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Abstract—Deep convolutional neural networks have been
widely used for medical image segmentation due to their superi-
ority in feature learning. Although these networks are successful
for simple object segmentation tasks, they suffer from two prob-
lems for liver and liver tumor segmentation in CT images.
One is that convolutional kernels of fixed geometrical struc-
ture are unmatched with livers and liver tumors of irregular
shapes. The other is that pooling and strided convolutional oper-
ations easily lead to the loss of spatial contextual information
of images. To address these issues, we propose a deformable
encoder-decoder network (DefED-Net) for liver and liver tumor
segmentation. The proposed network makes two contributions:
1) the deformable convolution is used to enhance the feature rep-
resentation capability of DefED-Net, which can help the network
to learn convolution kernels with adaptive spatial structuring
information and 2) we design a ladder-atrous-spatial-pyramid-
pooling (Ladder-ASPP) module using multiscale dilation rate
(Ladder-ASPP) and apply the module to learn better context
information than the atrous spatial pyramid pooling for CT
image segmentation. The proposed DefED-Net is evaluated on
two public benchmark datasets, the LiTS, and the 3DIRCADb.
Experiments demonstrate that the DefED-Net has better capabil-
ity of feature representation as well as provides higher accuracy
on liver and liver tumor segmentation than state-of-the-art
networks. The available code of DefED-Net we propose can be
found from https://github.com/SUST-reynole/DefED-Net.
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I. INTRODUCTION

L IVER cancer is one of the most common and most lethal
cancers in the world, which threatens life and health of

humans seriously [1], [2]. In the clinical context a liver is
a common site for both primary (e.g., hepatocellular carci-
noma) or secondary (e.g., hepatic metastases due to colorectal
cancer) tumor development. Accurate liver and liver tumor
segmentation from enhanced abdominal CT images can help
doctors to assess the function of livers and make a decision
for disease diagnosis and treatment. However, as livers have a
similar density with other neighboring organs and the liver
tumors show very low contrast and serious intensity inho-
mogeneities in abdominal CT images, it is difficult to find
accurate liver and liver tumor boundaries depending on human
vision [3]. Manually labeling liver and liver tumor areas not
only suffers from subjective judgment and limited accuracy,
but also is tedious and inefficient. Therefore, semi-automatic
or fully automatic approaches for liver and liver tumor seg-
mentation have been a research goal in the field of medical
image analysis to help in clinical applications [4].

Before the advent of deep learning techniques [5], liver
and liver tumor segmentation were often semi-automatic and
they mainly relied on image segmentation algorithms based
on model-driven, such as region growing [6], active contour
models [7], graph cut [8], shape statistical models [9], etc.
These approaches can be roughly categorized into three
groups: 1) pixel-based approaches; 2) graph-based approaches;
and 3) contour-based approaches. The first type of approach
mainly includes thresholding and region merging. The type of
approach only achieves low segmentation accuracy for liver
and liver tumor segmentation due to the employment of low-
level features and limited capability of model representation.
Graph-based approaches show clear superiority than pixel-
based approaches, since they employ the max-flow/min-cut
algorithm to find a minimum-cost closed set [10]. This kind of
semi-automatic approach can achieve accurate liver segmen-
tation by simply labeling the foreground and background, and
it does not even require the iterative operation [11]. However,
image segmentation results are easily influenced by labeling
results, and graph cuts require high computational cost for
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high-resolution images since each pixel of images is viewed
as a note [12]. Consequently, researchers often employ the
combination of graph cuts and other algorithms, such as water-
shed [13], shape constrain [14], multiscale registration [15],
etc., to improve the segmentation accuracy and computational
efficiency for liver and liver tumor segmentation.

Compared to the first two kinds of approaches, contour-
based liver and liver tumor segmentation attracts more
researchers’ attention since they can provide better segmen-
tation results using curve or shape evolution. Level-set [16]
is one of the most popular algorithms in medical image seg-
mentation, since the level-set utilizes energy optimization to
evolve a given curve into the real boundaries of objects.
A large number of improved level-set algorithms have been
proposed by introducing partial differential equations into the
evolution process to improve the convergence speed and seg-
mentation accuracy [17]–[19]. The statistical shape model [20]
is another popular algorithm for contour-based liver and liver
tumor segmentation. Different from the level-set, this algo-
rithm often constructs first a training set of liver and liver
tumor shapes, and then employs machine learning algorithms,
such as the random forest [21], [57], [58], support vector
machine (SVM) [22], and adaboosted histogram [59] to learn
an effective classifier. As a result, each liver and liver tumor
shape can be represented by some corresponding patches from
liver and liver tumor surface in the training set [23], [24]. The
advantage of this kind of approach is that they can provide
better segmentation results than unsupervised approaches, but
the disadvantage is that segmentation results depend on the
selection of training set and classifiers. Although numerous
algorithms have been proposed for liver and liver tumor seg-
mentation, they only provide good segmentation results for
some slices with clear liver or tumor boundaries, and they
are often unavailable for slices with blurred liver contour
or intensity inhomogeneities tumors in practical applications.
Ren et al. [54] proposed an automatic framework for atlas-
based multiorgan segmentation in abdominal dynamic PET
images with three different methods (4D-pair, 4D-PCA, and
3-D), incorporating probabilistic atlas information into the
segmentation as a spatial prior using maximum a posteriori
(MAP) estimation. This provides a powerful and reliable
region of interest (ROI) for dynamic abdominal PET multi-
organ segmentation for better segmentation results. Although
atlas-based segmentation can easily capture anatomical vari-
ation and thus offers higher segmentation accuracy, it suffers
from a clear shortcoming of ravenous appetite for com-
putational resources because analyzing, manipulating, and
processing all atlases typically demands a substantial amount
of memory and time. It is believed that this is one of the main
reasons why atlas-based segmentation has not been widely
used in clinical applications.

In recent years, with the rapid development of deep learn-
ing [25] in the field of computer vision, researchers pre-
fer to use fully convolutional neural networks (FCN) [26]
to achieve image semantic segmentation in an end-to-end
way [27]. These networks usually adopt multilevel encoder-
decoder structures, and the encoder and decoder are often
composed of a large number of standard convolutional or

deconvolutional layers. In addition, there is a residual or
long-range connection between encoders and decoders. This
kind of design can automatically remove insignificant fea-
tures and maintain interesting features through the contraction
and expansion paths; it can also achieve the fusion of low-
level and high-level features. Compared with FCN, U-Net
proposed by Ronneberger et al. [28] obtained great success for
medical image segmentation, since the encoder and decoder
of U-Net are perfectly symmetrical and upsampling gradu-
ally makes it possible to obtain finer segmentation results.
Since then, researchers focused on the improvements of
U-Net [55], [56]. The most common way is to use the back-
bone of classic convolutional neural networks with pretrained
parameters, such as VGG [29], ResNet [30], DenseNet [31],
GhostNet [50], etc., to replace the encoder achieving trans-
fer learning [60]. The other popular way of improving U-Nets
is to add attention mechanisms [32] between encoders and
decoders to focus on interesting regions, such as attention
U-Net [33] and RA-UNet [34]. To exploit further potentially
useful information in feature maps, R2-UNet [35] introduces
recurrent convolution that is able to extract features using
the same layer many times. UNet++ [36] employs U-Nets
with different depths instead of long-range connections to
avoid the rough fusion of low-level and high-level features.
Recently, mU-Net [37] believes that small targets may disap-
pear after pooling since the skip connection in U-Net repeat-
edly processes low-resolution feature information. Therefore,
mU-Net achieves better liver and liver tumor segmentation by
adding a residual path with deconvolution and activation oper-
ations to the skip connection of U-Net. These improved 2-D
networks not only show better performance in medical image
segmentation, but also achieve simpler design of data augmen-
tation schemes while keeping the lower memory requirement
than 3-D networks. However, they cannot capture the spatial
information along the z-axis due to the employment of 2-D
convolution kernels, which may degrade the performance in
volumetric segmentations.

To extract the spatial information along the 3-D, Ji et al. [38]
employed 3-D convolution kernels to achieve 3-D CNN, which
makes it possible to process 3-D volume data directly. Based
on 3-D CNN and U-Net, Çiçek et al. and Milletari et al.
proposed 3-D U-Net [39] and V-Net [40], respectively. The
V-Net applies 3-D convolutions together with residual con-
nection to the feature encoder stage, and deepens the network
depth to obtain better segmentation results than 3-D-UNet.
Furthermore, by introducing the strategy of depth supervi-
sion, both Med3D [41] and 3-D DSN [42] achieve faster and
more accurate segmentation of volumetric medical images.
More application of 3-D CNNs can be seen in [43]. Although
these 3-D networks can simultaneously explore the spa-
tial information of interslice and inner-slice, these networks
suffer from some new problems, such as more parame-
ters, much memory usage, and much narrow reception fields
than 2-D networks. To combine the advantages of 2-D and
3-D networks, researchers proposed H-DenseUNet [44]. This
network first uses a 2-D network to extract image features
and perform segmentation tasks on a slice-by-slice basis. The
pixel-wise probabilities produced by the 2-D network are
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then concatenated with the original 3-D volume and fed into
a 3-D network for a refinement. The H-DenseUNet finally
achieves excellent liver and liver tumor segmentation. In addi-
tion, Vu et al. [53] applied the overlay of adjacent slices as
input to the central slice prediction, and then fed the obtained
2-D feature maps into a standard 2-D network for model
training. Although these pseudo-3-D approaches can segment
objects from 3-D volume data, they only obtain limited accu-
racy improvement due to the utilization of local temporal
information. Compared to pseudo-3-D networks, hybrid cas-
cading 2-D and 3-D networks are more popular for medical
image segmentation.

Although the networks mentioned above can perform end-
to-end liver and liver tumor segmentation well, the use of
vanilla convolution limits the further improvement of seg-
mentation accuracy. Since standard convolution kernels have
a regular sampling grid, they are unable to capture accu-
rately liver and liver tumor features with variable shapes in
different slices. Besides, some improved networks, such as
CE-Net [45] and MSB-Net [51] employ multiscale feature
fusion to enhance feature representation of networks, but many
network branches lead to the requirement of more parameters.
To address these issues, we propose a deformable encoder-
decoder network (DefED-Net) to improve liver and liver tumor
segmentation. The proposed DefED-Net includes following
advantages.

1) Feature extraction layers of the DefED-Net are con-
structed by using the deformable convolution (DC)
with residual design. The design can more effectively
extract the spatial context information of images while
maintaining high-level features.

2) The feature fusion module of the DefED-Net depends on
a ladder-atrous-spatial-pyramid-pooling (Ladder-ASPP)
that employs multiscale dilated convolution kernels
using variable dilation rate to obtain better spatial
context information.

3) The DefED-Net provides higher segmentation accuracy
for liver and liver tumor than state-of-the-art approaches,
and it requires smaller memory usage due to the employ-
ment of depth separable convolution.

The remainder of this article is organized as follows. In the
next section, we detailedly introduced the design of network
architecture and advantages of our proposed DefED-Net. To
demonstrate the superiority of DefED-Net, we introduced our
experimental environment and pretreatment, performed abla-
tion studies and comparative experiments, and analyzed the
experimental results in Section III, followed by the conclusion
in Section IV.

II. METHOD

In this work, we propose a DefED-Net and apply it to liver
and liver tumor segmentation. Fig. 1 shows the architecture of
the DefED-Net. As can be seen from Fig. 1 that the DefED-Net
is an enhanced U-net and it is composed of three parts, includ-
ing an encoder, a middle processing module, and a decoder.
In contrast with the U-net, the DefED-Net employs the DC
with residual structure to generate feature maps. Moreover, the

Fig. 1. Architecture of the proposed DefED-Net. First, the feature encoder
employs DC using the residual connection. Second, the Ladder-ASPP block
is used to extract richer context information. Finally, both the skip connection
and the dense connection of original images are used for the fusion of feature
maps in decoder.

Fig. 2. Image filtering using a morphological opening filter with different
structuring elements. (a) Original image. (b) SE is a disk of size 20×20.
(c) SE is a square of size 20×20. (d) SE is a line that the length is 20 and
the orientation is 1/6π .

original image is concatenated with outputs at different layers
of the decoder to obtain better feature representation. Different
from general pyramid pooling (PP) modules [45], [46], we
design a better feature fusion module, namely, Ladder-ASPP
and apply it to our DefED-Net. Although the Ladder-ASPP
adopts the way of dense connection, it only requires smaller
memory usage due to the utilization of the depth separable
convolution. It is worth mentioning that the DefED-Net is
designed in 2-D domain.

A. Deformable Encoding

Although a large number of improved U-Nets have been
proposed for medical image segmentation, they provide lim-
ited segmentation accuracy for livers and liver tumors in CT
images. Here, are two reasons that limit the performance of
U-Nets. First, convolutional kernels with fixed geometric struc-
tures are employed by the U-Nets, which ignores the shape
information of objects in an image. Second, the operation of
polling and strided convolution leads to the loss of spatial
context detail information.

To illustrate the first reason, we presented an example of
image filtering as shown in Fig. 2. Fig. 2 shows that the mor-
phological opening filter is able to smooth noise effectively
by employing different structuring elements (SEs). However,
these filtering results depend on the choice of SEs. Fig. 2(b)
shows that a circular SE is useful for preserving the details
of circular objects and Fig. 2(c) shows that a square SE
is effective for square objects. Similarly, Fig. 2(d) shows
that a linear SE can maintain the details of linear objects.
Therefore, it is better to adopt multiple different SEs for
an image including many different objects. In other words,
we should consider adaptive filters that can obtain better fil-
tering effect due to the consideration of geometrical shape
information of objects. In addition, the design of convolution
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Fig. 3. Comparison of vanilla convolution and DC for liver segmentation.
In contrast with the standard convolution, the DC requires offset locations for
each sampling location.

kernels also plays the same important role for convolutional
neural networks. In practical applications, researchers often
employ fixed-shape square convolutional kernels to perform
feature learning, such as U-Net, PSP-Net, CE-Net, etc. Since
convolution kernels with fixed shape show weak ability for
the extraction of image contextual information, these afore-
mentioned networks only provide tolerable accuracy for liver
and liver tumor segmentations. Instead, we use DC kernels
to extract richer geometry information of the liver and liver
tumor, which can better accommodate the irregular shape of
liver and liver tumor and lead to better segmentation results.
In Fig. 3, the DC shows better adaption for liver in a CT
image than the vanilla convolution. In fact, Sun et al. [62] have
started to explore the utilization of DC on automatic segmen-
tation networks for gastric cancer, and their proposed network
achieves better segmentation results than vanilla U-Net [28]
and ResU-Net [61].

The DC is able to provide convolutional kernels with
arbitrary shapes by learning offset locations, and thus adap-
tively decide scales of receptive field with fine localiza-
tion. Therefore, the DefED-Net possesses better capability of
modeling geometric transformation than common U-Nets due
to the employment of deformation convolution. However, the
implementation of DC is more complex than vanilla convolu-
tion since additional spatial offset locations are limited. Based
on learned offset locations, the convolution kernels can achieve
the deformation of different scales, shapes, and orientations.
Fig. 3 illustrates the principle of deformation convolution on
liver segmentation.

In practical applications, a DC is composed of four lay-
ers: 1) a convolutional layer; 2) a convolutional offset layer;
3) a batch normalization layer; and 4) an activation layer.
The principle of DC is given as follows. Let x and y be the
input and the output feature map, respectively. The L denotes
a regular grid in 2-D domain.

When performing the convolution operation on x using
the L, the output is denoted by

y(e0) =
∑

en∈L

w(en) × x(e0 + en) (1)

where w denotes the weight, e0 denotes the location of a pixel,
and en denotes the location of neighboring pixels falling into L.
If we perform the DC on x, the output can be represented by

ỹ(e0) =
∑

en∈L̃

w(en) × x(e0 + en + �en) (2)

where L̃ is the deformation result of L. Compared to L, L̃ is
an irregular grid including offset locations �en.

The offset �en is usually a float number and the sampling
position of the DC becomes irregular, so the bilinear interpo-
lation is used to perform the process of determining the pixel
value of the final sampling position. The pixel value x(e) at
the final sampling position is defined as

x(e) = B
(
wi, qj

)
(3)

where wi denotes the corresponding weight, qj denotes the four
surrounding pixels involved in the computation at the irregular
sampling position, and B(,) is the bilinear interpolation kernel.
Note that B is 2-D and is defined as

B
(
wi, qj

) = w1q1 + w2q2 + w3q3 + w4q4. (4)

For instance, if the coordinates we got from the sampling
position is (2.2, 4.6), then its nearest pixel is (2, 4),(2, 5), and
(3, 4), and (3, 5). Therefore, in the actual program calculation,
we will use the bilinear interpolation of (2, 4), (2, 5), (3, 4),
and (3, 5) pixels for the sampled location (2.2, 4.6) pixels.

As shown in Fig. 3, the offset is obtained by applying a con-
volutional layer. Note that the convolutional layer to obtain the
offset needs to have the same spatial resolution and dilation
rate as the convolutional layer to extract the features in the
offset feature map. For each layer of the DC, when the input
of a convolutional layer is a feature map with N channels, the
corresponding offset map includes 2N channels in this convo-
lutional layer because each channel includes two offset maps
in the x and y directions, separately. Note that the offset map of
the output has the same spatial resolution as the input map in a
convolutional layer. During training, the offset can be learned
through the back propagation of (3) and (4). After the pixel
values of all sampled positions are obtained, a new feature map
will be generated. Although the DC is superior to vanilla con-
volution due to the employment of convolutional kernels with
flexible shape, it can be further improved by using multiscale
convolutional kernels instead of single-scale kernels. For liver
segmentation task, a large convolutional kernel is better than
small ones for capturing coarse liver areas. However, a small
convolutional kernel is more useful for obtaining accurate
contour details. Therefore, here we use a large convolutional
kernel 7 × 7 for the first DC layer while using small con-
volutional kernel 3 × 3 for subsequent layers. The proposed
multiscale DC is able to achieve better feature representation
than single-scale DC, and thus leads to better liver and liver
tumor segmentation results due to more accurate liver and liver
tumor contours. In addition, the residual design is integrated in
the proposed deformable encoder to avoid vanishing gradients
and speeds up the convergence of networks.

B. Ladder-ASPP

Both PP and atrous spatial pyramid pooling (ASPP) are
two popular ways for encoding context information due to
wider receptive fields than standard pooling. Since the PP
directly performs pooling operation using multiscale pooling
kernels, it often causes irreversible information loss leading
to poor segmentation results for small objects such as liver
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Fig. 4. Comparison of standard atrous convolution and the atrous convo-
lution with variable dilation rate. (a) Convolutional kernel: 3×3, rate = 2.
(b) Cascade of two convolutional kernels: 3×3, rate = 2. (c) Cascade of
three convolutional kernels: 3×3, rate = 2. (d) Convolutional kernel: 3×3,
rate = 1. (e) Cascade of two convolutional kernels: 3×3, rate = 1, 2.
(f) Cascade of three convolutional kernels: 3×3, rate = 1, 2, and 3. Note
that although (c) and (f) have similar receptive fields 13×13, (c) has 70%
pixel loss compared to (f).

tumor. However, the ASPP performs atrous convolution using
multiple dilation convolutional kernels instead of multiscale
pooling kernels. Compared with PP, ASPP provides better
context information since atrous convolution is superior to
pooling operation for the preservation of detail information.
However, ASPP still faces two challenges in practical applica-
tions: 1) the fixed dilation rate is used for ASPP, which causes
gridding effect as shown in Fig. 4(a)–(c); some pixels falling
into receptive fields cannot take part in the convolutional oper-
ation and 2) ASPP ignores the global context information. To
address these issues, we proposed a novel Ladder-ASPP as
shown in Fig. 5.

The standard atrous convolution easily leads to the loss of
spatial detail information. To overcome the drawback, we use
variable dilation-rate instead of fixed dilation rate leads to bet-
ter receptive fields. It is clear that each pixel in the receptive
fields is covered as shown in Fig. 4(d)–(f). Therefore, atrous
convolution with variable dilation rate can overcome gridding
effect caused by the standard atrous convolution.

Based on atrous convolution with variable dilation rate, we
design a Ladder-ASPP to improve context encoding. Fig. 5
shows the architecture of the Ladder-ASPP.

First, the Ladder-ASPP employs variable dilation rate to
achieve atrous convolution that was mentioned previously.

Second, the Ladder-ASPP uses densely ladder connection
that is helpful for ASPP to achieve better feature fusion.
However, the dense connection easily leads to the increase
of the number of parameters and high memory require-
ment. To reduce the number of parameters to obtain a
lightweight network, we introduce depthwise separable convo-
lution (DSC) [52] to Ladder-ASPP. Compared to the standard
convolution in which spatial features and channel features are
often coupled together, the DSC can achieve the decoupling

Fig. 5. Architecture of the Ladder-ASPP. The output feature maps are con-
catenated by two parts. The first one is the output from global pooling and
the second one is the densely connected feature fusion liking ladder.

computation between spatial features and channel features
leading to the requirement of fewer parameters.

It is well-known that the standard convolution requires
parameters DK × DK × M × N, where M is the dimension
of input feature maps, N is the dimension of output feature
maps, and DK is the space-resolution of convolution kernels.
In the DSC, the depthwise convolution only requires param-
eters DK × DK × 1 × M and the pointwise convolution only
requires parameters 1 × 1 × M × N. Therefore, the number of
parameters of DSC is (1/N + 1/D2

K) of the standard convolu-
tion. Here, the proposed Ladder-ASPP employs four kernels of
size 3×3. Consequently, the Ladder-ASPP only requires 36%
parameters compared to the one without using DSC.

Finally, to improve feature representation of ASPP, the
global pooling is integrated into Ladder-ASPP since it can
achieve the priority of channels including more important
information. We can see from Fig. 5 that the information
hidden in both space dimension and channel dimension is
exploited simultaneously. The final feature maps fuse both the
global and local information.

To illustrate the proposed Ladder-ASPP, let Y be the output
feature map, y1 be the global pooling result, and y2 be the
output from the module of ladder autrous convolution. It is
clear that Y = y1 + y2. The y1 is defined as

y1 = B[C1[GPS(x)]] × x (5)

where x is the feature map obtained from the feature encoder,
followed by global pooling denoted by GPS(x), and C1 rep-
resents the weight of each feature channel through 1 × 1
convolution, and B is the normalization of feature weight.

In our Ladder-ASPP, we adopt variable dilation rate,
i.e., 1, 2, 5, and 7. Let GK,D be the output of densely con-
nected PP, where K is the level of pyramid and D is dilation
rate, we get

y2 = G1,1(x
(1)) ⊕ G2,2(x

(2)) ⊕ G3,5(x
(3)) ⊕ G4,7(x

(4)) (6)

where
⎧
⎪⎪⎨

⎪⎪⎩

x(1) = x
x(2) = x(1) ⊕ G1,1(x(1))

x(3) = x(2) ⊕ G2,2(x(2))

x(4) = x(3) ⊕ G3,5(x(3))

(7)

where ⊕ denotes concatenation operation.
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According to (5)–(7), we can see that the output from
Ladder-ASPP includes richer information than the original
input. The Ladder-ASPP can help our DefED-Net to achieve
better segmentation results due to the exploitation of signifi-
cant spatial information.

C. Loss Function

Our framework is an end-to-end deep learning system. As
illustrated in Fig. 1, we need to train the proposed method to
predict each pixel as foreground or background, which is a
pixel-wise classification problem. The cross entropy is one of
the most popular loss functions and it is defined as

Lcross = −(plog(p̂) + (1 − p)log(1 − p̂)) (8)

where p and p̂ are the ground truth and predicted segmentation,
respectively.

However, the tumor often occupies a small region in an
image. The cross entropy loss is not optimal for such tasks. It is
worth noting that the Dice loss [40] is suitable for uneven sam-
ples. This metric is essentially a measure of overlap between a
segmentation result and corresponding ground truth. The Dice
loss is defined as

Ldice = 1 − 2 < p, p̂ >

‖p‖1 + ∥∥p̂
∥∥

1

(9)

where p ∈ (0, 1) and 0 ≤ p̂ ≤ 1. The p and p̂ are the ground
truth and predicted segmentation, respectively, and <p, p̂>

denotes dot product.
However, the use of the Dice loss easily influences the back

propagation and leads to a training difficulty. Therefore, the
final loss function is defined as a combination of both losses

Lloss = Lcross + Ldice. (10)

D. Post Processing

Generally, the task of liver and liver tumor segmentation
aims to obtain a binary image where the foreground denotes
liver and liver tumor and the background denotes other areas.
Based on Sections II-A and II-B, we can obtain a coarse
segmentation result for livers and liver tumors. However, the
segmented image often includes a lot of small and isolated
areas or some holes. In practical applications, binary image
filtering is often used to remove false liver areas or fill holes
within livers. For binary image filtering, morphological filters
are very popular for the removal of small segmentation areas.

Although both classic morphological opening and closing
operations can effectively improve binary segmentation results,
they often smooth the boundaries of main objects as well. It is
difficult to remove false objects while maintaining the bound-
ary accuracy of real objects. For this problem, morphological
reconstruction is an excellent tool and it has been widely used
for object extraction [48]. Morphological reconstruction is able
to achieve binary image filtering while maintaining the large
objects unchanged. The operation requires to set the parame-
ter of SEs. If the parameter is large, more small areas would
be removed. On the contrary, fewer areas are removed in the
case of small value of parameters. To address the issue, we

Fig. 6. Post-processing results using adaptive morphological reconstruc-
tion. Top: segmentation results from the DefED-Net. Bottom: post-processing
results.

propose an adaptive morphological reconstruction to optimize
liver and liver segmentation results from the DefED-Net.

We first compute the proportion of the maximal connected
component in an image to the total area of the image. If the
value is large, then a large SE will be adopted. Conversely, a
small SE will be adopted when the value is small. Here, the
SE is a disk and its radius is denoted by r

r = 30 × round(R/(H × W)) + 1 (11)

where R denotes the area of the maximal connected com-
ponent in the segmentation result, and H and W denote the
height and width of the input image, respectively. Fig. 6 shows
post-processing results using the proposed adaptive morpho-
logical reconstruction. Note that it is unnecessary to make
post-processing for liver tumor segmentation since the area
of liver tumors is generally small.

III. RESULTS AND DISCUSSION

A. Dataset and Preprocessing

Two public contrast-enhanced CT scans datasets: liver tumor
segmentation challenge (LiTS-ISBI2017) and the 3-D image
reconstruction for comparison of algorithm and database
(3Dircadb) datasets are considered as experimental data. The
LiTS dataset is a large dataset that contains 130 3-D abdominal
CT scans, where the image size is 512×512, slice thickness
varied from 0.55 to 6 mm, pixel spacing varied from 0.55 to
1 mm. The 3DIRCADb is a small dataset that contains 22 3-D
data, where the image size is 512×512, slice thickness varied
from 1 to 4 mm, pixel spacing varied from 0.56 to 0.86 mm,
and slice number varied from 184 to 260. We constructed the
training set and validation set using 90 patients (total 43 219
axial slices) and ten patients (total 1,500 axial slices), respec-
tively. Then the other 30 patients (total 15 419 axial slices)
are considered as the test set. For the 3DIRCADb, it was split
into 17 patients for training and ten patients for test.

Medical CT axial slices are different from normal axial
slices, the former is able to obtain wider range of values
from −1000 to 3000 than the latter from 0 to 255. To remove
interferences and enhance liver areas, we truncated the image
intensity values of all scans of [−200, 250] HU and performed
the normalization on these scans. In our experiments, the given
models are independently and separately performed for liver
and liver tumor segmentation.
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Fig. 7. Comparison of feature maps generated by U-Net, U-Net+DC, and U-Net+RDC, respectively.

B. Experimental Setup and Evaluation Metrics

All algorithms were implemented on a desktop PC with
double NVIDIA GeForce RTX 2080 Ti with 11-GBVRAM.
The convolutional neural networks were performed and trained
using the framework of Pytorch 1.3.0.

On the model training, we set the initial learning rate (lr) to
0.001, and define the decay strategy for learning rate during
training as

lr = lr × (1 − i/ti)
0.9 (12)

where i denotes the number of iterations of this training and
ti denotes the total number of iterations. Note that the DC
requires two learning rates compared to one for vanilla con-
volution. We set lr2 = lr×0.01 for offset convolutional layers
used for DC networks, and used the Adam gradient descend
with momentum to optimize the model.

Five popular evaluation metrics are used to measure
the accuracy of segmentation results, such as dice score
(DICE) [49], volumetric overlap error (VOE), relative volume
difference (RVD), average symmetric surface distance (ASD),
and root mean square symmetric surface distance (RMSD).
The tumor burden of the liver is a measure of the fraction
of the liver afflicted by cancer. In particular, as a metric, we
measure the root mean square error (RMSE) in tumor burden
estimates from lesion predictions. The value of DICE ranges
from 0 to 1, and a perfect segmentation yields a DICE value
of 1. In fact, the DICE is one of the most important metrics in
image segmentation evaluation. The VOE is the complement
of the Jaccard coefficient, and thus a perfect segmentation
yields a VOE value of 0. The RVD is an asymmetric met-
ric, and a smaller value of RVD means a better segmentation
result. Both ASD and RMSD are used to measure the surface

distance between segmentation results and ground truths, the
former is used to compute the average distance but the latter is
used to compute the maximal distance. Consequently, a better
segmentation result corresponds to high values of DICE but
low values of VOE, RVD, ASD, and RMSD. Note that we
evaluate segmentation results based on 3-D volumes.

C. Ablation Study

This article focuses on liver and liver tumor segmentation.
Two contributions are highlighted, one is that the DC is used
to instead of the vanilla convolution; the other is that Ladder-
ASPP is integrated into the proposed DefED-Net to improve
the context information. To demonstrate the two contributions
and the effectiveness of the DefED-Net, we conducted com-
prehensive experiments on both LiTS liver and liver tumor
datasets.

Effectiveness of the DC: We analyzed the performance of
DC and residual DC (RDC), respectively. Fig. 7 shows the
comparison of U-Net, U-Net+DC, and U-Net+RDC on liver
segmentation. It is clear that both DC and RDC can help
U-Net to focus on the interesting regions and remove irrel-
evant background information, but RDC can help the network
converge faster and obtain more accurate edge predictions.
In the third column of Fig. 7, the feature maps provided
by U-Net+RDC include less information that is unrelated
with the liver. Consequently, U-Net obtains more fake liver
regions than U-Net+RDC and U-Net+DC in the fifth column
of Fig. 7. Table I demonstrates the effectiveness of the first
contribution. We can see that the utilization of DC effectively
raises the segmentation accuracy of U-Net. The residual design
not only speeds up the convergence of U-Net, but also further
improves segmentation accuracy.
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Fig. 8. Difference of prediction results and ground truths. Top: Input images,
Middle: U-Net results, and Bottom: U-Net+Ladder-ASPP results.

TABLE I
COMPARISON OF ABLATION STUDY ON LITS TEST DATASETS. THE BEST

VALUES ARE IN BOLD

Effectiveness of Ladder-ASPP: Both U-Net+ASPP and
U-Net+Ladder-ASPP use the idea of context encoding to
improve feature representation of networks. The difference
is that Ladder-ASPP uses atrous convolution with variable
dilation rate and dense connection to obtain better context
information than ASPP. Experimental results in Table I con-
sistently demonstrate that both ASPP and Ladder-ASPP can
help U-Net to improve segmentation accuracy of livers, and
the latter is superior to the former. Fig. 8 shows the differ-
ence of segmentation results between prediction results and
ground truths, where the foreground is the difference and the
background is the same. It is clear that the prediction result
obtained by U-Net+Ladder-ASPP is closer to the ground truth
than U-Net. Furthermore, U-Net+ASPP only improves the
representation capability of models on the capture of spatial
context information, which is unavailable for the optimization
of channel dimension. Therefore, U-Net+Ladder-ASPP pro-
vides higher DICE than U-Net+ASPP as shown in Table I.

In addition, post-processing is also useful for improving seg-
mentation accuracy. Table I shows that RDC plays a more
important role than ASPP and post-processing for improving
segmentation accuracy. The results further demonstrate that
location information is more important than feature fusion for

Fig. 9. Comparison of segmentation boundaries using different approaches.
The green denotes ground truth, the white denotes the result provided by
U-Net, the purple denotes the result provided by CE-Net, and the red denotes
the result provided by DefED-Net.

image segmentation. Fig. 9 shows the comparison of segmen-
tation boundaries, which further illustrates the ablation study.
All these comparison results demonstrate the effectiveness of
the DC, Ladder-ASPP, and post-processing on liver and liver
tumor segmentation.

D. Experimental Comparison on Test Datasets

To validate the superiority of the proposed DefED-Net, six
state-of-the-art networks used for liver and liver tumor seg-
mentation are considered as comparative approaches. These
networks can be grouped into three categories: 1) 2-D
networks; 2) 3-D networks; and 3) hybrid networks with
2-D and 3-D, where 2-D networks include U-Net, U-Net++,
and CE-Net, 3-D networks include 3-D U-Net and V-Net,
hybrid networks include H-DenseUNet. Note that we do not
give experimental results obtained by 3-D U-Net and V-Net
in Tables V and VI due to high risk of over-fitting on the
3DIRCADb dataset.

It is known that 3-D networks can provide better segmen-
tation results than 2-D networks due to their exploitation of
information between slices. Tables II and III demonstrate that
both 3-D U-Net and V-Net provide higher segmentation accu-
racy than U-Net. However, CE-Net is superior to U-Net since
it employs SPP to achieve feature fusion. In contrast with those
networks mentioned above, H-DenseUNet provides better seg-
mentation accuracy since it balances the advantages of both
2-D networks and 3-D networks. The proposed DefED-Net
provides the best quantitative scores (DICE, VOE, and ASD)
than comparative approaches. As the DefED-Net belongs to
2-D networks, it obtains lower values of RMSD than 3-D
networks, such as 3-D U-Net and V-Net. Since the 3DIRCADb
is a small dataset, 3-D networks including a mountain of
parameters easily lead to over-fitting for the dataset. Therefore,
we only show the comparison results of U-Net, U-Net++,
CE-Net, H-DenseUNet, and DefED-Net in Tables IV and V,
which demonstrates the DefED-Net outperforms those com-
parative networks on the 3DIRCADb dataset. DICE, VOE,
and RVD are all overlap measures while ASD and RMSD
are surface distance measures. The former focuses more on
the interior of the segmentation target, while the latter focuses
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Fig. 10. Liver and liver tumor segmentation results using different
approaches.

more on the shape similarity of the segmentation target. It
is important to note that the shape and size of liver tumors
vary greatly among patients as well as in the same patient at
different times compared to the liver, which make it more dif-
ficult to achieve fully automatic segmentation of liver tumors.
Therefore, as recorded in Tables III–V, the ASD and RMSD
values for liver tumors are obviously larger than the values for
livers.

Fig. 10 shows the segmentation results from different
approaches. First, from the segmentation results obtained by
2-D networks, both U-Net and U-Net++ fail to identify large
liver tumors but CE-Net is successful in the first column of
results. U-Net++ obtains poorer segmentation results than
U-Net and CE-Net for small liver tumor as shown in the

TABLE II
QUANTITATIVE SCORES OF THE LIVER SEGMENTATION RESULTS USING

DIFFERENT APPROACHES ON THE LITS DATASET. THE BEST VALUES

ARE IN BOLD

TABLE III
QUANTITATIVE SCORES OF THE LIVER TUMOR SEGMENTATION RESULTS

USING DIFFERENT APPROACHES ON THE LITS DATASET. THE BEST

VALUES ARE IN BOLD

TABLE IV
QUANTITATIVE SCORES OF THE LIVER SEGMENTATION RESULTS USING

DIFFERENT APPROACHES ON THE 3DIRCADB DATASET. THE BEST

VALUES ARE IN BOLD

TABLE V
QUANTITATIVE SCORES OF THE LIVER TUMOR SEGMENTATION RESULTS

USING DIFFERENT APPROACHES ON THE 3DIRCADB DATASET. THE

BEST VALUES ARE IN BOLD

second column of results. It is clear that CE-Net is able to
recognize a larger range of liver tumors due to the employment
of SPP module with multiscale receptive fields. In the third
column, both U-net and CE-Net obtain more false liver areas,
but U-Net++ shows better performance for large liver target
recognition because it has stronger generalization capability
and more dense feature representation. In the fourth column
of Fig. 10, U-Net and U-Net++ are inaccurate in identifying
liver boundaries, while CE-Net, which uses multiple atrous
convolutional parallel modules, provides higher accuracy for
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TABLE VI
COMPARISON OF THE EFFICIENCIES OF DIFFERENT NETWORKS. THE

FIRST TWO BEST VALUES ARE IN BOLD

liver boundary detection. Second, it is well known that 3-D
networks can provide better segmentation results of liver and
liver tumors than 2-D networks as they can capture the tem-
poral information of volumetic data. In both the first and
second columns, it can be seen that the tumor boundaries
obtained by the 3-D network are clearer than results pro-
vided by 2-D networks, and the tumor boundaries obtained
by V-Net are clearer and more accurate than results obtained
by 3-D U-Net due to the utilization of feature extraction block
with residual connection. In the third column, 3-D networks
are clearly superior to 2-D networks since the former do
not suffer form the problem of over-detection. Finally, it is
evident from the results obtained by DefED-Net in the first
and second columns that they provide more accurate seg-
mentations of both liver and liver tumors than the above
mentioned 2-D and 3-D networks. In addition, in the third
and fourth columns, the DefED-Net focuses on the relevant
liver region while suppressing the influence of surrounding
organs, it thus provides smoother segmentation boundaries
than comparative approaches. In general, Fig. 10 shows that
the DefED-Net achieves better feature encoding and context
information extraction, which is helpful for improving the
segmentation accuracy of liver and liver tumor.

E. Model-Size Comparison

We also counted the number of training parameters and
computational costs of networks as shown in Table VI.
Compared with 2-D networks, 3-D networks require much
more memory and higher computational cost due to the
employment of 3-D convolutional kernels. The number of
parameters of V-Net is greatly larger than one of 3-D U-Net
since V-Net uses a deeper network structure than 3DU-Net,
uses more convolutions and uses residual connections. On the
efficiency of models, the DefED-Net is similar to U-Net.

In fact, the DefED-Net adds Ladder-ASPP block compared
to U-Net. The Ladder-ASPP is a densely connected block,
and thus it shows high computational complexity and requires
a large of parameters as shown in Table VI. In this article, we
utilize depth separable convolution to decouple the operation
of spatial-dimension and channel-dimension, which efficiently
reduces the number of parameters. Thus, the added Ladder-
ASPP is a very small block compared to the size of U-Net.
Finally, the DefED-Net achieves excellent liver and liver tumor
segmentation with low computational cost.

IV. CONCLUSION

Liver and liver tumor segmentations attract attentions
of many researchers due to their importance in medical
image analysis. Deep convolutional neural networks, espe-
cially U-Nets, are very useful and popular for liver and liver
tumor segmentations. For improved CNNs, DC is very impor-
tant for the capture of context information, but received little
consideration in liver segmentation. In this article, we have
introduced DC into U-Nets to achieve better feature encoding.
Furthermore, although ASPP is effective for improving the
context information, atrous convolution and pooling lead to
the loss of detail information. We have suggested the Ladder-
ASPP for feature encoding and fusion. The Ladder-ASPP is
superior to ASPP due to the dense connection and atrous
convolution with variable dilation rate. Finally, the proposed
DefED-Net provides the best liver segmentation results with-
out increasing the size of models. Our studies also show that
utilization of spatial information is more important than fea-
ture fusion via modifying the network architecture for liver
and liver tumor segmentations. Experiments demonstrate the
advantages of the proposed DefED-Net on improving segmen-
tation accuracies and reducing model-size for liver and liver
tumor segmentations.
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