
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021 137

Application and Construction of Deep Learning
Networks in Medical Imaging

Maribel Torres-Velázquez , Graduate Student Member, IEEE, Wei-Jie Chen, Graduate Student Member, IEEE,

Xue Li, and Alan B. McMillan , Member, IEEE

Abstract—Deep learning (DL) approaches are part of the
machine learning (ML) subfield concerned with the development
of computational models to train artificial intelligence systems.
DL models are characterized by automatically extracting high-
level features from the input data to learn the relationship
between matching datasets. Thus, its implementation offers an
advantage over common ML methods that often require the prac-
titioner to have some domain knowledge of the input data to select
the best latent representation. As a result of this advantage, DL
has been successfully applied within the medical imaging field
to address problems, such as disease classification and tumor
segmentation for which it is difficult or impossible to determine
which image features are relevant. Therefore, taking into consid-
eration the positive impact of DL on the medical imaging field,
this article reviews the key concepts associated with its evolu-
tion and implementation. The sections of this review summarize
the milestones related to the development of the DL field, fol-
lowed by a description of the elements of deep neural network
and an overview of its application within the medical imaging
field. Subsequently, the key steps necessary to implement a super-
vised DL application are defined, and associated limitations are
discussed.

Index Terms—Classification, convolutional neural networks
(CNNs), deep learning (DL), medical imaging, segmentation,
synthesis.

I. INTRODUCTION

DEEP learning (DL) evolved from the machine learning
(ML) subfield, which is part of the computer science

branch known as artificial intelligence (AI). The goal of any
AI system is to learn from its environment without being

Manuscript received May 15, 2020; revised August 8, 2020 and
September 22, 2020; accepted September 26, 2020. Date of publication
October 13, 2020; date of current version March 3, 2021. This work was sup-
ported by the National Institutes of Health under Award R01EB026708 and
Award R01LM013151. (Corresponding author: Maribel Torres-Velázquez.)

Maribel Torres-Velázquez is with the Department of Biomedical
Engineering, College of Engineering, University of Wisconsin–Madison,
Madison, WI 53705 USA (e-mail: torresvelazq@wisc.edu).

Wei-Jie Chen is with the Department of Electrical and Computer
Engineering, College of Engineering, University of Wisconsin–Madison,
Madison, WI 53705 USA (e-mail: wchen376@wisc.edu).

Xue Li is with the Department of Radiology, University of Wisconsin
School of Medicine and Public Health, University of Wisconsin–Madison,
Madison, WI 53705 USA (e-mail: xli2245@wisc.edu).

Alan B. McMillan is with the Department of Radiology, University of
Wisconsin School of Medicine and Public Health, University of Wisconsin–
Madison, Madison, WI 53705 USA, and also with the Department of Medical
Physics, University of Wisconsin–Madison, Madison, WI 53705 USA (e-mail:
amcmillan@uwhealth.org).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRPMS.2020.3030611

programmed to identify any specific patterns of it. Thus, AI
systems can be seen as rational agents that “act so as to
achieve the best outcome or, when there is uncertainty, the
best-expected outcome” [1]. ML is the AI subfield concerned
with the development of approaches to train AI systems [2].
Specifically, ML models learn by exposing the algorithm to an
input dataset that has a matching output dataset—the objec-
tive of the ML model is to learn the relationship between the
input and output datasets. Some established ML approaches
include decision tree learning [3], reinforcement learning [4],
and Bayesian networks [5]. An essential characteristic of ML
models is that it requires a feature engineering step to reduce
the dimensionality of the input data to select the best latent
representation of the data for the training process. This can
be a time-consuming operation with potentially indeterminate
outcomes, requiring the practitioner to have some domain
knowledge of the data. As a result, DL approaches were
designed to overcome this challenge by automatically extract-
ing high-level features from the input data [6]. This advantage
of DL over ML dramatically simplifies the training process by
eliminating the feature extraction step.

An area that has greatly benefited from this advantage
is the medical imaging field in which most of the avail-
able data poses an uncertain nature, thus making it difficult,
sometimes impossible, to know which features are relevant
to the problem at hand. Currently, most of the DL applica-
tions within the medical imaging field are narrow, thus trained
to solve very specific problems. Some of the most common
applications include image classification, regression, segmen-
tation, and synthesis. Applications of DL can be generally
divided into two learning approaches: 1) supervised and 2)
unsupervised [7]. In the supervised learning approach, there
is a matched pair of data to train the model. For example,
inputting positron emission tomography (PET) brain images
of patients with and without Alzheimer’s disease into a DL
model as two distinct classes for classification. Conversely,
an unsupervised learning process is characterized for not pos-
sessing the same constraint (no matching data is included) [8],
allowing the model to determine which are the important fea-
tures within the dataset and how many distinct classes are
present. While the former approach may be advantageous for
some applications, in the case of medical imaging data, releas-
ing the constraint offered by matching data may cause the
DL model to find patterns that may not necessarily corre-
late with the clinical interpretation of the data. As a result,
most applications of DL models for medical imaging have

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information,
see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-5673-5012
https://orcid.org/0000-0003-4502-6522

138 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

utilized supervised learning or a hybrid combination of both—
unsupervised learning techniques have also been combined
with common ML methods. For that reason, in this review,
we attempt to present an overview DL and provide a guide
on how to successfully implement DL techniques for medical
imaging. To that end, Section II summarizes the elements of
deep neural networks. Section III includes an overview of DL
application in medical imaging. Furthermore, the steps needed
to train a neural network are included in Section IV, followed
by a discussion of robustness (Section V) and limitations
(Section VI).

II. ELEMENTS OF DEEP NEURAL NETWORKS

A. What Is Deep Neural Network?

Deep neural networks and DL have become a highly
successful and popular research topic because of their
excellent performance in many benchmark problems and
applications [9], especially in the fields of the control system,
natural language processing, information retrieval, computer
vision, and image analysis [6], [10], [11]. Kohonen [12] gave
a widely used definition in 1988 as follows:

“Artificial neural networks are massively parallel
interconnected networks of simple (usually adap-
tive) elements and their hierarchical organizations
which are intended to interact with the objects of
the real world in the same way as biological nervous
system do.”

1) Historical Development of Deep Neural Networks:
Neural networks have been studied for many years. In
1943, McCulloch and Pitts [13] put forward the famous M-
P neuron model, which described artificial neurons with
Boolean inputs and a binary output. In 1949, Hebb [14]
introduced a learning rule that described how the connec-
tion between neurons was affected by neural activities, which
could be used for updating weights of neural networks. In
1958, Rosenblatt [15] applied the Hebb rule to the M-P
model and proposed the perceptron idea, which performed
well in solving logic conjunction, disjunction, and nega-
tion problems. However, in 1969, Minsky [16] pointed out
that the single-layer perceptron could not solve the logic
exclusive disjunction problem. However, the multilayer per-
ceptron (MLP) could, but there were no learning rules for
updating weights of MLP, which made the research on neu-
ral networks sluggish for many years. Inspired by Hubel
and Wiesel’s work [17]–[19], Fukushima [20] invented the
neocognitron network in 1980 based on the previous work,
the cognitron [21]. The neocognitron is a hierarchical and
multilayer neural network, which holds many similarities
to modern convolutional neural networks (CNNs). In 1985,
Rumelhart et al. [22] supplied the backpropagation algo-
rithm, which solved the MLP’s training problems. In 1989,
LeCun et al. [23] applied the backpropagation algorithm to
the training of multilayer neural networks named LeNet
applied to identify handwritten numerals. In 1998, LeCun [24]
put forward the LeNet-5, which presaged the coming of
CNNs. In 2006, Hinton et al. [25] proposed the deep belief
network (DBN), which gave a solution to the training of

Fig. 1. (a) Structure of the McCulloch and Pitts neuron model. xi stands
for the input of the neuron, wi stands for the corresponding weight. θ means
the bias which is related to decide whether this neuron should be activated or
not. (b) Structure of the MLP. (c) Structure of the LeNet5 model, designed
for character recognition.

deep neural networks. In 2012, Krizhevsky et al. [26] created
AlexNet and won the ImageNet competition (to perform visual
object recognition from photographs). AlexNet was a historical
breakthrough in neural network performance and capability.
Since then, neural networks have undergone rapid development
and developed in four main directions: 1) increasing the depth
(number of layers) of neural networks, like the VGGNet [27];
2) reinforcing the convolutional layer’s function, like the
GoogleNet [28]; 3) transferring tasks from classification to
detection, like the RCNN [29], Fast RCNN [30], and Faster
R-CNN [31]; and 4) adding new functional modules, like
FCN [32], UNet [33], and STNet [34].

2) Multilayer Perceptron: The MLP is also called a feed-
forward neural network (FNN) and defines the basic model
of deep neural networks. It defines a map between the input
x and the ground truth y, aiming at learning the parameters
θ and getting the approximation of the function f . As shown
in Fig. 1(b), the MLP is composed of multiple layers, includ-
ing the input layer, hidden layer, and output layer. Each layer
contains multiple neurons, the building block of deep neural
networks. Neurons in adjacent layers are connected with each
other while those in the same layer are independent.

The training of the MLP includes two stages, the forward
propagation and the backpropagation.

Stage 1 (Forward Propagation): For a single neuron, the
M-P neural model is shown in Fig. 1(a). xi means the ith
input of the neuron and wi means the corresponding weight
of the ith input. θ is the threshold. f is the activation
function, which decides whether the neuron is in an active or
inactive state. From the M-P neural model, if f is defined as

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 139

(a) =
{

0, a < θ

1, a ≥ θ
, then it means the neuron will be activated

if the weighted sum of inputs is larger than the threshold (θ).
Otherwise, it will remain silent.

Therefore, the forward propagation of MLP can be
presented as follows:

zl+1
j =

∑
i

Wl
jia

l
i + bl

j (1)

al+1
j = f

(
zl+1

j

)
. (2)

al
i is the output of the ith neuron in the lth layer. zl+1

j is the
jth neuron’s value in the (l+ 1)th layer before being acti-
vated. Wl

ji is the weight between the ith neuron in the lth
layer and the jth neuron in the (l+ 1)th layer. bl

j is the bias.
f is the nonlinear activation function, like the Sigmoid, Tanh,
and ReLU.

Stage 2 (Backpropagation): The backpropagation algorithm
is designed for updating the weights of the MLP based on the
loss obtained by comparing the difference between the MLP’s
output and the ground truth. Lower loss and a better model
can be achieved by properly tuning hyperparameters, which
is typically determined manually prior to training. A growing
area of the field is a focus on the automation of hyperparameter
optimization [35].

Loss functions and optimization methods are highly flexi-
ble and important during the training process. How to choose
a suitable loss function and optimization method is described
in Section IV-C “network training and validation.” If the
squared error is used for measuring the difference between the
MLP’s output and the ground truth, the loss can be obtained
through the following formula. L is the number of layers in
MLP. aL

j means the jth neuron’s output in the final layer,
Lth layer

Ed = 1

2

∑
j∈outputs

(
yj − aL

j

)2
. (3)

If the gradient descent optimization function is chosen as
the optimization method, then the weights can be updated
in such a way as shown in the following formula. η is the
learning rate

Wji ← Wji − η
∂Ed

∂Wji
. (4)

According to the chain rule, the update rule for the output
layer can be computed as follows:

∂Ed

∂WL−1
ji

= ∂Ed

∂zL
j

· ∂zL
j

∂WL−1
ji

∂Ed

∂WL−1
ji

= ∂Ed

∂zL
j

· aL−1
i

∂Ed

∂WL−1
ji

= ∂Ed

∂aL
j

· ∂aL
j

∂zL
j

· aL−1
i

∂Ed

∂WL−1
ji

= −
(

yi − aL
j

)
aL

j

(
1− aL

j

)
aL−1

i . (5)

Then, the updated weights of the last layer can be computed
in the following way:

WL
ji ← WL

ji − η
∂Ed

∂WL
ji

= WL
ji + η

(
yj − aL

j

)
aL

j

(
1− aL

j

)
aL−1

i . (6)

However, for the hidden layer, the update rule is slightly
different

∂Ed

∂Wl
ji

= ∂Ed

∂zl+1
j

· ∂zl+1
j

∂Wl
ji

∂Ed

∂Wl
ji

= ∂Ed

∂zl+1
j

· al
i. (7)

If we define

δl+1
j = − ∂Ed

∂zl+1
j

. (8)

Then

∂Ed

∂zl+1
j

=
∑

k

∂Ed

∂zl+2
k

· ∂zl+2
k

∂zl+1
j

∂Ed

∂zl+1
j

=
∑

k

−δl+2
k · ∂zl+2

k

∂al+1
j

· ∂al+1
j

∂zl+1
j

∂Ed

∂zl+1
j

=
∑

k

−δl+2
k ·Wl+1

kj · al+1
j

(
1− al+1

j

)
. (9)

Thus, the relationship between δl+1
j and δl+2

k can be repre-
sented as such

δl+1
j = al+1

j

(
1− al+1

j

)∑
k

δl+2
k Wl+1

kj . (10)

Finally, the update formula for the weights of the hidden layers
is shown as follows:

WL
ji ← WL

ji − η
∂Ed

∂WL
ji

= WL
ji + ηal

ia
l+1
j

(
1− al+1

j

)∑
k

δl+2
k Wl+1

kj . (11)

In summary, the training loss will be computed after the for-
ward propagation. Based on the loss, the parameters of each
layer will be updated in the backpropagation according to
certain rules.

B. Type of Deep Neural Network Layers

Fig. 1(c) shows the architecture of the LeNet-5 CNN,
which was initially proposed for handwritten character
recognition [24]. CNNs are composed of a sequence of lay-
ers, including multiple layers, such as a convolutional layer,
a pooling layer, a fully connected layer, and an activation
layer. Data size is usually reduced or downsampled pool-
ing layers. Therefore, if data size needs to be upsampled,
transpose convolution layers or upsampling layers are needed.
In addition to these basic types of layers, there are some
other advanced layers, such as the normalization layer and the
dropout layer, which are designed for specific purposes, such

140 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

Fig. 2. Graphical depiction of several layers from a CNN. (a) Convolutional layer. (b) Max-pooling and averaging pooling layers for downsampling.
(c) Pipeline of a batch normalization layer. (d) Unpooling and dilation convolution layers for upsampling. (e) Dropout.

as facilitating training and avoiding overfitting. Additionally,
operations can happen not only between adjacent layers but
also between nonadjacent layers, through operations, such as
concatenation. Therefore, deep neural networks can be arbi-
trarily complicated. However, no matter how complex the
network architecture might be, the individual layers are typi-
cally made up of common elements. We now describe common
layers used in contemporary deep neural networks.

1) Convolutional Layer: The convolutional layer is the key
foundation of the CNN. The input of this layer can be the
input images or feature maps. The parameters in this layer
consist of learnable filters, also called kernels which are to
be learned during training. Each filter usually has the same
depth as the input images or feature maps have, but much
smaller height and weight. The height and width (and depth, if
applicable) of each kernel should be set manually in advance—
3× 3 is the most commonly used shape. However, note that
cascaded small kernels have the same receptive field (i.e., the
area in the input involving convolution calculation and pro-
ducing features) but with less parameters. For example, two
cascaded 3×3 kernels only have 18N (N is the factor unrelated
to the kernel size) parameters needed to be trained, but the
receptive field is the same as one 5×5 kernel, which con-
tains 25N parameters. A 1×1 filter is also possible and is
equivalent to applying an affine transformation to the feature
maps, which allows the exchange of information at differ-
ent depths and increasing nonlinearity. As Fig. 2(a) shows, in
the forward pass, each filter will move from the left to right
first, then up to down. The distance between each move is
called stride. Before each move, the dot products between the
filter and the corresponding area will be computed and com-
pose one feature map. The visualization of the feature map of
various convolutional layers is shown in Fig. 3, as obtained
from Meng et al. [36]. It can be concluded that the shallow

Fig. 3. Depiction of different model features reconstructed from differ-
ent layers of a CNN. *From F. Meng, X. Wang, F. Shao, D. Wang, and
X. Hua, “Energy-Efficient Gabor Kernels in Neural Networks With Genetic
Algorithm Training Method,” Electronics, vol. 8, no. 1, Art. no. 1, Jan. 2019,
doi: 10.3390/electronics8010105. Meng et al. is an open-access article dis-
tributed under the terms of the Creative Commons CCBY license and no
changes were made to this figure.

convolutional layers generally detect the edge and color fea-
tures while deeper ones generally combine the features from
the shallow ones to get more specific features, like the wheel of
the car. However, in this way, the image will become smaller
and smaller and the boundary information will be lost. To solve
this problem, zero padding is introduced by adding zeros to
the left and right, up and down symmetrically. Then, the out-
put shape of the convolutional layer can be computed by the
following formula. The default value for dilation is typically 1

shapeout =
⌊

shapein + 2× padding− 1

stride

− dilation× (kernel_size− 1)

stride
+ 1

⌋
.

(12)

Three factors play an important role in the learning process
of a CNN, including sparse interactions, parameter sharing,

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 141

and equivariant representations [37], which make CNNs com-
putationally efficient. Sparse interactions are also called sparse
connectivity. It means each neuron is connected to only a lim-
ited number of other adjacent neurons instead of full neurons
in the next layer, which requires fewer calculations to obtain
the output. Parameter sharing refers to the fact that each kernel
is location invariant between input images, aiming at con-
trolling the number of parameters. Moreover, the parameter
sharing property makes the convolutional layer equivariant to
translation. Take object detection as an example. No mat-
ter where the object is, it can be detected and recognized
because the kernel is the same for different parts of the whole
image. Though these three methods are basic, they contribute
significantly to improving the efficiency of a neural network.

2) Pooling Layer: Pooling layers are also widely used in
CNNs. This layer is designed for compressing the feature map
to simplify the network computation and get the main feature
of each feature map. Thus, the size of the images becomes
smaller after the pooling layer. Similar to the convolutional
layer, the stride, padding, and dilation concepts exist in the
pooling layer as well. The relationship between the input size
and the output size of the pooling layer is the same as (12).

There are two main kinds of pooling methods: 1) max
pooling [38] and 2) average pooling. As Fig. 2(b) shows, for
the max-pooling method, the maximum of each filter will be
kept, while the average value of each activation will be com-
puted and kept for the average pooling method. In practice,
neither of the two methods appear to have advantages over the
other.

3) Upsampling Layer: In applications of
segmentation [33] and synthesis [39], upsampling layers
are deployed for extending compressed features to details
in output images. To expand the image size, one of the
simplest ways is to use interpolation, including nearest, linear,
bilinear, trilinear, or bicubic resampling. Another approach
is to reverse the concept of max pooling [40]. During the
unpooling procedure, the locations of maximums in each filter
will be filled into the larger zero-filled matrix according to
location. This tracks the locations of the strongest activations
so that it can reconstruct detailed features of an object [41].
Another approach is the dilated convolution [42]. This
dilation convolution layer with dilation less than one, adds
zero between input pixels and perform convolutions. The
advantages of dilation convolution are extending receptive
fields at no sacrifice of resolution. The unpooling layer and
dilation convolution layers are shown in Fig. 2(d).

4) Activation Layer: Activation functions are designed for
increasing the nonlinear property of neural networks so that the
neural network can approach the real map between the input
and output as much as possible. Without the nonlinear activa-
tion functions, the neural network cannot solve the “exclusive
or” (XOR) problem. In recent years, more and more activation
layers have been put forward.

For the sigmoid activation function, no matter what the input
value is, the output will be limited in the range from 0 to 1,
which can be thought of as the probability and is helpful to
explain the result meaning. It is widely used for binary classi-
fication problems by comparing the output with the threshold,

which is usually set as 0.5. The output larger than 0.5 can be
labeled as one class while that smaller than 0.5 can be labeled
as another class. However, it also has some problems. First
is the gradient vanishing problem. According to the deviation
function of sigmoid, the gradient is almost zero when the input
is larger than 10 or smaller than −10. This means the weight
of such kind of neurons will not be updated during the back-
propagation. As a result, the neuron cannot learn from the
data, and the neural network cannot be optimized. Second,
the nonzero-centered problem. The output of the sigmoid func-
tion ranges from 0 to 1, which requires more time to converge
because the inputs for the next layer are all positive, and thus
the gradients for all the neurons are in the same direction. This
could introduce undesirable fluctuations during training. Third,
the sigmoid function can be computationally time consuming
because exponentiation computation is involved.

The tanh function and sigmoid function are very similar.
They are both smooth and easy to compute the derivative func-
tion. The tanh function also has the vanishing gradient problem
and the exponentiation computation problem. However, the
tanh function output ranges from 1 to −1, so the tanh function
solves the nonzero-centered problem.

The ReLU activation function [43] is widely used success-
fully in many applications. It is defined as follows: ReLU(x) ={

x, x > 0
0, x ≤ 0

. Compared with other activation functions, the

ReLU function alleviates the vanishing gradient problem to
some degree. This is because, in the positive interval, the out-
put of the derivative function can never be zero. Moreover, it is
much faster to do the computation since it only needs to make
the comparison with zero according to the formula. Finally, it
can accelerate the process of convergence significantly as well.
However, some limitations still exist. For example, the output
of the ReLU function is also nonzero-centered. As a conse-
quence, there could be some dead neurons due to the zero
gradient when the input is negative. Dead neurons imply that
some neurons can never be activated, so their weights can
never be updated. To deal with the dead neuron problem some
improvements have been suggested, such as the Leaky ReLU,
ELU [44], and PReLU [45] functions, which allow a very
small gradient in the negative interval. However, there is no
strong evidence that the leaky ReLU and ELU functions will
always work better than the ReLU function.

5) Batch Normalization Layer: Batch normalization [46]
was introduced by Ioffe and Szegedy in 2015. It is usually
placed between the convolutional layer and the activation layer
and is used to normalize the output of the convolutional layer.
The details are shown in Fig. 2(c). A batch of data, x1, x2,
and x3 are the inputs of the convolutional layer. z1, z2, and z3

are the outputs of the convolutional layer. Based on these out-
puts, the mean μ and standard deviation σ can be computed
through the following formula:

μ = 1

n

n∑
i=1

zi (13)

σ =
√√√√1

n

n∑
i=1

(
zi − μ

)2
. (14)

142 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

Then, the normalized one can be computed like this one

z̃i = zi − μ

σ
. (15)

After (15) is applied, the data distribution becomes stable with
the average equaling zero and standard deviation equaling one.
However, such simple normalization for the input of a layer
may affect the layer’s nonlinearity. For example, if sigmoid is
chosen as the activation layer, this normalization will force its
inputs to be in the linear region, which reduces the nonlinear-
ity. Therefore, two other parameters, γ and β, are introduced
and an additional transformation is added to (15) just as (16)
shows. γ and β are learned by the network during training and
are used to shift the distribution of the data, so the nonlinearity
of the network can be restored

ẑi = γ z̃i + β. (16)

Since the input of the activation layer has been pro-
cessed into a certain range, this can reduce the likelihood
of neurons getting into a saturated state. For example, if
the sigmoid activation function is used and the input of the
activation layer has been transferred into the range from
−10 to 10, then the derivation function of the sigmoid can
hardly become zero. As a result, the neurons can keep learn-
ing and update their weights. Additionally, batch normalization
can also improve the training speed, performance, and stability
of neural networks because it allows each layer of the neural
network to learn by itself a little bit more independently of
other layers. As a result, it is easier for the neural network to
learn and converge.

6) Dropout Layer: The dropout layer [47] is designed for
solving the overfitting problem. Overfitting occurs when the
model performs very well on the training dataset but performs
badly on the validation dataset. This problem is often caused
by smaller training datasets compared with the number of
parameters of the model. Since the problem is related to the
number of parameters, the dropout layer tries to ignore half of
the neurons in a single layer randomly during the training, as
shown in Fig. 2(e). In this way, the dependency between neu-
rons in adjacent layers is weakened. As a result, neurons are
forced to function more independently instead of depending
on other neurons.

7) Fully Connected Layer: In CNNs, fully connected lay-
ers are commonly used in the last few layers of a CNN. They
map the feature learned in the previous layers to the marked
sample space. The first fully connected layer can convert
a multidimensional feature map into a 1-D vector through the
convolution operation. During the conversion, the kernel has
the same size as the feature map, which means the same height,
the same width, and the same depth. An activation function
usually follows the first fully connected layer, and its output is
the input of another fully connected layer. Similar to neurons
in the MLP, the neurons in the fully connected layer are con-
nected to each neuron in the previous activation layer, while
the neurons in the same layer are independent.

In other neural networks, like the AUTOMAP DL network
used for medical image reconstruction [48], fully connected
layers can be used at any layer. However, just as introduced

above, neurons in the fully connected layer will be connected
to those in the previous layer, which means a huge number of
model parameters are needed. In practice, it is hard to train
a network with so many parameters due to both computing
hardware limitations and challenges with the convergence of
extremely large models.

8) Infinite Possibilities: In addition to the single layers
introduced above, some other operations can also happen
between nonadjacent layers, like addition, subtraction, mul-
tiplication, and concatenation. These layers allow the outputs
from different layers to do some computation and make the
design of the model more flexible. DL network layers can
consist of any programmable operation.

III. OVERVIEW OF DEEP LEARNING APPLICATIONS IN

MEDICAL IMAGING

Artificial neural networks evolved from the field of com-
puter vision and have been successfully applied to solve
a wide range of problems within the medical imaging field.
Specifically, the utilization of DL in this area is greatly moti-
vated by the fact that methods depend on the data, and no
previous knowledge of it is required [49]. As a result of this
attribute and the uncertain nature of most medical imaging
data, DL has become an excellent alternative to solve common
problems in the field. Classification, regression, segmentation,
and image synthesis and denoising are among the most com-
mon DL applications employed to address medical imaging
challenges, such as disease detection and prognosis, automatic
tumors detection, and image reconstruction. Moreover, the DL
model architecture depends on the specific application and in
this section. We will attempt to summarize the current litera-
ture containing various challenges in the medical imaging field
and DL models that have been used to address them.

A. Classification and Regression

Image classification and regression are DL applications that
share many network architecture features but are used to solve
distinct types of medical imaging problems. The objective of
classification is to sort input images into two or more dis-
crete classes, such as to detect the presence or absence of
disease. Meanwhile, image regression is concerned with pro-
viding a single continuously valued output from an image
input, such as a clinically relevant score. For both applica-
tions, the network is required to have an input layer, followed
by a fixed number of hidden layers and an output layer.
Conventionally there is a decrease in the number of filters or
nodes as we move deeper into the network. A DL model used
for image classification could be transformed into a regression
model by simply modifying the activation function of its final
output layer. For a binary and multiclass, multilabel classifi-
cation, a sigmoid activation layer is utilized, while a SoftMax
activation is used for multiclass-single-label classifiers [50].
In the case of regression, a linear activation is required for
continuous output, and a sigmoid one for values between 0
and 1 [50]. Moreover, DL networks can be utilized to extract
high-level features from data that are later inputted into a com-
mon ML model, such as a support vector machine (SVM) or

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 143

Bayesian network (discussed in Section V), to perform the
classification or regression task.

Currently, DL classifiers and PET data have been broadly
used within the neuroimaging field for the early detec-
tion of Alzheimer’s (AD), specifically within the mild
cognitive impartment (MCI) phase, and Parkinson’s (PD)
disease. Several studies have performed AD/MCI clas-
sification using a combination of common ML tech-
niques with DL methods. Unsupervised DL networks,
such as stacked autoencoder (SAE) [51], [52], Boltzmann
machine (DBM) [53], and DBN [54], were applied to
extract high nonlinear features or patterns from PET and
magnetic resonance imaging (MRI) data that were then
inputted into an SVM classifier. Other studies utilized vari-
ants of deep multitask learning networks for feature selec-
tion in AD/MCI diagnosis [55], [56]. Furthermore, CNNs
have been used for AD/MCI detection. PET image patches
were inputted into a 2-D CNN network to explore the
effect of multiscale data individually [57] and combined with
multimodal data [58] on the early diagnosis of AD. A CNN
network was used to predict cognitive decline in MCI patients
(development of AD) [59]. Moreover, 3-D patches from PET
images demonstrated to be more effective than MRI patches
when using a 3-D CNN network or AD/MCI diagnosis [60].
Another way of including 3-D information into a DL clas-
sifier is by using 2-D image slices in different directions;
Liu et al. included 3-D information into a classifier by
inputting PET image slices of the brain in the axial, sagit-
tal, and coral directions into a DL network composed of
convolutional and recurrent neural layers [61]. Moreover, the
feasibility of amyloid PET images for early detection of AD
was studied by training a 2-D CNN network using amy-
loid positive and negative cases and testing it on equivocal
cases [62]—a 3-D CNN was applied by combining amyloid
PET with structural MRI data [63]. Multimodal hippocampal
region of interest (ROI) images were applied to a 3-D VGG
variant network for AD/MCI classification [64]. Finally, PET
and single-photon emission computed tomography (SPECT)
data along with CNN networks and LASSO sparse DBN
have been utilized to detect neurological disorders, such as
Parkinson’s disease [65], [66] and brain abnormalities [67].

DL-based classifiers have also proven to be beneficial within
the cardiac and oncological imaging fields. Within the car-
diac imaging field, a DL model (composed of convolutional
and fully connected layers) and SPECT myocardial perfusion
imaging were used to predict the presence of obstruc-
tive coronary artery disease [68]. Additionally, a pretrained
Inception-v3 network [69] was utilized to extract high-level
features from polar maps that following feature selection was
then inputted to an SVM model to classify between cardiac
sarcoidosis (CS) and non-CS [70]. Meanwhile, in the oncol-
ogy field, PET data and CNN networks were used to predict
treatment response in esophageal cancer patients after neoad-
juvant chemotherapy [71] and radio-chemotherapy [72] and
in chemoradiotherapy treated cervical cancer patients [73].
Additionally, a Bayesian network has been used to explore
the biophysical relationships influencing tumor response and
to predict local control in lung cancer using dosimetric,

biological, and radiomics data [74]. For more information
regarding DL methods for image radiomics, please see the
following [75]. CNN networks were also used to detect
mediastinal lymph node metastasis [76] and define T-stage
of lung cancer [77]. An automatic classification system to
detect metastasis on bones was created using artificial neural
networks, and its performance was compared with eight other
ML methods, such as SVM [78]. Furthermore, multimodal
imaging data and a residual network (RN) were utilized to
detect the molecular subtype of lower-grade gliomas tumors
in the brain [79].

DL-based regression models are commonly applied to
predict risk factors or treatment prognosis but could also be
used to improve image quality. Ithapu et al. [80] explored the
feasibility of an AD biomarker obtained from a randomized
denoising autoencoder (AE) to filter out low-risk subjects from
the MCI population and consequently reduce the sample size
and variance requirements for clinical trials testing possible
treatments for AD. The network predicted a risk factor (value
between 0 and 1) to predicted how close an MCI patient was
to develop AD [80]. Another study, successfully inputted gray
and white matter volumetric maps and raw T1 MRI images
to a 3-D CNN network to predict age [81]. PET data from
normal subjects and a variational AE were used to determine
how far from normality a brain was by predicting an abnormal-
ity score; the model was trained to learn the brain structure of
normal subjects [82]. Unenhanced computed tomography (CT)
images were used to predict SUV maximum value from lymph
nodes as a surrogate endpoint for malignancy by applying
a 3-D CNN network [83]. The 3-D CNN network architecture
has also been used to predict survival risk prior to treatment
from PET/CT images from rectal cancer patients [84]. Finally,
a proof-of-concept study showed that CNN networks can be
used to improve the timing resolution for time-of-flight PET
utilizing a simple detector setup [85].

B. Segmentation and Image Synthesis

DL networks are currently implemented for medical image
segmentation and synthesis. Image segmentation can be per-
formed by assigning a class label to each individual pixel
(semantic segmentation) or by delineating specific entities like
tumors and lesions (instance segmentation). Moreover, the
objective of image synthesis is to obtain a desired/unavailable
image from an available/distinct one. With regards to the
network architecture, both applications may be performed by
applying some variant of the typical encoder–decoder architec-
ture, often realized as a “U-Net” [33]. In the U-Net architec-
ture, the input image size is downsampled during the encoder
layers and then upsampled in the decoder layers—providing
a continuous voxel-wise mapping from the input.

DL networks are commonly used to segment anatomical
areas and detect tumors or lesions. Hu et al. utilized a 3-D
CNN network to conduct a semiautomated segmentation of
the liver by learning subject-specific probability maps from
CT images [86]. A generative adversarial network (GAN)
network was trained to segment white matter from only brain
PET images [87]. For tumor segmentation, a 3-D U-Net CNN

144 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

network was trained to automatically detect and segment brain
lesions on PET images with a 0.88 and 0.99 specificity at
the voxel level [88]. PET/CT image slices were inputted into
a 2-D DL network for malignant gross tumor volume seg-
mentation in the head and neck [89]. Meanwhile, Guo et al.
[90] designed a 3-D DL network based on convolutional layers
with dense connections for the same task. Zhao et al. [91]
used a U-Net architecture to segment nasopharyngeal carci-
noma tumors using PET/CT image slices. 3-D U-Net networks
have also been combined with a feature fusion module [92] and
graph cut base co-segmentation [93] for lung tumor segmenta-
tion from PET/CT images. The output was a single tumor mask
for the first method and two (one from each imaging modality)
for the second one. Another study designed a variant 3-D U-
Net network architecture to segment lung tumors from PET/CT
images—each input channel (individual U-Net network) shared
complementary information in the decoder section with the
other channel [94]. Likewise, a coarse U-Net and adversarial
network have been used to segment extranodal natural killer/T
cell lymphoma nasal cancer lesions [95] and the performance
of a U-Net was compared to a W-Net [96] on segmenting
multiple malignant bone lesions, both studies used PET/CT
images [97]. Finally, Zhou and Chellappa applied a CNN
network combined with prior knowledge (roundness and rela-
tive position) to segment cervical tumors in PET images [38].
Regarding multimodal-based segmentation, Guo et al. explored
the performance of three algorithmic architectures to integrate
multimodal data when implemented as part of a segmentation
system. MRI, PET, and CT images were used to train a CNN
network to segment lesions of soft tissue sarcomas and showed
superior performance than networks trained on single-modal
images [98].

Some current DL-based image synthesis applications
include PET attenuation correction and image reconstruction.
DL methods have been utilized for attenuation correction of
PET images acquired during simultaneous PET/MRI scans.
Hwang et al. trained a convolutional AE (CAE), U-Net, and
a hybrid network of CAE and U-Net to synthesize a CT-
derived brain μ-map from the maximum-likelihood recon-
struction of activity and attenuation (MLAA) μ-map. The
synthesized μ-map contained reduced crosstalk artifact and
was less noisy and more uniform, which could improve time-
of-flight PET attenuation correction [99]. A similar variant
of the U-Net network was applied to synthesize whole-
body CT μ-maps from MLAA-based simultaneous activity
and attenuation maps, which identified bone structures more
efficiently [100]. Liu et al. [101] designed a DL-based pipeline
for MRI imaging-based attenuation correction for PET/MRI
imaging. In this study, a CAE network was successfully trained
to generate a discrete-valued pseudo-CT brain scans using
structural MRI images and applied the generated pseudo-CT
scans to reconstruct PET images [101]. Likewise, a data-
driven DL-based pipeline, known as “deepAC,” was created
to perform PET attenuation correction without anatomical
imaging by synthesizing a continuously valued pseudo-CT
brain image from PET data [102]. Pseudo-CT brain images
were also synthesized from structural MRI images using
a DL adversarial semantic structure, which incorporates

semantic structure learning and GAN from PET attenuation
correction, and its performance was compared with atlas-
based approaches [103]. A population in which atlas-based
approaches for attenuation correction are likely to fail is the
pediatric one—because most of the available atlases are cre-
ated using data from adult subjects [104]. For that reason,
Ladefoged et al. [105] explored the feasibility of a mod-
ified version of a UNet network to synthesize attenuation
maps from PET/MRI data in pediatric brain tumor patients.
Additionally, a Dixon volumetric interpolated breath-hold
examination (Dixon-VIBE) DL network (DIVIDE) that uses
standard Dixon-VIBE images (in-phase and out-of-phase and
water 2-D Dixon slices) was trained to synthesize pseudo-CT
maps for PET attenuation correction in the pelvis, introduc-
ing less bias than the gold standard CT-based approach [106].
Finally, a 3-D GAN with discriminative and cycle-consistency
loss was proposed by Gong et al. to derive continuous attenu-
ation correction maps from Dixon MRI images; the technique
generated better pseudo-CT images than the segmentation and
atlas methods and its performance was comparable to a CNN-
based one [107]. For a detailed overview of DL approaches
for attenuation correction in PET, please refer to the following
review article [108].

With regards to image reconstruction, AUTOMAP, a DL-
based framework was designed to reconstruct medical images
from any modality using the raw data by mapping sen-
sor to image domains [48]. Similarly, DeepPET, a DL-based
pipeline was created to reconstruct quantitative PET images
from its sinogram data, which created less noisy and sharper
images [109]. Furthermore, a stacked sparse AE was used
for dynamic PET imaging reconstruction and compared its
performance with conventional methods, such as maximum-
likelihood expectation maximization (MLEM)—it effectively
smooths and suppresses and recovers more details in the
edges and complex areas [110]. Another study utilized a CNN
network to synthesize patient-specific nuclear transmission
data from T1 structural MRI data and evaluated the synthe-
sized data on the reconstruction of both static and dynamic
PET brain images [111]. DL networks have also been used
to synthesize PET brain images from T1 MRI ones [112]
and vice versa [113], which may be useful when one of the
image scans is not available. Likewise, a CNN network was
used to predict 15O-water PET CBF images using single-
and multi-delay arterial spin labeling and MRI structural
images [114]. Additionally, a sketcher-refiner GAN network
with adversarial loss function was trained to predict PET-
derived myelin content map from MRI magnetization transfer
ratio map and three measures derived from diffusion ten-
sor imaging (DTI) [115]. Please refer to Reader et al. for
a complete review of PET image reconstruction using DL
approaches [116]. Finally, Shao et al. [117] utilized DL
approaches to reconstruct SPECT images directly from projec-
tion data and the corresponding attenuation map. The proposed
network utilized two fully connected layers for basic profile
reconstructed followed by a 2-D convolutional layer where
the attenuation map was used to compensate and optimize
the reconstructed image—this method proved to be robust to
noise [117].

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 145

C. Image Denoising and Super-Resolution Tasks

DL methods are also used for image denoising and super-
resolution applications. The objective of image denoising is to
obtain a ground truth from a noisy image. A residual encoder–
decoder was first used to denoise CT images, where the noise
was added to the images to simulate a low-dose CT scan [39].
Shortly after, Shan et al. [118] introduced a conveying path-
based convolutional encoder–decoder (CPCE) network for
low-dose CT denoising using both real and simulated (added
noise) data. The novelty of this approach lies on the transfer
learning feature in which a 3-D-CPCE network was initiated
using a trained 2-D one, achieving better denoising results
than training from scratch [118]. To better preserve structural
and textural information, Yang et al. proposed a CT denoising
method based on GAN with Wasserstein distance and per-
ceptual similarity (WGAN-VGG) [119]. The WGAN-VGG
network solved the oversmoothing problem observed in other
approaches, reduced noise, and improved lesion detection by
increasing contrast when applied on simulated quarter-dose
CT images [119]. Meanwhile, You et al. [120] implemented
a 3-D GAN using a novel structurally sensitive loss func-
tion (SMGAN-3D) to also address the oversmoothing problem
when denoising simulated quarter-dose CT images. The struc-
turally sensitive loss function is a hybrid that integrate the
best characteristics of mean and feature-based methods, thus,
allowing noise and artifacts suppression while preserving
structure and texture [120]. Furthermore, noise2noise (N2N)
methods have also been propose to denoise low-dose CT
images; N2N methods reduce noise using pairs of noisy
images [121]. Hasan et al. [121] explored the potential collab-
oration between N2N generators for denoising of CT images
by processing images from a phantom, and showed that
these collaborative generators outperformed the common N2N
method. For denoising of single-channel CT images, an unsu-
pervised learning approach known as REDAEP was introduced
by Zhang et al. in which variable-augmented denoising AEs
were used to train higher-dimensional prior for the iterative
reconstruction—this technique was tested using simulated and
real data [122]. Finally, the use of a deep CNN has been
explored to denoise either/both low-dose CT perfusion raw
data and maps using digital brain perfusion phantoms and
real images [123]. The results demonstrated the network has
a superior performance when applying it in the derived map
domain [123]. Moreover, DL networks are used to denoise
low-dose PET images to obtain high-quality scans that would
only be available by applying a standard dose of radioactive.
Xiang et al. [124] input real low-dose PET (25% dose) and
T1 MRI images into a deep auto-context CNN network to
predict standard-dose PET images. Similarly, Wang et al. [125]
utilized a locality adaptive multimodality GANs (LA-GANs)
to also synthesize high-quality PET images from low-dose
PET and T1 MRI images alone or combined with DTI [126].
Meanwhile, Chen et al. [127] utilized simultaneously acquired
MR images and simulated ultralow-dose PET images to
synthesize full-dose amyloid PET images using an encoder–
decoder CNN. Using computer-simulated data of the brain and
lungs, Gong et al. [128] pretrained a residual deep neural
network architecture to denoise PET images and fine-tuned

Fig. 4. Overview of steps necessary to implement a supervised DL appli-
cation. The first step is concerned with data collection and preparation; the
dataset should only contain true negative and true positive cases. The second
step is to select a network architecture to perform the task at hand. The third
and fourth steps include the training, validation, testing, and deployment of
the final model.

it using real data—this method outperformed the traditional
Gaussian filtering method.

Meanwhile, super-resolution applications are concerned
with obtaining a high-resolution image from a low-resolution
one. For example, Li et al. [129] applied a semi-couple
dictionary learning (SCDL) technique, an automatic fea-
ture learning method, to improve the resolution of 3-D
high resolution peripheral quantitative CT (HR-pQCT). The
authors of this study applied a 2.5-D strategy to extract
high- and low-resolution dictionaries from coronal, sagit-
tal, and axial directions separately and obtained a superior
performance compared with other methods, such as total
variation regularization [129]. Additionally, an unsupervised
super-resolution method based on dual GAN networks was
introduced by Song et al. [130] to improve the resolution of
PET images. This method eased the need for paired train-
ing inputs (low- and high-resolution images) by utilizing
low-resolution PET and high-resolution MRI images, along
with spatial coordinates—making the technique more practi-
cal as it is difficult to obtain ground-truth data on a clinical
setting [130].

IV. TRAINING NEURAL NETWORKS

In this section, we define key steps necessary to implement
a supervised DL application (Fig. 4). The steps as detailed
below are data collection and preparation, network selec-
tion, network training and validation, and network testing and
deployment.

A. Data Collection and Preparation

The data utilized when implementing a DL method could
be acquired at the study site to address the research ques-
tion at hand or obtained from a public medical imaging
database. The objective of public medical imaging databases
is to enhance the understanding of diseases by providing
the scientific community with fair access to large quantities
of high-quality imaging data. Examples of well-known pub-
lic medical imaging databases are the Alzheimer’s Disease

146 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

Neuroimaging Initiative (ADNI) [131] and the Cancer Imaging
Archive (TCIA) [132]. The ADNI database provides MRI and
PET images, genetics, cognitive tests, cerebrospinal fluid, and
blood biomarkers with the goal of improving the characteriza-
tion of the Alzheimer disease [131]. Meanwhile, TCIA hosts
multimodal images of cancer and allows scientist to publish
new datasets after approval [132].

The data preparation step is often the most time-consuming
part of the DL network training process. The purpose of this
step is to clean, organize, and curate the data in a way that
is useful for the task at hand and accessible for reproducibil-
ity and sharing purposes. The first step is to make sure the
dataset only contains true negative and true positive cases, in
other words, a good quality ground truth. For example, when
training a DL network for brain tumor detection, images con-
taining other lesions, such as hematoma and infections should
not be included. Additionally, images should be normalized
to alleviate any error due to acquisition from various scan-
ners/protocols. The images should all be saved using the same
format and have the same size, resolution, and pixel scale.
The only difference between images should be those features
related to the problem the DL network will be trained to
solve. During the data acquisition process, methods to alleviate
hidden bias are discussed in Section V.

B. Network Selection

After data preparation, a DL model structured to deliver the
answer to the problem being addressed should be selected.
Currently, deep FNNs are the most common type of DL
networks applied to solve medical imaging problems. FNNs
are characterized for having information movement in only
one direction (no feedback) and usually contain an input layer,
one or more hidden layers, and an output layer. In addition, in
FNN networks, each unit of one layer is connected to every
unit on the next one, and there is no connection between
neurons in the same layer. In this section, we will present
the FNN model architectures commonly applied within the
medical imaging field.

1) Feedforward Neural Network:
1) CNN: A CNN is a DL model capable of detecting spatial

and temporal high-level features from inputted images.
The key component of CNNs is convolutional layers
which work by convolving filters with input images
that assign ranked weights and biases to individual fea-
tures differentiate one from the other [133]. The exam-
ple of well-known CNN architectures is LeNet-5 [24],
AlexNet [26], ZFNet [40], GoogleLeNet/Inception [28],
VGGNet [27], and U-Net [33].

2) RN: An RN is a DL model characterized by having con-
nections between the output of previous layers to the
output of new layers [134]. Like CNNs, RNs can detect
high-level features from images. For example, an RN
could have a connection from the output of layer 1 to
the input and output of layer 2. The example of the RN
architecture is ResNet [134] and DenseNet [135].

3) AE: An AE is a neural network capable of performing
dimensionality/feature reduction by learning/encoding
features from a given dataset [136]. Examples of

AE architectures are sparse [137] and variational [138]
AEs.

4) GAN: A GAN is a DL model capable of synthesizing
entirely new data by having a generative and discrimina-
tive network working together/against each other [139].
The objective of the generative network is to create
artificial data from the distribution space of the input
dataset [139]. Meanwhile, the discriminative network
attempts to discriminate between the artificial and real
data [139]. As a result, the generative network is trained
to increase the error rate of the discriminative one by
creating a more realistic data [139].

5) Restricted Boltzmann Machine (RBM): An RBM is
a stochastic DL model that learns the probability distri-
bution of the input dataset [140]. This type of network
is characterized by having one visible layer and one
hidden layer (there is no output layer), and every
unit in the visible layer is connected to every unit
within the hidden layer, but there is no connection
between units/nodes in the same layer [140]. Examples
of the RBM-based architectures are the deep belief
network [141] which contains stacked RBMs and the
deep Boltzmann machine [142].

C. Network Training and Validation

1) Train, Validate, and Split: Before the start of training,
the data need to be divided into three parts, including the train-
ing dataset, the validation dataset, and the test dataset. In the
training phase, only a training dataset and a validation dataset
are needed. A testing dataset can only be used after model
training has been finished. Ripley [143] defined the training
set, validation set, and test set as follows:

“– Training set: A set of examples used for learning,
that is to fit the parameters of the classifier.
– Validation set: A set of examples used to tune the
parameters of a classifier, for example to choose the
number of hidden units in a neural network.
– Test set: A set of examples used only to assess the
performance of a fully specified classifier.”

The training dataset is used to fit the model, and the model
mainly learns from this data directly. The validation dataset
aims at providing an unbiased evaluation of a model fit on the
training dataset. The evaluation contributes to tuning hyperpa-
rameters which are set manually before training, like the depth
of the model, the training batch size, loss functions, and opti-
mizers introduced in the following part, to help the model
get improved. If the model is improved, its performance on
the validation dataset can be improved as well. Therefore, the
validation dataset affects the model indirectly. In a word, the
training dataset and validation dataset are involved in the train-
ing. The training dataset is used for training the model directly
while the validation dataset is indirect.

However, what strategies are best to split the dataset?
Usually, the ratio between the training dataset and the vali-
dation dataset size is 8:2 or 7:3. It is a general method for
splitting. Actually, the real split ratio is affected by the vol-
ume of the whole dataset and the number of parameters of

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 147

the actual model. If the dataset is very large when compared
with the model’s parameters, the proportion between training
and validation has fewer effects on the training result because
either the training data volume or the validation data volume
is large enough to train the model or give an accurate evalu-
ation of the model’s performance. However, if the dataset is
small, the split ratio should be considered carefully. For the
model with few hyperparameters, it is easy to validate and
tune the hyperparameters to make the model perform better,
so the size of the validation dataset can be reduced under this
circumstance; on the contrary, if the model is complex and has
many hyperparameters, the proportion of the validation dataset
should be increased. In summary, the train–validation split is
quite specific to the volume of the dataset and the complexity
of the chosen model.

In addition, class imbalance needs to be considered carefully
during data splitting. For example, consider the situation where
negative examples take up 90% of the database while the pos-
itive ones only consist of 10%. Under such circumstances, it
is not suitable to use 0.5 as threshold and refer to the accuracy
as the indicator of a model’s performance because in this way
the model can always give its prediction as the negative one
no matter what the input is, yet the accuracy is still 90%.

Several simple methods have been proposed to solve this
problem, including undersampling, oversampling, and thresh-
old moving. Undersampling is to delete some data from the
majority class while oversampling is to duplicate the data from
the minority class. However, these two methods can change
the data distribution obviously. Undersampling wastes precious
data, and oversampling can lead to overfitting. Compared with
these two methods, moving the threshold is often a better
choice. The new threshold should be the minority ratio to the
total. The evaluation method should also be modified, such as
using the receiver operating characteristic curve analysis.

However, the methods mentioned above cannot get an accu-
rate estimation of the model, since the validation results
fluctuate significantly due to different split between the train-
ing dataset and the validation dataset [144]. Cross-validation
is frequently used to solve this problem. Among various kinds
of cross-validation methods, k-fold cross-validation is the most
commonly used one. The first step is to choose the single
parameter for this method, k, which refers to the number
of groups a given dataset should be split into. Kohavi [145]
suggested that tenfold cross-validation is sufficient for model
selection even if computation power allows using more folds.
The second step is to divide the dataset into k groups. Then
k − 1 groups can be selected as the training dataset and one
group as the validation dataset. There should be k different
selections. Finally, train the model with the training dataset.
As a result, k different models obtained for which model
performance can be assessed across cross-validated runs, and
if necessary, the single best model performing model can
be selected according to its performance on a corresponding
validation dataset.

2) Loss Functions: As described above, deep neural
networks learn by means of a loss function. The goal of the
model is to minimize the loss as much as possible, so loss
functions play an important role in training the model. Take the

classification problem as an example. If the prediction deviates
too much from actual results, the loss function will become
very large at first. However, with the help of an optimization
function, the model can be improved, and the loss will go
down. Different loss functions have been designed to solve
different problems. Broadly, most problems can be seen as
a regression problem or classification problem. In practice,
any programmable function can be used as a loss function.
Here, we highlight the most commonly utilized approaches.

In regression and image synthesis, a continuous value will
be given. Three loss functions commonly used in solving this
kind of problem: 1) mean-square error (MSE); 2) mean abso-
lute error (MAE); and 3) Huber loss [146]. If m is the number
of training samples, y(i) is the ground truth while f (x(i)) is the
prediction of the model, the corresponding formula for each
loss functions can be presented as follows.

MSE:

L = 1

m

m∑
i=1

(
y(i) − f

(
x(i)

))2
. (17)

MAE:

L = 1

m

m∑
i=1

∣∣∣y(i) − f
(

x(i)
)∣∣∣. (18)

Huber Loss:

f (x) =
{

1
2

(
y(i) − f

(
x(i)

))2
, if

∣∣y(i) − f
(
x(i)

)∣∣ = δ

δ
∣∣y(i) − f

(
x(i)

)∣∣− 1
2δ2, otherwise.

(19)

According to the above formulas, the MSE’s derivative is
consecutive, while the MAE’s not. Additionally, the deriva-
tive of MSE changes, which helps the model converge while
the derivative of MAE is nearly the same. However, when
it comes to outliers, MSE is more sensitive, while MAE is
more robust. That is because if |y(i) − f (x(i))| > 1, the loss
from MSE will become much larger than the loss computed
by MAE. Therefore, there is no assertion that any loss has
definite advantages over the other one. In practice, it depends
on the application. For example, if the sensitivity to outliers is
very important, and they should be detected, then MSE should
be a better choice for solving that problem.

However, under some circumstances, neither MSE nor MAE
is suitable. For example, if the target of 90% of the train-
ing samples is 150 while that of the rest ranges from 0 to
30, the performances of MSE and MAE may not be suitable.
For the MAE, it will ignore those outliers and give the same
prediction, 150, all the time. For the MSE, it will be greatly
affected by those outliers. As a result, it performs badly on
most data. In order to make use of the benefits of MSE and
MAE, the Huber loss is proposed. Herein δ is a hyperparame-
ter, which controls the definition of outliers. According to the
formula, different measures are adopted for dealing with nor-
mal data and outliers, so the result performs better in general
as long as the suitable value for δ has been chosen.

In classification and segmentation, the output of the model
should be in a set of finite categorical values. The classification
problem can be divided into a binary classification problem

148 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

or a multiclass classification problem based on the number
of categories. For example, when dealing with a single-digit
recognition problem, the prediction of the model should be one
of the numbers from 0 to 9. Since there are ten categories, it
belongs to the multiclass classification problem. Binary cross-
entropy is the recommended loss function for solving the
binary classification problem, while multiclass cross-entropy
loss is suggested for the multiclass classification problem.

The following formula shows how binary cross entropy loss
is computed. m is the number of training samples. y(i) is the
ground truth for the sample x(i) while p(i) is the prediction of
the model, which means the possibility of the input belonging
to a certain class

L = − 1

m

m∑
i=1

y(i)log
(

p(i)
)
+

(
1− y(i)

)
log

(
1− p(i)

)
. (20)

Similar to the binary cross entropy loss, m is the number of
training samples. C is the number of categories. y(i)

j stands for
the ground truth that the ith training sample belongs to the
jth category or not while p(i)

j is the prediction from the model
which means how likely the ith training sample belongs to the
jth category

L = − 1

m

m∑
i=1

C−1∑
j=0

y(i)
j log

(
p(i)

j

)
. (21)

In addition to the basic loss functions introduced above, there
are some other complex loss functions designed for some spe-
cific applications, like the perceptual loss function for style
transfer [147]. Furthermore, custom loss functions can also
be developed and used according to the specific problem.

3) Optimizers: In the previous section, several loss func-
tions have been introduced. However, the loss is just a static
value between the estimated output and the desired output.
How does the model improve this estimate during the training
process? This is where optimizers come in. They tie together
the loss function and model parameters by updating the model
in response to the output of the loss function. In other words,
optimizers learn from the loss function and update model
parameters by following a certain rule. Gradient descent is
the classic optimizer; however, other improved strategies have
been proposed.

a) Gradient descent: The rule for parameters update is
shown as follows:

θ = θ − η · ÑθJ (θ). (22)

θ stands for the model’s parameters. η is the learning rate.
ÑθJ (θ) is the gradient of loss function J (θ) to parame-
ters θ . In gradient descent, the loss is computed with the whole
dataset, so the computed gradient is accurate. However, it is
hard to add more data to update the model at the same time.
Moreover, it can be very time consuming if the dataset is very
large.

Besides the dataset limitation of gradient descent, the learn-
ing rate is a hyperparameter, which should be given in advance.
The learning rate has significant effects on the outcome of
training, so the value should be chosen carefully. Fig. 5 shows
the impact of the learning rate. If the learning rate is too large,

Fig. 5. (a) Graphical depiction of training loss with varying learning rates.
The optimal selection of learning rate can provide the lowest possible training
loss. (b) Graphical depiction of training and validation loss. Overfitting can be
observed when the validation loss increases while the training loss continues
to decrease.

which means the weights change too fast, it may be hard for
the model to converge to the optimal value. However, if the
learning rate is too low, which means the weights are updated
very little at each step, it may take a long time to train the
model, and the model is more likely to converge on a local
minimum. In summary, the learning rate plays an important
role in the gradient descent algorithm, and it should be chosen
carefully.

b) Stochastic gradient descent:

θ = θ − η · ÑθJ
(
θ; x(i); y(i)

)
. (23)

Since it is time consuming to compute the gradient with the
whole dataset, it will save a lot of time if only one sample
has been used. This is what stochastic gradient descent does.
In this way, it is much quicker to train the model. However,
the loss might fluctuate significantly. Additionally, since the
gradient is not accurate, the model may converge on a local
minimum, which may reduce accuracy compared with the
gradient descent.

c) Mini-batch gradient descent:

θ = θ − η · ÑθJ
(
θ; x(i:i+n); y(i:i+n)

)
. (24)

Mini-batch gradient descent uses n samples to compute the
gradient instead of only one. The standard deviation of
updating parameters with mini-batch gradient descent can be
reduced, and the final convergence is more stable as well.

However, this algorithm has two drawbacks. First, the mini-
batch approach cannot guarantee optimal convergence. If the
learning rate is too low, the loss will fluctuate around a min-
imum or even deviate. If the loss function is not convex, it
is also easy to become stuck in the local minimum. Second,
all parameters are updated with the same learning rate, which
may not be reasonable. For features with lower frequency,
the learning rate should be larger compared then for fea-
tures with higher frequency. Moreover, the learning rate should
become smaller and smaller with the increase of training
epochs.

d) Momentum [148]: To solve the aforementioned draw-
back, the concept of momentum has been introduced

vt = γ vt−1 + η · ÑθJ (θ) (25)

θ = θ − vt. (26)

γ vt−1 is the momentum. γ is often set as 0.9. After adding
this term, the dimension in which the direction of gradient

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 149

keeps the same changes faster while the one in which the
direction of the gradient is not altered changes slowly, which
could facilitate the convergence progress and reduce vibration.
However, momentum is not smart enough to slow the update
rate before the loss becomes larger.

e) Nesterov accelerated gradient [149]: To make
momentum smarter, the Nesterov accelerated gradient has been
proposed

vt = γ vt−1 + η · ÑθJ (θ − γ vt−1) (27)

θ = θ − vt. (28)

The future position θ − γ vt−1 is used to compute the gradient
instead of the current position θ .

f) Adagrad [150]: Adagrad aims at solving the sec-
ond drawback of a mini-batch gradient algorithm, a constant
learning rate

θt+1,i = θt,i − η√
Gt,ii + ε

· gt,i (29)

θt+1 = θt − η√
Gt + ε

· gt. (30)

gt,i is the gradient of θi at time t, and it is the same as ÑθJ (θ).
Gt ∈ R

dxd here is a diagonal matrix where each diagonal
element Gt,ii is the sum of the squares of the gradients with
respect to θi up to time step t while ε is a smoothing term that
avoids division by zero. η is the initial learning rate, which
is often set as 0.01. According to the formula, the learning
rate is low for those parameters which have been updated
frequently. However, the denominator is an accumulated num-
ber, which will become larger and larger with the training
going on. As a result, the learning rate will be very close
to zero, which will lead to the end of training in advance.
To solve this problem, RMSprop and Adadelta have been
proposed.

g) RMSprop: A very small learning rate can be caused
by the accumulated sum, this problem can be solved by chang-
ing the accumulated sum term. Hinton proposed the following
update rule:

E
[
g2

]
t
= 0.9E

[
g2

]
t−1
+ 0.1g2

t (31)

θt+1 = θt − η√
E
[
g2

]
t + ε

. (32)

η is recommended to be set as 0.001.
h) Adadelta [151]: Adadelta is very similar to RMSprop

in the first phase

E
[
g2

]
t
= γ E

[
g2

]
t−1
+ (1− γ)g2

t (33)

RMS
[
g
]

t =
√

E
[
g2

]
t + ε (34)

θt+1 = θt − η√
E
[
g2

]
t + ε

. (35)

However, η can be eliminated by using a similar idea, which
means the initial learning rate is not needed any longer

E
[

θ2

]
t
= γ E

[

θ2

]
t−1
+ (1− γ)
θ2

t (36)

RMS[
θ]t =
√

E
[

θ2

]
t + ε. (37)

As a result, the final form of the rule should be

θ t = −RMS[
θ]t−1

RMS
[
g
]

t

gt (38)

θt+1 = θt +
θ. (39)

i) Adam: Adaptive moment estimation is another method
that computes the adaptive learning rate for each parame-
ter [152]. Combining the ideas from momentum and adadelta,
it defines the decaying averages of past and past squared
gradients mt and vt, respectively, as follows:

mt = β1mt−1 + (1− β1)gt (40)

vt = β2vt−1 + (1− β2)g
2
t . (41)

However, since mt and vt are initialized as the zero vector, it
is easy for them to be biased toward zero at the beginning of
the training. This can also happen when β1 and β2 are close
to one. To avoid this problem, the following transformation is
applied

m̂t = mt

1− β t
1

(42)

v̂t = vt

1− β t
2
. (43)

Then, the update rule is listed as follows:

θt+1 = θt − η√
v̂t + ε

m̂t (44)

β1, β2, and ε are recommended to be set as 0.9, 0.999, and
10−8, respectively.

In summary, the classic optimizer is gradient descent; how-
ever, the computation involves the whole dataset. This is
too time consuming, so stochastic gradient descent has been
proposed. It is very fast and needs only one sample to
update the parameters, but loss fluctuates significantly when
using it. Therefore, mini-batch gradient descent was proposed.
Still, two problems remained: 1) fluctuation around local
minimums and 2) constant learning rate. To solve the fluc-
tuation problem, the concept of momentum was proposed
and improved with Nesterov accelerated gradient. Adaptive
learning rate optimizers have been proposed as well, like
Adagrad. The improvement of Adagrad for the problem of
a vanishing learning rate has been suggested by RMSprop and
Adadelta. Finally, Adam combines concepts from momentum
and Adadelta.

There is no answer to the question of which is the best
optimizer. It relies heavily on the data and problem. If the
input data is sparse, the adaptive learning-rate methods are
more likely to get the best results. For adaptive learning rate
optimizers, like RMSprop, Adadelta, and Adam, are very sim-
ilar and often do well in similar circumstances. Kingma and
Ba [152] showed that its bias-correction helps Adam slightly
outperform RMSprop toward the end of optimization as gra-
dients become sparser. In general, both mini-batch SGD and
Adam are widely utilized and perform well and are suggested
to be utilized first.

150 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

4) Overfitting: During the training process, several prob-
lems can occur. The most common one is overfitting.
Overfitting occurs when the model fits very well on train-
ing data, but it does not generalize and perform well on the
validation data. Several approaches can be applied to reduce
the likelihood of overfitting in training DL models.

1) Getting More Training Data: If the training dataset is
small, and the model is complex enough, the model
may learn to remember the training data. However, after
adding more data, the model will be forced to learn the
underlying pattern from the training dataset instead of
just remembering it. It is usually effective, but another
problem is that sometimes it is hard to get more data in
reality. Data augmentation discussed in Section V is also
a strategy to reduce overfitting.

2) Regularization: In addition to enlarging the training
dataset, adding a regularizer term to the loss function,
such as the l1-norm and l2-norm, can be useful. This is
because this term will become larger if the number of
nonzero parameters of the model increases. As a result,
the loss will become larger, which could hold back the
overfitting process. Therefore, the regularizer term can
also prevent the model from being too complex and help
avoid the overfitting problem.

3) Early Stopping: Usually, if the training loss continues
to decrease while the validation loss begins to increase,
this is indicative of overfitting. Therefore, the training
process should be stopped before the validation loss con-
tinues to increase. In this way, the generalization of the
model can be maintained. Whether this method works
or not depends on both the data and the model.

4) Adding Specific Layers: As described in Section II, the
batch normalization layer and the dropout layer can help
ease the overfitting problem. According to the batch
normalization algorithm, the parameters μ and σ are
computed with the batch data instead of the whole
dataset. This can introduce some uncertainty, which
can be helpful in avoiding overfitting. Additionally,
a dropout layer can also deal with this problem. Since
some of the neurons are chosen to be ignored in each
layer, the model becomes simpler. As a result, it could
help alleviate overfitting.

D. Network Testing and Deployment

Once the training of the model is finished, a test dataset is
needed. The test dataset is designed to give an unbiased judg-
ment of the final model for a certain task. Compared with the
validation dataset, testing data can never affect the model’s
training or performance, which means the model remains
unchanged after testing. There are some key factors concerning
the test dataset. First, there should not be any overlap among
training, validation, and test datasets. This means the cases
used for training and validation should not appear in the test
dataset, otherwise, an assessment of the model’s generalization
is incomplete. Additionally, test cases should cover not only
a representative range of patient data as included in the train-
ing or validation dataset but also some edge cases which have
not been seen by the model before but may exist in the real

world. Where possible, the same type of input data but from
other sources (different institutions) or systems (different ven-
dors) should be tested to evaluate the model’s generalizability.
Results from the test data can be used to test real-world model
performance, including some important indicators, like MSE
and accuracy. Then these indicators show the performance of
a model and provide a way to compare the performances of
different models. Once the model meets the minimum require-
ments for the specific application, it can be deployed. The
model parameters and structure remain unchanged. It is key
that the data used for training, validation, and testing are
representative of data that are encountered during deployment.

V. ROBUSTNESS

Advanced AI technology will deliver huge improvements to
the healthcare industry only if AI-related products meet ethical
and legal requirements. According to a recent discussion paper
about Proposed Regulatory Framework for Modifications to
AI/ML-Based Software as a Medical Device [153] presented by
FDA and Code of Conduct for Data-Driven Health and Care
Technology [154] presented by National Health Service of the
United Kingdom (NHS), transparency and accountability are
always valued. Is the trained model robust enough to various
clinal situations? How can we prove it? It is a new challenge
beyond simple training/validating processes.

A. Data Selection

The DL technology is also called the data-driven technol-
ogy; thus, dataset selection is one of the key parts of the
DL pipeline. As the data preparation and data split have been
introduced above, the discussion here concentrates on avoid-
ing structural bias, which is not only an ethical concern, but
also related to performance after commissioning. The differ-
ence between the training datasets distribution and deploying
datasets distribution (the datasets faced in the application) in
the real world will lead to potential performance drop. Even
in the same distribution, subsampled datasets will also cause
instability. Additionally, imaging protocols can also be treated
as a source of bias. The popular methods designed to diminish
bias from datasets are as follows.

1) Larger dataset population.
2) Data augmentation.
3) Manual division of datasets.
4) Human investigation.
Deriving at the beginning of learning, Valiant [155] built

the fundamental learning theory called probably approximate
correct learning (PAC learning). The statement was proved
via statistics that a larger training dataset would lead to
a higher probability of less error. Hence, extending the training
datasets is always the best way to improve accuracy for DL
applications. However, huge amounts well-annotated data or
even unlabeled medical data may be too expensive or time
consuming to acquire.

B. Data Augmentation

Given limited data samples, it is intuitive to think of
amplifying them for a larger dataset. The method is called

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 151

data augmentation. In the medical imaging field, images often
maintain one or several spatial invariance properties, includ-
ing shift, shear, zoom, reflection, and rotation (i.e., spatial
transformation does not change the diagnoses), researchers
may choose manually implement those transformations to
augment datasets. While some specific applications may
violate partial invariance, generally, data augmentation can
increase the dataset population as well as inject domain
knowledge (spatial invariance properties) into DL models. In
a review presented by Shorten and Khoshgoftaar [156] regard-
ing data augmentation, those basic augmentation techniques
can improve accuracy in traditional classification challenges.
However, some techniques may not be suitable for medical
images. Random cropping or image fusion could remove cru-
cial diagnostical details. In medical image classification tasks,
Hussain et al. [157] focused on the influences of differential
techniques and proved those did improve task accuracy. It is
also mentioned that adding noises (Gaussian and Jittering) and
Gaussian blurring are also options to simulate perturbation and
real-world artifacts encountered in imaging protocols.

As previously described, the dataset division focuses on
how to divide collected datasets into training/validating/testing
three subsets. If the validation loss is significantly differ-
ent higher than the training loss, we encounter overfitting,
indicating that the model learns too much from the training
dataset at the sacrifice of generalization. From the dataset
division view, one possible reason is imbalanced division.
Perhaps some details or features emerge only in the vali-
dation datasets. Or the populations of categories are biased,
shown as one category of data (one label in classification or
one feature in synthesizing) occupies most data populations
and squeezes computational resources of other categories. In
this case, data from minor categories should be amplified to
retrieve the balance among categories. After training, the same
thing could happen during testing. Balanced dataset division
may reduce the training loss, but it can be an appropriate way
to maintain generalization for model deployment.

C. Ensemble Learning Methods

Ensemble learning is a DL training approach that can
reduce the variance of predictions [158]. This method works
by employing multiple DL networks simultaneously, instead of
a single model, to perform the desired prediction [158]. There
are two commonly implemented ensemble learning methods:
1) parallel ensembles and 2) cascade ensembles. Using a clas-
sification task as an example, “majority voting” is a commonly
implemented approach for a parallel ensemble. When imple-
menting a majority voting approach, an odd number of DL
subnetworks are independently trained and evaluated individu-
ally by inputting the data in parallel. We see each subnetwork
as an expert, and all experts vote for their prediction. The
prediction with the most votes wins and is then output as
the system’s prediction. If the subnetworks’ outputs are not
binary, the final prediction may be obtained using a weighted
sum of the individual subnetworks’ outputs. Additionally, as
part of parallel ensemble two other techniques to fuse the
information from each individual subnetwork include learn-
ing weights and dynamic classifier selection [159]–[161]. For

the learning weights approach, a single network is trained to
learn the optimal weights for each subnetwork. The dynamic
classifier selection approach identifies the subnetworks offer-
ing superior performance near the interference point in feature
space. In the cascade ensemble method, intermediate feature
maps are processed step-by-step using several subnetworks
organized as a pipeline. For example, a framework for cas-
caded U-net, including 3-D and 2-D U-net was built with the
assumption that modifications to the simple U-net were not
sufficient to improve performance and the cascaded framework
could led to “a desired absence of overfitting” [162].

D. Generalization and Noise

Generalization is always a crucial part in data science,
especially in deep learning [163]. In statistical theory, it is
impossible to predict every possible case because we can only
obtain our data by discrete sampling. Thus, there always exists
a gap between the empirical, observed loss in the sampled
population and the true loss from the full population. The
outstanding performance of DL benefits from a huge amount
of parameters, which leads to vulnerability due to overfitting,
such that the model just “memorizes” the proper response to
input data. So, when such a model is tested or applied to
real-world data, the performance may drop.

Therefore, researchers are eager to find a solution to
reduce overfitting and enhance the ability of generalization.
Goodfellow et al. [37] stated that injecting noise into the train
data could be recognized as a form of data augmentation. For
a small dataset, noise in the input could make it harder for the
model to simply memorize the training data, reducing gen-
eralization error. However, Zhang et al. [164] claimed and
experimentally proved that DL models could easily fit random
labels. due to the tremendous parameters of networks. Hence,
noisy label in training data leads to poorer performance.
Goldberger and Ben-Reuven [165] distinguished the clean
label and error label using the estimation–maximization (EM)
algorithm. It estimated the true label in the E-step and retrain
the network in the M-step, repeatedly. Jiang et al. [166]
designed a MentorNet, which taught a StudentNet by provid-
ing a curriculum. A curriculum was a weight-map, helping
the StudentNet focus more on the samples with probably cor-
rect labels. After “teaching,” the curriculum decided by the
MentorNet was updated by the feedback from the StudentNet.
This iteration could avoid the performance drop caused by
corrupted labels.

Briefly, like other exploration in DL fields, there are dis-
senting opinions of noise. Fortunately, the discussion of the
function of noise activating novel and numerous methods
to strengthen generalization performance. And for enlarging
generalization, many aforementioned methods (dropout lay-
ers, data augmentation, and training/validation/test data split)
are popularly and empirically used. However, a well-accepted
theory has not yet been established.

E. Systematic Bias

For the ML community, there is no standard data process-
ing pipeline. But for medical images, protocols could offer

152 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

some insights to dodge hidden traps of bias. In datasheets for
datasets presented by Gebru et al. [167], a list of questions can
be asked to enhance reliability, including motivations, compo-
sition, collection process, preprocessing, uses, distribution, and
maintenance. Who created the dataset, and for what purpose?
Did the dataset include any errors, noise, or redundancies?
Was there any sampling bias? In what protocol the dataset
was acquired, and could the model be generalized to other
protocol? Did volunteers consent to the collection and how
to revoke their consent for future use? Was there any prepro-
cessing that could introduce bias or noise? Were there any
tasks inappropriate for the dataset? Were there any regula-
tory restrictions that should be obeyed? Extra effort to the
dataset deliveries more ethical considerations and curtail more
potential robustness risk.

F. Interpretability

Various methods are employed, based on empirical inspi-
ration instead of theoretical proof, to expand and explore the
interpretability of model performance. Most individuals will
prefer a system with an understandable core with moderated
loss in accuracy, rather than a complete “black box.” It is
unrealistic to expect every parameter in a DL system to be
explained, but a goal would be to consider a general answer
for the question of “Why could we trust this result?” Or, in
another way, “How should we interpret this result?”

1) Bayesian Network: A Bayesian network is a proba-
bilistic graph model representing magnitudes of dependencies
between diverse variables. The network contains nodes and
connections. The nodes are variables, and the connections are
weights between two nodes, representing how much one node
influences another. The advantage of a Bayesian network is
that we can better understand the main factors of making
a prediction.

In practice, a Bayesian network can be built to explain the
weights of numerous features contributing to the final diagno-
sis. In Cook’s work [168], five categories are introduced.

1) Signal: The density of signals in the ROI of radiology
modalities (T1- and T2-weighted MRI, CT, SPECT, and
PET).

2) Spatial: The geographic features of abnormalities, such
as locations, area, etc.

3) Time: The time-related features.
4) Clinical: Biological features of patients, such as gender,

age, history of disease, etc.
5) Miscellaneous: The rest of the other valuable features.
In general, it is inefficient and meaningless to directly

exploit the raw source. Different from a single DL model,
radiologists and experts could inject their domain knowledge
into a Bayesian network by proposing potential features and
setting approximate weights for features as initials. There are
plenty of ways to design and extract a feature, even train-
ing a CNN for automatically acquiring features from medical
scans. Fig. 6 demonstrates the schema of the diagnostic system
presented by Rauschecker et al. [169]. The U-Net structure is
used to extract features for the candidates of diagnostic evi-
dence. After quantitative features are extracted and calculated

from segmented lesions, a Bayesian network is constructed for
the final decision. For clinicians using such a DL system, they
can both see the diagnosis and corresponding support, so they
can interpret the result.

A contemporary interpretation of CNNs is that the low-
level layers focus on the details of images, such as lines,
dots, corners, and the high-level layers makes decisions based
on the results from low-level layers. In such a configura-
tion, the Bayesian network at the end of the whole CNN
provides a way to determine the weights of well-designed fea-
tures. Comparing to the weights automatically learned by the
network, a Bayesian network could provide clear insights of
the decision procedure, at a moderated loss of accuracy.

2) Attention Map: Another common approach is to study
an attention map, which can be interpreted as a weight map
of the whole image. For example, a human will determine
the type of bird by observing its head, wings, and feet, while
a CNN performs classification as a result of larger activations
in certain regions of the image. We name this bias of influ-
ence across the whole image as attention. Jetly et al. presented
a method of visualizing attention. It demonstrates the distribu-
tion of weights for different inputs, and help researchers know
more inside the CNN.

A fully automated DL pipeline was presented by Lee et al.
to perform bone age assessment [170]. In this research, the
DL-based platform was trained to perform bone age assess-
ment on radiographs of hands that were first segmented,
standardized, and preprocessed by the pipeline. To increase
the credibility of their system, representative attention maps
were shown in Fig. 7 for four major skeletal maturity stages.
For each skeletal maturity stage, the important areas of the
image used by the trained model to perform the assessment
are highlighted. The uncovered areas correspond to clinically
relevant features used by clinicians when manually performing
bone age assessment.

G. Transfer Learning and Domain Adaptation

Transfer learning is an efficient way to extend success-
fully trained networks to new data or tasks, especially when
these networks can be trained with abundant or easy to label
data. Transfer learning defines the general process of apply-
ing knowledge from one learned model to a similar problem,
such as applying a different type of data, applying the model
to a different task, or both. In the field of medical imaging,
it is most common to adapt trained models to new types of
data, for which this specific type of transfer learning is called
domain adaptation. For example, domain adaptation would
consist of transferring a model trained on one source domain
(like T1-weighted MR images) and applying it to another tar-
get domain (like T2-weighted MR images), with the same
tasks (like segmentation).

One widely accepted theory states that low-level layers
focus on the extraction of basic elements in images, such
as lines, corners, and circles and only high-level layers com-
bine intermediate results in a task-dependent way, as seen in
Fig. 3 [36]. Hence, the network trained on the source domain
has the capacity of being transferred into the similar target

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 153

Fig. 6. Overview of a Bayesian system. (a) Zoom-in view of the feature extraction network. (b) Unique networks are designed to extract specific fea-
tures. (c) Quantitative features are calculated from the segmented. (d) Diagnosis is presented by the Bayesian network based on the set of features. *From
A. M. Rauschecker et al., “AI System Approaching Neuroradiologist-Level Differential Diagnosis Accuracy at Brain MRI,” Radiology, vol. 295, no. 3,
pp. 626–637, Apr. 2020, doi: 10.1148/radiol.2020190283.

Fig. 7. Selected examples of attention maps for female (upper rows) and male (lower rows) in the four major skeletal maturity stages: (a) prepuberty,
(b) early-and-mid puberty, (c) late puberty, and (d) post-puberty stages. The yellow-red regions of the heatmaps indicate the portions of the images utilized by
the DL-based pipeline to perform the bone age assessment. *From H. Lee et al., “Fully Automated DL System for Bone Age Assessment,” J Digit Imaging,
vol. 30, no. 4, pp. 427–441, Aug. 2017, doi: 10.1007/s10278-017-9955-8. Lee et al. is an open-access article distributed under the terms of the Creative
Commons CC BY license and no changes were made to this figure.

domain, directly or with a few epochs of training. In the view
that well-organized medical datasets and accompanying annota-
tion are very time consuming, domain adaptation is potentially

valuable due to its potential to reduce the requirement of large
datasets and provide potential improvements in performance
by better extraction of basic and generalizable features.

154 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

A favored method of domain adaptation is freezing a part
of the pretrained network and fine-tuning (train with small
a learning rate) the rest part. Chen et al. [171] transferred
the model from the Montgomery set [172] to the JSRT
set [173], performing unsupervised Chest X-ray segmentation.
Dou et al. [174] studied on MRI-CT setting for segmentation.
Gholami et al. [175] trained a model based on the synthetic
brain tumorous dataset (generated from healthy brains) and
tested in the real brain tumor dataset BraTS’18 [176]–[178].
Zhang et al. [179] extended the model from the labeled
set (source) to the unlabeled set (target) in adenoma diag-
nosis. Mahmood et al. [180] trained the model learning from
synthetic organ model images and tested in the monocular
depth estimation for endoscopy images. Various applications
of domain adaptations have been summarized above and more
can be expected.

H. Upgradeable System

After the network has been trained and employed, it might
be desirable to maintain and upgrade the network. This
approach could reinforce the network by continuing train-
ing the network based on new, real-world training data.
Hence, data faced in deployment are complementary to train-
ing. However, vulnerability may occur in extreme cases.
Unseen and rare instances may cause instability of the whole
system. Observation of the behavior of the system encoun-
tering uncommon inputs may provide interesting case studies
to enable a deeper understanding of any required modifica-
tions. Additionally, feedback from users could also as a tool
to enhance the robustness of the system. Experts could pro-
vide comments on the performance of the system to further
improve accuracy and capability. Furthermore, models could
be tuned to meet the specifications of individual users based
on personalized preferences. In general, continuous observa-
tion on the operating performance of a DL system is a key to
enabling steady robustness.

I. Adversarial Attacks

What if the system is maliciously attacked? In the work of
Wernick et al. [181], the fast gradient sign method (FGSM)
was introduced to construct perturbation for undermining the
quality of results of the DL network. The main idea of this
attack is to train the input image according to the gradient from
the trained network. After this, iterative FGSM (i-FGSM) [182]
and targeted i-FGSM (ti-FGSM) [182] were also created for
a more effective attack. To defend attacks, two popular methods
were proposed: 1) network distillation [183] and 2) adversarial
samples augmentation [184]. The network distillation refers
to the method of training a “student” network to learn the
predictions from the original network. By controlling the param-
eter “Temperature” (T) during the distillation, the gradient of
networks can be reduced; hence this can reduce the influence
of perturbation or enhance the robustness. Adversarial samples
augmentation, as the name suggests, is the approach to adding
adversarial samples into the training dataset.

Liu et al. [185] presented an attack simulation with brain
tumor segmentation. Fig. 8 shows how the incorrect segmenta-
tions under the adversarial perturbation reduce accuracy. Both

Fig. 8. Adversarial attacks on brain tumor segmentation of Liu et al. Three
visually subtle adversarial attacks (FGSM, i-FGSM, and ti-FGSM) all influ-
enced the segmentation results of brain tumors, compared to the reference (far
left). Dice coefficient is greatly decreased due to the adversarial attacks. *From
Z. Liu, J. Zhang, V. Jog, P.-L. Loh, and A. B. McMillan, “Robustifying Deep
Networks for Image Segmentation,” arXiv:1908.00656 [cs, eess], Aug. 2019,
Accessed: May 14, 2020. [Online]. Available: http://arxiv.org/abs/1908.00656.

methods could improve the accuracy under attack, but still
worse than the model without attack. However, the medical
imaging system is usually closed and off-contact for people
without credentials. Additionally, the expertise of physicians
and other healthcare workers may serve as a backup for adver-
sarial DL systems, but it is critical to understand that DL
systems are vulnerable to adversarial attacks, both uninten-
tional (e.g., from image artifacts) and intentional (e.g., from
bad actors).

Antun et al. [186] discussed the potential attacks from the-
oretical verification, great varieties, and basic remedy. The
authors constructed three instability tests, including tiny worst-
case perturbations, small structural changes, and the number
of device samples changes, on six popular DL models. The
results suggested that theoretically, the Lebesgue measure of
the set of “bad” perturbation is greater than zero. So, there
would be a nonzero probability that human-eye-detectable per-
turbations emerged. In the inspection of instability, artifacts
were related to the network architecture and training set and
were demonstrated ranging from nonexistence to blurring of
details. Artifacts-specific retraining may mitigate target issues,
but a general solution to artifacts, even a general prediction of
emergency of artifacts was highly expected.

VI. LIMITATIONS

Although DL approaches have proven to be beneficial when
addressing common problems within the medical imaging
field, there are some limitations associated with its imple-
mentation. First, the ability of DL networks to achieve the
desired performance is dependent on the quality and quan-
tity of the available training data. DL approaches are suitable
to perform complex calculations, but when there is not
enough data available or the dataset is too homogeneous,
models have a tendency to be overfitted. This characteris-
tic of DL networks represents a challenge in the medical
imaging field as the cost of collecting the data is usually
high, obtaining ground-truth data is time consuming and
requires expertise, and sharing data is not a straight forward
process due to privacy concerns [187], [188]. For that rea-
son, larger open-access medical image repositories, such as

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 155

ADNI [131] and TCIA [132], are needed to continue improv-
ing the performance of these models. Another possible solution
for this limitation is the possibility of sharing models between
research institutions/industry to be further trained on new data,
without jeopardizing the privacy, and thus improving gener-
alizability through the concept of federated and distributed
training procedures [189].

Another limitation of DL is its “black box” nature. Although
DL networks can reach excellent performance, it is not always
clear how or what the model is learning, although a great
deal of new research is underway to meet these limitations.
However, it can be challenging when applying DL models
to the processing of medical images when a straightforward
interpretation and justification of the performed analysis may
be desired. Therefore, when solving problems for which the
data are well structured, and there is a clear understanding of
which are the optimal features, ML approaches may be more
suitable because the models are capable of learning using pre-
programmed criteria [190]. Moreover, ML approaches, such as
SVM [191] and random forest [192], can be easier to imple-
ment and more effective in cases with smaller dataset sizes
where an optimal representation of the data is available or can
be obtained [190].

VII. CONCLUSION

There is no doubt that advances within the DL field have
and will continue to positively impact the medical imaging
field. Specifically, the ability of DL networks of learning
high-level features from the data, without implementing
a feature engineering step, make it a suitable alternative to
ML methods when dealing with medical images. As a result,
DL networks have been applied to solve a wide range of
problems within the field, from disease detection to the
synthesis of PET images from MRI scans and vice versa.
Hence, this article presents a summary of the evolution of
DL, describes the elements of the deep neural network,
and attempts to define key steps necessary to implement
a supervised DL application. Moreover, there is no doubt
that DL is a valuable and exciting tool, but as with most
methodologies, there are several limitations associated with
its implementation that should be taken into consideration
when applying these models. Furthermore, it is important to
emphasize that DL models are not always preferred over ML
ones and that the decision will be highly dependent on the
problem at hand and the quality of the available data.

REFERENCES

[1] S. J. Russell, Artificial Intelligence: A Modern Approach, 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2003.

[2] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
1997.

[3] J. R. Quinlan, “Induction of decision trees,” Mach Learn, vol. 1, no. 1,
pp. 81–106, Mar. 1986, doi: 10.1007/BF00116251.

[4] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Int. Res., vol. 4, no. 1, pp. 237–285,
May 1996.

[5] I. Ben-Gal, “Bayesian networks,” in Encyclopedia of Statistics in
Quality and Reliability. Washington, DC, USA: Amer. Cancer Soc.,
2008.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

[7] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Netw., vol. 61, pp. 85–117, Jan. 2015,
doi: 10.1016/j.neunet.2014.09.003.

[8] Y. Bengio, A. Courville, and P. Vincent, “Representation learn-
ing: A review and new perspectives,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013,
doi: 10.1109/TPAMI.2013.50.

[9] Advances in Independent Component Analysis and Learning Machines.
London, U.K.: Elsevier, 2015.

[10] G. Wu, W. Lu, G. Gao, C. Zhao, and J. Liu, “Regional deep learning
model for visual tracking,” Neurocomputing, vol. 175, pp. 310–323,
Jan. 2016, doi: 10.1016/j.neucom.2015.10.064.

[11] K. Noda, Y. Yamaguchi, K. Nakadai, H. G. Okuno, and
T. Ogata, “Audio-visual speech recognition using deep learn-
ing,” Appl. Intell., vol. 42, no. 4, pp. 722–737, Jun. 2015,
doi: 10.1007/s10489-014-0629-7.

[12] T. Kohonen, “An introduction to neural computing,” Neural Netw.,
vol. 1, no. 1, pp. 3–16, Jan. 1988, doi: 10.1016/0893-6080(88)90020-2.

[13] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” Bull. Math. Biophys., vol. 5, no. 4,
pp. 115–133, Dec. 1943, doi: 10.1007/BF02478259.

[14] D. O. Hebb, The Organization of Behavior: A Neuropsychological
Theory. New York, NY, USA: Psychol., 2005.

[15] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychol. Rev., vol. 65, no. 6,
pp. 386–408, 1958, doi: 10.1037/h0042519.

[16] A. Newell, “Perceptrons. An introduction to computational geometry.
Marvin minsky and seymour papert, MIT Press, Cambridge, Mass.,
1969. vi + 258 pp., illus. Cloth, $12; paper, $4.95,” Science, vol. 165,
no. 3895, pp. 780–782, Aug. 1969, doi: 10.1126/science.165.3895.780.

[17] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocu-
lar interaction and functional architecture in the cat’s visual
cortex,” J. Physiol., vol. 160, no. 1, pp. 106–154, 1962,
doi: 10.1113/jphysiol.1962.sp006837.

[18] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional
architecture in two nonstriate visual areas (18 and 19) of the
cat,” J. Neurophysiol., vol. 28, no. 2, pp. 229–289, Mar. 1965,
doi: 10.1152/jn.1965.28.2.229.

[19] D. H. Hubel and T. N. Wiesel, “Ferrier lecture—Functional architecture
of macaque monkey visual cortex,” Proc. Roy. Soc. London B Biol. Sci.,
vol. 198, no. 1130, pp. 1–59, May 1977, doi: 10.1098/rspb.1977.0085.

[20] K. Fukushima, “Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift
in position,” Biol. Cybern., vol. 36, no. 4, pp. 193–202, Apr. 1980,
doi: 10.1007/BF00344251.

[21] K. Fukushima, “Cognitron: A self-organizing multilayered neural
network,” Biol. Cybern., vol. 20, no. 3, pp. 121–136, Sep. 1975,
doi: 10.1007/BF00342633.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986, doi: 10.1038/323533a0.

[23] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989,
doi: 10.1162/neco.1989.1.4.541.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.

[25] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
May 2006, doi: 10.1162/neco.2006.18.7.1527.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” Apr. 2015. Accessed: Aug. 06, 2020.
[Online]. Available: arXiv:1409.1556.

[28] C. Szegedy et al. (2015). Going Deeper With Convolutions.
Accessed: Aug. 5, 2020. [Online]. Available: https://www.cv-
foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_
Deeper_With_2015_CVPR_paper.html

[29] R. Girshick, J. Donahue, T. Darrell, and J. Malik. (2014). Rich
Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation. Accessed: Mar. 31, 2020. [Online]. Available:
http://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_
Feature_Hierarchies_2014_CVPR_paper.html

http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1016/j.neucom.2015.10.064
http://dx.doi.org/10.1007/s10489-014-0629-7
http://dx.doi.org/10.1016/0893-6080(88)90020-2
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1126/science.165.3895.780
http://dx.doi.org/10.1113/jphysiol.1962.sp006837
http://dx.doi.org/10.1152/jn.1965.28.2.229
http://dx.doi.org/10.1098/rspb.1977.0085
http://dx.doi.org/10.1007/BF00344251
http://dx.doi.org/10.1007/BF00342633
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1162/neco.2006.18.7.1527

156 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

[30] R. Girshick. (2015). Fast R-CNN. Accessed: Aug. 5, 2020.
[Online]. Available: https://openaccess.thecvf.com/content_iccv_2015/
html/Girshick_Fast_R-CNN_ICCV_2015_paper.html

[31] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 91–99.

[32] J. Long, E. Shelhamer, and T. Darrell. (2015). Fully
Convolutional Networks for Semantic Segmentation.
Accessed: Aug. 5, 2020. [Online]. Available: https://www.cv-
foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_
Convolutional_Networks_2015_CVPR_paper.html

[33] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. Med. Image
Comput. Comput. Assist. Intervent. (MICCAI), 2015, pp. 234–241,
doi: 10.1007/978-3-319-24574-4_28.

[34] D. He et al., “StNet: Local and global spatial–temporal modeling for
action recognition,” in Proc. AAAI Conf. Artif. Intell., vol. 33, Jul. 2019,
p. 1, doi: 10.1609/aaai.v33i01.33018401.

[35] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[36] F. Meng, X. Wang, F. Shao, D. Wang, and X. Hua, “Energy-
efficient gabor kernels in neural networks with genetic algorithm
training method,” Electronics, vol. 8, no. 1, p. 105, Jan. 2019,
doi: 10.3390/electronics8010105.

[37] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[38] Y.-T. Zhou and R. Chellappa, “Computation of optical flow using a neu-
ral network,” in Proc. IEEE Int. Conf. Neural Netw., vol. 2, Jul. 1988,
pp. 71–78, doi: 10.1109/ICNN.1988.23914.

[39] H. Chen et al., “Low-dose CT with a residual encoder–decoder convo-
lutional neural network (RED-CNN),” IEEE Trans. Med. Imag., vol. 36,
no. 12, pp. 2524–2535, Dec. 2017, doi: 10.1109/TMI.2017.2715284.

[40] M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” in Proc. Comput. Vis. ECCV, 2014, pp. 818–833,
doi: 10.1007/978-3-319-10590-1_53.

[41] H. Noh, S. Hong, and B. Han. (2015). Learning Deconvolution
Network for Semantic Segmentation. Accessed: Aug. 5, 2020.
[Online]. Available: https://www.cv-foundation.org/openaccess/
content_iccv_2015/html/Noh_Learning_Deconvolution_Network_
ICCV_2015_paper.html

[42] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” in Proc. Conf. Track, San Juan, Puerto Rico, 2016, p. 13.

[43] G. E. Hinton, “Rectified linear units improve restricted Boltzmann
machines Vinod Nair,” in Proc. ICML, 2010, pp. 807–814.

[44] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accu-
rate deep network learning by exponential linear units (ELUs),”
presented at the 4th Int. Conf. Learn. Represent. (ICLR), San Juan,
Puerto Rico, 2016. Accessed: Aug. 6, 2020. [Online]. Available:
http://arxiv.org/abs/1511.07289

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proc. Conf. Track, 2015, pp. 1026–1034, doi: 10.1109/ICCV.2015.123.

[46] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Conf.
Track, Lille, France, 2015, p. 9.

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “DropOut: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
Jan. 2014.

[48] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image
reconstruction by domain-transform manifold learning,” Nature,
vol. 555, p. 7697, Mar. 2018, doi: 10.1038/nature25988.

[49] X. Du, Y. Cai, S. Wang, and L. Zhang, “Overview of deep learning,”
in Proc. 31st Youth Acad. Annu. Conf. Chin. Assoc. Autom. (YAC),
Nov. 2016, pp. 159–164, doi: 10.1109/YAC.2016.7804882.

[50] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. (Nov. 2018).
Activation Functions: Comparison of Trends in Practice and Research
for Deep Learning. Accessed: May 5, 2020. [Online]. Available:
http://arxiv.org/abs/1811.03378

[51] H.-I. Suk and D. Shen, “Deep learning-based feature representa-
tion for AD/MCI classification,” Med. Imag. Comput. Comput. Assist.
Intervent., vol. 16, no. 2, pp. 583–590, 2013.

[52] H.-I. Suk, S.-W. Lee, and D. Shen, “Latent feature rep-
resentation with stacked auto-encoder for AD/MCI diagnosis,”
Brain Struct Funct, vol. 220, no. 2, pp. 841–859, Mar. 2015,
doi: 10.1007/s00429-013-0687-3.

[53] H.-I. Suk, S.-W. Lee, and D. Shen, “Hierarchical feature represen-
tation and multimodal fusion with deep learning for AD/MCI
diagnosis,” NeuroImage, vol. 101, pp. 569–582, Nov. 2014,
doi: 10.1016/j.neuroimage.2014.06.077.

[54] T. Shen et al., “Predicting Alzheimer disease from mild cog-
nitive impairment with a deep belief network based on 18F-
FDG-PET images,” Mol. Imag., vol. 18, pp. 1–9, Sep. 2019,
doi: 10.1177/1536012119877285.

[55] F. Li, L. Tran, K.-H. Thung, S. Ji, D. Shen, and J. Li, “A robust
deep model for improved classification of AD/MCI patients,” IEEE
J. Biomed. Health Informat., vol. 19, no. 5, pp. 1610–1616, Sep. 2015,
doi: 10.1109/JBHI.2015.2429556.

[56] H.-I. Suk, S.-W. Lee, and D. Shen, “Deep sparse multi-task
learning for feature selection in Alzheimer’s disease diagnosis,”
Brain Struct. Function, vol. 221, no. 5, pp. 2569–2587, 2016,
doi: 10.1007/s00429-015-1059-y.

[57] D. Lu, K. Popuri, G. W. Ding, R. Balachandar, and M. F. Beg,
“Multiscale deep neural network based analysis of FDG-PET images
for the early diagnosis of Alzheimer’s disease,” Med. Image Anal.,
vol. 46, pp. 26–34, May 2018, doi: 10.1016/j.media.2018.02.002.

[58] D. Lu, K. Popuri, G. W. Ding, R. Balachandar, and M. F. Beg,
“Multimodal and multiscale deep neural networks for the early
diagnosis of Alzheimer’s disease using structural MR and FDG-
PET images,” Sci. Rep., vol. 8, no. 1, p. 5697, Sep. 2018,
doi: 10.1038/s41598-018-22871-z.

[59] H. Choi and K. H. Jin, “Predicting cognitive decline with deep learning
of brain metabolism and amyloid imaging,” Behav. Brain Res., vol. 344,
pp. 103–109, May 2018, doi: 10.1016/j.bbr.2018.02.017.

[60] M. Liu, D. Cheng, K. Wang, and Y. Wang, “Multi-modality cas-
caded convolutional neural networks for Alzheimer’s disease diag-
nosis,” Neuroinformatics, vol. 16, nos. 3–4, pp. 295–308, Oct. 2018,
doi: 10.1007/s12021-018-9370-4.

[61] M. Liu, D. Cheng, and W. Yan, “Classification of Alzheimer’s dis-
ease by combination of convolutional and recurrent neural networks
using FDG-PET images,” Front. Neuroinf., vol. 12, p. 35, Jun. 2018,
doi: 10.3389/fninf.2018.00035.

[62] H. J. Son et al., “The clinical feasibility of deep learning-based clas-
sification of amyloid PET images in visually equivocal cases,” Eur.
J. Nucl. Med. Mol. Imag., vol. 47, no. 2, pp. 332–341, Feb. 2020,
doi: 10.1007/s00259-019-04595-y.

[63] A. Punjabi, A. Martersteck, Y. Wang, T. B. Parrish, and
A. K. Katsaggelos, “Neuroimaging modality fusion in
Alzheimer’s classification using convolutional neural networks,”
PLoS ONE, vol. 14, no. 12, Dec. 2019, Art. no. e0225759,
doi: 10.1371/journal.pone.0225759.

[64] Y. Huang, J. Xu, Y. Zhou, T. Tong, and X. Zhuang, “Diagnosis
of Alzheimer’s disease via multi-modality 3D convolutional
neural network,” Front Neurosci, vol. 13, p. 509, May 2019,
doi: 10.3389/fnins.2019.00509.

[65] H. Choi, S. Ha, H. J. Im, S. H. Paek, and D. S. Lee, “Refining diag-
nosis of Parkinson’s disease with deep learning-based interpretation
of dopamine transporter imaging,” Neuroimage Clin., vol. 16,
pp. 586–594, Sep. 2017, doi: 10.1016/j.nicl.2017.09.010.

[66] T. Shen et al., “Use of overlapping group LASSO sparse deep belief
network to discriminate Parkinson’s disease and normal control,” Front.
Neurosci., vol. 13, p. 396, Apr. 2019, doi: 10.3389/fnins.2019.00396.

[67] T. Nobashi et al., “Performance comparison of individual and
ensemble CNN models for the classification of brain 18F-FDG-
PET scans,” J. Digit. Imag., vol. 33, pp. 447–455, Oct. 2020,
doi: 10.1007/s10278-019-00289-x.

[68] J. Betancur et al., “Deep learning analysis of upright-supine
high-efficiency SPECT myocardial perfusion imaging for
prediction of obstructive coronary artery disease: A multicenter
study,” J. Nucl. Med., vol. 60, no. 5, pp. 664–670, May 2019,
doi: 10.2967/jnumed.118.213538.

[69] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. (2016).
Rethinking the Inception Architecture for Computer Vision. Accessed:
Aug. 5, 2020. [Online]. Available: https://www.cv-foundation.org/open
access/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_
CVPR_2016_paper.html

[70] R. Togo et al., “Cardiac sarcoidosis classification with deep
convolutional neural network-based features using polar
maps,” Comput. Biol. Med., vol. 104, pp. 81–86, Jan. 2019,
doi: 10.1016/j.compbiomed.2018.11.008.

http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1609/aaai.v33i01.33018401
http://dx.doi.org/10.3390/electronics8010105
http://dx.doi.org/10.1109/ICNN.1988.23914
http://dx.doi.org/10.1109/TMI.2017.2715284
http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1038/nature25988
http://dx.doi.org/10.1109/YAC.2016.7804882
http://dx.doi.org/10.1007/s00429-013-0687-3
http://dx.doi.org/10.1016/j.neuroimage.2014.06.077
http://dx.doi.org/10.1177/1536012119877285
http://dx.doi.org/10.1109/JBHI.2015.2429556
http://dx.doi.org/10.1007/s00429-015-1059-y
http://dx.doi.org/10.1016/j.media.2018.02.002
http://dx.doi.org/10.1038/s41598-018-22871-z
http://dx.doi.org/10.1016/j.bbr.2018.02.017
http://dx.doi.org/10.1007/s12021-018-9370-4
http://dx.doi.org/10.3389/fninf.2018.00035
http://dx.doi.org/10.1007/s00259-019-04595-y
http://dx.doi.org/10.1371/journal.pone.0225759
http://dx.doi.org/10.3389/fnins.2019.00509
http://dx.doi.org/10.1016/j.nicl.2017.09.010
http://dx.doi.org/10.3389/fnins.2019.00396
http://dx.doi.org/10.1007/s10278-019-00289-x
http://dx.doi.org/10.2967/jnumed.118.213538
http://dx.doi.org/10.1016/j.compbiomed.2018.11.008

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 157

[71] P.-P. Ypsilantis et al., “Predicting response to neoadjuvant chemother-
apy with PET imaging using convolutional neural networks,”
PLoS ONE, vol. 10, no. 9, Sep. 2015, Art. no. e0137036,
doi: 10.1371/journal.pone.0137036.

[72] A. Amyar, S. Ruan, I. Gardin, C. Chatelain, P. Decazes, and
R. Modzelewski, “3-D RPET-NET: Development of a 3-D PET imag-
ing convolutional neural network for radiomics analysis and outcome
prediction,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 3, no. 2,
pp. 225–231, Mar. 2019, doi: 10.1109/TRPMS.2019.2896399.

[73] W.-C. Shen et al., “Prediction of local relapse and distant metas-
tasis in patients with definitive chemoradiotherapy-treated cervical
cancer by deep learning from [18F]-fluorodeoxyglucose positron emis-
sion tomography/computed tomography,” Eur. Radiol., vol. 29, no. 12,
pp. 6741–6749, Dec. 2019, doi: 10.1007/s00330-019-06265-x.

[74] Y. Luo et al., “Development of a fully cross-validated Bayesian network
approach for local control prediction in lung cancer,” IEEE Trans.
Radiat. Plasma Med. Sci., vol. 3, no. 2, pp. 232–241, Mar. 2019,
doi: 10.1109/TRPMS.2018.2832609.

[75] M. Hatt, C. Parmar, J. Qi, and I. E. Naqa, “Machine (deep) learn-
ing methods for image processing and radiomics,” IEEE Trans.
Radiat. Plasma Med. Sci., vol. 3, no. 2, pp. 104–108, Mar. 2019,
doi: 10.1109/TRPMS.2019.2899538.

[76] H. Wang et al., “Comparison of machine learning methods for clas-
sifying mediastinal lymph node metastasis of non-small cell lung
cancer from 18F-FDG PET/CT images,” EJNMMI Res, vol. 7, p. 11,
Mar. 2017, doi: 10.1186/s13550-017-0260-9.

[77] M. Kirienko et al., “Convolutional neural networks promising in
lung cancer T-parameter assessment on baseline FDG-PET/CT,”
Contrast Media Mol. Imag., vol. 2018, Oct. 2018, Art. no. 1382309,
doi: 10.1155/2018/1382309.

[78] T. Perk et al., “Automated classification of benign and malig-
nant lesions in 18F-NaF PET/CT images using machine learning,”
Phys. Med. Biol., vol. 63, no. 22, Nov. 2018, Art. no. 225019,
doi: 10.1088/1361-6560/aaebd0.

[79] Y. Matsui et al., “Prediction of lower-grade glioma molecular subtypes
using deep learning,” J. Neurooncol., vol. 146, no. 2, pp. 321–327,
Jan. 2020, doi: 10.1007/s11060-019-03376-9.

[80] V. K. Ithapu, V. Singh, O. C. Okonkwo, R. J. Chappell, N. M. Dowling,
and S. C. Johnson, “Imaging based enrichment criteria using
deep learning algorithms for efficient clinical trials in MCI,”
Alzheimers Dement, vol. 11, no. 12, pp. 1489–1499, Dec. 2015,
doi: 10.1016/j.jalz.2015.01.010.

[81] J. H. Cole et al., “Predicting brain age with deep learn-
ing from raw imaging data results in a reliable and herita-
ble biomarker,” NeuroImage, vol. 163, pp. 115–124, Dec. 2017,
doi: 10.1016/j.neuroimage.2017.07.059.

[82] H. Choi, S. Ha, H. Kang, H. Lee, and D. S. Lee, “Deep learning only by
normal brain PET identify unheralded brain anomalies,” EBioMedicine,
vol. 43, pp. 447–453, Apr. 2019, doi: 10.1016/j.ebiom.2019.04.022.

[83] H. Shaish, S. Mutasa, J. Makkar, P. Chang, L. Schwartz, and F. Ahmed,
“Prediction of lymph node maximum standardized uptake value in
patients with cancer using a 3D convolutional neural network: A proof-
of-concept study,” Amer. J. Roentgenol., vol. 212, no. 2, pp. 238–244,
2019, doi: 10.2214/AJR.18.20094.

[84] H. Li et al., “Deep convolutional neural networks for imaging
data based survival analysis of rectal cancer,” in Proc. IEEE
16th Int. Symp. Biomed. Imag. (ISBI), Apr. 2019, pp. 846–849,
doi: 10.1109/ISBI.2019.8759301.

[85] E. Berg and S. R. Cherry, “Using convolutional neural networks
to estimate time-of-flight from PET detector waveforms,” Phys.
Med. Biol., vol. 63, no. 2, Nov. 2018, Art. no. 02LT01,
doi: 10.1088/1361-6560/aa9dc5.

[86] P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong, “Automatic 3D liver
segmentation based on deep learning and globally optimized sur-
face evolution,” Phys. Med. Biol., vol. 61, no. 24, pp. 8676–8698,
Dec. 2016, doi: 10.1088/1361-6560/61/24/8676.

[87] K. T. Oh, S. Lee, H. Lee, M. Yun, and S. K. Yoo, “Semantic
segmentation of white matter in FDG-PET using generative adver-
sarial network,” J. Digit. Imag., vol. 33, pp. 816–825, Feb. 2020,
doi: 10.1007/s10278–020-00321–5.

[88] P. Blanc-Durand, A. Van Der Gucht, N. Schaefer, E. Itti, and J. O. Prior,
“Automatic lesion detection and segmentation of 18F-FET PET in
gliomas: A full 3D U-Net convolutional neural network study,” PLoS
ONE, vol. 13, p. 4, Apr. 2018, doi: 10.1371/journal.pone.0195798.

[89] B. Huang et al., “Fully automated delineation of gross tumor volume
for head and neck cancer on PET-CT using deep learning: A dual-center

study,” Contrast Media Mol. Imag., vol. 2018, Art. no. 8923028, Oct.
2018, doi: 10.1155/2018/8923028.

[90] Z. Guo, N. Guo, K. Gong, S. Zhong, and Q. Li, “Gross tumor volume
segmentation for head and neck cancer radiotherapy using deep dense
multi-modality network,” Phys. Med. Biol., vol. 64, no. 20, Oct. 2019,
Art. no. 205015, doi: 10.1088/1361-6560/ab440d.

[91] L. Zhao, Z. Lu, J. Jiang, Y. Zhou, Y. Wu, and Q. Feng,
“Automatic nasopharyngeal carcinoma segmentation using fully con-
volutional networks with auxiliary paths on dual-modality PET-CT
images,” J. Digit. Imag., vol. 32, no. 3, pp. 462–470, Jun. 2019,
doi: 10.1007/s10278-018-00173-0.

[92] X. Zhao, L. Li, W. Lu, and S. Tan, “Tumor co-segmentation in
PET/CT using multi-modality fully convolutional neural network,”
Phys. Med. Biol., vol. 64, no. 1, Dec. 2018, Art. no. 015011,
doi: 10.1088/1361-6560/aaf44b.

[93] Z. Zhong et al., “3D fully convolutional networks for co-segmentation
of tumors on PET-CT images,” in Proc. IEEE Int. Symp. Biomed. Imag.,
vol. 2018, pp. 228–231, Apr. 2018, doi: 10.1109/ISBI.2018.8363561.

[94] Z. Zhong et al., “Simultaneous cosegmentation of tumors in PET-CT
images using deep fully convolutional networks,” Med. Phys., vol. 46,
no. 2, pp. 619–633, Feb. 2019, doi: 10.1002/mp.13331.

[95] X. Hu et al., “Coarse-to-fine adversarial networks and zone-
based uncertainty analysis for NK/T-cell lymphoma segmentation in
CT/PET images,” IEEE J. Biomed. Health Inform., vol. 24, no. 9,
pp. 2599–2608, Sep. 2020, doi: 10.1109/JBHI.2020.2972694.

[96] X. Xia and B. Kulis. (Nov. 2017). W-Net: A Deep Model for Fully
Unsupervised Image Segmentation. Accessed: May 5, 2020. [Online].
Available: http://arxiv.org/abs/1711.08506.

[97] L. Xu et al., “Automated whole-body bone lesion detection for multiple
myeloma on 68Ga-pentixafor PET/CT imaging using deep learn-
ing methods,” Contrast Media Mol. Imag., vol. 2018, Jan. 2018,
Art. no. 2391925, doi: 10.1155/2018/2391925.

[98] Z. Guo, X. Li, H. Huang, N. Guo, and Q. Li, “Deep learning-based
image segmentation on multimodal medical imaging,” IEEE Trans.
Radiat. Plasma Med. Sci., vol. 3, no. 2, pp. 162–169, Mar. 2019,
doi: 10.1109/TRPMS.2018.2890359.

[99] D. Hwang et al., “Improving the accuracy of simultaneously
reconstructed activity and attenuation maps using deep learn-
ing,” J. Nucl. Med., vol. 59, no. 10, pp. 1624–1629, 2018,
doi: 10.2967/jnumed.117.202317.

[100] D. Hwang et al., “Generation of PET attenuation map for whole-
body time-of-flight 18F-FDG PET/MRI using a deep neural network
trained with simultaneously reconstructed activity and attenuation
maps,” J. Nucl. Med., vol. 60, no. 8, pp. 1183–1189, 2019,
doi: 10.2967/jnumed.118.219493.

[101] F. Liu, H. Jang, R. Kijowski, T. Bradshaw, and A. B. McMillan,
“Deep learning MR imaging-based attenuation correction for PET/MR
imaging,” Radiology, vol. 286, no. 2, pp. 676–684, Feb. 2018,
doi: 10.1148/radiol.2017170700.

[102] F. Liu, H. Jang, R. Kijowski, G. Zhao, T. Bradshaw, and
A. B. McMillan, “A deep learning approach for 18F-FDG PET atten-
uation correction,” EJNMMI Phys., vol. 5, no. 1, p. 24, Dec. 2018,
doi: 10.1186/s40658-018-0225-8.

[103] H. Arabi, G. Zeng, G. Zheng, and H. Zaidi, “Novel adversarial seman-
tic structure deep learning for MRI-guided attenuation correction in
brain PET/MRI,” Eur. J. Nucl. Med. Mol. Imag., vol. 46, no. 13,
pp. 2746–2759, Dec. 2019, doi: 10.1007/s00259-019-04380-x.

[104] C. N. Ladefoged et al., “A multi-centre evaluation of eleven clinically
feasible brain PET/MRI attenuation correction techniques using a large
cohort of patients,” Neuroimage, vol. 147, pp. 346–359, Feb. 2017,
doi: 10.1016/j.neuroimage.2016.12.010.

[105] C. N. Ladefoged, L. Marner, A. Hindsholm, I. Law, L. Højgaard,
and F. L. Andersen, “Deep learning based attenuation correc-
tion of PET/MRI in pediatric brain tumor patients: Evaluation in
a clinical setting,” Front Neurosci, vol. 12, p. 1005, Jan. 2019,
doi: 10.3389/fnins.2018.01005.

[106] A. Torrado-Carvajal et al., “Dixon-VIBE deep learning (DIVIDE)
pseudo-CT synthesis for pelvis PET/MR attenuation correc-
tion,” J. Nucl. Med., vol. 60, no. 3, pp. 429–435, 2019,
doi: 10.2967/jnumed.118.209288.

[107] K. Gong et al., “MR-based attenuation correction for brain
PET using 3D cycle-consistent adversarial network,” IEEE
Trans. Radiat. Plasma Med. Sci., early access, Jul. 3, 2020,
doi: 10.1109/TRPMS.2020.3006844.

[108] J. S. Lee, “A review of deep learning-based approaches for
attenuation correction in positron emission tomography,” IEEE

http://dx.doi.org/10.1371/journal.pone.0137036
http://dx.doi.org/10.1109/TRPMS.2019.2896399
http://dx.doi.org/10.1007/s00330-019-06265-x
http://dx.doi.org/10.1109/TRPMS.2018.2832609
http://dx.doi.org/10.1109/TRPMS.2019.2899538
http://dx.doi.org/10.1186/s13550-017-0260-9
http://dx.doi.org/10.1155/2018/1382309
http://dx.doi.org/10.1088/1361-6560/aaebd0
http://dx.doi.org/10.1007/s11060-019-03376-9
http://dx.doi.org/10.1016/j.jalz.2015.01.010
http://dx.doi.org/10.1016/j.neuroimage.2017.07.059
http://dx.doi.org/10.1016/j.ebiom.2019.04.022
http://dx.doi.org/10.2214/AJR.18.20094
http://dx.doi.org/10.1109/ISBI.2019.8759301
http://dx.doi.org/10.1088/1361-6560/aa9dc5
http://dx.doi.org/10.1088/1361-6560/61/24/8676
http://dx.doi.org/10.1007/s10278-020-00321-5
http://dx.doi.org/10.1371/journal.pone.0195798
http://dx.doi.org/10.1155/2018/8923028
http://dx.doi.org/10.1088/1361-6560/ab440d
http://dx.doi.org/10.1007/s10278-018-00173-0
http://dx.doi.org/10.1088/1361-6560/aaf44b
http://dx.doi.org/10.1109/ISBI.2018.8363561
http://dx.doi.org/10.1002/mp.13331
http://dx.doi.org/10.1109/JBHI.2020.2972694
http://dx.doi.org/10.1155/2018/2391925
http://dx.doi.org/10.1109/TRPMS.2018.2890359
http://dx.doi.org/10.2967/jnumed.117.202317
http://dx.doi.org/10.2967/jnumed.118.219493
http://dx.doi.org/10.1148/radiol.2017170700
http://dx.doi.org/10.1186/s40658-018-0225-8
http://dx.doi.org/10.1007/s00259-019-04380-x
http://dx.doi.org/10.1016/j.neuroimage.2016.12.010
http://dx.doi.org/10.3389/fnins.2018.01005
http://dx.doi.org/10.2967/jnumed.118.209288
http://dx.doi.org/10.1109/TRPMS.2020.3006844

158 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

Trans. Radiat. Plasma Med. Sci., early access, Jul. 17, 2020,
doi: 10.1109/TRPMS.2020.3009269.

[109] I. Häggström, C. R. Schmidtlein, G. Campanella, and T. J. Fuchs,
“DeepPET: A deep encoder–decoder network for directly solving the
PET image reconstruction inverse problem,” Med. Image Anal., vol. 54,
pp. 253–262, May 2019, doi: 10.1016/j.media.2019.03.013.

[110] J. Cui, X. Liu, Y. Wang, and H. Liu, “Deep reconstruction model
for dynamic PET images,” PLoS ONE, vol. 12, no. 9, 2017,
Art. no. e0184667, doi: 10.1371/journal.pone.0184667.

[111] K. D. Spuhler, J. Gardus, Y. Gao, C. DeLorenzo, R. Parsey, and
C. Huang, “Synthesis of patient-specific transmission data for PET
attenuation correction for PET/MRI neuroimaging using a convolu-
tional neural network,” J. Nucl. Med., vol. 60, no. 4, pp. 555–560,
2019, doi: 10.2967/jnumed.118.214320.

[112] R. Li et al., “Deep learning based imaging data completion for
improved brain disease diagnosis,” Med. Imag. Comput. Assist.
Intervent., vol. 17, no. 3, pp. 305–312, 2014.

[113] H. Choi and D. S. Lee, “Generation of structural MR images from
amyloid PET: Application to MR-less quantification,” J. Nucl. Med.,
vol. 59, no. 7, pp. 1111–1117, 2018, doi: 10.2967/jnumed.117.199414.

[114] J. Guo, E. Gong, A. P. Fan, M. Goubran, M. M. Khalighi,
and G. Zaharchuk, “Predicting 15O-water PET cerebral blood flow
maps from multi-contrast MRI using a deep convolutional neu-
ral network with evaluation of training cohort bias,” J. Cerebr.
Blood Flow Metab., vol. 40, no. 11, pp. 2240–2253, Nov. 2019,
doi: 10.1177/0271678X19888123.

[115] W. Wei et al., “Learning myelin content in multiple sclerosis from
multimodal MRI through adversarial training,” in Proc. Med. Image
Comput. Comput. Assist. Intervent. (MICCAI), 2018, pp. 514–522,
doi: 10.1007/978-3-030-00931-1_59.

[116] A. J. Reader, G. Corda, A. Mehranian, C. da Costa-Luis, S. Ellis,
and J. A. Schnabel, “Deep learning for PET image reconstruction,”
IEEE Trans. Radiat. Plasma Med. Sci., early access, Aug. 6, 2020,
doi: 10.1109/TRPMS.2020.3014786.

[117] W. Shao, M. G. Pomper, and Y. Du, “A learned reconstruction network
for SPECT imaging,” IEEE Trans. Radiat. Plasma Med. Sci., early
access, May 12, 2020, doi: 10.1109/TRPMS.2020.2994041.

[118] H. Shan et al., “3D convolutional encoder–decoder network for
low-dose CT via transfer learning from a 2D trained network,”
IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1522–1534, Jun. 2018,
doi: 10.1109/TMI.2018.2832217.

[119] Q. Yang et al., “Low dose CT image denoising using a generative
adversarial network with wasserstein distance and perceptual loss,”
IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1348–1357, Jun. 2018,
doi: 10.1109/TMI.2018.2827462.

[120] C. You et al., “Structurally-sensitive multi-scale deep neural network
for low-dose CT denoising,” IEEE Access, vol. 6, pp. 41839–41855,
2018, doi: 10.1109/ACCESS.2018.2858196.

[121] A. M. Hasan, M. R. Mohebbian, K. A. Wahid, and P. Babyn,
“Hybrid collaborative Noise2Noise denoiser for low-dose CT images,”
IEEE Trans. Radiat. Plasma Med. Sci., early access, May 12, 2020,
doi: 10.1109/TRPMS.2020.3002178.

[122] F. Zhang et al., “REDAEP: Robust and enhanced denoising
autoencoding prior for sparse-view CT reconstruction,” IEEE
Trans. Radiat. Plasma Med. Sci., early access, Apr. 22, 2020,
doi: 10.1109/TRPMS.2020.2989634.

[123] V. S. Kadimesetty, S. Gutta, S. Ganapathy, and P. K. Yalavarthy,
“Convolutional neural network-based robust denoising of low-
dose computed tomography perfusion maps,” IEEE Trans. Radiat.
Plasma Med. Sci., vol. 3, no. 2, pp. 137–152, Mar. 2019,
doi: 10.1109/TRPMS.2018.2860788.

[124] L. Xiang, Y. Qiao, D. Nie, L. An, Q. Wang, and D. Shen, “Deep
auto-context convolutional neural networks for standard-dose PET
image estimation from low-dose PET/MRI,” Neurocomputing, vol. 267,
pp. 406–416, Dec. 2017, doi: 10.1016/j.neucom.2017.06.048.

[125] Y. Wang et al., “Locality adaptive multi-modality GANs
for high-quality PET image synthesis,” Med. Imag. Comput.
Assist. Intervent., vol. 11070, pp. 329–337, Sep. 2018,
doi: 10.1007/978-3-030-00928-1_38.

[126] Y. Wang et al., “3D auto-context-based locality adaptive multi-modality
GANs for PET synthesis,” IEEE Trans. Med. Imag., vol. 38, no. 6,
pp. 1328–1339, Jun. 2019, doi: 10.1109/TMI.2018.2884053.

[127] K. T. Chen et al., “Ultra–low-dose 18F-florbetaben amyloid
PET imaging using deep learning with multi-contrast MRI
inputs,” Radiology, vol. 290, no. 3, pp. 649–656, Mar. 2019,
doi: 10.1148/radiol.2018180940.

[128] K. Gong, J. Guan, C.-C. Liu, and J. Qi, “PET image denoising
using a deep neural network through fine tuning,” IEEE Trans.
Radiat. Plasma Med. Sci., vol. 3, no. 2, pp. 153–161, Mar. 2019,
doi: 10.1109/TRPMS.2018.2877644.

[129] Y. Li, B. Sixou, A. Burghard, and F. Peyrin, “Investigation of semi-
coupled dictionary learning in 3-D super resolution HR-pQCT imag-
ing,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 3, no. 2, pp. 129–136,
Mar. 2019, doi: 10.1109/TRPMS.2018.2881488.

[130] T.-A. Song, S. R. Chowdhury, F. Yang, and J. Dutta, “PET image
super-resolution using generative adversarial networks,” Neural Netw.,
vol. 125, pp. 83–91, May 2020, doi: 10.1016/j.neunet.2020.01.029.

[131] R. C. Petersen et al., “Alzheimer’s disease neuroimaging initia-
tive (ADNI): Clinical characterization,” Neurology, vol. 74, no. 3,
pp. 201–209, Jan. 2010, doi: 10.1212/WNL.0b013e3181cb3e25.

[132] K. Clark et al., “The cancer imaging archive (TCIA): Maintaining and
operating a public information repository,” J. Digit. Imag., vol. 26,
no. 6, pp. 1045–1057, Dec. 2013, doi: 10.1007/s10278-013-9622-7.

[133] K. O’Shea and R. Nash. (Dec. 2015). An Introduction to Convolutional
Neural Networks. Accessed: May 7, 2020. [Online]. Available:
http://arxiv.org/abs/1511.08458.

[134] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[135] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269,
doi: 10.1109/CVPR.2017.243.

[136] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1:
Foundations. Cambridge, MA, USA: MIT Press, 1986, pp. 318–362.

[137] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, no. 1, pp. 3371–3408, 2010, doi: 10.1002/qre.2392.

[138] D. P. Kingma and M. Welling, “An introduction to variational autoen-
coders,” FNT Mach. Learn., vol. 12, no. 4, pp. 307–392, 2019,
doi: 10.1561/2200000056.

[139] I. J. Goodfellow et al., “Generative adversarial nets,” in Proc. Conf.
Track, Cambridge, MA, USA, vol. 2, 2014, pp. 2672–2680.

[140] P. Smolensky, “Information processing in dynamical systems:
Foundations of harmony theory,” in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1: Foundations.
Cambridge, MA, USA: MIT Press, 1986, pp. 194–281.

[141] G. E. Hinton, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006,
doi: 10.1126/science.1127647.

[142] R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” Artif.
Intell. Stat., vol. 5, pp. 448–455, Apr. 2009.

[143] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 2007.

[144] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning, vol. 103. New York, NY, USA: Springer, 2013.

[145] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Proc. Conf. Track, vol. 2. San
Francisco, CA, USA, 1995, pp. 1137–1143.

[146] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math.
Stat., vol. 35, no. 1, pp. 73–101, 1964.

[147] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proc. Comput. Vis. ECCV, 2016,
pp. 694–711, doi: 10.1007/978-3-319-46475-6_43.

[148] N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Netw., vol. 12, no. 1, pp. 145–151, Jan. 1999,
doi: 10.1016/S0893-6080(98)00116-6.

[149] Y. Nesterov, “A method for unconstrained convex minimization
problem with the rate of convergence O(1/k2),” Doklady USSR,
vol. 269, no. 3, pp. 543–547, 1983.

[150] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, no. 61, pp. 2121–2159, 2011.

[151] M. D. Zeiler. (Dec. 2012). ADADELTA: An Adaptive Learning
Rate Method. Accessed: Apr. 29, 2020. [Online]. Available:
http://arxiv.org/abs/1212.5701.

http://dx.doi.org/10.1109/TRPMS.2020.3009269
http://dx.doi.org/10.1016/j.media.2019.03.013
http://dx.doi.org/10.1371/journal.pone.0184667
http://dx.doi.org/10.2967/jnumed.118.214320
http://dx.doi.org/10.2967/jnumed.117.199414
http://dx.doi.org/10.1177/0271678X19888123
http://dx.doi.org/10.1007/978-3-030-00931-1_59
http://dx.doi.org/10.1109/TRPMS.2020.3014786
http://dx.doi.org/10.1109/TRPMS.2020.2994041
http://dx.doi.org/10.1109/TMI.2018.2832217
http://dx.doi.org/10.1109/TMI.2018.2827462
http://dx.doi.org/10.1109/ACCESS.2018.2858196
http://dx.doi.org/10.1109/TRPMS.2020.3002178
http://dx.doi.org/10.1109/TRPMS.2020.2989634
http://dx.doi.org/10.1109/TRPMS.2018.2860788
http://dx.doi.org/10.1016/j.neucom.2017.06.048
http://dx.doi.org/10.1007/978-3-030-00928-1_38
http://dx.doi.org/10.1109/TMI.2018.2884053
http://dx.doi.org/10.1148/radiol.2018180940
http://dx.doi.org/10.1109/TRPMS.2018.2877644
http://dx.doi.org/10.1109/TRPMS.2018.2881488
http://dx.doi.org/10.1016/j.neunet.2020.01.029
http://dx.doi.org/10.1212/WNL.0b013e3181cb3e25
http://dx.doi.org/10.1007/s10278-013-9622-7
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1002/qre.2392
http://dx.doi.org/10.1561/2200000056
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1007/978-3-319-46475-6_43
http://dx.doi.org/10.1016/S0893-6080(98)00116-6

TORRES-VELÁZQUEZ et al.: APPLICATION AND CONSTRUCTION OF DEEP LEARNING NETWORKS IN MEDICAL IMAGING 159

[152] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
presented at the 3rd Int. Conf. Learn. Represent. (ICLR), San Diego,
CA, USA, 2015. Accessed: Aug. 6, 2020. [Online]. Available:
http://arxiv.org/abs/1412.6980.

[153] Food and Drug Administration. (Apr. 2019). Proposed Regulatory
Framework for Modifications to Artificial Intelligence/Machine
Learning (AI/ML)-Based Software as a Medical Device (SaMD).
[Online]. Available: https://www.fda.gov/media/122535/download.

[154] U.K. Department of Health and Social Care. Code of Conduct for
Data-Driven Health and Care Technology. Accessed: Mar. 23, 2020.
[Online]. Available: https://www.gov.uk/government/publications/code-
of-conduct-for-data-driven-health-and-care-technology/initial-code-of-
conduct-for-data-driven-health-and-care-technology

[155] L. G. Valiant, “A theory of the learnable,” Commun. ACM, vol. 27,
no. 11, pp. 1134–1142, 1984, doi: 10.1145/1968.1972.

[156] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” J. Big Data, vol. 6, no. 1, p. 60, Dec. 2019,
doi: 10.1186/s40537-019-0197-0.

[157] Z. Hussain, F. Gimenez, D. Yi, and D. Rubin, “Differential
data augmentation techniques for medical imaging classification tasks,”
AMIA Annu. Symp. Process., vol. 2017, pp. 979–984, Apr. 2018.

[158] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 12, no. 10, pp. 993–1001,
Oct. 1990, doi: 10.1109/34.58871.

[159] T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision combination in
multiple classifier systems,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 16, no. 1, pp. 66–75, Jan. 1994, doi: 10.1109/34.273716.

[160] K. Woods, W. P. Kegelmeyer, and K. Bowyer, “Combination of
multiple classifiers using local accuracy estimates,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 19, no. 4, pp. 405–410, Apr. 1997,
doi: 10.1109/34.588027.

[161] G. Giacinto and F. Roli, “Adaptive selection of image classifiers,”
in Image Analysis and Processing. Berlin, Germany: Springer, 1997,
pp. 38–45, doi: 10.1007/3-540-63507-6_182.

[162] F. Isensee et al. (Sep. 2018). nnU-Net: Self-Adapting Framework for
U-Net-Based Medical Image Segmentation. Accessed: Sep. 18, 2020.
[Online]. Available: http://arxiv.org/abs/1809.10486

[163] K. Kawaguchi, L. P. Kaelbling, and Y. Bengio. (Jul. 2020).
Generalization in Deep Learning. Accessed: Jul. 29, 2020. [Online].
Available: http://arxiv.org/abs/1710.05468

[164] C. Zhang, S. Bengio, and M. Hardt, “Understanding deep learning
requires re-thinking generalization,” in Proc. Conf. Track, Toulon,
France, 2017, p. 15.

[165] J. Goldberger and E. Ben-Reuven. (Nov. 2016). Training Deep
Neural-Networks Using a Noise Adaptation Layer. Accessed:
Aug. 6, 2020. [Online]. Available: https://openreview.net/
forum?id=H12GRgcxg¬eId=H12GRgcxg.

[166] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “MentorNet:
Learning data-driven curriculum for very deep neural networks on
corrupted labels,” in Proc. Int. Conf. Mach. Learn., Jul. 2018,
pp. 2304–2313. Accessed: Aug. 6, 2020. [Online]. Available:
http://proceedings.mlr.press/v80/jiang18c.html

[167] T. Gebru et al., “Datasheets for datasets,” Mar. 2020, Accessed:
Mar. 23, 2020. [Online]. Available: http://arxiv.org/abs/1803.09010.

[168] T. Cook et al., “Bayesian network interface for assisting radiology
interpretation and education,” in Proc. Med. Imag. Informat. Healthcare
Res. Appl., Mar. 2018, p. 26, doi: 10.1117/12.2293691.

[169] A. M. Rauschecker et al., “Artificial intelligence system approach-
ing neuroradiologist-level differential diagnosis accuracy at brain
MRI,” Radiology, vol. 295, no. 3, pp. 626–637, Apr. 2020,
doi: 10.1148/radiol.2020190283.

[170] H. Lee et al., “Fully automated deep learning system for bone age
assessment,” J. Digit. Imag., vol. 30, no. 4, pp. 427–441, Aug. 2017,
doi: 10.1007/s10278-017-9955-8.

[171] C. Chen, Q. Dou, H. Chen, and P.-A. Heng, “Semantic-
aware generative adversarial nets for unsupervised domain adap-
tation in chest X-ray segmentation,” in Machine Learning in
Medical Imaging. Cham, Switzerland: Springer, 2018, pp. 143–151,
doi: 10.1007/978-3-030-00919-9_17.

[172] S. Jaeger, S. Candemir, S. Antani, Y.-X. J. Wáng, P.-X. Lu, and
G. Thoma, “Two public chest X-ray datasets for computer-aided screen-
ing of pulmonary diseases,” Quant. Imag. Med. Surg., vol. 4, no. 6,
pp. 475–477, Dec. 2014, doi: 10.3978/j.issn.2223-4292.2014.11.20.

[173] J. Shiraishi et al., “Development of a digital image database for
chest radiographs with and without a lung nodule: Receiver oper-
ating characteristic analysis of radiologists’ detection of pulmonary
nodules,” Amer. J. Roentgenol., vol. 174, no. 1, pp. 71–74, Jan. 2000,
doi: 10.2214/ajr.174.1.1740071.

[174] Q. Dou, C. Ouyang, C. Chen, H. Chen, and P.-A. Heng, “Unsupervised
cross-modality domain adaptation of ConvNets for biomedical image
segmentations with adversarial loss,” in Proc. Conf. Track, Stockholm,
Sweden, 2018, pp. 691–697, doi: 10.24963/ijcai.2018/96.

[175] A. Gholami et al., “A novel domain adaptation framework for med-
ical image segmentation,” in Brainlesion: Glioma, Multiple Sclerosis,
Stroke and Traumatic Brain Injuries. Cham, Switzerland: Springer,
2019, pp. 289–298, doi: 10.1007/978-3-030-11726-9_26.

[176] S. Bakas et al., “Advancing the cancer genome atlas glioma MRI col-
lections with expert segmentation labels and radiomic features,” Sci.
Data, vol. 4, May 2017, Art. no. 170117, doi: 10.1038/sdata.2017.117.

[177] S. Bakas et al. (Apr. 2019). Identifying the Best Machine Learning
Algorithms for Brain Tumor Segmentation, Progression Assessment,
and Overall Survival Prediction in the BRATS Challenge. Accessed:
Jul. 30, 2020. [Online]. Available: http://arxiv.org/abs/1811.02629.

[178] B. H. Menze et al., “The multimodal brain tumor image segmenta-
tion benchmark (BRATS),” IEEE Trans. Med. Imag., vol. 34, no. 10,
pp. 1993–2024, Oct. 2015, doi: 10.1109/TMI.2014.2377694.

[179] Y. Zhang et al., “Collaborative unsupervised domain adaptation for
medical image diagnosis,” IEEE Trans. Image Process., vol. 29, pp.
7834–7844, 2020, doi: 10.1109TIP.2020.3006377.

[180] F. Mahmood, R. Chen, and N. J. Durr, “Unsupervised reverse domain
adaptation for synthetic medical images via adversarial training,”
IEEE Trans. Med. Imag., vol. 37, no. 12, pp. 2572–2581, Dec. 2018,
doi: 10.1109/TMI.2018.2842767.

[181] M. N. Wernick, Y. Yang, J. G. Brankov, G. Yourganov, and
S. C. Strother, “Machine learning in medical imaging,” IEEE
Signal Process. Mag., vol. 27, no. 4, pp. 25–38, Jul. 2010,
doi: 10.1109/MSP.2010.936730.

[182] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” in Proc. Conf. Track, Toulon, France, 2017, p. 17.

[183] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Proc. IEEE Symp. Security Privacy (SP), May 2016, pp. 582–597,
doi: 10.1109/SP.2016.41.

[184] R. Volpi, H. Namkoong, O. Sener, J. C. Duchi, V. Murino, and
S. Savarese, “Generalizing to unseen domains via adversarial data aug-
mentation,” in Proc. 31st Adv. Neural Inf. Process. Syst., 2018,
pp. 5334–5344.

[185] Z. Liu, J. Zhang, V. Jog, P.-L. Loh, and A. B. McMillan. (Aug. 2019).
Robustifying Deep Networks for Image Segmentation. Accessed:
May 14, 2020. [Online]. Available: http://arxiv.org/abs/1908.00656.

[186] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen, “On insta-
bilities of deep learning in image reconstruction and the potential costs
of AI,” Proc. Nat. Acad. Sci. USA, May 2020, Art. no. 201907377,
doi: 10.1073/pnas.1907377117.

[187] J.-G. Lee et al., “Deep learning in medical imaging: General
overview,” Korean J. Radiol., vol. 18, no. 4, pp. 570–584, 2017,
doi: 10.3348/kjr.2017.18.4.570.

[188] G. Chartrand et al., “Deep learning: A primer for radiolo-
gists,” RadioGraphics, vol. 37, no. 7, pp. 2113–2131, Nov. 2017,
doi: 10.1148/rg.2017170077.

[189] J. Koneènı , H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communica-
tion efficiency,” presented at the 13th Neural Inf. Process. Syst. (NIPS),
Barcelona, Spain, 2016, Accessed: Aug. 06, 2020. [Online]. Available:
http://arxiv.org/abs/1610.05492.

[190] P. Domingos, N. de Freitas, I. Guyon, J. Malik, and J. Neville. Plenary
Panel: Is Deep Learning the New 42? Accessed: May 13, 2020.
[Online]. Available: https://www.youtube.com/watch?v=furfdqtdAvc

[191] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.

[192] T. K. Ho, “Random decision forests,” in Proc. 3rd Int. Conf. Doc. Anal.
Recognit. vol. 1, Aug. 1995, p. 278.

http://dx.doi.org/10.1145/1968.1972
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1109/34.58871
http://dx.doi.org/10.1109/34.273716
http://dx.doi.org/10.1109/34.588027
http://dx.doi.org/10.1007/3-540-63507-6_182
http://dx.doi.org/10.1117/12.2293691
http://dx.doi.org/10.1148/radiol.2020190283
http://dx.doi.org/10.1007/s10278-017-9955-8
http://dx.doi.org/10.1007/978-3-030-00919-9_17
http://dx.doi.org/10.3978/j.issn.2223-4292.2014.11.20
http://dx.doi.org/10.2214/ajr.174.1.1740071
http://dx.doi.org/10.24963/ijcai.2018/96
http://dx.doi.org/10.1007/978-3-030-11726-9_26
http://dx.doi.org/10.1038/sdata.2017.117
http://dx.doi.org/10.1109/TMI.2014.2377694
http://dx.doi.org/10.1109TIP.2020.3006377
http://dx.doi.org/10.1109/TMI.2018.2842767
http://dx.doi.org/10.1109/MSP.2010.936730
http://dx.doi.org/10.1109/SP.2016.41
http://dx.doi.org/10.1073/pnas.1907377117
http://dx.doi.org/10.3348/kjr.2017.18.4.570
http://dx.doi.org/10.1148/rg.2017170077
http://dx.doi.org/10.1007/BF00994018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

