2. The transition of the sigma points into the measurement

state according to (14) gives Zs
ti,g. The weighting accord-

ing to (15) calculates the expected measurement vector
#»

x̃ ti,g of the g-th iteration.
3. Finally, the calculation of the covariances P̃x̃x̃,ti,g and

P̃r̃x̃,ti,g and the Kalman gain
#»
Kti,g according to (16), (17),

and (18) lead to the new estimated state vector
#»

r̂ rv,ti,g

with its mean
#»

r̂ ti,g and covariance matrix P̂ti,g. The
corresponding equations are as follows:

#»

r̂ ti,g = #»

r̃ ti,g + εg−1 #»
K ti,g

[
#»x ti − #»

x̃ ti,g

]
(23)

and

P̂ti,g = P̂ti,g−1 − #»
K ti,gP̃x̃x̃,ti,g

#»
K T

ti,g, (24)

where P̂ti,g−1 is the covariance matrix of the last esti-
mation, and ε is a scaling factor with 0 < ε < 1 that
is empirically optimized for best filter performance using
several simulations.

These steps are repeated for any number of G iterations with
g ≤ G until new phase data arrive at the UHF RFID listener.

E. Data Fusion Approach Using UHF RFID-Based
Localization Results and Odometry Data

The proposed data fusion approach combines odometry data
and the results of the UHF RFID-based localization algo-
rithm described above to accurately estimate the position of
the mobile robot platform, even for long measurement peri-
ods. For this purpose, the exteroceptive localization results are
used to compensate for an initial position and orientation error
in the proprioceptive data and for odometry drift during the
measurement. To determine the current odometry shifts we
minimized the distance between the robot position estimated
by RFID measurement data �̂rti and the corrected odometry
data according to

(	x,	y,	φ)

= argmin

[
∑

i

∣∣
∣�̂rti − A(−	φ)�rodo,ti − (	x,	y)T

∣∣
∣

]

, (25)

with the odometry position shifting in the x-direction and the
y-direction (	x,	y), the orientation error 	φ, the erroneous
odometry position �rodo,ti , and the rotation matrix A(−	φ)

rotating �rodo,ti by the angle −	φ around the z-axis.
To estimate the current antenna positions, the RFID-based

localization algorithm relies on accurate robot orientation data,
which may drift over time as it is derived from propriocep-
tive odometry sensors. Therefore, the current robot position
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Fig. 2. Mobile robot platform with 4 × 2 antenna array that drives in the
corridor and is tracked by a Leica TS30 tachymeter.

Fig. 3. Open-plan office with RFID tags attached to seven privacy walls.
The door to the adjoining corridor can be seen on the lower-left side of the
image.

can only be roughly determined using uncorrected odome-
try data. The application of proprioceptive data corrected for
the estimated offsets remarkably increases the accuracy of
the determined antenna positions in the subsequent period,
resulting in an improved estimate of the mobile robot’s posi-
tion. By continuously updating the odometry offsets, the
corrected odometry data successively approximate the true
robot positions.

III. SYSTEM ARCHITECTURE

This section describes the UHF RFID mobile robot platform
and the measurement scenario used to evaluate the proposed
robot self-localization algorithm. The measurement setup is
shown in Figs. 2 and 3.

A. UHF RFID Mobile Robot Platform

To communicate with the UHF RFID tags and thus extract
the tag ID and phase information from the received tag
response, the mobile robot platform is equipped with the cus-
tom eight-channel UHF RFID system developed in [11]. A
block diagram of the hardware setup is depicted in Fig. 4. This
setup consists of a commercial off-the-shelf (COTS) monos-
tatic reader (Sirit Infinity 610 [41]) and an eight-channel UHF

Fig. 4. Block diagram of the robot setup, consisting of eight antennas, a
switch matrix, the eight-channel listener [11], and the monostatic reader (Sirit
Infinity 610).

Fig. 5. Radiating geometry of the antenna array with the visualization of the
main beam directions and the 3 dB beamwidth. Furthermore, the robot-related
coordinate system is defined.

RFID listener, both of which are connected to a switch matrix.
The reader communicates with the tags according to the EPC
protocol [2] using a monostatic setup with a single TX/RX
antenna. The switch matrix selects this antenna by linking
one of the eight antennas to the reader and simultaneously
connecting the remaining seven antennas, now working solely
as RX antennas, to the listener. Thus, during the measure-
ment, all antennas can temporarily transmit or receive signals,
depending on the switch matrix settings. The eight-channel lis-
tener extracts the tag ID and the signal phase from all detected
tag responses. Unlike most COTS devices, the listener is able
to determine phase values with 360◦ (instead of 180◦) phase
uniqueness, resulting in twice the range uniqueness.

To describe the positions of the TX and RX antennas,
we define a robot-related, right-handed coordinate system.
As shown in Fig. 5, the y-axis of this coordinate system is
aligned with the driving direction, the z-axis represents the
height dimension, and the center of the coordinate system is
located at the rotation center of the robot platform. The anten-
nas are attached to the robot in a 4 × 2-array, with the exact
antenna positions given in Table I. As depicted in Figs. 2
and 5, the antenna radiation direction vectors and the x-axis
enclose angles of ϕMB = ±45◦. The antenna has an antenna
gain of 8.5 dBi and a 3 dB-antenna beamwidth of approxi-
mately ϕHWB = 70◦, as visualized by the simulated antenna
radiation pattern in Fig. 6. Considering the geometric dimen-
sions from Fig. 5 and assuming a minimum distance of 1 m
between the robot and the wall where the tags are attached,
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TABLE I
ANTENNA POSITIONS

Fig. 6. Antenna radiation patterns at ϕ = 0◦ and ϕ = 90◦ as a function
of θ . The 3 dB antenna beamwidth is approximately ϕHWB = 70◦, and the
antenna gain is 8.5 dBi.

the read range in the y-direction is 11 m. This enables local-
ization, even in harsh environments, where tags can only be
placed far apart from each other (e.g., in buildings with obsta-
cles or factory halls with only a few mounting options). The
angular resolution of the localization results is indirectly pro-
portional to the largest possible distance between two tags
simultaneously detected by a single antenna of the mobile
robot platform. Therefore, the conducted optimization of the
read range additionally improves the accuracy of the angular
estimates, ensuring excellent localization performance.

Moreover, the antenna setup was designed with special care
taken to apply a clutter- and multipath-suppressing geome-
try. Given that the walls of the environment are flat with
respect to the carrier wavelength λc, perpendicular waves
are reflected back in the direction of incidence and there-
fore considerably interfere with the received tag responses,
whereas non-perpendicular waves are reflected away from
the receiving antennas. The antenna setup mitigates the clut-
ter by attenuating perpendicular waves when moving parallel
to the wall, as shown in Fig. 5. Furthermore, the leverage
of the multipath effect is reduced by taking advantage of
circular antenna polarization [20] and exploiting the spatial
diversity of the MIMO architecture. The signal phases of a
tag response that was recorded using different MIMO chan-
nels (TX-RX antenna combinations) superimpose coherently,
whereas multipath components are incoherent because of the

strongly differing signal paths of these channels, which mutu-
ally extinguish each other. On the condition that the two
antenna array columns are isolated from each other, imple-
menting the switching of the TX antenna increases the number
of MIMO channels from 6 to 24, thus strongly contributing to
the multipath robustness of the localization system.

The orientation of the robot, which is required to calcu-
late the antenna positions in (1), is estimated internally by
evaluating the wheel rotation.

B. Measurement Scenario

The localization algorithm is evaluated in a typical office
environment where harsh multipath effects occur. This envi-
ronment consists of a long corridor and an open-plan office,
as shown in Figs. 2 and 3. Fig. 7 depicts a map of the mea-
surement environment that was generated by a laser sensor
integrated into the mobile robot platform. This measurement
setup enables the everyday suitability of the presented local-
ization algorithm to be proven. The corridor has a width of 2 m
and comprises two orthogonal hallways with lengths of 16 m
and 31 m. To maintain continuous tag detection, we randomly
placed 40 tags on the walls of the corridor.

The open-plan office adjoining to the corridor covers an area
of approximately 7 m×9 m and includes several chairs, tables,
and pieces of office equipment. Privacy walls equipped with
tags are set up on top of the tables, depicting a realistic office
environment and offering the option to distribute the tags over
a large area.

During the measurement process, the robot drives through
the corridor into the office area. As the driving direction is
predefined and the tag detection range is limited to the right
side of the robot, the RFID tags in the corridor and in the
open-plan office are exclusively placed on the right side of
the driveway. Attaching tags on both sides of the wall would
allow the robot to drive in both directions. To evaluate the
performance of this novel algorithm, the position of the robot
is tracked continuously using the optical tracking system Leica
TS30, with an accuracy of 3 mm [42].

IV. SIMULATIONS

This section describes a realistic simulation setup to test the
developed localization algorithm based solely on RFID data in
terms of accuracy and real-time capability. To achieve the most
realistic results, the room geometry and the tag and antenna
positions from the real measurement are used, whereas the
robot positions are calculated by assuming ideal trajectory sec-
tions, such as straight lines or circular movements. Considering
these simulation parameters, the ideal signal phases detected
by the robot-mounted RFID system are calculated according
to (3). These ideal phase values differ from the measured val-
ues, mainly because of two effects: white phase noise caused
by the receiver hardware and multipath propagation. As the
standard deviation of the listener’s white phase noise (averaged
over 10, 000 samples) is σϕ = 0.017 rad, outperforming COTS
devices with typical deviations near σϕ = 0.1 rad many times
over, the phase noise affects the signal phase considerably
less compared with the impact of multipath propagation. Thus,
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Fig. 7. Laser-generated map of the measurement environment, with the corridor on the left and the open-plan office on the right. The tables are represented
by brown rectangles, and the tag positions are marked in red.

this effect is neglected in the following simulation evaluations.
Considering multipath propagation, realistic phase values are
calculated from the ideal phases by applying the algorithm
presented in [43]. To simulate various measurement environ-
ments, the factor K (which describes the ratio of the signal
power propagating on the line of sight between tag and antenna
to the mean multipath signal power) is defined as

K = signal power

mean multipath signal power
. (26)

In the simulation, a typical value for indoor environments of
K = 10 dB is applied.

A decisive variable for comprehending the functionality
of the filter and retracing possible filter divergences is the
state covariance matrix, which indicates the reliability of the
determined localization result. Covariance ellipses are used to
graphically visualize the state covariances of the robot posi-
tions. These ellipses mark the area around the current filter
positions where the deviation is smaller than 20σ , with the
filter standard deviation σ calculated from the current state
covariance matrix. Thus, a large dimension of the ellipsis along
a given direction indicates high state variance in this direction.

Fig. 8 shows the simulated localization results with σϕ =
0 rad and K = 10 dB. As the localization error is small, the
green plot (visualizing the filter output) completely covers the
pink line that depicts the true robot position. All filters are ini-
tialized with the same state covariance in the x-direction and
the y-direction, leading to a circular covariance ellipsis at the
start of the driveway, as shown at (2 m|13 m) in Fig. 8. Given
that the position estimation along the antenna–tag direction
is directly linked to the measured phase by (3), the localiza-
tion in this range direction is ambiguous but highly accurate.
After the subsequent evaluation of the initial measurement
data, this leads to a strong decrease in the state covariance
in the range direction and thus deforms the former circular

covariance ellipsis to a more elliptical shape, as shown at
(2 m|9 m). Because of the antenna configuration presented in
Section III-A, the range vector and the vector pointing in the
driving direction enclose angles of 45◦ and 135◦, respectively,
explaining the oblique ellipsis orientation. Subsequently eval-
uating measurements originating from antennas in the other
column of the antenna array reduces the state covariance along
the major semi-axis of the ellipsis. Hence, the evaluation of
measurements from alternating array columns decreases state
covariance and transforms the covariance ellipses back into a
circular shape. Consecutive bad readings temporarily increase
state covariance and deform the covariance ellipses, to be
observed at (23 m|0 m). Finally, the robot halts at (33 m|2 m).
As the system model assumes that the robot is moving
smoothly at a constant speed, stopping causes a deviation
between the prediction and the measurement, thus increasing
the residuum. The resulting state covariance increment can be
observed in the expanding covariance ellipsis. Furthermore,
most of the measurement data are recorded by antennas in the
rear array column because of the missing tags in front of the
robot. This increases the eccentricity of the covariance ellip-
sis, the semi-minor axis of which is now pointing in the range
direction at �vrange = (1, 1)T.

Fig. 9 shows the localization error 	rti = |�̂rti −�rti | as a func-
tion of time in blue, with the true robot position �rti and the
filter estimate �̂rti at time stamp ti, and the number of currently
initialized filters in red. This number continuously decreases
from 15 filters initialized at t = 0 s, until only one filter
remains at t = 130 s. Because of the low localization error, no
filter reinitialization is required during the complete localiza-
tion process. Shortly after filter initialization, the localization
error is larger than 10 cm because the algorithm is unable
to accurately estimate the correct start position due to the
multimodal probability density, as described in Section II-D2.
By initiating several filters at the most probable start positions
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Fig. 8. Simulated localization results (with σϕ = 0 rad and K = 10 dB) plotted on a 2D map of the measuring environment. The estimated position (green)
nearly coincides with the true position (pink). The yellow covariance ellipses visualize the continuously decreasing state covariance.

Fig. 9. Simulated localization error and number of initialized filters as a
function of time t in s. The number of filters continuously decreases after the
initialization at t = 0, no reinitialization of filters is required because of the
low localization error. The overall RMSE is 1.8 cm.

and weighing them according to the residuum of prediction
and measurement, the error is subsequently limited to 9 cm.
Fig. 10 shows a histogram of the simulated localization error.
It illustrates that the error lies mainly between 0 and 6 cm,
and the frequency distribution reaches a maximum at an error
of approximately 1 cm. The overall RMSE of 1.8 cm with

RMSE(	r) =
√√√√ 1

tI − t0

I−1∑

i=0

[
	r2

ti(ti+1 − ti)
]

(27)

validates the outstanding performance of the proposed local-
ization algorithm.

Fig. 10. Histogram of the simulated localization error. Most of the time,
the error lies between 0 and 6 cm and exceeds 10 cm only during the initial-
ization phase. The frequency distribution reaches a maximum at an error of
approximately 1 cm and then decreases steeply, indicating a low probability
of large errors occurring.

V. MEASUREMENTS

In this section, the hybrid localization algorithm fusing
RFID localization results with the odometry data provided
by the robot platform is applied to real measurement data.
As we use the realistic versatile measurement environment
from Section III, the results are generally valid and can be
transferred to numerous application scenarios.

As one of the two main components of the hybrid approach,
Section V-A shows the results of an RFID-based localization
approach, verifying the filter performance that was demon-
strated with simulation data in Section IV. This localization
approach exclusively evaluates RFID phase measurements and
uses the orientation information of the robot’s odometry data
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Fig. 11. 2D map of the measured localization results obtained with UHF RFID data only. Because of multipath effects, the estimated position (green) in the
hallway strongly deviates from the actual position (pink), resulting in an RMSE of 54.7 cm in Areas 1 and 2. This necessitates a new hybrid approach fusing
RFID and odometry data. Given that multipath propagation is much weaker in the open-plan office, the localization error decreases to 4.5 cm in Area 3 once
a sufficient amount of undistorted data is recorded, and the shrinking covariance ellipses indicate the growing reliability of the estimated robot position.

solely to compute the antenna positions in (1). Given that the
RFID-based localization technique only achieves centimeter
precision in environments with weak multipath propagation,
Section V-B presents a novel hybrid localization approach uti-
lizing RFID position estimation and erroneous odometry data
to accurately determine and subsequently compensate for the
robot’s odometry deviations.

A. Localization Results Evaluating Only RFID Measurements

Prior to measurement, the localization system must be cali-
brated to compensate for phase shifts caused by the antennas,
cables, switch matrix, and listener. Therefore, the mobile robot
platform passes several tags with indices k and measures the
phases of the tag responses ϕmes,k,i,u at time stamps ti for
every single MIMO path u while being tracked by the optical
tracking system. Knowing the exact positions of the tags and
the mobile robot platform, hypothetical phase values ϕhyp,k,i,u

can be calculated using (3) with ϕoffset,u = 0. Subsequently,
the phase offset of a given MIMO channel is determined by

ϕoffset,u = arg

[
K∑

k=0

I∑

i=0

ej(ϕmes,k,i,u−ϕhyp,k,i,u)

]

. (28)

Finally, the calibrated phase of the u-th MIMO-channel is

ϕ′
mes,k,u = ϕmes,k,i,u − ϕoffset,u. (29)

Given that varying multipath interference is expected in the
hallway and the open-plan office because of differing room
geometries, adaptive measurement variance is implemented to
take the tag position into account during the evaluation of (16),
thus adapting the filter parameters to the existing multipath.

Fig. 11 shows the localization results plotted on a 2D map,
whereas the localization error and the number of currently ini-
tialized filters are given in Fig. 12. Both figures are divided into
three sections representing the initialization area, the environ-
ment influenced by the hallway, and the open-plan office. The
measurement data recorded in the hallway are severely dis-
torted by the multipath effect, which is considerably stronger
than assumed in Section IV. Despite the erroneous data lead-
ing to high localization error, the filter does not diverge and is
therefore capable of continuously providing a rough position
estimate with an RMSE of 54.7 cm in Areas 1 and 2. The fil-
ter divergence is prevented by applying a new approach that
comprises a post-initialization process and a reinitialization
process, as described in Section II-D2. In the post-initialization
process, five new filters are initialized in the area around the
latest position estimate as soon as the filter residual increases
sharply, indicating a recent filter deviation. This process, which
can be observed several times in Area 2 of Fig. 12, maintains
the number of initialized filters within a range of approxi-
mately three to nine, so that enough filters are around the true
robot position to react quickly to filter deviations. If all fil-
ters are deleted because of permanently high filter residuals, a
reinitialization process is performed. Therefore, the localiza-
tion algorithm uses the latest measurement data to determine
the current robot position and initializes new filters at the
15 most likely estimates. Fig. 12 visualizes reinitialization at
t = 950 s, which (in combination with hardly distorted mea-
surement data received in the open-plan office) forms the basis
for the following highly accurate localization results. From
t = 950 s onwards, the initialization of new filters is not needed
because of the small localization error, leaving only one filter
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Fig. 12. Measured localization error and number of initialized filters as a function of time t in s when evaluating UHF RFID data only. Because of the
strong multipath effect in the hallway, the post-initialization process maintains the number of initialized filters within a range of three to nine in Area 2. Once
the robot reaches the open-plan office and has acquired sufficient undistorted data, only one filter remains (located approximately at the true robot position),
and the localization error decreases sharply from an RMSE of 54.7 cm in Areas 1 and 2 to 4.5 cm in Area 3.

Fig. 13. Histograms illustrating the measured localization errors of Area 2 in (a) and Area 3 in (b). Because of the harsh multipath environment in Area 2,
the localization shows large errors in a range between 0 and 160 cm, whereas the mitigated multipath effect in Area 3 leads to a reduced localization error
that does not exceed a maximum value of 11 cm.

located at the true position of the mobile robot platform.
Moreover, the decrease in the covariance of the filter state,
visualized as shrinking covariance ellipses in Fig. 11, indi-
cates the growing reliability of the estimated robot position. In
Area 3, the localization algorithm estimates the position of the
mobile robot platform with an accuracy of 4.6 cm RMSE. The
localization error slightly increases at t = 1100 s because the
stopping of the robot deviates from the system model, which
assumes uniform robot motion, as described in Section IV.

Fig. 13 shows two histograms illustrating the measured local-
ization errors of Areas 2 and 3. Similar to the simulated error
in Fig. 10, the frequency distribution of Area 3 in Fig. 13(b)
decreases steeply toward high error values. Even though the
maximum error of the measured localization results is simi-
lar to the simulated error, the lower slope of the frequency
distribution decrease toward high error values and the shift
of the maximum, which is now at 2 cm, result in an increased
RMSE of 4.6 cm compared with the simulated value of 1.8 cm.
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Fig. 14. True robot position in pink and successively corrected odometry data in yellow. By determining the position and orientation offset of the odometry
data using the RFID-based localization results of the open-plan office, the algorithm can estimate the robot position with an RMSE of 2.7 cm.

Because of the harsh multipath environment in Area 2, the
localization error reaches up to 160 cm, as shown in Fig. 13(a).
The frequency distribution has two maxima at 4 and 6 cm,
which result from the localization intervals [500 s, 900 s] and
[200 s, 500 s], respectively, as shown in Fig. 12

B. Compensation for the Proprioceptive Drift by Data
Fusion

Although the presented RFID-based localization algorithm
successfully prevents filter divergence, even in environments
with severe multipath distortions, a coarse position estimation
with an RMSE of 54.7 cm in Areas 1 and 2 (see Figs. 11
and 12) does not meet the requirements for most applica-
tions. To compensate for the drift error of odometry and ensure
sustained high localization accuracy even in harsh multipath
environments, we applied the data fusion approach described
in Section II-E, fusing exteroceptive RFID localization results
with faulty odometry data. Fig. 14 shows the process of
odometry correction applied to the measurement data of the
open-plan office. To demonstrate the outstanding performance
of the algorithm, we chose exceptionally high initial odometry
errors of 	x = 2.2 m,	y = 3.3 m, and 	φ = 40◦. The true
robot position (determined using the optical tracking system)
is shown in pink, whereas the yellow line represents the cor-
rected odometry data. The position and orientation errors are
estimated every 10 s, causing the corrected odometry data to
converge quickly from the high initial offset to the true robot

Fig. 15. Histogram of the localization error from (36.4 m|1.0 m) to the
end of the track using the hybrid localization approach. Similar to that in
Fig. 13(b), the maximum of the frequency distribution is between 2 and 3 cm,
whereas the maximum localization error is reduced to 4 cm by fusing the
RFID localization results with the odometry data.

positions. When passing (36.4 m|1.0 m), the algorithm accu-
rately estimates the odometry offset, reducing the RMSE to
2.7 cm. Fig. 15 shows a histogram of the localization error
measured in this last section of the track. Comparing this
result with the error of the RFID-based localization approach
in Fig. 13(b), we see that the maximum of the frequency dis-
tribution is still at 2 − 3 cm, but the number of large errors is
considerably reduced by fusing the RFID-based results with
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odometry data. Thus, the maximum localization error is now
only 4 cm, corresponding to a reduction of approximately
60 %.

The fusion of odometry data with RFID localization results
not only remarkably improves the accuracy of the robot posi-
tion estimation in a mild multipath environment but also
enables high-precision localization under conditions where
RFID localization is barely possible, so long as the robot regu-
larly traverses light multipath surroundings to compensate for
odometry drift.

VI. CONCLUSION

In this paper, we presented a localization algorithm that esti-
mates the location of a mobile robotic platform by evaluating
the phase information and transponder IDs of UHF RFID tag
responses and fusing the resulting position estimates with the
robot’s odometry data. By running multiple UKFs and suc-
cessively deleting the filters with the least reliable position
estimations, the multihypothesis approach resolves the posi-
tion ambiguity caused by the 2π -phase ambiguity of the tag
responses. The localization algorithm based solely on RFID
data was validated, and the behavior of the state covariances
was reproduced using a realistic simulation environment and
reasonable choices for the expected multipath. Testing this
system in a realistic office environment demonstrated that
the algorithm can estimate the location of the robot with an
RMSE of 4.6 cm in a region with weak multipath distortions.
However, in harsh environments, the algorithm provides only
coarse position estimates with an RMSE of 54.7 cm, neces-
sitating the fusion of RFID localization results and odometry
data from the robot.

Therefore, a novel hybrid approach was presented, com-
bining RFID localization with the robot’s odometry data to
estimate odometry offsets, even in the presence of high ini-
tial error, thus compensating for odometry drift. This reduces
the RMSE to 2.7 cm in the open-plan office and enables
permanent, high-precision localization without the need for
expensive exteroceptive sensors, such as camera, sonar, or
laser technologies.

In future research, the required tag density can be reduced
using active transponders that increase the reading range of the
RFID system by transmitting amplified tag responses. This can
enable high-precision localization in environments with few
mounting positions and thus large antenna–tag distances, such
as factory buildings or warehouses.
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