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Abstract—Artificial intelligence (AI) has great potential to
transform the clinical workflow of radiotherapy. Since the intro-
duction of deep neural networks (DNNs), many AI-based methods
have been proposed to address challenges in different aspects
of radiotherapy. Commercial vendors have started to release
AI-based tools that can be readily integrated to the estab-
lished clinical workflow. To show the recent progress in AI-aided
radiotherapy, we have reviewed AI-based studies in five major
aspects of radiotherapy, including image reconstruction, image
registration, image segmentation, image synthesis, and automatic
treatment planning. In each section, we summarized and catego-
rized the recently published methods, followed by a discussion
of the challenges, concerns, and future development. Given the
rapid development of AI-aided radiotherapy, the efficiency and
effectiveness of radiotherapy in the future could be substantially
improved through intelligent automation of various aspects of
radiotherapy.

Index Terms—Artificial intelligence (AI), image reconstruc-
tion, image registration, image segmentation, image synthesis,
radiotherapy, treatment planning.

I. INTRODUCTION

ARTIFICIAL intelligence (AI) is a data-driven agent that
is designed to imitate human intelligence. The concept of

AI is believed to be originated from the idea of robots, which
can help human perform laborious and time-consuming tasks.
In recent years, the advancements of both computer hardware
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and software have enabled the development of more and more
sophisticated AI agents that can excel certain complex tasks
without human input. Meanwhile, the growth and sharing of
data has powered the continuous evolvement of AI by machine
learning (ML) and deep learning (DL).

ML, a subset of AI, enables machines to achieve AI through
algorithms and statistical techniques trained with data where the
training process informs decisions made by the ML framework,
thus improving the end result as experience is gained [14].
Supervised ML methods for the automatic segmentation of
images involve training and tuning a predictive model, often
integrating prior knowledge about an image via training samples
(i.e., other similarly annotated images to inform the current
segmentation task). ML employs statistical tools to explore
and analyze previously labeled data with image representa-
tions being built from prespecified filters tuned to a specific
segmentation task. Although ML techniques are more efficient
with image samples and have a less complicated structure, they
are often not as accurate when compared to DL techniques [23].
DL is a subset of ML that was originally designed to mimic
the learning style of the human brain using neurons. Unlike
ML where the “useful” features for the segmentation process
must be decided by the user, with DL, the useful features are
decided by the network without human intervention.

Radiation oncology is a type of cancer treatment that
requires multidisciplinary expertise, including medicine, biol-
ogy, physics, and engineering. The workflow of typical
radiotherapy consists of medical imaging, diagnosis, prescrip-
tion, computed tomography (CT) simulation, target registra-
tion/contouring, treatment planning, treatment quality assur-
ance, and treatment delivery. Owing to the technological
advances in the past few decades, the workflow of radio-
therapy has become increasingly complex, resulting in heavy
reliance on human–machine interactions. Each step in the clin-
ical workflow is highly specialized and standardized with its
own technical challenges. Meanwhile, the requirement of man-
ual input from a diverse team of healthcare professionals,
including a radiation oncologist, medical physicist, medical
dosimetrist, and radiation therapist, has resulted in a subop-
timal treatment process that prevents patients’ wider access
to the scarce treatment infrastructures. The wide adoption of
image-guided radiotherapy has created a massive amount of
imaging data that needs to be analyzed in a short period of
time. However, humans are limited in reviewing and analyzing
large amounts of data due to time constraints. Machines, on the
other hand, can be trained to share many repetitive workloads
with humans and therefore boosting the capacity of quality
healthcare. Since the introduction of deep neural networks

2469-7311 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8043-2230
https://orcid.org/0000-0003-1612-9055
https://orcid.org/0000-0002-8397-5940
https://orcid.org/0000-0002-4210-8031
https://orcid.org/0000-0001-6490-6555
https://orcid.org/0000-0001-9023-5855


FU et al.: AI IN RADIATION THERAPY 159

(DNNs), many AI-based methods have been proposed to
address challenges in different aspects of radiotherapy. Given
the rapid development of AI-aided radiotherapy, the efficiency
and effectiveness of radiotherapy in the future could be sub-
stantially improved through intelligent automation in various
aspects of radiotherapy.

Several articles have been published regarding AI in radi-
ation oncology [30]–[32]. Huynh et al. [32] provided a high-
level general description of AI methods, reviewed its impact
on each step of the radiation therapy workflow and discussed
how AI might change the roles of radiotherapy medical pro-
fessionals. Siddique and Chow [31] provided a review of
AI in radiotherapy, including diagnostic processes, medical
imaging, treatment planning, patient simulation, and quality
assurance. Vandewinckele et al. [30] published an overview of
AI-based applications in radiotherapy, focusing on the imple-
mentation and quality assurance of AI models. In this study,
to show the recent progress in AI-aided radiotherapy, we have
reviewed AI-based studies in five major aspects of radiother-
apy, including image reconstruction, image registration, image
segmentation, image synthesis, and automatic treatment plan-
ning. In each section, we summarized and categorized the
recently published methods, followed by a discussion of the
challenges, concerns, and future development. Specifically,
H. Zhang contributed to the image reconstruction section;
Y. Fu, T. Liu, and X. Yang contributed to the image registra-
tion section; E. D. Morris and C. K. Glide-Hurst contributed to
the image segmentation section; S. Pai, A. Traverso, L. Wee,
and I. Hadzic contributed to the image synthesis section; and
P. Lønne and C. Shen contributed to the automatic treatment
planning section.

II. IMAGE RECONSTRUCTION

Tomographic imaging plays an important role in external-
beam radiation therapy for simulation and treatment planning,
pretreatment and intrafractional image guidance, as well as
follow-up care. Before treatment, the patient usually under-
goes a CT simulation to acquire images of the area of body
to be treated with radiation. The acquired CT images are used
to delineate the tumors and surrounding critical structures,
and then to design an optimal treatment plan for the patient.
For tumors around the diaphragm, such as those in the liver
and lower lung lobe, 4-D CT scans may also be performed
to capture the motion of tumors in respiration. Due to the
advantage of superior soft-tissue contrast, magnetic resonance
imaging (MRI) scans are also prescribed for some patients
with brain tumors, paraspinal tumors, head and neck cancer,
prostate cancer, and extremity sarcoma. The MRI scans are
fused to simulation CT images to facilitate tumor delineation
and organs at risk (OAR) contouring, or in MRI-only simula-
tion to synthesize CT images for treatment planning and dose
calculation [43]. Different from anatomical imaging, such as
CT and MRI, positron emission tomography (PET) provides
information on tumor metabolism and is used for visualiza-
tion of tumor extent and delineation of volume in need of
dose-escalation, e.g., in head and neck cancers [45]. In addi-
tion, cone-beam CT (CBCT) is equipped on most C-arm linear
accelerators (LINACs) and widely used in daily procedures for
verifying the position of the patient and treatment target. Gated

CBCT or 4D-CBCT is sometimes utilized for positioning
patient with moving tumors, such as in lung stereotactic abla-
tive radiotherapy (SABR). Furthermore, CT, megavoltage CT
(MV-CT), and MV-CBCT are also integrated in some radio-
therapy machines for image guidance. MRI-LINAC systems
have also been developed in the past decade [48], in which
MRI helps to improve the patient setup and target localiza-
tion, and enables interfraction and intrafraction radiotherapy
adaptation [50]. Very recently, PET-guided radiation therapy
is also ready for clinical adoption to treat advanced-stage
and metastatic cancers [53]. Finally, after completing their
radiation treatment course, patients may have another scan
(CT, MRI, or PET) before a follow-up appointment with the
radiation oncologist.

In the clinic, tomographic images are displayed on the con-
sole soon after a patient scan. Thus, making it easy to be
unaware of the crucial reconstruction step which is performed
in the background by dedicated reconstruction computers.
In fact, reconstruction is at the heart of tomographic imag-
ing modalities, because many clinical tasks in the radiation
therapy workflow are highly dependent on the reconstruc-
tion quality, including target delineation, OARs segmentation,
image registration or fusion, image synthesis, treatment plan-
ning, dose calculation, patient positioning, image guidance,
and radiation therapy response assessment. Poor reconstruc-
tion quality would inevitably jeopardize the accuracy of the
clinical tasks mentioned above and eventually the outcome for
cancer patients. Thus, tomographic image reconstruction has
always been an active area of research, with the aim of reduc-
ing radiation exposure and/or scan time, suppressing noise and
artifacts, and improving image quality. Fig. 1 illustrates the
image reconstruction from sensor domain to image domain
for CT, MRI and PET.

After data acquisition, the detector measurements are usu-
ally preprocessed/calibrated by vendors for various degrading
factors. Then, the sensor domain measurements y ∈ R

I×1 and
the desired image x ∈ R

J×1 can be expressed as [55]

y = Ax ⊕ ε (1)

where A ∈ R
I×J is the system matrix for CT and PET and

encoding matrix for MRI, I is the number of sensor mea-
surements, J is the number of image voxels, ε is the noise
intrinsic to the data acquisition, and the operator ⊕ denotes the
interaction between signal and noise. The operator ⊕ becomes
+ when additive Gaussian noise is assumed for CT and MRI
measurements and becomes a nonlinear operator when Poisson
noise is assumed for PET measurements. Essentially, image
reconstruction is an inverse problem where we reconstruct the
unknown image x from the measurements y.

Various image reconstruction methods have been proposed in
the past few decades. Analytical reconstruction methods, such
as filtered backprojection (FBP) for CT, Feldkamp–Davis–
Kress (FDK) for CBCT, and inverse fast Fourier transform for
MRI, are based on the mathematical inverse of the forward
model. Because of their high efficiency and stability, they
are still employed by most commercial scanners. However,
the reconstructed images may suffer from excessive noise
and streak artifacts when the sensor measurements are noisy
and undersampled. Iterative reconstruction methods [56]–[61],
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including algebraic reconstruction technique, statistical image
reconstruction, compressed sensing, and prior-image-based
reconstruction, are based on sophisticated system modeling
of data acquisition and prior knowledge. They have shown
advantages of reducing radiation dose or data acquisition time
and improving image quality over analytical methods. One
example of these iterative methods is the penalized weighted
least-square (PWLS) reconstruction which is widely used for
CT/CBCT, MRI, and PET

x̂ = argmin‖y − Ax‖2
W + βR(x) (2)

where W is a weighting matrix accounting for the relia-
bility of each sensor measurement, R(x) is a regularization
term incorporating prior knowledge or expectations of image
characteristics, and β > 0 is a scalar control parameter to
balance data fidelity and regularization. Commonly used reg-
ularizations are based on the Markov random field (MRF)
or total variation (TV), while a comprehensive review of the
regularization strategies can be found in [58].

Inspired by the successes of AI in many other fields,
researchers have investigated to leverage AI, especially DL
for tomographic image reconstruction [62]. Numerous papers
have been published on this topic, and image reconstruction
has become a new frontier of DL [63]. It is noted that many
DL-based reconstruction methods can be shared by CT, MRI,
and PET, thus we focus on reviewing them for CT and CBCT
since they are most widely used in radiation therapy. Interested
readers can refer to these review articles [64]–[68] on DL for
PET and MRI reconstruction.

Patients for radiation therapy receive multiple CT and
CBCT scans, and the accumulated imaging dose could be sig-
nificant. Considering the harmful effects of X-ray radiation
including secondary malignancies, low-dose imaging with sat-
isfactory image quality for clinical tasks are desirable. Aside
from hardware improvements, two other strategies have been
investigated to achieve low-dose imaging for CT and CBCT,
reducing the X-ray tube current and exposure time (low-flux
acquisition) or the angular sampling per rotation (sparse-view
acquisition) [58]. However, these strategies would increase
noise and streak artifacts in the FBP or FDK reconstructed
images. 4D-CBCT has the potential to reduce motion artifacts
and improve patient setup and treatment accuracy, but the scan
takes 2–4 min to acquire enough projections at each respira-
tory phase to achieve acceptable image quality. The long scan
time leads to increased patient discomfort, intraimaging patient
motion, and additional imaging radiation dose. An acceler-
ated scan is desirable in the clinic but the FDK reconstructed
images from the sparse-view acquisition are also degraded
with severe streak artifacts [69]. While iterative reconstruction
can tackle these challenges to some extent, the reconstruction
time might be too long. Therefore, many DL-based reconstruc-
tion methods have been developed to further improve image
quality and/or substantially reduce reconstruction time, which
can be grouped into the following five categories.

A. Image Domain Methods

One simple approach to improve low-dose CT image qual-
ity is post-reconstruction denoising, and researchers have

Fig. 1. Illustration of image reconstruction from sensor domain.

applied many different filters to the FBP reconstructed low-
dose CT images to suppress noise and streak artifacts.
Similarly, the FBP reconstructed low-dose images can be fed
into a DL neural network to learn a mapping between the
low-dose image and its high-quality counterpart. For exam-
ple, Kang et al. [70] applied a deep convolutional neural
network (CNN) to the wavelet transform coefficients of low-
dose CT images, which can effectively suppress noise in the
wavelet domain. Chen et al. [71] proposed using overlapped
patches from low-dose and corresponding high-quality CT
images to boost the number of samples, and then employed
a residual encoder–decoder CNN (RED-CNN) to improve
low-dose image quality. Yang et al. [72] explored a gen-
erative adversarial network (GAN)-based denoising method
with Wasserstein distance and perceptual similarity to improve
the GAN performance. Wang et al. [73] argued that these
image-to-image mapping approaches have some limitations for
ultralow-dose CT images. They proposed an iterative residual-
artifact learning CNN (called IRLnet) which estimates the
high-frequency details within the noise and then removes them
iteratively while the residual low-frequency details can be pro-
cessed through the conventional network. Fig. 2 shows the
comparison of ultralow-dose CT image reconstruction by six
different approaches.

The streak artifacts in FBP reconstructed images from
the sparse-view acquisition are difficult to remove by con-
ventional CNNs. Han and Ye [74] found that the existing
U-Net architecture resulted in image blurring and false fea-
tures for sparse-view CT reconstruction, and proposed a dual
frame U-Net and tight frame U-Net to overcome limita-
tions. Zhang et al. [75] investigated a method based on
a combination of DenseNet and deconvolution for sparse-
view CT, which employs the advantages of both and greatly
increases the depth of the network to improve image qual-
ity. Alternatively, Jiang et al. [76] used TV-based iterative
reconstruction to obtain sparse-view CBCT images (which are
superior to FDK reconstructed images), and then fed them
into a symmetric residual CNN to learn the mapping between
TV-reconstructed images and ground truth. Then, for new



FU et al.: AI IN RADIATION THERAPY 161

sparse-view CBCT acquisitions, one can use the network to
boost TV-reconstructed images.

It is noted above that DL methods are based on a supervised
learning framework, which requires both the low-dose CT
images and corresponding high-quality counterparts. However,
these image pairs may not be available in many clinical
scenarios. Wolterink et al. [77] explored a GAN consists
of a generator CNN and a discriminator CNN to reduce
image noise, which showed a generator CNN trained with
only adversarial feedback can learn the appearance of high-
quality images. Li et al. [78] investigated a cycle-consistent
GAN (CycleGAN)-based method which does not require low-
dose and reference full-dose images from the same patient. In
the near future, more unsupervised learning approaches which
require no reference ground truth, or semisupervised learning
requiring limited reference data, may be explored for low-dose
CT and CBCT.

B. Sensor Domain Methods

It is advantageous to remove noise in the CT sinogram or
projection data to prevent its propagation into the reconstruc-
tion process, but the edges in the sensor domain are usually
not well defined as those in the image domain, resulting in
edge blurring in the final reconstructed images [79]. Thus,
DL-based denoising methods are rarely applied to the sen-
sor domain directly. Instead, efforts [80]–[82] were dedicated
to sparse-view CT reconstruction, which utilize DL to inter-
polate or synthesize unmeasured projection views. Then, the
FBP method is used to reconstruct images with substantially
reduced streaking artifacts. Additionally, Beaudry et al. [83]
proposed a DL method to reconstruct high-quality 4D-CBCT
images from sparse-view acquisitions. They estimated projec-
tion data for each respiratory bin by taking projections from
adjacent bins and linear interpolation and then trained a CNN
model to predict full projection data which are reconstructed
with the FDK method.

C. DL for FBP

DL methods can also be combined with the FBP recon-
struction. In 2016, Würfl et al. [84] demonstrated that FBP
reconstruction can be mapped onto a DNN architecture, in
which the projection filtering is reformed as a convolution
layer and the backprojection is formed with a fully connected
layer. They showed the advantage of learning projection-
domain weights for the limited angle CT reconstruction
problem. He et al. [85] further proposed an inverse Radon
transform approximation framework which resembles the FBP
reconstruction steps. They constructed a neural network with
three dedicated components (a fully connected filtering layer,
a sinusoidal backprojection layer, and a residual CNN) cor-
responding to projection filtering, backprojection, and post-
processing. They demonstrated that the approach outperforms
TV-based iterative reconstruction for low-flux and sparse-view
CT. Li et al. [86] also proposed an iCT-Net which consists of
four major cascaded components that are also analogous to
the FBP reconstruction. This approach can achieve accurate

reconstructions under various data acquisition conditions, such
as sparse-view and truncated data.

D. DL for Iterative Reconstruction

DL is also applied to iterative reconstruction methods for
different purposes, including regularization design, parame-
ter tuning, optimization algorithms, and reconstruction results
improvement. Wu et al. [87] proposed regularizations trained
by an artificial neural network for PWLS reconstruction of
low-dose CT, which can learn more complex image features
and thus outperform the TV and dictionary learning regulariza-
tions. Chen et al. [88] learned a CNN-based regularization for
PWLS reconstruction and found it can preserve both edges
and regions with smooth intensity transition without stair-
case artifacts. Gao et al. [89] constructed a CNN texture
prior from previous full-dose scan for PWLS reconstruction
of current ultralow-dose CT images. One drawback of the
conventional model-based iterative reconstruction is the man-
ual tuning of the hyperparameter which controls the tradeoff
between data fidelity and regularization. Shen et al. [90] used
deep reinforcement learning (RL) to train a system which
can automatically adjust the parameter and demonstrated that
the parameter-tuning policy network is equivalent or supe-
rior to manual tuning. Chen et al. [91] proposed a learned
experts’ assessment-based reconstruction network (LEARN)
for sparse-data CT that learns both regularization and param-
eters in the model. He et al. [92] also proposed a DL-based
strategy for PWLS to simultaneously address regularization
design and parameter selection in one optimization frame-
work. DL can also be used to modify optimization algorithms
for iterative reconstruction. Kelly et al. [93] incorporated DL
within an iterative reconstruction framework, which utilizes
a CNN as a quasi-projection operator within a least-squares
minimization procedure for limited-view CT reconstruction.
Gupta et al. [94] presented an iterative reconstruction method
that replaces the projector in a projected gradient descent
algorithm with a CNN, which is guaranteed to converge and
under certain conditions converging to a local minimum for
the nonconvex inverse problem. They also showed improved
reconstruction over TV or dictionary learning-based recon-
struction for sparse-view CT. Adler and Öktem [95] proposed
learned primal–dual algorithm for CT iterative reconstruc-
tion which replaces the proximal operators with CNNs. They
demonstrated this DL-based iterative reconstruction is supe-
rior to TV regularized reconstruction and DL-based denoising
methods.

E. Domain Transformation Methods

Researchers have also leveraged DL to map sensor domain
measurements to image domain reconstruction directly. For
example, Zhu et al. [96] proposed an automated trans-
form by manifold approximation (AUTOMAP) approach to
achieve end-to-end image reconstruction. But the approach
requires high memory for storing the fully connected layer
and thus, limits this approach to small size image recon-
struction. Fu and De Man [97] recursively decomposed the
reconstruction problem into hierarchical subproblems and each
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Fig. 2. Comparison of ultralow-dose CT images (120 kVp, 10 mAs) reconstructed by six different approaches. All the images are displayed in the same
window of [−160, 240] HU. Figure reprinted from Wang et al. with permission.

can be solved by a neural network. Shen et al. [98] proposed
a deep-learning model trained to map a single 2-D projec-
tion to 3-D CBCT images by using patient-specific prior
information. They introduced a feature-space transformation
between a single projection and 3-D volumetric images within
a representation–generation framework. Inspired by this work,
Lei et al. [99] investigated a GAN-based approach with
perceptual supervision to generate instantaneous volumetric
images from a single 2-D projection for real-time imaging
in lung SABR.

It should be noted that many reconstruction methods men-
tioned above are generic and may be used for both diagnostic
imaging and image-guided radiotherapy. We are expecting
to see more evaluations and validations of these techniques
on specific applications in radiotherapy. By now, there are
still many concerns on the stability and reliability of the
DL-based reconstruction methods because of their black-box
nature. More research efforts are needed to interpret these DL
models and improve the robustness and accuracy of DL-based
reconstruction.

Although with great potential, we have not seen reports
of using DL-based reconstruction algorithms for radiother-
apy applications in the clinic. The DL-based reconstruction
algorithms from GE Healthcare and Canon Medical Systems
have received FDA 510(k) clearance. Solomon et al. [100]
studied the noise and spatial resolution properties of DL-
based reconstruction from GE, and found it can substantially
reduce noise compared to FBP while maintaining simi-
lar noise texture and high-contrast spatial resolution but
also with degraded low-contrast spatial resolution. Since
the quality of the reconstructed image is so crucial in
radiotherapy, more clinical assessments and comparisons

are needed before we can confidently adopt them in the
clinic.

III. IMAGE REGISTRATION

Image registration is an important component for many
medical applications, such as motion tracking [101], segmenta-
tion [101]–[103], image-guided radiotherapy [104], [105], and
so on. Image registration is to seek an optimal spatial trans-
formation which aligns the anatomical structures of two or
more images based on its appearances. Traditional image reg-
istration methods include optical flow [106], demons [107],
ANTs [108], HAMMER [109], ELASTIX [110], and so
on. Recently, many DL-based methods have been pub-
lished and achieved state-of-the-art performances in many
applications [111]. CNN uses multiple learnable convolutional
operations to extract features from the images. Many types of
architectures exist for CNN, including the AlexNet, U-Net,
ResNet, DenseNet, and so on. Due to its excellent feature
extraction ability, CNN has become one of the most suc-
cessful models in DL-based image processing, such as image
segmentation and registration. Early works that utilized CNN
for image registration attempted to train a network to predict
the multimodal deep similarity metric to replace the tradi-
tional image similarity metrics such as mutual information in
the iterative registration framework [112], [113]. It is impor-
tant to ensure the smoothness of the first-order derivative of
the learned deep similarity metrics in order to fit them into
traditional iterative registration frameworks. The gradient of
the deep similarity metric with respect to the transformation
can be calculated using the chain rule. The major drawback
of this method is that it inherits the iterative nature of the
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Fig. 3. Supervised and unsupervised DVF prediction methods.

traditional registration frameworks. To enable fast registra-
tion, many CNN-based image registration methods have been
proposed to directly infer the final deformation vector field
(DVF) in a single/few forward predictions. In this section, we
focus on this type of registration method since there is a clear
trend toward direct DVF inference for DL-based fast image
registration.

According to the network training strategy, this type of
CNN-based image registration method can be grouped into
two broad categories which are supervised DVF prediction and
unsupervised DVF prediction, as shown in Fig. 3. Supervised
DVF prediction refers to DL models that are trained with
the known ground-truth transformation between the moving
and the fixed images. On the contrary, unsupervised DVF
prediction does not need the ground-truth transformation for
network training. For supervised DVF prediction, the ground-
truth DVF can be generated artificially using mathematical
models or by traditional registration algorithms. The DVF error
between the predicted and ground-truth DVFs can be mini-
mized to train the network. For unsupervised DVF prediction,
ground-truth DVF is not needed, however, robust image simi-
larity metrics are necessary to train the network to maximize
the image similarity between the deformed images and the
fixed images. Over the last several years, there has been an
increasing number of publications on CNN-based direct DVF
inference methods.

To investigate the trend of the number of publications that
used supervised and unsupervised learning methods for image
registration, we have collected 100+ publications from var-
ious databases, including Google Scholar, PubMed, Web of
Science, Semantic Scholar, and so on. Keywords including
but not limited to ML, DL, learning-based, CNN, image
registration, image fusion, and image alignment were used.
Fig. 4 shows the number of publications from the year of

Fig. 4. Overview of the number of publications in DL-based medical image
registration.

2017 through November of 2020. In 2017 and 2018, the super-
vised methods are clearly more prevalent. From 2019, the
unsupervised methods have become slightly more popular than
the supervised methods.

A. Supervised Transformation Prediction

Supervised transformation prediction aims to train the
network with ground-truth transformations. However, the
ground-truth transformation is usually unavailable in prac-
tice. Various methods have been proposed to generate/estimate
the ground-truth transformation, including manual/automatic
masks contouring, landmark detection/selection, artificial
transformation generation, traditional registration-calculated
transformation, and model-based transformation generation.
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TABLE I
SELECTED SUPERVISED TRANSFORMATION PREDICTION METHODS

Table I shows a list of selected references that used super-
vised transformation prediction. Salehi et al. [114] trained
a CNN-based rigid image registration for fetal brain MR scans.
The network was trained to predict both rotation and transla-
tion parameters using datasets generated by randomly rotating
and translating the original 3-D images. Eppenhof et al. [20]
trained a CNN to perform 3-D lung deformable image registra-
tion (DIR) using synthetic transformations. The network was
trained by minimizing the mean-square error (MSE) between
the predicted DVF and the ground-truth DVF. A target reg-
istration error (TRE) of 4.02±3.08 mm was achieved on
DIRLAB [115], which was worse than 1.36±0.99 mm [116]
that was achieved when using the traditional DIR method. The
TRE was later reduced from 4.02±3.08 mm to 2.17±1.89 mm
on DIRLAB datasets using a U-Net architecture [21].

Instead of using artificially generated transformation as
ground truth, Sentker et al. proposed generating the DVF
using PlastiMatch [117], NiftyReg [118], and VarReg [119]
as ground truth [19]. The authors showed that the network
trained using VarReg had better performance than those
trained using PlastiMatch and NiftyReg on DIRLAB [115]
datasets. The best TRE values they achieved on DIRLAB
was 2.50±1.16 mm, which was not better than the
network trained using artificially generated transformations.
Statistical appearance models (SAM) have also been used by
Uzunova et al. [120] to generate a large and diverse set of
training image pairs with known transformations from a few
sample images. They showed that CNNs learned from the
SAM-generated transformation outperformed CNNs learned
from artificially generated and affine registration-generated
transformations. Sokooti et al. [26] used a model of respiratory
motion to simulate ground-truth DVF for 3D-CT lung image
registration. They have outperformed models that were trained
using artificially generated transformations. They achieved
a TRE of 1.86 mm for the DIRLAB datasets. Instead of using
the artificially generated dense DVF, higher-level correspon-
dence information such as masks of anatomical organs were
also used for network training [18], [121]. Networks trained
using the higher level of correspondences such as organ masks
or landmarks are often called weakly supervised methods since

TABLE II
SELECTED UNSUPERVISED TRANSFORMATION PREDICTION METHODS

the exact dense voxel-level transformation was unknown dur-
ing the training. It is called weakly supervised also because
the higher level of correspondence was not required in the
inference stage to facilitate fast registration.

One major limitation of supervised transformation
prediction is that the generated transformation may not reflect
the true physiological motion, resulting in a biased model
toward the artificially generated transformation prediction. It
is possible to mitigate this problem using better transforma-
tion models to generate various training image pairs which
simulate realistic transformations.

B. Unsupervised Transformation Prediction

The loss function definition in supervised transformation
prediction methods was straightforward. However, for unsu-
pervised transformation prediction, it was not so straightfor-
ward to define a proper loss function without knowing the
ground-truth transformations. Fortunately, the spatial trans-
former network (STN) which allows spatial manipulation of
data during training was proposed [122]. The STN can be
readily plugged into existing CNN architectures. The STN
was used to deform the moving image based on the cur-
rent predicted DVF to generate the deformed images which
were compared to the fixed image to calculate image similar-
ity loss. Table II shows a list of selected references that used
unsupervised transformation predictions with their respective
similarity metrics. SSD stands for the sum of squared differ-
ence, MI stands for mutual information, MSE stands for mean
squared error, and CC stands for cross-correlation.

An unsupervised CNN-based registration method, called
VoxelMorph was proposed for MR brain atlas-based registra-
tion [38], [39]. The VoxelMorph has a U-Net like architecture.
With STN, the image similarity between the deformed images
and the fixed images was maximized during training. The pre-
dicted transformation was regularized to have low local spatial
variations. They have achieved comparable performance to the
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ANT [108] registration method in terms of the dice similar-
ity coefficient (DSC) score of multiple anatomical structures.
Zhang [123] proposed a network to predict diffeomorphic
transformation using trans-convolutional layers for end-to-end
MRI brain DVF prediction. An inverse-consistent regular-
ization term was used to penalize the difference between
two transformations from the respective inverse mappings.
The network was trained using a combination of an image
similarity loss, a transformation smoothness loss, an inverse
consistent loss, and an anti-folding loss.

Lei et al. [46] used an unsupervised CNN to perform 3-D
CT abdominal image registration. A dilated inception module
was used to extract multiscale motion features for robust DVF
prediction. Besides the image similarity loss and DVF regu-
larization loss, an adversarial loss term was added by training
a discriminator. De Vos et al. [37] proposed a fast unsu-
pervised registration framework by stacking multiple CNNS
into a larger network for cardiac cine MRI and 3-D CT lung
image registration. They showed their method was compara-
ble to conventional DIR methods while being several orders
of magnitude faster. Jiang et al. [124] proposed a multiscale
framework with unsupervised CNN for 3-D CT lung DIR.
They cascaded three CNN models with each model focus-
ing on its own scale level. The network was trained using
image patches to optimize an image similarity loss and a DVF
smoothness loss. They demonstrated that the network trained
on SPARE datasets has good performance on the DIRLAB
datasets. The same trained network could also be gener-
alized to CT-CBCT and CBCT-CBCT registration without
retraining or fine-tuning. Jiang et al. achieved an average
TRE of 1.66±1.44 mm on DIRLAB datasets. Fu et al. [49]
proposed an unsupervised whole-image registration for 3D-
CT lung DIR. The network adopted a multiscale approach
where the CoarseNet was first trained using downsampled
images for global registration. Second, local image patches
were registered to the image patches of the fixed image using
a patch-based FineNet. A discriminator was trained to provide
adversarial loss to penalize unrealistic warped images. They
have outperformed some traditional registration methods with
an average TRE of 1.59±1.58 mm on DIRLAB datasets.

Compared to supervised transformation prediction, unsu-
pervised methods could alleviate the problem of lack of
training datasets since the ground-truth transformation is not
needed. However, without direct transformation supervision,
DVF regularization terms have become more important to
ensure plausible transformation prediction. So far, most of
the unsupervised methods focused on unimodality registration
since it is relatively easy to define image similarity metrics for
unimodal registration than multimodal image registration.

Supervised transformation prediction methods are lim-
ited by the lack of known transformations in the training
datasets. Artificial transformations could introduce errors due
to the inherent differences between the artificial and real-
istic transformations. Model-based transformation generation
which could simulate highly realistic transformation has been
shown to alleviate the lack of realistic ground-truth transforma-
tion. On the other hand, unsupervised methods need extensive
transformation regularization terms to constrain the predicted

transformation since ground-truth transformation is not avail-
able for supervision. One challenge is to efficiently determine
the relative importance of each regularization term. Repeated
trial and evaluation were often performed to find an optimal set
of transformation regularization terms that could help generate
not only physically plausible but also a physiologically real-
istic deformation field for a certain registration task. Another
limitation for unsupervised transformation prediction is that
it relies on effective and accurate image similarity metrics
to calculate similarity loss and train the network. However,
multimodal image similarity metrics are usually more difficult
to define and calculate than unimodal image similarity metrics.
Therefore, there is a lack of multimodal unsupervised image
registration methods as compared to unimodal image regis-
tration methods. Deep similarity metrics could be trained for
multimodal image registration tasks and used in unsupervised
transformation prediction. However, the training of deep sim-
ilarity metrics often requires prealigned training image pairs
which are difficult to obtain.

IV. IMAGE SEGMENTATION

In radiation therapy, image segmentation can be described as
the process where each pixel in an image is assigned a label,
and pixels with similar labels are linked such that a visual
or logical property is realized [125]. Resultant groupings of
pixels with the same label are called delineations (i.e., segmen-
tations). Once RT images are acquired, tumors and OARs are
delineated, often by a physician or dosimetrist, to be incorpo-
rated into the treatment planning process. Manual segmenta-
tion has been reported to be the most time-consuming process
of radiation therapy, introducing substantial inter- and intra-
observer variability [126], and dependent on image acquisition
and display settings [127]. To address these limitations, auto-
segmentation is often employed. Auto-segmentation may be
unsupervised, where only the image itself is considered and
image intensity/gradient analysis is implemented, performing
best with distinct boundaries [23]. Supervised segmenta-
tion, on the other hand, integrates prior knowledge about
the image often in the form of other similarly annotated
images to inform the current segmentation task (i.e., training
samples).

Recent DL techniques [128], [129] are well poised for the
task of accurate automatic segmentation with less reliance on
organ contrast [130]–[132] as the algorithm is designed to
acquire higher order features from raw data [128]. DNNs learn
a mapping function between an image and a corresponding
feature map (i.e., segmented ground truth) by incorporating
multiple hidden layers between the input and output layer.
The U-Net [5] is a DNN architecture that has shown great
promise for generating accurate and rapid delineations for
applications in RT [133]. The U-Net “U-shaped” architecture
shown in Fig. 5 was inspired by the original fully convolutional
network from Long et al. [134] and was initially implemented
by Ronneberger et al. [5] in 2015 to segment biomedical
image data using 30 annotated image sets. The U-Net has an
additional expansion pathway that replaces the maximum pool-
ing operations with upconvolutions to increase the resolution
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Fig. 5. Architecture for original U-Net by Ronneberger et al. [5] with the contraction path shown on the left and the expansion path shown on the right. The
original input image has a size of 512 × 512. Feature maps are represented by purple rectangles with the number of feature maps on top of the rectangle.

TABLE III
EXAMPLE APPLICATIONS OF DL INTO MEDICAL IMAGE SEGMENTATION FOR RADIATION THERAPY PLANNING PURPOSES

of the feature maps, a desirable feature for medical image
segmentation. The original 2-D U-NET was quickly imple-
mented into 3-D volumetric inputs to train using the entire
dataset and annotations simultaneously to improve segmen-
tation continuity, including multichannel inputs of different
image types [135] (i.e., MRI, CT, etc.). Overall, the U-Net is
an end-to-end solution has shown a remarkable potential to
segment medical images, even when the amount of training
data is scarce [136]. Various DNNs have also been applied to
medical image segmentation [133], including deep CNNs with
adaptive fusion [137] or multistage [138] strategies, as well as
GANs [139].

Data scarcity may be a challenge in radiation ther-
apy. Publicly available annotated “ground-truth data” for
training and validation are available through The Cancer
Imaging Archive [140]. Several other strategies are employed
to improve the variability and diversity of available
data—without new unique samples—which is referred to as

data augmentation. Data augmentation has been shown to
improve auto-segmentation accuracy and prevent model over-
fitting [135], [137], [141]. Examples of augmentation include
image flipping, rotation, scaling, and translation (pixels/axis).
Other emerging areas of data augmentation include integrat-
ing interfractional data such as incorporating daily CBCTs
for patients to increase segmentation accuracy in radiation
therapy [142] and using transfer learning to generate new train-
ing imagesets from other modalities. Typical endpoints of AI
segmentation include qualitative review or comparison with
ground-truth labels using overlap metrics such as the DSC
or distance metrics such as the Hausdorff distance or mean
distance to the agreement.

Applications of AI for segmentation in RT planning typ-
ically fall into two main classes: 1) OAR and 2) lesions.
Table III outlines a few state-of-the-art examples of each with
key findings, with a comprehensive list available in other
references [143].
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Emerging areas of interest include segmenting substructures
of OAR including the cardiac substructures [135], applications
for adaptive radiation therapy [7], and longitudinal response
assessment. Other areas under development include optimiz-
ing loss functions, such as integrating DSC less, unweighted
DSC loss, or focal DSC loss, with tunable hyperparame-
ters [144] to better address segmentation accuracy for small
structures [145].

V. IMAGE SYNTHESIS

In this section, we focus on generative modeling of
information content across imaging modalities relevant to the
radiotherapy workflow. Generative modeling, in this context,
refers to capturing information about the data distribution asso-
ciated with each modality thus enabling translation across
different modalities. Within generative modeling, we limit
our review to techniques that are most suitable to represent
unpaired data obtained in real clinical settings where obtain-
ing one-to-one correspondences between modalities may not
be feasible. Among these techniques, GANs have proven to
be very successful. GANs are a framework that optimize an
objective by running a min–max two-player game between two
networks. One of the networks, called the generator, tries to
learn the data distribution by trying to fool the other network,
called the discriminator, which simultaneously tries to differ-
entiate between real images and fake images created by the
generator.

GAN-based approaches have also shown to be superior
when paired data is available where they eliminate the need
to design handcrafted losses in the image space [146]. We
present methods proposed to aid different stages of the work-
flow ranging from image acquisition to treatment delivery.
Specifically, we discuss MRI to CT, CBCT to CT, and CT
to PET translation. We focus our review on techniques aimed
at intermodality translation due to the large variation in con-
tent representation across these modalities. For example, CT
images capture electron densities through Hounsfield units
whereas MRI images are generated based on the excitation
and relaxation of hydrogen protons. These differences in rep-
resentation allow for effective demonstration of the capacity
of GAN-based image translation approaches to learn complex
mappings.

A. MRI to CT Translation

MRI-only radiotherapy can provide multiple benefits to the
patient and clinic due to its immense flexibility in imaging phys-
iological and functional characteristics of tissue, combined with
much superior soft-tissue differentiation. It also avoids addi-
tional risk induced by subjecting the patient to ionizing radiation
via CT. However, MRI lacks the ability to provide electron
densities which is explicitly needed in radiation dosimetry trans-
port calculations. Generative modeling of information content
between MRI to CT modalities can allow for obtaining electron
densities from MRI. This is done by translating it into a synthetic
CT (sCT) while retaining structural information present within
the original MRI scan itself. Fig. 6 shows the GAN framework
to translate MRI to CT. In order to effectively translate between

the modalities, suitable input–output representations need to
be determined, and this is done as follows: 1) constructing
a mapping between paired MRI-CT data from the same patient
(registered to ensure correspondence) or 2) unpaired MRI-CT
data from the same patient or across patients. For MRI-to-
CT translation in nasopharyngeal cancer treatment planning,
Peng et al. [147] used conditional GANs for paired data and
CycleGANs for unpaired data. CycleGANs ensure reliable
translation by enforcing cycle consistency in the MRI-to-CT
translation [148]. They use 2-D U-Net-based generators that
operate on a slice-by-slice basis and 6-layered convolutional
discriminators. Wolterink et al. [149], Lei et al. [150], and
Liu et al. [151] used paired data from the same patients for
MRI-to-CT translation for treatment planning of brain tumors
and brain/pelvic tumors, respectively. Although they use reg-
istered MRI-CT data from the same patient, they employed
CycleGANs to account for local differences between the spatial
representation across these modalities. Wolterink et al. used
data from sagittal slices on a slice-by-slice basis and used the
default CycleGAN setup including a patch-based discriminator
to preserve high-frequency features. Chen et al. [152] operated
on 3-D patches of smaller sizes (323) and implemented dense
blocks in the generator to capture multiscale information. They
also proposed the use of novel mean P-distance (lp norm) and
spatial gradient differences as cycle-consistency losses to avoid
blurriness and promote sharpness, respectively.

In terms of results, Peng et al. reported mean absolute
Hausdorff unit (HU) differences (MAE) within the body of
69.6±9.27 for the paired approach and 100.6±27.39 for the
unpaired approach. Wolterink et al. reported 73.7±2.3 HU
MAE and Lei et al. reported 57.5±4.7 HU MAE for
the brain.

These methods are not directly comparable since they use
different data, but they do represent an estimate of their
quantitative performance. However, it is difficult to ascer-
tain clear clinical applicability based solely on these metrics.
Consider a case where the average HU values are biased by
strong deviations in areas belonging to the tumor where other
areas are quite accurate. If this is placed in comparison to
another case where smaller but uniform deviations are present
across the entire scan, which scenario would be more clini-
cally relevant? These metrics fail to answer these questions in
entirety. Peng et al. provided additional metrics such as com-
paring dose distributions of translated CT with the reference
CT with 2%/2-mm gamma passing rates of (98.68%±0.94%)
and (98.52%±1.13%) for the paired and unpaired approaches,
respectively. This gives a better idea of the dosimetric accu-
racy of implementing their methods in a treatment planning
system (TPS).

B. CT to PET Translation

PET/CT scans can play a crucial role in combining anatom-
ical and functional information to pinpoint metabolic activity
and may provide better information in the contouring pro-
cess for treatment planning. Synthesizing virtual PET from
CT-only workflows can eliminate the need for the more costly
PET/CT scan. Additionally, this reduces cost and complexities
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Fig. 6. GAN framework showing MRI to CT image translation. The generator tries to learn the data distribution of MRI and CT images and uses this
learned representation to convert an MRI image to a fake CT image. The generator learns this representation by trying to fool the discriminator while it is
comparing real and fake CTs and learning to differentiate between them.

Fig. 7. Workflow for adaptive radiotherapy enabled by dose calculation from CBCT images. Prior to dose recalculation, a CBCT image is converted to
an sCT, providing correct HU values and removing artifacts, while preserving the anatomy.

such as storage of radiotracers associated with PET imaging.
Isola et al. proposed a conditional-GAN (cGAN) [146]-based
method to generate PET from contrast-enhanced CT-scans for
false positive reduction in lesion detection within the liver.
They used paired PET/CT data and performed a transformation
to align and interpolate the PET to the CT. A first synthesized
estimate of PET is performed using a fully convolutional vari-
ant of VGG [153] followed by a cGAN applied on channel
concatenated input comprising of CT and the previous PET
estimate. In this two-stage network, while optimizing over the
image losses, SUV-based weighting is applied to provide better
results in PET regions with high-SUVs. The proposed method
obtains a mean absolute SUV difference of 0.73±0.35 across
all regions and 1.33±0.65 in high-SUV regions. Finally, false
positives are shown to be reduced from 2.9% to 2.1% in liver
lesion detection when using the generated PET information for
detection. Bi et al. [154] explored the synthesis of PET image
from paired PET/CT data for lung cancer patients and propose
three different methods exploiting varied input representations.

All three methods apply a U-Net-based cGAN but vary in
terms of input provided to the model: 1) binary label-map of
the tumor annotations; 2) CT image; and 3) channel-combined
CT with binary label-map. The last method provided the
results closest to the real-PET image with an SUV MAE
of 4.60. The authors suggested that this synthesized PET can
be used to form training data for PET/CT-based prediction
models. Further, they formulated a potential extension of their
work to combine both real and synthetic PET to boost the
training samples in an attempt to boost generalization.

C. CBCT to CT Translation

Radiotherapy treatment planning starts with acquiring a CT
scan of the patient, usually denoted as a planning CT (pCT).
Dose calculation as well as beam energy and arrangement
are derived from the pCT, comprising a treatment plan.
Commonly, in order to correctly position the patient at each
fraction of the dose delivery, a CBCT scan is obtained.
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However, CBCT can potentially provide insight into the
anatomical changes that occurred over the course of the treat-
ment and could enable adaptive radiotherapy by leveraging
that information to adjust the treatment plan. Unfortunately,
treatment replanning is not possible with CBCT scans as they
are noisier, contain more artifacts and have inferior soft-tissue
contrast compared to fan-beam CT. One way to make use of
the information in a CBCT scan is by using DIR to map pCT to
the anatomy of CBCT [155], producing a scan with HU values
of the pCT with the latest anatomy, in the literature referred as
deformed pCT (dpCT) or virtual CT (vCT). On the other hand,
generative DL methods may provide a faster and potentially
superior alternative to treatment replanning based on dpCT or
other techniques (lookup table [156], Monte Carlo [157], and
scatter correction with pCT prior [158]) by synthesizing a CT
scan from an input CBCT scan. Such sCT should have all the
characteristics of a CT scan while preserving the anatomy from
the CBCT. Fig. 7 shows the workflow of CBCT-based dose
calculation for adaptive radiotherapy. Maspero et al. [159]
trained four standard CycleGAN [148] models on lung, breast,
and head-and-neck scans—three for each anatomical site sep-
arately and one model on all sites jointly. They showed that
a single model for all three anatomical sites performs compa-
rably against models trained per anatomical site, which would
simplify its possible clinical adoption. The results are evalu-
ated using rescanned CT (rCT) as ground truth, where rCT
is a CT scan that is acquired at the same fraction as the
CBCT in question. The reported HU MAE for sCT is 5312,
6618, and 8310 for head-and-neck, lung, and breast, respec-
tively. Liang et al. [160] used a standard CycleGAN model, but
evaluate the HU accuracy and dose calculations against dpCT
instead of rCT. Furthermore, they performed an evaluation of
anatomical accuracy of sCT using deformable head-and-neck
phantoms. The phantom allows for a simulation of the patient
at the beginning of the treatment and after a few fractions
of the treatment, where the tumor shrinkage is observed. This
provides a CBCT and rCT scan with identical anatomy, which
can be used to assess if and how the translation of CBCT to
sCT affects the representation of the anatomy. They concluded
that the CycleGAN model has higher anatomical accuracy than
DIR methods.

D. Clinical Perspective and Future Applications of
Synthetic Imaging

In the radiotherapy workflow, medical images are one of
the most important sources of data used in decision making.
Imaging is used in all the steps of patient care in oncology:
diagnosis, staging, treatment planning, treatment delivery, and
disease follow-up. Based on the anatomical site of a tumor
and the specific properties we want to investigate, some imag-
ing modalities might be more appropriate than others. For
example, an MRI scan is suggested for malignancies located
in the pelvic region, due to the large presence of soft tis-
sues compared to bone structures. This allows an improved
ability to contour lesions and surrounding organs. CT is the
predominant modality for staging lung tumors, but recently
MRI scans, and more specifically diffusion-weighted imag-
ing (DWI) sequences, are used to evaluate the involvement

of mediastinal lymph nodes with higher sensitivity than CT,
with implications on better staging and treatment decisions.
Finally, it is well established that treatment planning always
requires the acquisition of a CT scan, while PET imaging is
often used prior to treatment planning to evaluate the pres-
ence of metastasis and the degree of suspicion of the identified
lesions, and within/after treatment fractions to quantify treat-
ment response [161]. Such examples highlight the need for
multiple modalities of imaging to fully capture the complex-
ity of human anatomy and tumor tissues in tandem with the
specific tasks that we want to accomplish. This would eventu-
ally improve the decision-making process. In an ideal scenario,
all modalities of imaging for the patient would be available,
but that is far from being an achievable or practical solution.

Several reasons stand behind this evidence.
1) Cost Effectiveness: Scanning patients costs both hospi-

tals and the patients themselves. These costs may be reim-
bursed by healthcare providers or insurance companies. With
an increasing number of new and diverse imaging technolo-
gies a growing demand for cost-effectiveness analysis (CEA)
in imaging technology assessment is induced. As pointed out
by Sailer et al. [162], when assessing the cost effectiveness
of diagnostic imaging, the initial question is whether adding
an imaging test in a medical pathway does indeed lead to
improved medical decision making. One of the most signif-
icant examples was the lung cancer screening trial entitled
NLST [163], which showed that participants who received
low-dose helical CT scans had a 15%–20% lower risk of dying
from lung cancer than participants who received standard chest
X-rays. In radiotherapy, a study [164] highlighted the costs
related to various radiological imaging procedures in image-
guided radiotherapy of cancers, based on standard billing
procedures. The median imaging cost per patients was $6197,
$6183, $6358, $6428, $6535, and $6092 from 2009 to 2014,
respectively. This seems to highlight an upcoming trend of
reducing costs related to imaging. Unfortunately, it is not clear
if this reduction in costs was associated with an optimization
of the diagnostic imaging.

2) Patient Safety and Comfort: Recent studies indicated
that repetitive imaging scans can deposit considerable radi-
ation doses to some radiosensitive organs (e.g., heart) and
could cause higher radiogenic cancer risks to the patients, with
children being more impacted by this issue [165]. In a very
utilitarian way, we might want to have an image with the
highest possible contrast to be able to better identify suspi-
cious structures, and to possibly obtain images of our patients
within short intervals of time. This would allow using these
images, for example, to perform a better evaluation of treat-
ment response. Unfortunately, due to the physics of imaging,
ionizing imaging methods give a signal to noise ratio pro-
portional to the released dose to the body [166]. More dose
leads to better contrast, but also increases the probability
of radiation-induced effects to the patient. Another point is
represented by images acquired with the injection of an intra-
venous (IV) contrast medium. IV contrast media are usually
toxic substances that need to be expelled by our body. If it
is true that images acquired with IV contrast media (e.g.,
contrast-enhanced CT) provide better resolution for specific
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anatomic regions compared to images without them (e.g., con-
ventional CT); it also stands that many patients might not
be eligible for the injection of a contrast media, because of
poor performance status, presence of comorbidities, or poor
renal function [167]. Finally, some imaging modalities such
as DWI require longer acquisition times compared to T1 and
T2 sequences [168], with an impact on costs and also on
patients’ comfort.

3) Differences in Imaging Acquisition Protocols and
Interoperability: Despite the presence of specific guidelines
and recommendations for diagnostic imaging, each institution
might adopt not only different image acquisition protocols,
but might also be missing specific imaging modalities (or
sequences), which might be the standard of care in another
institution. This evidence has an impact when performing or
designing multicenter institutional studies, especially if retro-
spective and with the aim of the development of image-derived
biomarkers. For example, if a center has developed a prognos-
tic model based on an image-derived biomarker obtained by
processing a specific imaging modality, a large external val-
idation of this biomarker might not be possible because this
imaging modality may not be available in many institutions.
Additionally, when considering quantitative imaging analysis
via ML and more specifically radiomics [169], a recent review
pointed how different acquisition settings (e.g., slice thickness,
tube current, and reconstruction kernels) should be preferrable
with respect to others, since they increase the reproducibility
of the biomarkers [170]. It is, as mentioned before, not obvious
that these acquisition settings are the same across all clinics.
One possible solution, which is close to utopia, is to force each
institution to acquire images with the same acquisition proto-
cols. However, even if this was accomplished, the variability
of scanner manufacturers, a well-known factor that impacts the
stability of image-derived biomarkers, would still be difficult
to tackle.

All the points presented above show that there is an open
space for the application of DL-based synthetic imaging.
Without going into details, applications can include the gen-
eration of multimodalities from a starting image (as explained
in the case of the section MRI to CT of this article), aug-
mentation of image quality without exposing the patient to
additional dose (as explained in the case of the section
CBCT to CT translation), but also the recent work that intro-
duces fast DL reconstruction for DWI images [171]–[173].
Synthetic imaging is taking a prominent role in oncology.
We refer the reader to the following publications as proof
of some interesting clinical applications that DL for image
generation can offer [174], [175], and to these more general
reviews [176], [177].

VI. AUTOMATIC TREATMENT PLANNING

In radiotherapy planning, a main objective is to deliver the
prescribed dose accurately to the target, keeping the dose
to OAR below acceptable limits and minimizing dose to
surrounding, healthy tissue. The treatment planning process
begins with the delineation of target volumes and OARs on
a pCT. A set of dose constraints are defined for targets, OARs,

Fig. 8. Inverse treatment planning process begins with the delineation of
target volumes and OARs on medical images. Optimization objectives are
defined and passed to the optimizer algorithm of the TPS. If the resulting
plan is not acceptable, tradeoff evaluation is performed to define new targets
iteratively until a clinical plan is accepted.

and other regions of interest, typically dose–volume relations,
stating the minimum or maximum dose that can be allowed to
a given region. Intensity-modulated radiation therapy (IMRT)
and volumetric modulated arc therapy (VMAT) are modern
techniques that allow the treatment planner to create com-
plex treatment plans by providing a set of such objectives
that an optimizer algorithm will attempt to fulfill by inverse
optimization, as illustrated by the workflow in Fig. 8. The
optimizer often fails to achieve all the desired objectives, due
to complicated patient geometry, limitations of the treatment
modality or machine, etc. To improve the plan, the planner
and physician discuss available options and clinical prefer-
ence before adjusting the objectives for a new iteration of
optimization. In recent years, automated treatment planning
techniques have been developed, that aim to provide vastly
improved starting points for the treatment planner, and even
produce clinically acceptable treatment plans without human
interaction.

The current planning workflow apparently relies heavily on
humans (planner and physician). The reason for this workflow
is twofold. First, there is no clear metrics to mathematically
quantify plan quality. Although there are some plan quality
scoring systems defined over the years [178], they might not
necessarily reflect the most stringent clinical requirement for
each patient. Second, for a specific patient, the best plan is
unknown. The planning process has to explore the very high-
dimensional solution space in a trial-and-error process to find
out the optimal solution [179], [180]. This complex and cum-
bersome process poses substantial hurdles to plan quality and
planning efficiency.

Due to extensive human involvement, the plan quality heav-
ily depends on a number of human factors, such as the
planner’s experience, the planner–physician communications,
the amount of effort and available time for treatment plan-
ning, the rate of human errors, etc. [181]–[183]. Suboptimal
plans are often unwittingly accepted [183]–[185], deteriorating
treatment outcomes [186].

Moreover, while modern computers can solve the
optimization problem rapidly, the trial-and-error iterative plan-
ning process yields hours of planning time for a typical planner
to generate a plan for the physician to review [187]–[189].
Multiple iterations between physician and planner are often
needed, which extends the overall planning time up to one
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week in some challenging tumor sites. This lengthy process
strongly contributes to the delay between diagnosis and the
start of RT, which has been shown to adversely affect treatment
outcome. Moreover, patient’s anatomy may change during
the time waiting for treatment planning [190], [191], mak-
ing the plan carefully designed based on the initial patient
anatomy suboptimal for the changed anatomy [192], [193].
Additionally, the delayed treatment will increase the anxiety
of patients who have already been overwhelmed by a cancer
diagnosis and are eager to start treatment. Such delays can be
particularly severe in low- and middle-income countries, with
limited resources, capacity, staff, and expertise [194].

The problem of suboptimal plan quality and planning
efficiency are indeed intertwined. Due to the low planning effi-
ciency, the optimality of a plan is hard to guarantee for every
patient in current practice given the strict time constraints.
Heavy time pressure also increases the human error rate and
may limit the availability of advanced treatment techniques.
Auto-planning (AP) techniques are urgently needed to tackle
these problems in the current planning process.

AP has already been around for some time and is rapidly
improving. There are several research projects and in-house
solutions being developed worldwide, and most commercial
vendors of TPS have implemented some variety of AP tools.
Studies show promising results for AP, but large-scale clinical
implementation is not yet seen.

A. Classical Auto-Planning Strategies

Classical AP tools can be divided into three cate-
gories: 1) treatment planner mimicking (TPM); 2) mul-
ticriteria optimization (MCO); and 3) knowledge-based
planning (KBP).

1) Treatment Planner Mimicking: In TPM, the behavior
and choices of the treatment planner are analyzed over time
and converted into computer logic. Such logic can be a series
of IF/THEN statements of decision making. Provided with
a prioritized list of objectives the TPM follows its logic to
create optimizer objectives that it tunes iteratively while steer-
ing the optimizer, in the same way that a human treatment
planner would, pushing each objective as far as it can with-
out degrading objectives of higher priority. The TPM is not
as limited by time as a human planner, allowing it to per-
form more iterations, potentially leading to higher plan quality.
Tol et al. [195] designed a system that automatically scans
DVH lines in the Eclipse TPS (Varian Medical Systems, Palo
Alto, USA) optimization window, and moved the mouse cursor
to adjust on-screen optimization objectives. In a blinded test,
automated head-and-neck cancer (HNC) plans were preferred
over MP by an HNC radiation oncologist in 19/20 cases,
and the method is now in clinical use. Several modern TPSs
include possibilities for scripting, which have been used to
develop in-house TPM by extracting DVH parameters directly
from the TPS and automatically adjusting optimization objec-
tives iteratively until the optimal solution is found [196]–[202].
A commercial TPM solution is available in Philips Pinnacle
TPS (Philips Radiation Oncology Systems, Fitchburg, WI,
USA) AP. Pinnacle AP works by defining a template, called

Fig. 9. Schematic view of some classical AP workflows. Left:
Multicriteria optimization generates a library of Pareto-optimal plans from
a set of objectives. In the schematic, the user navigates the plans a posteriori
by use of sliders for each parameter. Right: KBP relies on a set of high-
quality clinical plans. Atlas-based methods find the best matching patient in
the library when introduced to a new patient, extract the plan, and adjust it
to the new patient. Model-based approaches train a predictive model on the
library plans. The model is used to predict parameters for new patients, which
are used to generate objectives for the optimizer.

a technique, consisting of parameters, e.g., beam setup, dose
prescriptions, and objectives for each disease site [203]. When
the technique is applied to a new patient, the AP will itera-
tively optimize a treatment plan, add helper volumes with new
objectives to control the dose in the same fashion as a human
planner might do, lower dose to OARs and reduce hot and
cold spots in the dose distribution. The use of this system
has been reported in several studies [198], [203]–[214], cre-
ating APs of comparable or higher quality, reduced planning
times and improved OAR sparing in comparison to MPs. In
a study by Cilla et al. [203] Pinnacle AP produced high-quality
plans for HNC and high-risk prostate and endometrial cancer
while reducing planning time by 60–80 min, corresponding to
1/3 of the MP time. However, Zhang et al. [213] found that for
nasopharyngeal carcinoma some automated plans did not fully
meet dose objectives for the planning target volumes (PTV)
and cautioned that AP cannot be fully trusted, and a manual
selection between MP and AP should be performed for each
patient.

2) Multicriteria Optimization: MCO is a method for AP
that explores so-called Pareto-optimal (PO) plans. In a space
spanned by assigning a dimension to each optimization param-
eter, the PO surface consists of plans that cannot be fur-
ther optimized without degrading the performance of another
objective. A schematic view of the MCO planning process is
presented in Fig. 9. The PO surface is populated by several
plans with various objective prioritizations, while the clinically
ideal plan is always on the PO surface, not all plans at the PO
surface will be clinically acceptable or desirable. Hussein et al.
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described two approaches for AP with MCO, a priori and
a posteriori. In the case of a priori, only a single PO plan
is fully generated and presented to the treatment planner,
while for a posteriori MCO, multiple plans are automatically
generated, and the treatment planner can perform tradeoff nav-
igation using, e.g., a navigation star [215] or sliders RayStation
MCO (RaySearch Laboratories, Stockholm, Sweden), Varian
Eclipse MCO) representing the objectives [216]. A posteriori
MCO offers a convenient method to efficiently find an optimal
treatment plan, while the treatment planner takes active
choices in the process, and has been subject to several stud-
ies [217]–[229]. Kierkels et al. [224] found that MCO plans
had similar performance to MP, but allowed inexperienced
planners to make high-quality plans. Creating a large num-
ber of plans is computationally intensive, but can be done
in the background while the planner attends to other tasks.
Furthermore, estimations made by Bortfield and Craft sug-
gest that as few as N + 1 plans are needed to populate the
PO surface, where N is the number of objectives [230]. The
Erasmus-iCycle software [217] presents a solution for a priori
MCO, where a disease-site-specific wish-list is defined with
absolute and desired constraints, used for iterative optimization
by the software. The software has been used in several studies,
yielding clinically acceptable plans of similar or higher quality
when compared to manually created plans [231]–[236].

3) Knowledge-Based Planning: KBP exploits the knowl-
edge and expertise of treatment planners to aid the planning
process for new patients, through a library of high-quality
clinical treatment plans. When a new patient is presented to
the system, it will be characterized based on anatomical and
geometrical features. There are two branches of KBP. In atlas-
based systems, the closest matching patient in the library is
chosen, and the plan setup belonging to that patient will be
duplicated to the new patient and recalculated on its planning-
CT. In model-based systems, a predictive model is trained
from the plan library, to predict parameters used for creat-
ing automated plans for new patients. The workflow for these
approaches is illustrated in Fig. 9.

a) Atlas-based KBP: Atlas-based KBP [237]–[246]
searches a library (i.e., atlas) of clinical plans to find the
plan most similar in geometry to the new patient. The library
plan setup is copied to the new patient, and the dose is cal-
culated on the CT of the new patient. A general approach
is to copy the plan setup and position the isocenter centered
in the target volume of the new patient. The original plan
can be adapted further, as demonstrated for HNC patients by
Schmidt et al. where the atlas plan was adapted to the new
patient by deforming the atlas plan beam fluences to suit the
target volume in the new patient and warping the atlas pri-
mary/boost dose distribution to the new anatomy. The warped
dose distribution was then used to generate dose–volume con-
straints as optimization constraints. In this study, it was found
that AP had similar or better quality compared to MP for all
objectives. The extra steps to deform and warp the plan led
to improved performance compared to simply using the atlas
plan directly [244]. Atlas-based KBP can either be used to
provide a starting point for further optimization, or fully auto-
mate planning. Schreibmann et al. [245] demonstrated the use

of atlas-based KBP for whole-brain radiotherapy, generating
high-quality treatment plans in 3–4 min, with reduced doses
to OARs, thus reducing the clinical workload.

b) Model-based KBP: Model-based KBP [194], [202],
[210], [214], [226], [229], [237], [238], [247]–[282] trains
a model on the plan library to predict parameters for a new
patient introduced to the system. Such parameters can be, e.g.,
beam settings, DVHs for target volumes and OARs, or full 3-D
dose distributions. DVH prediction has been widely studied in
recent years for most disease sites, e.g., head and neck [214],
[226], [258], [272], [274], [281], prostate [210], [238], [251],
[255], [264], [266]–[268], [270], [276], [281], upper GI [259],
[265], [273], [280], lower GI [229], [254], [269], [277], [278],
and breast [259], [262], [275]. A commercial software for
DVH prediction is Varian RapidPlan. RapidPlan examines geo-
metric and dosimetric properties of structures in each library
plan and uses these to calculate a set of features. The calcu-
lated data of each plan is included in model training, where
principal component analysis (PCA) is used to identify the
2–3 most important features, which are used as input for
a regression model [283]. The final model is then used for
DVH prediction. DVHs can be converted to objectives for the
inverse planning optimizer by sampling the predicted DVH
curve and creating corresponding dose–volume objectives. The
majority of studies demonstrate that the dose distribution to
target volumes of the APs are equally good or better than that
of MPs, with no human planner interaction, while the time it
takes to generate a plan is drastically reduced. Several studies
also demonstrate reduced dose to OARs for APs compared to
MPs, possibly due to manual planners not having sufficient
time to make further improvements once a clinically accept-
able plan is found. One major limitation of DVH prediction
models is that they only consider dose–volume relations for
delineated structures, and not spatial distributions, thus the
planner must be aware of issues such as where excess dose in
healthy tissue is placed.

KBP models can be trained by relatively few patients,
as demonstrated by Boutillier et al. [284], who successfully
trained a model for rectum DVH estimation using 20 library
plans. In a recent review of KBP methods by Ge and Wu,
it is suggested that more complex plans will require larger
plan libraries. Development of larger training databases, e.g.,
by multi-institution collaborations, is recommended [261].
Another option to increase plan library size is to include plans
from other techniques, e.g., 3D-CRT and IMRT plans for train-
ing a VMAT model [285], or plans from a different TPS [273].
However, as demonstrated by Ueda et al. [273], models may
perform differently when used under other conditions than
those of library plans, thus proper QA during commissioning
is important.

B. Modern AI in Radiation Therapy Treatment Planning

Modern AI, in particular the recent advancement in DL
techniques, has achieved great success in a wide range of
different disciplines, including medicine and healthcare. In
the regime of RT treatment planning, a number of DL-driven
AP methods have been developed recently in the literature to
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Fig. 10. General workflow of DL dose prediction-based AP.

address the remaining challenges in classical AP approaches.
These novel methods can be roughly categorized into three
groups: 1) DL-based dose prediction; 2) DL-based fluence
map/aperture prediction; and 3) DL-based intelligent treatment
planner.

1) DL-Based Dose Prediction: The DL dose prediction AP
workflow is depicted in Fig. 10. A key step in this type
of approaches is to build a DL-based dose prediction agent.
Constructed by a carefully designed DNN, the dose prediction
agent directly derives the dose distribution of a clinically
acceptable plan based on the patient anatomical information
(e.g., organ contours and/or CT image) and planning con-
figurations (e.g., prescription dose and treatment beam/arc
setups). Pioneer study [286] was first performed to investigate
the feasibility of DL-based dose prediction using the treat-
ment planning task of prostate cancer IMRT as a testbed. As
a proof-of-principle study, a simplified 2-D dose prediction
was considered. The prediction accuracy was validated on a set
of dosimetric quantities of clinical interest. With feasibility
well justified, DL-based dose prediction was then success-
fully extended to other modalities (e.g., VMAT and helical
tomotherapy) [287]–[291], and more complicated treatment
sites (e.g., HNC and lung cancer) [287]–[290], [292], as well
as to the direct 3-D dose distribution prediction [291]–[293],
which all are of more clinical and practical values. Later on,
Pareto-optimal dose prediction models [228], [293], [294],
which can generate multiple plans reflecting different tradeoffs
among critical organs, were also developed to better address
the diverse clinical needs. The clinical application of DL-based
prediction methods is analog to the classical KBP methods
while the major difference is that DL-based dose prediction
derives dose distributions directly in contrast to the DVHs gen-
erated in KBP. Despite the great success achieved, DL-based
dose prediction also suffers from the similar hurdle as KBP,
i.e., the predicted dose may be dosimetrically attractive, but
not be physically achievable.

2) DL-Based Fluence Map Prediction: As shown in
Fig. 11, the second type of approach predicts the flu-
ence map of an optimal plan from patient anatomy using
DNN [196], [295]–[297], bypassing the plan optimization
process in inverse treatment planning. More specifically,

Fig. 11. General workflow of DL fluence map prediction-based AP.

Lee et al. [295] developed a DNN model to derive the optimal
fluence map of IMRT in a beam-by-beam-fashion using the
beam’s eye view of PTV/organ contours, and the predicted
optimal dose distribution for each beam as input. Li et al. [296]
proposed a Dense-Res hybrid network (DRHN) to take a series
of projections characterizing patient anatomy and treatment
geometry as input and output the fluence intensity maps for
the nine-field beam prostate cancer IMRT. Wang et al. [297]
proposed two-stage strategy with each stage accomplished by
a dedicated DNN. In the first stage, the dose of a beam is
predicted from the contours and CT image of a patient, and
the fluence map is then obtained based on the predicted dose
of the beam in the second stage. Note that these algorithms
were all developed specifically for IMRT, which typically
involves only a very limited number of treatment beams (≤9).
Lin et al. [196] proposed a DL-based fluence map prediction
approach that can handle the more general VMAT planning in
which fluence map of 64 treatment beams at different angles
needs to be determined. By assuming the dose of an optimal
plan already known, the projected dose was employed as an
input of the established DNN model to predict the fluence
map. All these studies have shown DL as a promising tool
for fluence map prediction. However, the physical achievabil-
ity and deliverability of the predicted fluence map is again not
guaranteed.

3) DL-Based Virtual Treatment Planner: Motivated by the
tremendous success of RL in achieving human-level intel-
ligence in the decision-making process, the third group of
methods focuses on developing RL-based virtual treatment
planners (VPNs) to automatically adjust treatment planning
setups or machine parameters [298]–[302] for high-quality
treatment plans (Fig. 12). The idea of training a VPN is sim-
ilar to the trial-and-error learning process of human beings.
It allows the VPN to explore different ways of adjusting
treatment planning setups/machine parameters and observe
the impacts of these adjustments to the plan quality. VPN
will gradually learn the consequences of applying differ-
ent adjustments to a given plan from a wide spectrum of
scenarios encountered in the training process, such that it
can pick the adjustment leading to optimal plan quality.
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Fig. 12. General workflow of VPN-based AP, analog to conventional human
planning process (dashed route).

The feasibility of RL-based VPN has been demonstrated in
both a proof-of-principle context of high-dose-rate brachyther-
apy [300] and more complicated cases of external beam
radiotherapy [298], [299], [301], [302], showing that intel-
ligent behaviors of operating a TPS can be spontaneously
generated via an end-to-end RL. Unlike the dose prediction
and fluence map prediction methods, RL-based approaches
naturally guarantee the achievability and deliverability since
the final plans are generated by a TPS. However, the low
training efficiency and poor scalability of VPN have limited
its applications to only simple treatment planning problems.
Although recent studies have shown that the training effi-
ciency and model scalability can be substantially improved by
incorporating human knowledge [299], and DNN of hierar-
chical architecture [298], respectively, the feasibility of VPN
on a commercial TPS for complex clinical treatment plan-
ning tasks still needs to be further investigated. Moreover,
the VPNs in existing studies are trained under the guidance
of simple plan evaluation quantities, such as ProKnow score
(ProKnow Systems, Sanford, FL, USA), which does not neces-
sarily reflect the real planning objectives in the clinic. Better
metrics of more clinical relevance, e.g., physicians’ prefer-
ence on plan quality, need to be quantified, and incorporated
to guide the training process of a VPN.

C. Challenges of Auto-Planning

Although classical/DL-based AP methods have achieved
great success in many aspects, a number of technical or prac-
tical challenges remain unsolved. The first major challenge
is the data size problem. Training effective AP models often
require a large cohort of data of sufficient diversity to cover
the variations among different patients. However, such datasets
are nontrivial to collect, and their accessibility is very lim-
ited due to many concerns, such as privacy issues. This is
indeed more of a concern for the DL-based algorithm since
it typically requires huge amount of data to optimize DNNs
with respect to the large number of learnable parameters. Lack
of data often leads to severe overfitting, which may substan-
tially deteriorate the performance of models on new patient
cases never observed in model training. Second, despite their
encouraging performance, most of the AP models, especially

the DL-based ones, are difficult to interpret. To confidently
deploy a model to automate the treatment planning process of
patients, it is essential to have a good understanding about
the reason behind the plan generation process. Such inter-
pretability of a model is necessary to ensure its generality
and robustness on different patients. Lack of interpretability
may lead to unexpected model failure in the clinical deploy-
ment stage, posing serious risk to patients. In addition, there is
also arising worries de-staffing/deskilling of human planners.
However, in a study by Seo et al., it was found that experi-
enced planners outperform AP systems in complex cases [23].
In this regard, AP will be helpful to reduce the workload from
simple cases and enable human planners to spend more time
on complex cases, thereby further improving plan quality. To
implement AP in most clinics, commonly accepted guidelines
on implementation and quality assurance of AI models will
play an important role, as discussed thoroughly in a recent
review article by Vandewinckele et al. [30].

D. Outlooks/Future Directions

AP has a great potential to automate and accelerate the
tedious and time-consuming treatment planning process of
RT. It is expected to improve the quality of treatment plans
to a better level consistently, allowing to deliver the best of
care to each patient. AP would also release human planners
from simple cases, whose efforts can be focused on more
challenging cases. The urgent need AP is further amplified in
the regime of adaptive RT where planning efficiency critically
affects the success of adaptation. Furthermore, moving toward
the era of personalized care, AP permits the quick genera-
tion of treatment plans of different treatment techniques, e.g.,
IMRT versus VMAT, standard fractionation versus SBRT, pho-
ton versus proton treatment, etc., from which the best treatment
plan can be chosen for optimal treatment outcome.

The remaining challenges of AP approaches, such as
data size and interpretability, need to be addressed for the
development of effective and reliable models. Collecting
a large interinstitutional dataset is attractive, but less prac-
tical due to privacy and regulation concerns. One poten-
tial solution might be federated learning [303]–[305], which
allows each institution to keep their own data while having
the model be trained on all data. In addition, interpretable
ML/DL [306], [307] has become a central topic recently due
to the increasing need of model expainability and reliability
in many applications including RT. More efforts are definitely
needed along these directions to fulfill the urgent, but unmet
need of AP.
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