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Abstract—Artificial intelligence (AI) applications have recently
been proposed to detect errors in radiotherapy plans. External
validation of such systems is essential to assess their performance
and safety before applying them to clinical practice. We collected
data from 5238 patients treated at Maastro Clinic and introduced
a range of common radiotherapy plan errors for the model to
detect. We estimated the model’s discrimination by calculating
the area under the receiver-operating characteristic curve (AUC).
We also assessed its clinical usefulness as an alert system that
could reduce the need for manual checks by calculating the per-
centage of values flagged as errors and the positive predictive
value (PPV) for a range of high sensitivities (95%–99%) and
error prevalence. The AUC when considering all variables was
67.8% (95% CI, 65.6%–69.9%). The AUC varied widely for dif-
ferent types of errors (from 90.4% for table angle errors to 54.5%
for planning tumor volume-PTV dose errors). The percentage of
flagged values ranged from 84% to 90% for sensitivities between
95% and 99% and the PPV was only slightly higher than the
prevalence of the errors. The model’s performance in the external
validation was significantly worse than that in its original setting
(AUC of 68% versus 89%). Its usefulness as an alert system to
reduce the need for manual checks is questionable due to the low
PPV and high percentage of values flagged as potential errors to
achieve a high sensitivity. We analyzed the apparent limitations
of the model and we proposed actions to overcome them.

Index Terms—Artificial intelligence (AI), Bayesian network
(BN), radiotherapy, treatment planning.

I. INTRODUCTION

OVER the past decades, radiotherapy has constituted
a fundamental treatment modality for cancer patients

along with other treatment options, such as surgery,
chemotherapy, and immunotherapy [1]. Radiotherapy’s cost
effectiveness (5% of the total cost of oncological care) [2] as
well as the number of patients that are treated with it (50% of
cancer patients) [1], [3] and its potentially curative nature [4],
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stress the need for an accurate treatment plan construction and
delivery. Recent advancements in the field of artificial intelli-
gence (AI) have contributed to a significant progress regarding
the automation of the treatment planning process such as the
automatic delineation of the clinical target volumes (CTVs)
or organs at risk (OAR) [5], [6] and the automatic dosimetric
evaluation of treatment planning [7].

Radiotherapy treatment planning is a complex procedure
that requires a coordinated team effort by an interdisciplinary
group that consists of radiation oncologists, medical physi-
cists, radiation technologists, and dosimetrists. The objective
of radiotherapy treatment planning is to safely and effi-
ciently prescribe the optimal dose to the anatomical target
volume of the patients. Mistakes made during this process
can cause serious risks during the treatment planning exe-
cution. In the past, several organizations, such as the World
Health Organization (WHO), the American Association of
Physicists in Medicine (AAPM), and the European Society
for Therapeutic Radiation Oncology (ESTRO), have published
recommendation guidelines for the elimination of the radio-
therapy errors [8]–[10]. Generally, the radiotherapy treatment
plan errors can be subdivided into operational or system errors.
For instance, malfunction of the multileaf collimators (MLCs)
system of the linear accelerator (LINAC) in a case of intensity-
modulated radiation therapy (IMRT) or differences between
the prescribed dose and the dose per radiotherapy fraction due
to adjustments of the reference points are some of the poten-
tial errors. These errors can lead to serious accidents with
extremely severe consequences for both patients and clinical
professionals [11], [12].

Increased automation, supported by AI techniques and
combined with human expertise, could reduce the time
needed for the development and execution of a radiother-
apy treatment plan. Furthermore, the implementation of AI
methods can potentially contribute to the early detection of
plan errors and the reduction of the time needed for their
detection [13], [14].

Currently, we are entering a new challenging and promis-
ing era in radiotherapy where AI has started to manifest its
potential with several applications. For example, several stud-
ies introduced automated treatment plan verification for the
detection or errors during radiotherapy [15]–[19]. Moreover,
with the development of the automated pipelines for the val-
idation and quality assurance (QA) of the radiotherapy plans,
objections raised regarding their accuracy and implementa-
tion, such as the requirement of expertise knowledge of the
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manual planning (i.e., human intervention) and reproducibility
issues [20].

To address these limitations, Luk et al. [21] proposed
a model to detect radiotherapy errors using an AI-based
approach. Their Bayesian network (BN) model can flag
anomalies in 29 variables related to diagnostic, prescription,
plan, and setup level parameters to assist clinical physicists and
clinicians on the time-consuming and error-prone radiotherapy
treatment planning procedure.

BNs are the most popular type of probabilistic graphical
models (PGMs), which emerged during the 1980s and rose
to prominence in the next decade [22]. PGMs use graphs
to represent the probabilistic dependencies between the vari-
ables in a model. BNs, for example, use directed acyclic
graphs (DAGs) where each variable is represented by a node
and links between variables imply causality. In addition, the
conditional probability distribution (CPD) of each variable is
defined as a function of its parents in the graph (i.e., the set
of nodes that have links pointing at one particular node). The
structure of the graph of the BN and the CPDs can be either
defined based on expert knowledge or learned from data using
machine learning algorithms [23]. Probabilistic reasoning in
BNs allows for different types of queries, such as the proba-
bility distribution of one or more target variables given a set
of findings (e.g., what is the probability of rain given the grass
is wet), or the probability of a set of findings (e.g., what is the
probability of rain and dry grass). A set of such findings is
referred to as evidence. The intuitiveness of the probabilistic
reasoning in BNs thanks to their graphical structure in con-
trast to black-box algorithms prominent in AI has led to a wide
adoption in healthcare [24].

Luk et al. [21] defined the DAG based on expert knowl-
edge and learned the CPDs based on historical data from their
institution. Consequently, they showed that they could detect
anomalies in radiotherapy plans assigning the values of a given
radiotherapy plan to the variables of the BN and calculating
the probability of the evidence, because radiotherapy plans
with errors will generally result in a lower probability.

We hypothesized that such a model is clinically relevant
and can provide significant added value, reducing the need
for manual checks and detecting errors that would otherwise
go unnoticed. An external validation is an empirical evalua-
tion in a dataset that was not used to develop the model and
they are essential before considering whether to use a clinical
prediction model [25]. Therefore, we performed an external
validation of the model using data from Maastro clinic (The
Netherlands), with the aim to assess the generalizability of
the model.

II. MATERIALS AND METHODS

A. Data Acquisition

We used data from 5238 patients (19 054 treatment plans)
for this study, collected at the Maastro radiation oncol-
ogy clinic (Maastricht, The Netherlands) between 2012 and
2020. The patients were treated with external beam radiother-
apy using electrons or photons with IMRT and volumetric-
modulated arc therapy (VMAT) in seven different Truebeam

TABLE I
DESCRIPTION AND EXAMPLES OF THE MAASTRO

CLINIC’S VARIABLES USED

Continued

LINACs of Varian medical systems. Patients treated with pro-
tons were excluded from the dataset as the original model
by Luk et al. [21] did not include them. The radiother-
apy elements were extracted and collected from the Varian
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TABLE I
(Continued.) DESCRIPTION AND EXAMPLES OF THE MAASTRO

CLINIC’S VARIABLES USED

Eclipse (versions 11 and 15) treatment planning system
database and amended with information from the electronic
patient dossier (EPD). A description of all the variables
used as well as with representative examples can be found
in Table I.

B. Variable Mapping

The numerical variables of the dataset were mapped to the
nearest value in the corresponding variable from Luk et al.
For the categorical variables, such as anatomic tumor loca-
tion, we mapped the values from our dataset to the matching
values in the corresponding variable. If there was more than
one matching value (e.g., the variable T_stage contains the
values 1a, 1A, and T1a), we selected the one with the high-
est marginal probability in the model (i.e., the most common
occurrence in the original training dataset).

C. Errors

Reports of errors and near-misses that happened in Maastro
clinic (The Netherlands) related to radiotherapy were collected
and validated from the prevention and recovery information
system for monitoring and analysis (PRISMA) database [26].
After the assessment of the 19 054 treatment plans of the
5238 patients, we encountered five radiotherapy treatment plan
errors reported that were checked manually. One of the errors
was related to a wrong table angle, two errors were related
to an incorrect planning tumor volume (PTV) dose and the
remaining two errors were related to the usage of the bolus.
Since our goal is to replace or support these manual and time-
consuming checks with the introduction of BNs, we simulated
errors in 3% of the plans following instructions of experts in
the area.

TABLE II
ERRORS SIMULATION OVERVIEW

These errors can be categorized into four main types:
1) patient positioning; 2) prescription level; 3) LINAC
mechanical; and 4) general radiotherapy plan errors. The
patient positioning error category consisted of the LINAC
table rotation errors simulation errors with a values bigger
than 10◦. In the category of prescription level errors, differ-
ences between the prescribed dose to the PTV and the dose
per fraction were evaluated. Specifically, we simulated errors
with values bigger than 100 cGy planned dose to the PTV
on VMAT and IMRT plans of 15 and 20 fractions. Errors
regarding the LINAC collimator angle were simulated and
included into the LINAC mechanical errors. In this category,
the simulated errors collimator angle values were increased
by 10◦–15◦. Under the category of the generic radiotherapy
plan errors, we simulated errors for whether the usage of bolus
or not was included. In Table II, you can find different cate-
gories and the description of the errors. The selection of the
above-mentioned simulated errors was based on the reported
and manually checked errors of the PRISMA database (table
rotation, incorrect PTV dose, and bolus usage) and the sug-
gestions of manually checked errors (collimator angle) from
the radiotherapy technologists (RTTs) of Maastro Clinic.

D. Evaluation

We used the Java application programming interface (API)
of Hugin Researcher 7.4 [27] to load the network provided by
the authors and calculate the relevant probabilities. Following
the instructions in the original article, for each case, we instan-
tiated the variables Anatomic_tumor_loc, T_Stage, M_Stage,
and N_Stage, and Treatment_Intent and calculated the prob-
abilities of the rest of the variables. Each probability P
was compared against a threshold T that designated whether



KALENDRALIS et al.: EXTERNAL VALIDATION OF BN FOR ERROR DETECTION IN RADIOTHERAPY PLANS 203

Fig. 1. ROC curve for the external validation dataset.

that parameter should be flagged as correct or as an error.
Setup_Device variables were excluded, since these were not
available in our database.

In order to compare the performance of the model reported
by its authors with its performance in our dataset, we plotted
the receiver-operating characteristic curve (ROC) and calcu-
lated the area under the curve (AUC), which provides an
estimate of the discriminative power of the model. We plot-
ted the ROC and calculated the AUC of the whole dataset
(i.e., all variables combined) as well as for each of the vari-
ables where we simulated errors: collimator angle, table angle,
gantry angle, PTV dose, and bolus. We used the ROC and cal-
culated the AUC and its confidence intervals (CIs) using the
R language (version 3.6.1) and the “classifierplots” package.

We also performed an analysis to assess the usefulness of
the model in a clinic as an alert system that helps reduce
the need for manual checks. As such, it would be only of
added value if it could detect almost all errors (i.e., sensitivity
≥ 95%) with a reasonable positive predictive value (PPV, i.e.,
the probability that an instance flagged as an error is actu-
ally an error). Therefore, we undertook scenario analyses to
calculate the model’s PPV for different sensitivities and dif-
ferent prevalence of errors (since the PPV depends on how
frequently errors occur in clinical practice and the prevalence
is unknown). We did not assess calibration because the model’s
output is not meant to be interpreted as a probability.

The source code of our analysis is available at
https://gitlab.com/UM-CDS/projects/ext-val-bn-rt-plan-qa.

III. RESULTS

Fig. 1 shows the ROC curve for all the variables used
in the external validation. The model achieved an AUC of
67.8% (95% CI, 65.6%–69.9%) when considering all variables
together.

Table III shows the AUCs for the six types of simulated
errors. The discriminative performance of the model is very
high for the table rotation errors (“Table Angle” variable)
achieving an AUC of 90.4% (95% CI, 87.1%–93.5%). For the
category of the simulated errors related to the bolus, gantry
angle, and the collimator angle, the model performs worse

TABLE III
AUCS FOR DIFFERENT TYPES OF ERRORS

TABLE IV
PERCENTAGE OF FLAGGED VALUES AND PPV FOR DIFFERENT

COMBINATIONS OF SENSITIVITY AND PREVALENCE OF ERRORS

with AUCs of 75.6 % (95% CI, 71.3%–79.9%), 67% (61%–
72.7%), and 69.6% (66.3%–73.1%), respectively. However, the
BN fails to detect the errors comprising a difference between
the prescribed dose to the PTV and the dose per fraction,
resulting in an AUC of 54.5% (49.3%–59.4%).

The results of our analysis regarding the usefulness of
the model as an alert system are shown in Table IV, which
includes the probability threshold at which different levels of
high sensitivities are achieved and the resulting percentage of
values flagged as errors and PPVs. According to our analyses,
the model would flag as possible errors 84%, 89%, and 90%
of the values in order to detect 95%, 97%, and 99% of errors,
respectively. This implies that human technicians would still
need to manually review almost all values to check whether
they are correct. For these high sensitivity levels, the PPV, or
the probability that a value flagged as an error is actually an
error, was not significantly higher than the error prevalence
itself.

Table V includes some of the cases from the external vali-
dation dataset where the model missed and detected errors. We
selected the missed errors from those plans containing errors
for which the model estimated a probability higher than the
median probability in the test set for the variable that con-
tained the error. Detected errors were selected from those plans
containing errors for which the model estimated a probability
lower than the 3rd percentile probability in the test set for the
variable that contained the error. The analysis of patterns in
the cases where the model succeeded and failed could poten-
tially lead to insights to guide retraining and fine-tuning the
process in the future.
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TABLE V
SELECTION OF MISSED ERRORS (ESTIMATED PROBABILITY HIGHER

THAN THE MEDIAN) AND DETECTED ERRORS (ESTIMATED PROBABILITY

LOWER THAN THE 3RD PERCENTILE)

IV. DISCUSSION

We have performed an external validation of a BN for
error detection in radiotherapy plans described in [20] using

data routinely collected at Maastro clinic. The results show
that the model’s performance is significantly deteriorated when
using it outside of the environment it was developed in. We
have also shown that the performance of the model varies
heavily for different types of errors. We undertook an analy-
sis that shows that in order to achieve a high sensitivity, the
model needs to flag almost all values as potential errors, which
reduces its usefulness as an alert system.

The deterioration in the performance of the model in our
external validation might be caused by differences in radio-
therapy practices between the two clinics and limitations in
the implementation of the original model. For example, the
institution from which the data to train the model origi-
nated uses Elekta’s MOSAIQ oncology information system,
while Maastro uses Varian’s ARIA (Eclipse treatment planning
system). On the other hand, the poor performance of the model
detecting PTV dose errors could be caused by differences in
institutional preferences on dose prescriptions and fractiona-
tion schedules. For example, in our institute, hypofractionation
(>2 Gy per fraction) is frequently applied in prostate cancer
patients, while in the original dataset used to train the model,
a more conventional treatment schedule was used. The model
flagging fractionation schedules different to those in the origi-
nal institution as errors is likely to be a consequence of training
a model in a single institution. However, it is arguable to which
extent such models need to be generalizable (e.g., able to
accept different fractionation schedules) and to which extent
they should be adjusted to the implementing clinic (e.g., to
deliberately flag as errors fractionation schedules different to
the clinic’s) through a commissioning process [28].

Another potential source of model performance deteriora-
tion is limitations in the model’s development. For example,
some categorical variables in the model contain redundant val-
ues (e.g., the variable T_Stage contains the values “1a,” “1A,”
and “T1a”) and numerical variables often contain a high num-
ber of values (e.g., more than 200 states). This in turn led
to conditional probability tables (CPTs) with a high num-
ber of parameters, as the number of probabilities in a CPT
grows exponentially with the number of states in each vari-
able (e.g., the CPT for Number_of_Rxs contains more than
20 million probabilities). Since these parameters need to be
estimated from data, the higher the number of parameters, the
higher the number of samples required to learn these param-
eters. Options to alleviate the issue by reducing the number
of values in each variable include removing redundant val-
ues, discretizing numeric variables, and grouping values that
are similar or equivalent when considering the task at hand.
In addition, the evaluation of the network as proposed by
Luk et al. [21] considers the probability of each plan param-
eter independently, conditioned on the diagnostic variables
and the treatment intent. This prevents the model from being
able to detect erroneous combinations of plan parameters,
such as a wrong value for Total_Fraction given a particular
Dose_Per_Fraction.

It is worth assessing whether using a single probability
threshold to determine whether to flag a value as an error
or not is ideal. There is a high variance in the number of
states or categories across different variables and probabilities
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tend to be lower the higher the number of states. Therefore,
adjusting the threshold per variable to reflect this could lead
to improved performance.

There is also room for improvement in the handling of miss-
ing data. Many variables contain a special value to reflect
missing data (e.g., “NULL”). This approach has been shown
to lead to suboptimal results and is unnecessary in this case
given that the algorithm used to learn the probabilities, the
expected maximization (EM) algorithm, is especially suited
to handle missing data [29]. Moreover, BNs are well capable
of dealing with missing data when queried for probabilities
(i.e., inference).

Moreover, the model was trained using data from a single
institution. This is a common practice, but one that leads to
models that often do not generalize well outside of the envi-
ronment in which they were developed. Our results offer yet
another example of the importance of using data from multiple
sources (e.g., different clinics across the world) when training
and testing models to achieve generalizability. This is not easy
to achieve because ethical and legal barriers prevent sharing
of privacy-sensitive data. However, the recently proposed fed-
erated learning paradigm [30] and related initiatives such as
the Personal Health Train [31] aim to provide a framework
where learning from multiple sites becomes straightforward.
Another barrier to combining data from multiple institutions
is the differences in the way different institutions encode
the data. The findable, accessible, interoperable, and reusable
(FAIR) data [32] principles establish a series of guidelines to
make data interoperable, specifically by using publicly avail-
able ontologies for the creation of a semantic Web model.
Such ontologies already exist for radiation oncology and
radiotherapy [33]–[36].

Our external validation suffers from a number of limitations.
The most important limitation is that while the information
about the plans used in the validation is real, the errors are
simulated. As explained in the methods section, after ana-
lyzing the database used to log misses and near-misses, we
only found five errors related to radiotherapy planning. This
is likely because technicians check every plan manually before
and correct it before the plans are approved for treatment
execution or because some errors go undetected. As a conse-
quence, we were forced to simulate errors. Considering how
much the model’s performance varies across different types of
errors, differences between the simulated and actual error dis-
tributions could lead to biased overall performance estimates.
We mitigated this risk by simulating the errors partly based on
the errors encountered in the database, and partly also by simu-
lating the kind of errors that are manually corrected according
to experienced technicians’ feedback. Another limitation of
our external validation is that our dataset was missing the
information about the setup or immobilization devices (e.g.,
breast board and head rest) used during radiotherapy. As a con-
sequence, we could not validate the performance of the model
detecting errors in these variables. Finally, we did not assess
the model’s ability to detect errors that might have gone unno-
ticed in the clinic. In principle, by sacrificing sensitivity, one
could use the model to try to flag a few errors that could
otherwise go unnoticed with high specificity. However, this

could be potentially dangerous because the existence of such
a system could give a false sense of security to technicians
unaware that by sacrificing sensitivity, most errors would go
undetected.

The above-mentioned limitations in combination with the
different radiotherapy treatment planning software between
the two clinics (Mosaiq in Washington versus ARIA Eclipse
in Maastro) and the LINAC models (Elekta in Washington
versus Varian in Maastro) contributed to the relatively low
performance of the model in the external validation. To fur-
ther investigate the root cause of the low performance of the
model in the validation cohort, we aim to address the lim-
itations mentioned in the discussion and train the model in
Maastro clinic as a next step of a future study.

The findings of our external validation suggest that the
model is not yet ready to be useful in clinical practice in
institutions different to its original. However, we believe that
if the limitations identified in this external validation are suc-
cessfully addressed, such a model could lead to a reduction in
the cost of radiotherapy planning and increase its safety.

V. CONCLUSION

We have performed an external validation of a BN for error
detection in radiotherapy plans proposed by Luk et al. [21],
by testing the performance of the model in actual plans deliv-
ered in Maastro clinic with simulated errors. The results show
that the performance of the model proposed by Luk et al. [21]
significantly deteriorated when applied in an environment dif-
ferent from the source institution where it was developed
(AUC of 65% versus 89%). The performance of the model var-
ied widely for different types of errors (from 99.5% for table
angle errors to 39.2% for PTV dose errors). This result shows
the importance of external validations and the advantages of
developing models using data from more than one institution.
We analyzed the apparent limitations of the model (data pre-
processing, handling of missing data, and model evaluation)
and we have proposed actions to overcome them.
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