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Abstract—Attenuation correction (AC) is essential for the
generation of artifact-free and quantitatively accurate positron
emission tomography (PET) images. PET AC based on computed
tomography (CT) frequently results in artifacts in attenuation-
corrected PET images, and these artifacts mainly originate from
CT artifacts and PET-CT mismatches. The AC in PET combined
with a magnetic resonance imaging (MRI) scanner (PET/MRI)
is more complex than PET/CT, given that MR images do not
provide direct information on high-energy photon attenuation.
Deep-learning (DL)-based methods for the improvement of PET
AC have received significant research attention as alternatives
to conventional AC methods. Many DL studies were focused on
the transformation of MR images into synthetic pseudo-CT or
attenuation maps. Alternative approaches that are not dependent
on the anatomical images (CT or MRI) can overcome the lim-
itations related to current CT- and MRI-based ACs and allow
for more accurate PET quantification in stand-alone PET scan-
ners for the realization of low radiation doses. In this article,
a review is presented on the limitations of the PET AC in cur-
rent dual-modality PET/CT and PET/MRI scanners, in addition
to the current status and progress of DL-based approaches, for
the realization of improved performance of PET AC.

Index Terms—Attenuation correction (AC), deep neural
network, PET/MRI, positron emission tomography (PET).

I. INTRODUCTION

MANY physical and patient factors influence the image
quality and quantitative accuracy of ionizing radiation-

based tomographic imaging techniques. If these factors are
not properly considered and corrected, the quality and accu-
racy of tomographic images are degraded. In positron emission
tomography (PET), which involves the collection of two high
energy (511 keV) annihilation photons emitted from positron-
emitting radioisotopes; photoelectric absorption and Compton
scattering of high-energy annihilation photons are among
the major physical factors that degrade the reconstructed
images (Fig. 1) [1]. The photoelectric absorption and Compton
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Fig. 1. Physics in PET attenuation: (a) photoelectric absorption
and (b) Compton scattering.

scattering of the photons result in the loss of coincidence
events (attenuation) in PET (Fig. 2). The effects of the photon
attenuation are larger in PET than in single-photon emission
computed tomography (SPECT), given that the loss of one of
the two annihilation photons leads to the failure of coincidence
event detection. However, the attenuation correction (AC) is
straightforward in PET, given that the attenuation for the pro-
jection of coincidence events is independent of the position
along the chord of projection (line of response) [2], [3].

Dual-modality hybrid PET systems require more accurate
AC methods [4]. The quality of attenuation-corrected PET
and SPECT images is significantly improved by combin-
ing them with X-ray computed tomography (CT) [5]–[7]. In
the PET/CT, CT scans provide the linear attenuation coef-
ficient map (μ-map: attenuation map for 511-keV photon)
with better spatial resolution and higher counting statistics
than conventional transmission PET scans [8]–[10]. However,
the CT-based AC results in frequent artifacts in attenuation-
corrected PET images. These artifacts, that mainly originate
from CT artifacts and PET-CT mismatch, lead to errors in
PET interpretation and quantification [11]–[15]. The AC in
PET combined with a magnetic resonance imaging (MRI)
scanner (PET/MRI) is more complex than PET/CT, given
that magnetic resonance (MR) images do not provide direct
information on high-energy photon attenuation [16]–[19].
Although various approaches have been proposed to over-
come this drawback [20], issues remain to be solved in some
applications.

Brain-dedicated stand-alone PET scanners require AC meth-
ods that do not use transmission data or other modality
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Fig. 2. Events in PET: (a) true coincidence, (b) scatter coincidence, and (c) loss of coincidence event due to photoelectric absorption.

images. Moreover, total-body PET/CT scanners exhibited
issues related to the radiation exposure due to the CT part.
With the aging of the global population, neurodegenerative
disorders, such as Alzheimer’s dementia and Parkinson’s dis-
ease, have become a major health issue. PET allows for the
highly sensitive and specific assessment of energy metabolic
changes, amyloid plaque depositions, dopamine transporter
losses, and many other pathologic changes in the brains of
patients with neurodegenerative diseases. Therefore, various
brain-dedicated PET scanners with different design concepts
have been recently developed, most of which are stand-alone
systems with no transmission sources or anatomical imaging
modality combinations [21], [22]. A total-body PET scanner
with a 2-m long axial field of view is creating new opportu-
nities for clinical research and patient care [23], [24]. Given
that the total-body scanner yields an approximately 40-fold
sensitivity gain over existing PET scanners for the imaging
of the entire body, it allows for PET scans to be conducted
at extremely low radiation doses. However, an X-ray CT for
AC and anatomical localization is required, thus limiting the
low-dose capability of total-body PET [24].

With the advances of machine learning in medical imaging
fields, various machine-learning approaches for the improve-
ment of PET AC have been proposed [25]–[51]. Among
these approaches, deep-learning (DL)-based methods have
attracted significant research attention as alternatives to con-
ventional AC methods. Many DL studies were focused on the
transformation of MR images into a synthetic pseudo-CT or
μ-map [34]–[44], [52]. Other approaches that are not depen-
dent on the anatomical images (CT or MRI) can overcome
limitations with respect to current CT- and MRI-based ACs
and allow for more accurate PET quantification in stand-
alone PET scanners for the realization of low radiation
doses [25]–[33].

Therefore, this article provides a review on the follow-
ing topics to provide the readers of IEEE TRANSACTIONS

ON RADIATION AND PLASMA MEDICAL SCIENCES with the
most up-to-date information on the PET AC technology.

1) The limitations of the PET AC in current dual-
modality PET/CT and PET/MRI scanners, and the chal-
lenges in stand-alone organ-specific and total-body PET
scanners.

2) Current status and progress of DL-based approaches for
the realization of improved PET AC performances.

An assumption was made that the readers of this review
paper are familiar with the fundamental physical principles
of PET image acquisition and the reconstruction and cor-
rection processes in PET. Literature on the background of
PET physics, reconstruction, and corrections are available else-
where if required [3], [53]–[57]. In addition, the details of
artificial neural networks (ANNs) and DL techniques are not
presented, given the many available references [58]–[61].

In this article, Section II overviews the previous PET AC
methods that use long-lived external radionuclides or body
contours, and Section III summarizes the limitations of current
CT-based AC. Section IV then overviews the state-of-the-art
AC methods that are currently used for PET/MRI scanners.
Each section describes the principles and limitations of each
method. Section V presents the challenges in new emerging
brain-dedicated stand-alone and total-body PET scanners, and
Section VI describes the advances in simultaneous activity and
attenuation reconstruction. In Section VII, previous artificial
intelligence researches in nuclear medicine are summarized.
Section VIII introduces recent DL-based approaches that are
used for the transformation of diagnostic and nondiagnos-
tic MR images into pseudo-CT or μ-map, and Section IX
presents the DL-based AC methods that are not dependent on
the anatomical images. Finally, in Section X, a scope for future
research is provided.

II. CONVENTIONAL AC

A. Transmission PET

In the era of stand-alone PETs that were not combined with
anatomical imaging modalities, a ring or rotating rod(s) of
long-lived external radionuclides (68Ga/68Ge or 137Cs) were
used for the acquisition of the data required for the correction
of the attenuation and scatter. Using the external radionuclides,
transmission and blank scans were acquired, respectively, with
and without objects (patients, phantoms, etc.) within the PET
scanner (Fig. 3) [2], [3]. The ratio of the blank and transmis-
sion scans in the sinogram space provides AC factors (ACFs)
used for the correction of the attenuation of annihilation pho-
ton pairs in the emission PET scan. The μ-map can be also
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(a) (b) (c)

Fig. 3. AC using long-lived external radionuclides: (a) blank scan, (b) transmission scan with positron-emitting sources (68Ge/68Ga), and (c) transmission
scan with a single-photon source (137Cs).

reconstructed from the blank and transmission data. For the
estimation and correction of scattered coincidences in the
PET data, various empirical and analytical methods have been
proposed [57]. Among them, the most commonly used method
for modern clinical PET scanners is a single scatter simulation
with tail-fitting scaling [62]–[65]. This method allows for an
analytical estimation of the scatter contribution to projections,
given the μ-map and the initial estimate of the scatter-free
radioactivity distribution. These attenuation and scatter correc-
tion methods using the long-lived external radionuclides can
significantly improve the quantitative accuracy of PET images.
However, the main technical issues related to these methods
are the extended scan time by the addition of the transmission
scan and the increased noise in emission PET data due to the
noise propagation from the noisy transmission scan [7].

B. Segmented and Calculated AC

Segmented and calculated ACs are alternative methods that
provide noise-free μ-maps with reduced scan times. In the
segmented AC, the measured μ-map derived from the trans-
mission and blank scan data is segmented into several tissue
types, and the known attenuation coefficient for each tissue
type is assigned [66]. Although this method is useful for the
reduction of the noise in attenuation-corrected PET images,
there are several limitations, which include the susceptibility to
the segmentation error and the variable tissue densities across
the patients. The calculated AC was mainly used for brain PET
studies [67], [68]. The head contour is extracted from uncor-
rected emission data, and the uniform attenuation coefficients
for soft tissue and skull and constant skull thickness are
assumed. Although this approach provides a noise-free μ-map
and requires no transmission scan, a considerable activity bias
in parietal and occipital lobes is the main limitation [69], [70].

III. CT-BASED AC: LIMITATIONS

The X-ray CT data obtained using dual-modality PET/CT
scanners has enhanced the confidence of PET findings by pro-
viding more accurate anatomical information. Moreover, the
patient throughput and image quality of PET scans have been
significantly improved by the use of CT data for PET AC,
given that the CT scan is more rapid and yields less noise

Fig. 4. Sources of imaging artifacts in PET/CT: (a) metal implants, (b) con-
trast medium, (c) body truncation, and (d) respiratory motion. (Reprint
from [71] with permission; c© 2005 SNMMI.)

than conventional transmission scans used in PET [5], [7].
Given that CT uses low-energy X-rays, the CT Hounsfield
units must be converted into linear attenuation coefficients for
photons with an energy of 511 keV usually using a bilin-
ear relationship [7], [10]. Although the CT-based AC has
several advantages over transmission scans with long-lived
radionuclides, there are various error sources in CT-based AC
(Fig. 4) [71].

1) Most artifacts shown in reconstructed CT images result
in artifacts in attenuation-corrected PET images. The
most common error source is the propagation of metal
artifacts in CT due to the high-Z materials used in sur-
gical and dental implants into the reconstructed PET
images [Fig. 4(a)] [13], [14]. In general, regional PET
activity around the high-Z materials is significantly
overestimated [Fig. 4(b)].

2) CT generally has a smaller field of view than PET, thus
leading to the truncation of the shoulders and arms of
large patients in the CT images. Although these trun-
cated body parts do not appear in the CT images, they
cause attenuation in PET. These missing data in the
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CT-based μ-map lead to the underestimated ACF and
attenuation-corrected PET activity [Fig. 4(c)] [72], [73].

3) Given that X-ray photon flux in CT is significantly
higher than the annihilation photon flux in PET, simul-
taneous PET/CT scans result in considerable cross-talk
artifacts in PET images. Therefore, current PET/CT
scanners are configured in a side-by-side tandem
arrangement, thereby allowing for sequential CT and
PET scans. Consequently, the movement of patients
between the sequential CT and PET scans results in
the misalignment of the PET and CT images and
transmission-emission mismatch artifacts [74]–[76].

4) Artifacts due to spatial mismatches between PET and CT
due to heartbeat and respiratory motions are common
in CT-based attenuation-corrected PET images (e.g.,
banana-shape artifacts in the boundary between upper
liver and lower lung, and artifactual defects in the
myocardial PET) [Fig. 4(d)] [12], [15]. Although sev-
eral different approaches have been proposed for the
reduction of the misalignment artifacts based on a slow
CT or a cine-CT [77], [78], the main drawback of
these methods is increased radiation transmitted to the
patients.

IV. AC IN PET/MRI

It should be noted that PET/MRI has several advantages
over PET/CT, which include a smaller amount of radiation
transmitted to the patients and improved contrast between
different soft tissues [5], [18], [79]–[82]. In addition, MRI
allows for the multiparametric assessment of pathologic tissues
based on many different MRI pulse sequences. Besides the
anatomical assessment based on the most conventional T1 and
T2 contrast imaging method, various functional and physiolog-
ical processes (i.e., perfusion and diffusion) can be captured
using MRI. Therefore, the advantages of PET/MRI have been
clarified in various diagnostic procedures, which include head,
neck, prostate, breast, musculoskeletal, and neuroendocrine
tumor imaging [19], [83]–[88]. Moreover, the advances in
semiconductor photosensors, such as avalanche photodiodes
and silicon photomultipliers, have allowed for simultane-
ous PET/MR imaging [80], [81], [89]–[93]. This simultaneous
PET/MRI scan allows for an improved spatiotemporal corre-
lation between two modalities when compared with PET/CT,
in addition to motion correction in PET based on motion
information derived from MRI [94]–[97].

However, accurate PET attenuation and scatter correc-
tions are limited in PET/MRI. The image intensity of MRI
and CT (or transmission PET) is determined by different
physical principles. For example, their image intensities are
mainly dependent on the proton and electron densities, respec-
tively. Moreover, the MR image contrast is determined by
the different relaxation times of the MR-active nuclei in dif-
ferent molecules and environments. In contrast, the amount
of high-energy photon attenuation is measured in CT or
transmission PET scans. There is currently no direct MR
estimation method for such a high-energy photon attenu-
ation. Hence, several indirect approaches are employed in

Fig. 5. Dixon MRI-based AC: (a) Dixon water image, (b) Dixon fat
image, (c) attenuation map generated by combining the water and fat images,
and (d) CT scan of the same patient. (Reprint from [19] according to the
publisher’s open access policy.)

Fig. 6. Difference between AC methods: (a) CT-based AC, (b) Dixon MRI-
based four-segment method, and (c) difference between (a) and (b).

PET/MRI [16], [18]–[20], [98]. However, the accuracy of
these AC methods has been proven to be within accept-
able quantitative limits only in the adult brains with normal
anatomy [20].

A. Dixon MRI-Based

In current clinical PET/MRI scanners, μ-map generation
for body PET/MRI scans is mainly based on the Dixon
MRI pulse sequence [99]–[101]. The Dixon MRI exploits the
different precession rates of proton spins in water and fat
molecules [102]. Therefore, they are alternatively in-phase and
out-of-phase. From the simultaneously obtained in-phase and
out-of-phase images, water-only and fat-only images can be
generated. By assigning predetermined attenuation coefficients
to the fat- and water-equivalent tissues and segmented lung
regions, a four-segment (background, lungs, fat, and water)
μ-map is generated (Fig. 5) [101]. The difference between
attenuation-corrected PET images using CT-based and Dixon
MRI-based μ-maps is dependent on the location of lesions.
The variation of the lung attenuation coefficient for differ-
ent patients is large [103]–[106], and the liver has a higher
attenuation coefficient than other water segments [107]. Given
that the contribution of bone to the 511-keV photon atten-
uation is not considered in the Dixon MRI-based AC, the
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Fig. 7. Local bone masks employed for a model-based AC method in
PET/MRI. (Reprint from [110] with permission; c© 2015 SNMMI.)

Fig. 8. HUGE: an MRI-based truncation correction method.

difference is largest in osseous lesions where the PET activ-
ity is considerably underestimated (Fig. 6) [101], [107]–[109].
To overcome the above-mentioned limitations of the Dixon
MRI-based four-segment method, a model-based approach
was proposed [110], [111]. In the model-based approach, bone
structures are added to four-segment maps using bone tem-
plates and image registration (Fig. 7). However, the inaccurate
registration between PET images and bone models can lead to
errors in PET activity quantification [28].

The smaller field of view of MRI when compared with PET
can cause truncation artifacts in PET AC. For example, the
arms of the patients are not completely covered by MRI when
the patients are scanned with their arms hanging downward.
The arm truncation in the MRI-based μ-map of whole-
body PET/MRI scans leads to a considerable bias in PET
activity quantification [112]. The missing parts in the MRI
can be estimated from the nonattenuation-corrected (NAC)
PET. Alternatively, the μ-map for missing parts can be derived
using the maximum-likelihood reconstruction of activity and
attenuation (MLAA) algorithm [113], which is a simultaneous
activity and attenuation reconstruction algorithm. However, the
MLAA-based approach frequently yields overestimated arm
volumes and associated artifacts. Similarly, the MLAA enables

the estimation of other missing parts in the μ-map, such
as flexible MRI coils and metal implants [114], [115]. The
MLAA can be further improved in the case where the time of
flight (TOF) is known as in recent PET/MRI scanners. HUGE
(B0 homogenization using gradient enhancement) is a fully
MR-based truncation compensation method that determines an
optimal readout gradient for the compensation of gradient non-
linearities at the peripheral MR field of view (Fig. 8) [116].
The HUGE exhibited an improvement in the μ-map gener-
ation and PET quantification; however, it requires additional
MRI scans to cover both arms.

B. UTE

For brain PET/MRI studies, the contribution of the skull
to the annihilation photon attenuation is high relative to the
soft tissues. Therefore, two different approaches are mainly
used for the generation of PET μ-maps that include bone.
The derivation of PET μ-maps from the ultrashort echo
time (UTE) [99], [117]–[125] or zero echo time (ZTE) MR
images [126]–[131] is one of the two approaches. In these
methods, patient-specific bone information is captured from
the MR images of the patient, and discrete or continuous bone
attenuation coefficient values are estimated. The UTE and ZTE
pulse sequences that commonly use radial k-space sampling
and fast switching between transmitting and receiving radiofre-
quency (RF) pulses depict bones based on T2*-weighting
and proton-density-weighting, respectively [132]. Given that
the proton density is low (approximately 20% of water) and
T2 relaxation occurs rapidly (approximately 390 μs at 3.0 T)
in cortical bone tissues [133]; the bone signal is low in con-
ventional MR images (e.g., T1 and T2), and bone structures
cannot be distinguished from the air. In the UTE sequence
employed in the Siemens mMR PET/MRI scanner (Siemens
Healthineers, Knoxville, TN, USA), the first echo [MR sig-
nal observed following excitation pulse(s)] is sampled at
maximum speed (70–150 μs) after the excitation, and the sec-
ond echo is sampled as in the conventional MRI sequences
(≥ 1 ms) [121], [123]. By the subtraction/division of the
second long echo-time image from/by the first ultrashort echo-
time image, the bone and soft tissue can be distinguished
(Fig. 9) [99], [120], [121], [123], [125].

However, these images, especially the second longer echo-
time image, are sensitive to off-resonance effects owing to B0
inhomogeneity and susceptibility. The off-resonance effects
result in inhomogeneity artifacts that can lead to inaccurate
image segmentation and bone delineation [134]. In addition,
the UTE images are subject to eddy-current artifacts, given
that UTE sequences require samples to be acquired during
rapidly changing gradient fields [118]. Therefore, frequent
segmentation errors were observed at the boundaries between
soft tissue, bone, and air in the initial versions of the UTE-
based μ-maps [119], [121], [135], [136]. Moreover, there were
instances wherein the ventricles in the brain were misclassified
as air [135].

Some methods have been proposed for the improvement
of the UTE-based AC. Aitken et al. [118] measured true
k-space trajectories during a dual-echo UTE sequence using
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Fig. 9. UTE MRI-based AC: (a) first echo [echo time (TE) = 0.7 ms], (b) second echo (TE = 2.46 ms), (c) difference between (a) and (b), (d) UTE-based
μ-map, and (e) CT of the same patient. (Reprint from [19] according to the publisher’s open access policy.)

Fig. 10. ZTE MRI-based AC: (a) intensity histogram of ZTE MRI after logarithmic rescaling, (b) ZTE MRI, and (c) soft tissue (blue) and bone mask (green)
obtained with segmentation. (Reprint from [127] with permission; c© 2015 SNMMI.)

a dynamic magnetic field camera and obtained reconstructed
UTE images using the measured trajectories to compensate
for the eddy-current artifacts in UTE images. In this method,
a one-time calibration scan is required, and the measured
trajectories can be used in all subsequent image reconstruc-
tions for the same set of scan parameters. An et al. improved
the UTE-based AC by the application of a multiphase level-
set algorithm for the UTE MRI segmentation, in which the
intensity inhomogeneity correction was incorporated. The PET
quantification error was reduced by a factor of 3 by the
application of the level-set segmentation to the UTE MR
images [119]. Several methods were proposed for the asso-
ciation of the MR relaxation time R2* and CT Hounsfield
unit to provide continuous-valued attenuation coefficients for
bone [122], [124]. A combination of UTE with Dixon MRI
or atlas-based segmentation is an alternative approach for the
improvement of UTE-based μ-map generation [99]. Despite
continuous improvements in the UTE-based method, segmen-
tation errors are observed, especially with respect to neck or
face/nasal regions [117], [119].

C. ZTE

The ZTE pulse sequence also provides enhanced bone
contrast in MR images. In the ZTE MRI, the signal is
obtained immediately after the RF excitation, thus allow-
ing for the contrast from the proton-density difference to be
determined [137]. The ZTE does not require long T2 sup-
pression methods such as the echo subtraction used in UTE;
thus, ZTE has a superior signal-to-noise ratio and scan time
efficiency than UTE [138]. In addition, ZTE is robust against
off-resonance effects and gradient system imperfections [132].
In the ZTE-based μ-map available in the GE SIGNA PET/MRI
scanner (GE Healthcare, Chicago, IL, USA), bone and tis-
sue masks are derived from reconstructed ZTE images by
the application of bias correction and intensity normalization,
followed by a histogram-based thresholding operation and
piecewise linear intensity mapping [126], [127], [130], [139].
Based on two thresholds, the images are segmented into three
classes, namely, soft tissue, bone, and air, given that the bone
has a distinct intensity between the soft tissue and air peaks
in the intensity histogram of the ZTE MRI (Fig. 10).
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Fig. 11. Combination of atlas-based and segmentation-based method: a chal-
lenging case showing a large tumor in the ventricles and skull thickness
change after the surgical procedure. (a) MRI, (b) atlas/segmentation-based
μ-map, and (c) CT-based μ-map. (Reprint from [143] with permission; c©
2014 SNMMI.)

The main drawback with respect to the ZTE-based
AC method is the misclassification of the regions with
air/tissue/bone mixtures (e.g., nasal sinus cavity and tempo-
ral bones) or their interfaces as bone [129], [131]. The PET
quantification error due to this misclassification in the skull
base can be reduced by the application of a sinus–edge-
correction method, in which the sinus and edge masks are
generated for removal of the false-positive bone pixels [131].
In addition, the ZTE-based method with the improved seg-
mentation in the sinus and temporal bones [126] exhibited
a superior performance to the atlas-based method in a compar-
ative brain 18F-fluorodeoxyglucose (18F-FDG) PET/MRI study
with a relatively large number of subjects [129].

Furthermore, a limited number of studies have been con-
ducted for the application of the ZTE MRI to body parts
apart from the brain. A hybrid method was proposed by
Leynes et al., who combined the ZTE and Dixon MRI
information for the generation of pseudo-CT images in pelvic
regions. In this method, a continuous two-segment piecewise
linear model is used to convert the ZTE MR image intensity
in bone into Hounsfield units [128].

D. Atlas-Based

An alternative approach used in brain PET/MRI is the atlas-
based AC method [45], [47], [140]–[148]. A single atlas-based
method is used for GE SIGNA PET/MRI scanners [147]. In
this method, a single head atlas generated from multiple head
CT images is registered with a bone-enhanced LAVA-Flex
(two-point Dixon sequence in GE SIGNA PET/MRI scanner)
in-phase MR image. The registered head CT atlas is com-
bined with a head contour derived from the MR image for

the generation of a μ-map. Given that the LAVA-Flex MRI
sequence is short and only a single nonlinear image registra-
tion is carried out, this relatively simple approach allows for
a more efficient PET/MRI workflow [147]. Alternatively, an
atlas that consists of a CT and MRI pair (single or average) can
be utilized. For a new given subject, the MRI atlas is registered
with the MR image of the new subject, and the same registra-
tion parameters are applied to the CT atlas to be transformed to
the subject-specific pseudo-CT [47], [144], [146]. The atlas-
based methods are less sensitive to the MRI acquisition
artifacts than segmentation-based approaches.

However, the main limitation of the single atlas-based
method is the error due to the residual misregistration,
which can be mainly attributed to interpatient anatomic varia-
tions [19], [99]. In general, it is not suitable for patients after
surgery and those with implants. The solutions to the draw-
backs of the single atlas-based method include the combination
of atlas-based and segmentation-based methods [45], [47],
[142], [143] (Fig. 11) and the use of multiple atlases [141],
[145], [148]. In the multiatlas-based approaches, the regional
intensity distribution of the pseudo-CT is optimized by apply-
ing a weighted average of multiple pseudo-CT images derived
from a large dataset of CT and MRI atlas pairs, thus reduc-
ing the error in the PET AC due to incomplete registration
and patient variability; which, however, increases the compu-
tational time (Fig. 12). Although the atlas-based approaches
exhibited suitable performances in the brain PET/MRI stud-
ies, with the exception of postoperative patients and patients
with implants, the application of the atlas-based approaches
to the entire-body PET/MRI studies is still challenging due
to their limitations with respect to the significant anatomical
variations of the organs in the chest and abdomen, especially
in cancer patients.

E. AC for RF Coils

Although MR RF coils cause significant attenuation of PET
photons, they are not typically visible in MR images. The
attenuation by rigid coils, such as the head and spine coils,
in addition to the patient table, is corrected by the addition
of the CT-based μ-map of these components to the patient
μ-map. However, the AC for flexible coils is not conducted in
commercial PET/MRI scanners although PET quantification
errors up to 20% are yielded [149]–[151]. There is a modified
MLAA algorithm proposed to estimate the attenuation of flex-
ible coils and other hardware components [115]. A detailed
review on the AC for MR coils in PET/MRI can be found
in [149].

V. NEW EMERGING PET SCANNERS

A. Brain-Dedicated PET

With the aging of the global population, neurodegenerative
diseases, such as Alzheimer’s disease and Parkinson’s disease,
have become more common. Moreover, PET is a useful clini-
cal tool for the accurate visualization of the biomarker present
in the brain related to various neurodegenerative diseases (e.g.,
amyloid-β plaques or strands of microtubule-associated pro-
tein tau) [152]–[155]. However, a relatively high level of
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Fig. 12. Multiple atlas-based AC. (Reprint from [141] with permission; c© 2014 IEEE.)

radiation exposure and a long scan time, in addition to the
high costs of hybrid PET/CT and PET/MRI scans, are the
main drawbacks of current PET examinations. For the solution
of these drawbacks, many brain-dedicated stand-alone PET
scanners have been developed, such as helmet-type or wear-
able PET scanners used on seated patients [21], [156]–[159]
[Fig. 13(a)].

As previously mentioned, a major technical limitation to
brain-dedicated stand-alone PET scanners is the lack of phys-
ically measured μ-maps for attenuation and scatter correc-
tions. The calculated AC based on predetermined attenuation
coefficients for soft tissue and bone is a simple solution for
brain-dedicated PET scanners [67], [68]. However, the accu-
racy of the calculated AC is limited by the nonuniformity of
tissue compositions owing to pathologic conditions and the
complex structure of facial bones. Moreover, the calculated
AC generally leads to the underestimation of the brain PET
intensities in frontal and occipital lobes [69], [70]. Although
the atlas-based AC method is an alternative solution, it exhibits
similar drawbacks, as previously described [131].

B. Total Body PET/CT

The low-dose capacity of total-body PET/CT is limited by
the CT radiation dose. A major factor that determines the phys-
ical sensitivity of the PET scanner is the axial length. By the
increase of the axial length from 20 cm to 2 m in total-body
PET, the effective sensitivity of the PET scan is increased
by 40-fold [23]. For the same scan time and counting statis-
tics, the radiation dose in the PET scan can be remarkably
reduced [Fig. 13(b)]. However, the radiation dose from the
CT scan that still needs for anatomical localization and AC is
considerably high [24]. The CT dose reduction based on deep
neural networks has attracted significant research attention in
the medical imaging field [160]–[162], especially with respect
to effective dose reduction in the total body PET/CT.

In the applications that do not require detailed anatomi-
cal information provided by CT, emission-only approaches,

Fig. 13. New emerging PET scanners: (a) brain dedicated PET scanner with-
out CT, (b) low-dose imaging with total body PET (10-min scan obtained
52.5 min after the intravenous injection of 25 MBq 18F-FDG.) (Reprint
from [23] and [156] with permission; c© 2019 SNMMI and IPEM.)

as described in the following sections, are effective for the
realization of extremely low-dose studies. In particular, the
DL-based conversion of NAC PET to attenuation-corrected
PET [29]–[33], in addition to the DL-enhanced simultaneous
activity and attenuation reconstruction [25]–[28], are suitable.

VI. SIMULTANEOUS ACTIVITY AND ATTENUATION

RECONSTRUCTION

A potential solution to the above-mentioned drawbacks
related to PET/CT and PET/MRI, in addition to stand-alone
brain PET and total-body PET, is simultaneous activity and
attenuation reconstruction. However, the performance of the
current simultaneous activity and attenuation reconstruction
algorithms is dependent on the timing resolution of the PET
scanner.

The application of spatial constraints to the uncertainty of
the event location in PET activity reconstruction by the use
of the TOF information allows for an increase in the effective
sensitivity of the PET system and improvement of signal-to-
noise ratio [163], [164]. The effective gain in the sensitivity,
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Fig. 14. Robustness of TOF PET to the errors in data correction (phan-
tom images reconstructed without the application of the physical correction
factors). (Reprint from [168] with permission; c© 2017 AAPM.)

Fig. 15. Joint estimation of activity and attenuation using MRI-based prior:
(a) Dixon in-phase MRI, (b) Dixon MRI-based μ-map, (c) MLAA μ-map
without MRI-based prior, and (d) MLAA μ-map with MRI-based prior.
(Reprint from [179] with permission; c© 2018 IPEM.)

which is dependent on the patient size and system timing res-
olution, allows for the improvement of the diagnostic accuracy
of PET and/or the reduction of the scan time or radiation
dose [165]. The TOF information is effective for the reduc-
tion of the PET image artifact or quantification error due
to inconsistent or missing data in PET measurements. This
is because the TOF information allows for a more accurate
determination of the annihilation event location in the line
of response [166], [167]. Therefore, the images of the PET
systems with precise timing resolution are influenced less by
photon attenuation and Compton scattering. In addition, the
TOF PET systems yield fewer artifacts due to the misalign-
ment of emission and transmission data in AC than non-TOF
PET systems (Fig. 14) [168], [169].

The information on the spatial origin of annihilation pho-
tons provided by TOF measurement allows for the distinction
of events due to the radiotracer within the body from those due
to external transmission sources. Simultaneous emission and
transmission scans with external transmission sources based on
the TOF information were proposed to overcome the limita-
tions of the current AC methods in PET/MRI [170]. Moreover,
the natural background radioactivity present in the lutetium-
based scintillators used in PET scanners can be discriminated
from the emission events based on TOF information. Upon
the decay of 176L due to beta emission with prompt cascad-
ing gamma rays with the energies of 307, 202, and 88 keV;
a transmission scan can be obtained by using 307 and 202 keV
gamma rays simultaneously with an emission PET scan [171].

Fig. 16. Combined atlas-based AC and pattern recognition: (a) Dixon
in-phase MRI, (b) CT-based AC, (c) Dixon MRI-based AC, and (d) com-
bination of atlas and pattern recognition. Upper row: μ-maps. Bottom row:
corresponding emission images. (Reprint from [108]; c© 2011 SNMMI.)

The TOF information allows for a more accurate simul-
taneous reconstruction (or joint estimation) of the activity
and attenuation based only on the attenuated emission
dataset [172]–[175]. As demonstrated theoretically and exper-
imentally, the solution of simultaneous reconstruction is
determined up to a constant based on available TOF
information [173]. An effective method for simultaneous
reconstruction is the previously mentioned MLAA algorithm.
In the MLAA, activity and attenuation images are updated
by the alternate application of the maximum-likelihood
expectation–maximization and maximum-likelihood transmis-
sion tomography equations [174]. Given that the μ-map
is provided with the activity image, image-domain pri-
ors for the improvement of the accuracy and convergence
of the algorithm (e.g., zero attenuation outside body con-
tour and known attenuation in some body parts) can be
applied [166], [174]. However, due to the insufficient tim-
ing resolution of current clinical PET systems, the MLAA is
subject to slow convergence, the high noise level in the
μ-map, and the crosstalk between the activity and attenuation
distribution [172]. Another approach to the simultaneous
activity and attenuation reconstruction is the maximum-
likelihood ACF (MLACF) [176], [177]. Given that the
MLACF allows for the determination of the ACF without the
reconstruction of the μ-map, the convergence rate is higher
and the computation complexity is lower than those of the
MLAA. However, the knowledge of the total prior activity is
necessary for MLACF to determine the constant scaling, given
that no image-domain prior can be applied. In addition, a scat-
ter estimate of the emission measurement should be assumed
in the joint estimation algorithms [178].

Several methods have been proposed for the improve-
ment of the MLAA algorithm [178]–[180]. For example,
a Gaussian mixture model was employed in the attenuation
estimation to utilize the prior knowledge that the histogram
of the attenuation values generally consists of several dis-
tinct peaks corresponding to fat, soft tissue, and bone [180].
In this approach, spatial information derived from the Dixon
MR images was incorporated into the Gaussian mixture model
for the enhancement of known tissue types, thereby lead-
ing to the considerable suppression of noise and crosstalk.
Ahn et al. [179] proposed another approach for the exploita-
tion of the synergies between the MLAA- and Dixon-based AC
(Fig. 15). In this method, the weight of the Dixon MRI-based
prior used in the MLAA framework was modulated based on
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Fig. 17. Different DL-based approaches for PET AC.

the MR signal strength. In the regions with strong MR signals,
such as those of soft tissue and fat, large prior weights were
applied. Conversely, a small weight is assigned to the regions
where the MR signal was low and the tissue class cannot be
clearly distinguished, which may include bones, internal air,
metallic implants, and lungs; thus allowing for the estima-
tion of attenuation coefficients in these regions based on the
MLAA. Recently, iterative methods that estimate the scatter
distribution during the MLAA reconstruction accelerated using
an ordered subset were proposed as more practical solutions
for PET AC [166], [178].

VII. ARTIFICIAL INTELLIGENCE IN NUCLEAR MEDICINE

Artificial intelligence and machine learning are two of the
most widely investigated mathematical and engineering tech-
niques in the biomedical engineering field [181]–[187]. In
recent decades, various techniques based on artificial intel-
ligence and machine learning have been applied to nuclear
medicine images. For a more accurate determination of the
annihilation photon interaction position in the scintillation
crystal array in the PET detector block, position decoding
methods based on ANNs have been proposed [188], [189].
Data-driven approaches such as blind source separation tech-
niques based on unsupervised neural networks have been
extensively researched for the extraction of different physi-
ological components (e.g., arterial input function for kinetic
modeling) from dynamic PET scans [190]–[193]. In addi-
tion, various machine learning techniques have been applied to
myocardial perfusion SPECT images for the identification of
the perfusion defects and location, in addition to the improve-
ment of the diagnostic and prognostic accuracies [194].

Moreover, attempts were initially made to utilize the
ANNs for the improvement of the AC in nuclear medicine
images [48]–[51]. Yu et al. used an ANN that involves a prin-
cipal component analysis and multilayer perceptron for the
improvement of the segmented AC. The input to the ANN
was the local matrix with 7 × 7 pixels of the measured
μ-map, as obtained using transmission data over a period

of 5 min, and the outputs were the conditional probabilities
that the center pixel of the matrix was related to the three
different tissue classes (air, lung, and soft tissue) [48]. The
desired output of the ANN for each pixel was assigned based
on the segmented attenuation map obtained using transmis-
sion data over a period of 3 h. The trained ANN yielded
superior μ-maps and corresponding emission images than the
measured AC. In addition, there was no significant difference
between the qualities of the images based on transmission
data over periods of 5 and 25 min with the application of
the ANN-based segmented AC method. The scatter estima-
tion from five energy windows was estimated using an ANN
by Ogawa and Nishizaki [49]. Moreover, ANN-based simul-
taneous scatter and attenuation compensation in SPECT and
planar scans were also attempted [50], [51].

Hofmann et al. [46], [47] recently proposed an MR-based
AC method that combined atlas-based AC and pattern recog-
nition using a registered atlas as prior knowledge. In this
approach, nonrigid registration is conducted between MRI/CT
pairs in the atlas database and the new MR image of the sub-
ject, and all the neighboring MR patches are found in the
registered database to perform Gaussian process regression on
patch and position to yield a CT estimate for every pixel. This
approach allows for the PET quantification with a mean error
of 3.2% in the brain and 7.7% in whole-body PET images.
However, the error was high in the thorax region (14.0%),
and in patient with metal implants (Fig. 16). Ribeiro et al. [45]
combined atlas-based and UTE MRI-based AC methods using
a feedforward neural network. In this method, neighboring
pixel values in a registered CT atlas and UTE MR images
were inputted into the neural network to yield an estimated
CT value for each pixel. In the bone region of the head, the
ANN-based approach exhibited a higher Dice similarity (0.77)
than the atlas-based method (0.51).

In most areas of nuclear medicine, DL-based image pro-
cessing and analysis techniques have received significant
research attention [184], [195], [196]; namely, the DL-based
image reconstruction and denoising for radiation dose reduc-
tion [197]–[200], automatic segmentation of various organs
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TABLE I
DL-BASED APPROACHES FOR PET AC

and structures for quantitative image analyses [201], [202],
image spatial normalization [203], [204], voxel-based internal
dosimetry [205], and the image-to-image transition for
PET AC. Moreover, the DL-based lesion detection and
image interpretation received significant research atten-
tion [206]–[209].

Several different DL-based approaches have been proposed
for PET AC, as summarized in Fig. 17 and Table I. For the
realization of improved AC in PET/MRI studies, deep neu-
ral networks are employed for the conversion of diagnostic or
nondiagnostic MR images to a pseudo-CT or μ-map [34]–[44].
Alternative approaches are as follows: the derivation of
pseudo-CT or attenuation-corrected PET images from NAC
PET, and the improvement of the outputs of simultaneous
activity and attenuation reconstruction using DL [25]–[33].

VIII. DEEP LEARNING: MRI TO CT

In recent years, significant research attention has been
directed toward the derivation of pseudo-CT from MR images

based on DL approaches. The objective of the above-
mentioned studies was the utilization of MR images for
PET AC in PET/MRI, and radiation treatment planning
based on MRI [210]–[213]. In radiation treatment plan-
ning, the superior soft-tissue contrast of MRI relative to
CT allows for a more accurate treatment target and nor-
mal structure delineation [214]. The MR-only simulation and
planning based on the MRI-to-CT conversion has several
advantages over those based on co-registered CT, namely, the
minimization of the dosimetric error due to spatial misregistra-
tion and the temporal changes of anatomy between MRI and
CT. Moreover, the inconveniences and costs of patients can be
reduced by the elimination of redundant CT scans [215].

A. Diagnostic MRI to Pseudo-CT

The initial studies conducted on the utilization of DL meth-
ods for the generation of pseudo-CT from MRI were focused
on the conversion of MR images obtained using routine diag-
nostic MR pulse sequences, such as T1 and T2 into the
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Fig. 18. Two parallel 3-D CNN pathways for multiscale patch-based learning of MRI-to-CT translation. (Reprint from [43] according to the publisher’s open
access policy.)

pseudo-CT images [38]–[44]. The T1-weighted MR images
are obtained using a short TE and repetition time (TR), and
their intensity contrast is predominately determined by the
T1 relaxation properties of tissues. The T1 pulse sequence
provides anatomical images with close proximity to the tis-
sue appearances in the macro scale. The T2-weighted MRI
is produced using long TE and TR times that yield the image
contrast determined by the T2 relaxation properties. Unlike the
UTE, ZTE, and Dixon MR images currently used for AC in
PET/MRI, T1 and T2 images are obtained in almost all routine
MRI protocols. Therefore, if the pseudo-CT or μ-map can be
generated from the conventional T1- and/or T2-weighted MR
images with sufficiently small PET quantification errors, the
PET/MR imaging workflow can be considerably improved by
eliminating the additional MR pulse sequences only required
for PET AC with small diagnostic values.

In particular, Nie et al. employed a three-dimensional (3-D)
fully convolutional neural network (FCN) that better preserves
the neighborhood information in the predicted pseudo-CT
than the conventional convolutional neural network (CNN),
for the learning of end-to-end mappings from pelvic T1 MR
images to their corresponding CT [40]. The mapping from
an MRI patch with dimensions of 32 × 32 × 16 to a CT
patch with dimensions of 24 × 24 × 12 was learned in
this study using 6000 patches sampled from 21 pairs of CT
and MRI volumes. Moreover, an adversarial training strategy
was demonstrated for the training of the FCN, which allowed
for a more accurate and robust synthesis of the pseudo-CT,
and the loss function based on the image-gradient-difference
alleviated the blurriness of the pseudo-CT [39]. Alternatively,
the U-net architecture [216], which is widely used in medi-
cal image segmentation and other image-to-image translation
tasks [202], [205], [217], was adopted for the conversion of
a 2-D T1 MRI slice to its corresponding 2-D CT (2-D slice-
to-slice mapping) [42]. In this study, the trained network using
2400 slices collected from 15 training subjects provided a sig-
nificantly higher accuracy than the atlas-based method under
evaluation using three different metrics computed between the
original and synthetic head CTs (voxel-wise mean absolute
error, mean-squared error, and Pearson correlation in pixel
intensity). Bradshaw et al. [43] used T2 and T1 LAVA Flex
MR images as inputs to a deep network that generates a four-
class μ-map for pelvic PET/MRI studies. The network used

Fig. 19. Negligible impact of small errors in the pseudo-CT generation on the
corrected PET images: (a) pseudo-CT generated using CNNs, (b) correspond-
ing T2 MRI, (c) corrected PET images using pseudo-CT, and (d) corrected
PET images using ground-truth CT. (Reprint from [43] according to the
publisher’s open access policy.)

in this study has two 3-D CNN pathways for the patch-based
learning of MRI-to-CT translation. The two parallel CNN
pathways trained simultaneously and then combined via fully
connected layers handled different receptive fields relative to
the input image, thus allowing for multiscale processing. This
is necessary for the efficient utilization of local and contextual
information, which is useful for a better understanding of the
complex anatomy of the human body (Fig. 18) [218]. Although
several errors were observed in the four-class μ-map gener-
ated by the network, e.g., discontinuous bone segments and
misplaced bone, they were found to have a negligible impact
on the corrected PET images (Fig. 19).

Unlike CT, the same MRI pulse sequence can yield differ-
ent image intensities and contrasts depending on the magnet
field strength and scanner type [42]. Liu et al. [41] addressed
this major technical issue in DL-based MRI-to-CT translation.
In this study, a convolutional autoencoder (CAE) network
that learned MRI-to-CT mapping based on T1-weighted MR
images obtained using a 1.5-T MR scanner was applied to
data obtained at 3.0-T MR scanner with a T1 pulse sequence.
It should be noted that the CAE that learned the translation
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Fig. 20. Feasibility study of applying MRI-to-CT translation rule
learned from 1.5-T MR images to 3.0-T. (a) Pipeline for pseudo-CT gen-
eration and PET reconstruction. (b) Superior performance of DL-based
AC (deepMRAC) to Dixon MRI-based (System MRAC-1) and atlas-based
(System MRAC-2) AC. (Reprint from [41] with permission; c© 2018 RSNA.)

rule from the 1.5-T MR exhibited a remarkable performance
for 3.0-T images. In addition, the CAE network yielded more
accurate results to other conventional MR-based AC methods
in brain 18F-FDG PET/MRI studies (Dixon- and atlas-based)
with respect to the similarity of the μ-map with CT-based map,
and the accuracy of the attenuation-corrected PET activity
(Fig. 20).

B. Nondiagnostic MRI to Pseudo-CT

It has been demonstrated that DL approaches are useful
for the improvement of the generation of μ-maps from UTE,
ZTE, and Dixon MRIs currently used in clinical PET/MRI
systems for AC [34]–[37]. Moreover, the DL is an effec-
tive method for the integration of multiparametric information
provided by different MR sequences, for the generation of
more accurate μ-maps. The use of PET/MRI specific MR
pulse sequences as input data to the deep neural network

Fig. 21. DL-based pseudo-CT generation from UTE MRI: (a) ground-truth
CT, (b) UTE only, (c) UTE and DL, (d) subtraction of (a) from (b), and (e) sub-
traction of (a) from (c). (Reprint from [36] according to the publisher’s open
access policy.)

would be more effective than the use of conventional T1- and
T2-weighted MRI inputs for μ-map generation, given that
they were designed to allow for better bone delineation or
water/fat segmentation. Jang et al. [37] trained a convolu-
tional encoder–decoder (CED) network that was pretrained
with T1-weighted MR images to yield air, soft tissue, and bone
labels from UTE image inputs. For the generation of pseudo-
CT images, the tissue labels estimated by the CED network
were refined by the application of a conditional random field-
based correction [219], and then combined with fat and water
images generated using a dual-echo ramped hybrid encod-
ing (dRHE) pulse sequence that allows for UTE, fat, and water
images to be obtained with a short scan time (35 s). In brain
PET/MRI studies using 18F-FDG, the DL-based approach out-
performed the vendor’s soft-tissue-only and the atlas-based
ACs, in addition to the previous approach with dRHE acqui-
sition and histogram-based image segmentation. Alternatively,
a U-net-based network was trained by Ladefoged et al. to yield
pseudo-CT from UTE images [36]. In this approach, 16 neigh-
boring slices were employed for each of the two echo images
obtained using echo times of 0.07 and 2.46 ms, and the R2*-
map derived from the echo images were used as inputs to
the 3-D U-net. In the O-(2-18F-fluoroethyl)-L-tyrosine (18F-
FET) brain PET/MRI studies, the DL-based method allowed
for a more robust AC than the RESOLUTE method, which
was previously proposed (Fig. 21) [124].
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Fig. 22. DL-based integration of multiparametric MR information to
obtain pseudo-CT (ZeDD-CT) for pelvic PET/MRI: network structure and
comparison with ground-truth CT. (Reprint from [35] with permission; c©
2018 SNMMI.)

The DL-based approaches improved the AC in pelvic
PET/MRI studies. Leynes et al. [35] demonstrated the high
efficiency of DL-based information integration provided by
multiparametric MR pulse sequences for PET AC in pelvic
PET/MRI. The patch-based learning of a CNN based on
the U-net architecture was conducted using a bias-corrected
and soft-tissue-normalized proton-density ZTE image, Dixon
fractional fat image, and Dixon fractional water image as
inputs. Fig. 22 presents the output images (ZeDD-CT) from
the deep neural network, which can depict bone structures
and soft tissues without the application of segmentation or
other image processing, with the exception for the bias cor-
rection and soft-tissue normalization in ZTE images. For the
evaluation of the trained network on 30 bone lesions and
60 soft-tissue lesions in pelvic 18F-FDG and 68Ga-PSMA-
11 PET/MRI studies, the error in PET quantification was
reduced by a factor of 4 in bone lesions and by a factor of
1.5 in soft-tissue lesions (the root-mean-squared error by DL
was 2.68% and 4.07% in bone and soft tissue, respectively).
Moreover, Torrado-Carvajal et al. [34] investigated the feasi-
bility of only using the Dixon images as inputs to the deep
neural network for AC in pelvic PET/MRI. In this study, four
2-D slices (water, fat, in-phase, and out-of-phase) of Dixon-
VIBE MR images were provided to a CNN as inputs, to yield
corresponding pseudo-CT slices (Fig. 23). The DL approach
resulted in a decrease in the PET quantification error in bone

Fig. 23. DL-based pseudo-CT generation from Dixon MRI (DIVIDE: Dixon-
ViBE deep learning): (a) μ-maps and (b) PET images. (Reprint from [34] with
permission; c© 2019 SNMMI.)

tissue by a factor of 6.75, relative to conventional Dixon-
based AC. The variability in the error was reduced by a factor
3.5, which indicates that the DL-based method yields a more
precise PET quantification. This approach has the advantages
of a shorter MR scan time than that obtained with the ZTE
and Dixon combination as inputs, given that only the standard
Dixon-VIBE images are used, thus allowing for the retrospec-
tive processing of already obtained PET/MRI data with only
Dixon-VIBE sequence for AC.

IX. DEEP LEARNING: EMISSION-ONLY APPROACHES

The PET AC based only on the emission PET data and
deep neural network with no anatomical image input is more
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Fig. 24. Robustness of DL-based emission-only pseudo-CT generation to
head movement between CT and PET scans. The red arrow indicates a notice-
able movement. (Reprint from [30] according to the publisher’s open access
policy.)

challenging than previously described anatomical image-based
approaches. However, the methods that are only dependent on
the emission PET have several advantages over the anatomical
image-based approaches. When the neural networks are trained
for AC, these approaches are not subject to the errors due to the
different positioning and organ displacement during the scan.
Moreover, they can be applied to PET/CT and stand-alone PET
data in addition to PET/MRI.

A. NAC PET to Pseudo-CT

One of these emission-only approaches is utilizing NAC
PET images as input to generate pseudo-CT [30], [31], [33]
or attenuation-corrected PET images [29], [32]. Liu et al. [30]
trained a CAE modified to have a U-net-like structure through
the addition of symmetrical short connections between encod-
ing and decoding stages to generate pseudo-CT images from
NAC PET by using 100 18F-FDG brain PET/CT datasets. The
average absolute ROI-level error in the reconstructed PET
images of the 28 testing subjects was less than 3% in the
21 brain regions evaluated. The error in pseudo-CT generation
due to head movement between PET and CT scans was also
mitigated by applying this emission-only approach (Fig. 24).
In addition, the missing parts of the skull could be predicted by
the network in pseudo-CT, although no anatomical information
was provided to the network (Fig. 25). Armanious et al. [33]
also demonstrated the feasibility of generating pseudo-CT
from NAC 18F-FDG brain PET images for which they
used generative adversarial networks (GANs) trained with
50 PET/CT datasets. To translate 2-D NAC PET slices into
corresponding pseudo-CT slices, they utilized the conditional
GAN framework. In this framework, a generator network con-
verts NAC PET into pseudo-CT, and a discriminator network
distinguishes the pseudo-CT from the corresponding ground-
truth CT. Both these networks were simultaneously trained.
No differences in diagnostic image information were observed

Fig. 25. Prediction of missing parts in the skull by DL-based pseudo-CT
generation from NAC PET. (Reprint from [30] according to the publisher’s
open access policy.)

between PET images corrected for attenuation using ground
truth and pseudo-CT when the clinical evaluation was con-
ducted on 20 datasets of various brain disorders. The absolute
SUV error over all the brain regions was less than 5%. To gen-
erate pseudo-CT from NAC PET for whole-body PET studies,
Dong et al. [31] utilized a cycle-consistent GAN (CycleGAN)
framework (Fig. 26). This method simultaneously learned
targeted transformation from NAC PET to pseudo-CT and
its inverse transformation using 3-D patches extracted from
80 whole-body oncologic 18F-FDG PET/CT studies. In the
CycleGAN framework, a self-attention U-net architecture, in
which attention gates are integrated into a standard U-net
architecture for better identification of semantic contextual
information and mitigation of noise disturbance, was used as
a generator. In addition, a fully convolutional network was
used as a discriminator in the CycleGAN framework. A vali-
dation study on 39 independent patients showed that the mean
absolute error between pseudo-CT and ground-truth CT was
less than 110 HU. The mean error and normalized mean-
squared error in the PET quantification of the brain, heart, left
kidney, right kidney liver, and lesion ranged from −1.06% to
3.57% and 0.43% to 1.80%, respectively. However, the errors
were large in the lung, mainly owing to tissue heterogeneity,
and no evaluation results on bone lesions were reported.

B. NAC PET to Corrected PET

The generation of attenuation-corrected PET images directly
from NAC PET images can prevent errors due to misalign-
ment and misregistration between different modality images
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Fig. 26. DL-based pseudo-CT generation from NAC whole-body PET images. (a) Ground-truth CT. (b) Pseudo-CT from NAC PET. (c) Corrected PET using
ground-truth CT. (d) Corrected PET using pseudo-CT. (Reprint from [31] with permission; c© 2019 IPEM.)

while training and testing the networks. The processing time
is also shorter for PET AC because additional image recon-
struction is not necessary. A deep CAE was utilized by
Shiri et al. for the direct transition of 18F-FDG brain PET
images [29]. Their results demonstrated a high peak signal-
to-noise ratio (39.2±3.65) and structural similarity index
metric (0.989±0.006) between the predicted and ground-truth
attenuation-corrected PET images, leading to the low mean
relative error in SUVmean (0.02%) and SUVmax (−3.87%)
quantification. The same approach was also used for the
AC in whole-body 18F-FDG PET images by Dong et al.
(Fig. 27) [32]. This study was conducted using a 3-D patch-
based CycleGAN framework, and the average mean error and
normalized mean-square error between attenuation-corrected
PET images by using the CycleGAN framework and CT-
based AC were 0.62% and 0.72% for whole-body PET. The
performance of the CycleGAN framework was better than that
of the U-net architecture and GAN. Although this direct con-
version approach was feasible in these initial studies, it should
be noted that the DL error in this approach directly leads to
PET quantification error in the image space.

C. Improved Simultaneous Reconstruction

Another emission-only approach is improving the accuracy
of simultaneously reconstructed activity and μ-maps by using
DL [25]–[28], [220], [221]. As previously mentioned, joint
emission and transmission estimation algorithms augmented

by accurate TOF information allow the simultaneous recon-
struction of activity image and μ-map (or ACF) [173]–[180].
The μ-map generated by applying the MLAA algorithm to
uncorrected emission PET data is directly related to the atten-
uation coefficient of tissues for 511-keV annihilation photons.
In addition, the MLACF provides an ACF that contains fun-
damentally the same information. However, the quality and
accuracy of these joint estimation algorithms are not suffi-
ciently good for clinical routine use mainly because of the
limited timing resolution of current PET scanners. In addition,
the simultaneous reconstruction algorithms require a refined
calibration of the TOF PET system and improved modeling
of the PET acquisition physics [222].

To overcome the limitations of current simultaneous
reconstruction algorithms, Hwang et al. [26] proposed
a DL-based enhancing method and verified its feasibil-
ity by using clinical brain PET/CT datasets. In this ini-
tial study, three different CNN architectures (CAE, U-net,
and hybrid of CAE and U-net) were designed and
trained using 2-D slices of MLAA activity image and
μ-map to learn CT-based μ-map (Fig. 28). To demon-
strate the feasibility of the proposed method, the authors
chose 18F-fluorinated-N-3-fluoropropyl-2-β-carboxymethoxy-
3-β-(4-iodophenyl)nortropane (18F-FP-CIT) brain PET/CT
dataset, one of the most challenging datasets for simulta-
neous reconstruction due to severe crosstalk between activ-
ity and attenuation and the high background noise in the
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Fig. 27. DL-based direct generation of attenuation-corrected PET images
from NAC PET. (a) CT AC. (b) DL-based approach. (c) Difference. (Reprint
from [32] with permission; c© 2020 IPEM.)

nonspecific binding brain regions. The networks were trained
with 800 000 slices that were obtained by applying augmen-
tation methods (rotation and flipping) to 32 patients’ datasets.
These networks remarkably reduced the noise and crosstalk
in the MLAA-generated μ-maps. Among the three network
architectures, the hybrid network of CAE and U-net yielded
the most similar μ-maps to CT-based μ-maps: the Dice simi-
larity coefficient between CT-based and DL-based μ-maps in
the whole head was 0.79 in the bone and 0.72 in air cavities.
The error in the regional activity and binding ratio quantifi-
cation was only approximately 5% when the hybrid network
was applied.

This DL approach, which enhanced the accuracy of simul-
taneously reconstructed μ-map, was further improved by
applying 3-D patch-based learning. Choi et al. [220] compared
the performance of 2-D slice-to-slice and 3-D patch-to-patch
transition strategies to improve the MLAA μ-map. In this
study, four different U-net models (2-D, 2-D residual, 3-
D, and 3-D residual U-nets) were trained and tested with
18F-florbetaben brain PET/CT scan data of 78 subjects sus-
pected with Alzheimer’s disease. The results showed that 3-D
patch-based learning was superior to 2-D slice-based learning:
Dice similarity coefficient with CT-based μ-maps for bone in
the head region was 0.67 and 0.80 in the 2-D U-net and 3-D
U-net, respectively. In addition, the 3-D patch-based learning
allowed better continuity of μ-map in the axial direction. The
residual learning was only useful for 2-D slice-based learning.
The 3-D patch-based learning with U-net has also improved
the MLAA μ-map and PET quantification in the whole-body
18F-FDG PET studies (Fig. 29) [28]. In his study, which was
conducted with PET/CT dataset of 100 patients, a 3-D U-net
trained with 1.3 million patches derived from 60 whole-body
PET/CT dataset improved the Dice similarity in bone tissues
from 0.36 (original MLAA) to 0.77 (DL-enhanced MLAA);
moreover, the standard uptake value (SUV) correlation (R2) in
suspicious bone lesions improved from 0.91 (original MLAA)
to 0.99 (DL-enhanced MLAA). The authors also showed the

Fig. 28. Improving the accuracy of simultaneously reconstructed activ-
ity and attenuation maps using DL. (Reprint from [26] with permission; c©
2018 SNMMI.)

strong potential of improved AC by this method in whole-body
PET/MRI studies: relative to the four-segment map derived
from CT, the deep-leaning-enhanced MLAA showed consider-
ably higher peak signal-to-noise ratio in attenuation-corrected
activity map (60.4 versus 49.9) and lower SUV quantification
error in vertebral lesions (−2.2% versus −9.4%).

Another approach to improve the DL-enhanced MLAA is
applying acquisition physics-based additional constraints in
the projection domain of the μ-map. Shi et al. [25] enforced
the similarity in the projection domain between the predicted
and CT-based μ-maps based on the fact that the line integral
of the attenuation coefficient along the LOR is used for AC
instead of attenuation coefficient itself. By adding the loss
function that measures the line-integral difference between
predicted and CT-based patches (projection domain) to the
loss function that measures image intensity and gradient dif-
ferences (image domain), more accurate μ-maps and corrected
PET images could be obtained. This study is a good example
demonstrating how a better understanding of PET acquisi-
tion physics and correction algorithms can result in better DL
performance for PET AC.

The advantages of emission-only approaches were better
demonstrated by the deep-leaning-enhanced MLAA. Because
attenuation coefficients are estimated from the uncorrected
emission PET data acquired with monoenergetic 511-keV
annihilation photons, metal artifacts caused by the low-energy
photon starving in X-ray CT were not observed in simultane-
ously estimated μ-maps (Fig. 30); this enables more accurate
PET AC in patients with metallic implants [27]. In addi-
tion, there is no time discrepancy between the activity and
attenuation information that is derived only from the emission
measurement; this allows for better spatiotemporal correla-
tion between activity images and μ-maps as well as lower
error associated with their spatiotemporal mismatch. Fig. 31
shows how DL-enhanced MLAA mitigates the arm position
mismatch artifact that is frequently observed in PET and
CT scans [25]. In addition, the difference between the CT-
based and DL-enhanced MLAA-based attenuation-corrected
whole-body PET images was the largest in lung boundary and
upper liver dome, which are most vulnerable to the position
mismatch artifacts caused by respiratory motion in PET/CT
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Fig. 29. Improved MLAA μ-maps by DL in whole-body 18F-FDG PET studies. (Reprinted from [28] with permission; c© 2019 SNMMI.)

Fig. 30. Absence of metal artifacts in the μ-map derived from emission
data using MLAA and DL.

studies [28]. This observation indicates the reduction of the
mismatch artifacts by the MLAA and DL. This approach also
allowed a further improvement in the position-mismatch arti-
fact reduction by enabling the respiratory phase-matched AC
in PET/CT [221]. In this study, MLAA reconstruction was
applied to every respiratory-gated emission PET frame that
was generated using a data-driven gating method, and the
gated μ-maps were enhanced by the DL and used for deriving
motion vector fields between the gating phases; these vec-
tor fields were used to generate motion-free phase-matched
attenuation-corrected PET images.

X. DEEP LEARNING: FUTURE DIRECTION

Previous studies reviewed in this article have shown that
DL is a useful approach to improve the accuracy of AC in

Fig. 31. Mitigation of arm position mismatch artifact using MLAA and DL:
(a) CT-based μ-map, (b) μ-map derived from emission data using MLAA and
DL, (c) corrected PET using CT-based μ-map, and (d) corrected PET using
MLAA and DL. (Courtesy of Yihuan Lu at Yale University.)

PET/MRI. Moreover, the DL-based approaches that do not
require MRI input can be utilized for various types of arti-
fact reduction in AC for PET/CT. However, such promising
results were mostly obtained from the regional 18F-FDG PET
scans on the brain and pelvic region, where the large-sized
bone structures with relatively simple shapes, such as skull,
hip bones, and femur, are dominant attenuating materials. In
addition, photon-counting statistics in the regional PET scans
are better than multibed whole-body scans. Therefore, further
investigations are required to prove the feasibility of proposed
approaches in the application to whole-body PET studies with
lower counting statistics and radiotracers other than 18F-FDG.

A major obstacle in whole-body PET/MRI AC investiga-
tions is the limited availability of a large number of registered
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TABLE II
PROS AND CONS OF DL-BASED APPROACHES FOR PET AC

TABLE III
PROS AND CONS OF DEEP NEURAL NETWORK MODELS USED FOR PET AC

CT and MRI pairs and the lack of accuracy of nonlinear regis-
tration between them. A promising approach to overcome this
challenge is the use of CycleGAN that employs cycle con-
sistency loss as an indirect structural similarity between the
input and synthesized images [223]–[225]. Further evaluation
of this method for PET/MRI AC will be necessary.

The pros and cons of different DL-based AC methods and
neural network models used for them are summarized in
Tables II and III. However, it is currently difficult to iden-
tify the approaches and algorithms that can be employed for
the best performance of the DL-based AC method for PET/CT
and PET/MRI because each group uses different performance
matrices, and there is no available standard reference dataset
and processing pipeline to compare the performance of each
method. The research community should consider the estab-
lishment of a standard dataset and evaluation framework for

this important but challenging task in nuclear medicine [20].
In addition, the investigators should further consider identify-
ing the best input to the deep neural networks, to derive the
most accurate and robust attenuation-corrected PET images. In
this respect, a synergistic combination of different approaches
to achieve the best outcome should be considered. Most of
the previous investigations have used only a single type of
dataset as an input to the deep neural networks. However,
using multiscale, multisequence, and multiparametric inputs
to the networks seems to be a useful approach to enhance the
performance of DL-based AC methods [26], [28], [35], [43].
Moreover, an overlooked aspect, which has not been con-
sidered as an input to the networks, is the distribution of
scattered photons that is closely related with μ-map. Given
that the attenuation in PET is mainly due to Compton scat-
tering and several studies are showing the usefulness of the
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scattered coincidence measurements for improving the PET
AC [226]–[229], the DL-based scatter-to-attenuation approach
looks promising.

AC is also important for SPECT because of the increas-
ing use of theranostic agents that emit single gamma-ray
photons [5], [230]–[232]. Accurate absorbed radiation dose
estimation at voxel and organ level is only possible with
quantitively accurate SPECT data that is corrected for attenu-
ation, scatter, and collimator-detector response. In addition,
the use of quantitative SPECT for diagnostic purposes is
increasing [233]. However, the SPECT/CT that allows accu-
rate SPECT quantification is not widely available yet. A few
emission-only approaches used for DL-based PET AC will
be potentially useful for SPECT AC. Further development of
a unique approach to SPECT AC will be also necessary.
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