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Abstract—This article reviews the use of a subdiscipline of
artificial intelligence (AI), deep learning, for the reconstruction
of images in positron emission tomography (PET). Deep learning
can be used either directly or as a component of conventional
reconstruction, in order to reconstruct images from noisy PET
data. The review starts with an overview of conventional PET
image reconstruction and then covers the principles of general
linear and convolution-based mappings from data to images,
and proceeds to consider nonlinearities, as used in convolutional
neural networks (CNNs). The direct deep-learning methodology
is then reviewed in the context of PET reconstruction. Direct
methods learn the imaging physics and statistics from scratch,
not relying on a priori knowledge of these models of the data.
In contrast, model-based or physics-informed deep-learning uses
existing advances in PET image reconstruction, replacing conven-
tional components with deep-learning data-driven alternatives,
such as for the regularization. These methods use trusted models
of the imaging physics and noise distribution, while relying on
training data examples to learn deep mappings for regularization
and resolution recovery. After reviewing the main examples of
these approaches in the literature, the review finishes with a brief
look ahead to future directions.

Index Terms—Artificial intelligence (AI), deep learning, image
reconstruction, machine learning, positron emission tomography
(PET).

I. INTRODUCTION

ARTIFICIAL intelligence (AI) is now having a widespread
impact on many and diverse fields, including inverse

problems [1]. AI is wide-ranging, and generally concerns
algorithms for learning tasks of varying complexity (from
autonomous driving through to filtering out spam emails).
A specific subdiscipline of AI is referred to as deep learning,
[2] which usually involves artificial neural network (ANN)
mappings of inputs to outputs. Example inputs could be raw
data from sensing devices, and example outputs could be
classifications, processed results or images enhanced for par-
ticular tasks. The reasons for referring to these mappings as
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deep learning, as part of AI, are that 1) the mappings usu-
ally involve a cascaded series of operators (with their own
inputs and outputs) known as layers, giving the notion of
depth and 2) the operators use parameters which are learned
from example training datasets. In the training datasets, for the
case of supervised learning, example inputs are paired with
their corresponding desired outputs. For unsupervised learn-
ing, the training data may consist of example inputs only
(for learning of latent representations of the data [3]), or of
unpaired example inputs and example outputs [4]. A further
category, that of self-supervised learning [5], [6], needs only
input data examples and instructions on how to create labels
(rather than providing labels) thus reducing the need for human
interaction with the learning process. In the context of paired
inputs and outputs (whether supervised one to one pairings,
or an unsupervised pair of distributions of data), the map-
ping learned between the domains can then be subsequently
used on entirely new, never before seen input data, in order
to predict the output. Conversely, in the context of unsuper-
vised learning for a single dataset, the learned mapping can
be used to generate or reconstruct images which are restricted
to lie within a limited subspace/manifold/domain, correspond-
ing to the same subspace from which the training data were
sampled [7].

While ANNs have been applied to reconstruction in emis-
sion tomography from as early as 1991 [8], it was only with
various technical advances in optimization capabilities (made
available in deep learning toolboxes, such as TensorFlow,
originating from Google, and PyTorch, originating from
FaceBook) and the demonstrated success of deep learning in
other fields (such as object recognition from ImageNet data in
2009 [9]) that eventually, from ∼2017, deep learning reached
the world of medical image processing [10] and reconstruction
in emission tomography. The earliest examples for medical
image reconstruction, from 2016, include application to mag-
netic resonance imaging (MRI) [11], with in particular the
seminal work of Zhu et al. [12], also applied to MRI data.
Using deep neural networks for reconstruction of MR images
directly from k-space data, they also demonstrated preliminary
reconstruction results for positron emission tomography (PET)
sinogram data. From ∼2018 onward, AI methods exploit-
ing deep networks specifically for PET image reconstruction
were increasingly proposed [13], [14]. As would be expected,
AI methodology has also been applied to reconstruction in
other radiation-imaging modalities, such as CT and SPECT
(e.g., [15] and [16]). While this present review will focus on
AI for PET reconstruction, many of the approaches are largely
also applicable to SPECT, and even CT, thanks to the high
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flexibility of the mappings that can be trained according to
the supplied data in each case.

There have now been a number of reviews on AI, machine
learning and deep learning for inverse problems and medi-
cal imaging reconstruction (e.g., [1] and [17]–[19]), includ-
ing potential issues [20]. However, as indicated, this article
presents a review of the current state of progress of deep learn-
ing within image reconstruction for the specific modality of
PET. The format of this article is as follows. Section II reviews
the basic principles of conventional or model-based PET image
reconstruction. Section III describes the key paradigm shift
for PET reconstruction when deep learning is applied, giv-
ing a tutorial and overview of deep learning methodology.
Section IV briefly overviews four major ways that deep learn-
ing can be exploited within PET image reconstruction, and
Sections V–VII consider a selection of these in more detail.
Finally, Section VIII summarizes the review and offers future
perspectives.

II. BASICS OF MODEL-BASED PET RECONSTRUCTION

This section briefly covers the basics of conventional PET
image reconstruction, but more comprehensive reviews are of
course available (e.g., [21]–[24]).

A. Basic Principles

Image reconstruction for PET involves estimating repre-
sentation parameters for the spatiotemporal distribution of
a radiotracer’s concentration in the field of view (FOV) of
a PET scanner. For 2-D or 3-D (spatial only) imaging, the
model of the tracer distribution f (r) is typically a simple linear
model parameterized by x

f (r; x) =
J∑

j=1

xjbj(r) (1)

where the basis functions bj(r) are usually pixels or voxels, and
a parameter vector x ∈ R

J specifies the coefficients, or ampli-
tudes, for each basis function bj(r). Throughout this review
article the J-dimensional vector x will be taken to represent
a 2-D or 3-D reconstructed image, with the assumption that
pixels or voxels are used for (1). While the model is nearly
always linear, in general it can also be nonlinear, with a key
example being consideration of the spatiotemporal (4-D) dis-
tribution of the radiotracer, as used in direct reconstruction of
radiotracer kinetic parametric maps or 4-D images [25], [26].

With a chosen model of the radiotracer distribution, the
next step is to model how the PET scanner would acquire
data from this distribution. This concerns modeling the mean
of the acquired noisy PET data, based on a given parameter
vector x. In nearly all cases, a linear model of the data mean
is used as follows:

q(x) = Ax + ρ (2)

where A ∈ R
I×J is the PET system matrix (also known as

the forward model, or system model) and I and J are the

number of sinogram bins and the number of voxels of the
PET image, respectively, and r is the model of the mean scatter
and randoms background. With the object model (1) and the
imaging model (2), we then consider the noise model for the
data. For PET, the Poisson model is used, as discrete photon
counts are recorded

mi ∼ Poisson{qi} (3)

where qi is the model of the mean number of coincidences in
the ith line of response (LOR) (or sinogram bin).

Next, it is necessary to define an objective function which
indicates how well the parameters x of the model for (1) cor-
respond to the actual measured data, modeled by (2) and (3).
The goal of image reconstruction is then to find the parameter
vector x, for (1), which when forward modeled with (2), best
agrees with the acquired noisy measured data (3), according
to a chosen objective (or cost) function as follows:

x̂ = argmin
x

DPET(Ax + ρ; m) (4)

where DPET is a function that gives some measure of the dis-
tance (discrepancy) between the model of the mean, q(x), and
the measured data m, and so is a measure of data fidelity
for any given candidate x. For PET, the objective function of
choice is the Poisson log likelihood, for which an x should be
found which maximizes the likelihood of x, given the mea-
sured data m. When expressed as a distance measure, the
negative of the Poisson log likelihood is used (negative, as
the Poisson log likelihood needs to be maximized)

DPET(q(x); m) = −
I∑

i=1

(mi ln qi(x) − qi(x)). (5)

A robust way of seeking the extremum of (5) is the max-
imum likelihood expectation maximization (ML-EM) algo-
rithm [27], [28], where one ML-EM update is given by

xn+1 = xn

AT1
AT

(
m

Axn + ρ

)
(6)

where 1 ∈ R
I and xn is initialized by uniform values. In (6)

(and elsewhere in this article) products and quotients of vec-
tors are element wise, with matrix-vector products using the
conventional definition, following the notation introduced by
Barrett et al. [29].

B. Regularization by Analysis/Encoding

Since the measured data are noisy, minimizing (5) [e.g.,
through use of (6)] results in typically noisy estimates of
the radiotracer distribution via (1), as most often voxel basis
functions are chosen. For very noisy data, “night sky” recon-
structions are obtained. Therefore, regularization is used to
seek noise-compensated representations of the radiotracer dis-
tribution. This is usually achieved by including a penalty term
R(x) in the objective function

x̂ = argmin
x

DPET(q(x); m) + βR(x) (7)

where the hyperparameter β controls the strength of regular-
ization relative to fidelity to the measured data. The penalty
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term R(x) can be any of a wide range of priors, designed to
encourage solutions which agree with our prior belief regard-
ing the radiotracer distribution. If x does not agree well with
our prior belief, R(x) tends to be large, and vice versa. A com-
mon choice is to expect the neighboring voxel values in x
to be similar, so that R(x) is some function of the voxel-
value differences between neighboring voxels. A common
example is

R(x) = 1

4

J∑

j=1

J∑

l=1

wjlφ
(
xj − xl

)
(8)

where φ(.) is a potential function, such as a quadratic [for
which the helpful normalization of 1/4 is already placed
in (8)], so that any differences between voxel values result in
an increased value of R, thereby penalizing choices of x which
have largely varying neighboring values, often the result of fit-
ting closely to the noise in the data m. The weights (w ∈ R

J×J ,
although usually limited to a small patch neighborhood) allow
guidance from anatomical images such as MRI [30]. We make
an advance observation that, in the context of what will fol-
low later in this review, priors such as (8) are mathematically
convenient, or handcrafted/designed priors, and not directly
evidence or data-based. To build a more general version of (8),
the following vector can be considered:

z = φ(Hx) (9)

where H ∈ R
J×J is a matrix, which would be a finite

difference operator to mimic (8), and z is some “coded”
representation of x obtained by the overall transform, and then

R(x) = 1Tz (10)

where 1 ∈ R
J , to achieve a summation of the contents of z.

The approach to regularization given by (7), with the exam-
ple of (8), can be referred to as analysis regularization.
Effectively any candidate object representation x is analysed
by being transformed by an operator (such as H, followed by
φ), whereby the operator or transform is designed such that
the output z should be small valued for candidate x solutions
which agree with our prior beliefs. Here, “small valued” means
that the sum of z should be small, which can be achieved,
for example, by z being sparse (i.e., only a limited number
of nonzero elements). Hence, if H is a gradient operator, or,
as another example, a wavelet transform, then solutions of x
which have limited gradients (e.g., piecewise smooth objects),
or limited wavelet coefficients (e.g., images which are readily
compressible) are encouraged, respectively. In the latter case,
it can be noted that natural and noise-free images are more
readily compressed than noise-ridden images. This approach is
used within compressed sensing methods in MRI [31], where
the reconstructed image is required to be sparse in some
transform domain, a strongly informative regularization which
permits fewer k-space samples to be acquired.

Analysis regularization can be achieved in PET imaging
using an MAP-EM algorithm, such as that of De Pierro [32],
which is a convergent algorithm for priors such as (8), pro-
vided that the potential function φ(.) is convex. The iterative

update of an image estimate xn, when the prior is of the form
of (8) with a quadratic potential function is

xn+1
j = 2xEM

j
(

1 − βνjxSM
j

)
+
√(

1 − βνjxSM
j

)2+4βνjxEM
j

(11)

where xEM corresponds to the ML-EM update of xn (6), s =
AT1 (the sensitivity image) and

νj =
∑J

l=1 wjl

sj
(12)

with

xSM
j = 1

2
∑J

l=1 wjl

J∑

l=1

wjl

(
xn

j + xn
l

)
(13)

being effectively a weighted, potentially edge-constrained,
smooth of the current estimate xn. Note that (13) does not
explicitly contain the potential function as a quadratic potential
has been used in this example, based on the update from [33].

To finish this brief review of analysis regularization, one
more important case worth mentioning in the context of con-
ventional PET reconstruction is the simple case of using a prior
image for a quadratic penalty

R(x) =
J∑

j=1

(
pj−xj

)2 (14)

where p is a prior image from which the estimate of x should
not deviate too far. Whilst proposed very early on by Levitan
and Herman for MAP-EM reconstruction [34], and while not
at all frequently used in conventional PET reconstruction, this
analysis regularization method has however found great utility
when deep learning is applied to PET reconstruction, as will be
discussed later. Using the penalty of (14), an iterative update
of xn can be found by a simple combination of the prior image
p and the standard EM update image [found from (6)]

xn+1
j = 2sjxEM

j
(
sj − βpj

) +
√(

sj − βpj
)2 − 4βxEM

j sj

(15)

where similarity to the update of (11) is notable, with equiv-
alence arising only if

∑J
l=1 wjl = 1 and xSM = p.

C. Regularization by Synthesis/Generators

A second major way of introducing our prior expectations
about what x should look like is to instead express x as the
output of some operator, where the operator is designed so
as to only generate candidate x vectors which agree with our
prior beliefs. A simple linear example is to use a matrix con-
taining basis vectors, such that the output x is synthesized by
summation of these basis vectors

x = Bz (16)

where in this context z is now a vector of coefficients, which
can be viewed as a coded or latent representation of x. The
matrix of basis vectors, B, can also be referred to as a dictio-
nary containing atoms. We can achieve regularizing constraints
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on the output x in three main ways: 1) enforcing non-negative
values for z (crucial if B is full rank); 2) explicitly using
a reduced set of basis vectors in B, by limiting the dimen-
sions of z to be smaller than the dimensions of x; or 3) using
a complete set of basis vectors in B, or even an overcomplete
dictionary of basis vectors whilst requiring z to be a sparse
vector (e.g., by use of a norm of z as a penalty). The first
approach is the most simple, and has been used in PET, as the
popular ML-EM method of (6) naturally gives non-negative
solution vectors. Hence, ML-EM can be rewritten to directly
estimate the latent code (coefficients) vector z

zn+1 = zn

BTA
T

1
BTAT

(
m

ABzn + ρ

)
(17)

with the final reconstruction given by (16). Example choices
for B include MR-derived basis functions based on similarity
between MR voxel values, or ones derived by time-activity
curve (TAC) similarity between voxels, found by the kernel
method. Hence, (17) with an image model of (16) is often
called kernel EM (KEM) [35]–[37]. Any positive-valued z vec-
tor will always deliver an image of positive-valued weighted
sets of MR-anatomy or TAC inspired basis vectors/dictionary
atoms, eliminating the possibility of noisy night sky recon-
structions. A purely temporal version of (17) for 4-D PET
reconstruction [38], involves alternating estimation of not only
z but also estimation of a compressed, limited-dimensional, B.

D. Drawbacks

We now observe three potentially undesirable aspects with
the aforementioned conventional model-based approaches to
PET image reconstruction.

1) Noisy Data: Since the data are noisy, choosing to fit
parameter estimates x to noisy data m yields noisy recon-
structed images, suggesting that even the very starting point
of a data-fidelity objective function such as (4) is not really
what is desired.

2) Need for Regularization: Compensating for the first
problem by regularization with a function R(x) [as in (7)]
involves user-specified/hand-crafted prior assumptions [such
as (8)], in terms of what is, and what is not, acceptable
for the image properties. Even if we do have a good prior,
how strong should it be (β) in comparison to data fidelity?
How can we make such selections? This is an active area of
research (e.g., [39] and [40]). Also, regularization by means of
synthesis/basis function methods usually involves similar sub-
optimal user-specified representations, with comparable issues
of hyperparameter selection.

3) Modeling Assumptions: The methods described all pre-
suppose accurate and precise knowledge of the model of the
mean of the data, through the forward model matrix A, and
also knowledge of the noise distribution of the data vector m.

All of these potential concerns can be addressed by the
use of AI, or more specifically deep learning, for PET image
reconstruction. For reference, the conventional model-based
approach to image reconstruction, as outlined in this section,
is shown schematically in Fig. 1.

Fig. 1. Work flow overview for conventional model-based PET image recon-
struction. Note that explicit consideration of the ground truth t does not enter
into the process at any point. This omission is the key reason why AI is able to
offer a radically different approach, by making use of either the actual ground
truth (e.g., via simulations) or an estimate of the truth (e.g., higher-count
reference data).

III. AI PARADIGM SHIFT AND THEORY

This section now considers the key paradigm shift when
using AI approaches for PET image reconstruction, and
reviews methodology for direct deep-learning reconstruction
from PET data. A key concept is that of learning how to
reconstruct a high quality image from a noisy dataset, through
the use of training data.

A. Basic Principles

The AI approach is a fundamental shift in focus in com-
parison to the conventional model-based framework outlined
in the previous section. In broad terms the key is this: we
no longer define the noisy measured data m as the target in
the objective function (4), but instead we use a high quality
desirable reference t as the target in a new objective function.
Thus, instead of fitting parameters x to noisy data m, and then
trying to compensate for noise in the data by R(x), with an
AI approach we instead choose to estimate a mapping, F, that
takes us from m to an estimate of x corresponding to what we
would actually want. Ideally, we would want the ground truth
radiotracer distribution t that had given rise to m, or, lacking
that, a very high-statistical quality reconstructed image.

This is achieved by learning a reconstruction operator, or
mapping, F, using example training data. The mapping is
parameterized by a vector θ , which would ideally take us
directly from the noisy data m to what we desire, t. Such
a mapping would implicitly need to account for the entire
physics of the imaging process and the noise distribution of
the data, all within F. Of course, the mapping will also need
to generalize well for any new dataset m, being able to map
an unseen dataset to the unknown ground truth. This places
importance on the training data being diverse and extensive
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Fig. 2. AI paradigm for direct PET reconstruction: we find (or learn)
one mapping F which maps each data vector m to a desirable target vec-
tor t. Supervised learning of the mapping needs example pairs of inputs and
expected outputs (called targets or labels), which form the training data for
the learning process. More advanced methods [4] learn how to map from one
distribution to the other distribution, evading the need for paired data vectors.

enough to adequately represent the domain of possible future
input datasets.

During training of the mapping it is of course unreasonable
to expect to find a single mapping that will always directly
deliver the ground truth t from a given noisy input m, and
so an objective function is required, which seeks to match the
mapping of m (through F) to the target t as closely as possible
to within some tolerance, or loss.

In the context of deep learning, the parameters θ of the
mapping are optimized so as to minimize a loss function,
given by

θ̂ = argmin
θ

N∑

n=1

DNET(F(mn; θ); tn) (18)

where the mapping F is parameterized in some way by a vec-
tor of parameters θ , such that when the mapping is applied
to one of the n = 1 · · · N input datasets in the training data,
e.g., mn, the mapping generates an output which should be
close to tn (see Fig. 2). The key aspect to the loss function
DNET for the mapping (often a network) is that it needs to be
defined over many such example training dataset pairs (inputs
mn, each paired with desired outputs tn) that adequately cover
the domain of potential future inputs. This means the training
seeks just one single mapping F, which will best fit each and
every example training noisy dataset mn to its corresponding
high quality reference tn. During training, often a separate val-
idation dataset is used to monitor performance for data unseen
by the optimization. For example, if the loss function, when
evaluated on the validation data, starts to increase, this is
indicative of overfitting to the training data, and so the training
process can be halted.

The expectation, when training is complete, is that a new
supplied input measured dataset m will be mapped using F to
predict the unknown ground truth for the new dataset

x̂ = F
(
m; θ̂

)
. (19)

Fig. 3. Direct linear mapping approach. Top: the matrix F is trained to
map data m to the ground truth or reference t. Bottom: when the trained F is
presented with a new dataset m, a given output value is obtained by a weighted
sum of the input vector elements in m, where the weights for a given output
element i are contained along a row i of the matrix F. This reveals the link
to neural networks, for which the above case is termed a FC layer (which
in general allow a bias to be added to each output, with subsequent optional
application of a nonlinear function).

We expect therefore generalization to unseen, future data,
on the assumption that the unseen data comes from the same
domain as the training data. The challenge of dealing with new
data that is outside the domain of the training data is known
as domain adaptation, an active area of research [41].

B. Linear Direct Mapping: Fully Connected Layer

The simplest case would be to find a purely linear mapping

x̂ = Fθ̂�
m (20)

where the mapping F is now just a matrix F ∈ R
J×I , (see

Fig. 3) and we have added a subscript θ̂� to denote that this
matrix depends on the trained parameter vector. The extra sub-
script � denotes what we will refer to from now on as a layer,
described further below. This matrix mapping can be regarded
as a single layer network—whereby each output value x̂i is
just a weighted sum of the input values in m, with the weights
(neurons) given by the ith row of matrix F. (As a brief aside,
we note that a simple nonlinear function can, optionally, be
applied to each output element in the vector—this will be con-
sidered further below). It may seem like an ambitious task to
estimate, and we can see that we would likely need many
training pairs of m and t in order to find an F that will be
able to generalize for unseen input vectors m. In fact, for the
typical scale of 2-D and 3-D PET image reconstruction, we
would need to estimate anywhere from millions to trillions
of parameters! But given, for example, the existence of linear
PET image reconstruction methods, such as filtered backpro-
jection (FBP) [42], [43], backproject then filter (BPF) [44],
or better still the Moore–Penrose pseudo inverse via singu-
lar value decomposition (SVD) [45], [46], it is evident that
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linear mappings do exist that can achieve good quality recon-
structions of x from m. Likewise in MR, the default inverse
Fourier transform is a good starting point for a linear operator.
The advantage, again, is that a learned reconstruction operator
would not only account for the imaging physics but would
implicitly also include a data-trained noise-reduction strategy.
This is in contrast to FBP (where an empirically chosen filter
cut off is needed), or in contrast to a pseudoinverse (where the
modulation or truncation of the inverse of the singular value
spectrum is similarly empirically chosen to compensate for
noise).

In the context of deep learning, a matrix like that in (20)
is known as a fully connected layer (FC layer), or a dense
layer (since every single input value can affect every single
output value). The use of the word layer (inspired by the neu-
roanatomy of the cerebral cortex) arises from the fact that, as
we will see later, we may use more than one single mapping
in a sequence—we can cascade a series of mappings more
generally. Each extra mapping is a layer, and when we have
multiple layers we have a deep network, hence the term deep
neural network. The use of such multiple layers typically arises
when a nonlinear function is introduced between layers, but
even using a series of purely linear operators certainly is not
trivial, as will be discussed later.

A final note here is to mention that some conventions refer
to the input or output of a given single operator as a layer.
However, here (similar to [47] and [48]) we use the word layer
to refer to the operator itself, but according to the context, one
can loosely use the word layer in reference to the output of
the operator as well.

C. Convolution Direct Mapping: Convolutional Layer

Before considering more complex mappings, we will now
consider a simple but very instructive example of a mapping
that is not only linear but also shift-invariant—convolution. To
motivate this simple example, we will now consider the input
measured data m to be purely a noisy version of t [i.e., using
modeling (1)–(3), but now taking A = I, so that no sinogram
is now needed]. We will then seek a single convolution kernel,
such that when convolved with the noisy data m (which is now
regarded as a noisy image in this instance), gives a best fit to
the high quality reference t. This could be written as (20),
with the requirement that F now be a circulant matrix (i.e.,
achieving convolution). More explicitly

x̂ = Cθ̂�
m (21)

where the circulant matrix C contains a unique 2-D or 3-D
kernel, defined by parameters θ̂�, such that the kernel is dupli-
cated and shifted in successive columns of the matrix C.
This mapping would correspond to a layer which is called
a convolutional layer, with, in this simple case, just one kernel.

Fig. 4 illustrates the capabilities of learning just one single
convolution kernel for a purely linear and shift-invariant (LSI)
mapping. Results are shown for optimizing the parameters of
a single kernel for two different example applications. The first
is to denoise, i.e., to match m to t using a least-squares loss
function [usually referred to as the mean square error (MSE)

Fig. 4. Three examples of a direct convolution (linear shift-invariant) map-
ping approach, with data-driven learning of a single kernel to try and map
m to t. For noisier data (row 2), more neighborhood averaging is needed
to denoise, and so a broader kernel was learned. For the different task of
deconvolution (row 3), a sharpening kernel was learned, to try and match t.

loss function in the machine learning literature]. The results,
in this case are as expected—for noisier input measured data,
a broader trained kernel is obtained in order to achieve denois-
ing, and for less noisy data a narrower kernel is obtained,
as less denoising is required. The second example is using
a kernel to sharpen an image, removal of blurring—again,
the results show optimization of the kernel to be effective in
deblurring.

D. Convolution With Nonlinearity: Feature Maps

The convolution mapping can be extended to include a non-
linearity afterwards, which can be sometimes regarded as
a separate layer. The nonlinearity is simply application of
a nonlinear function, which we will call σ(.), element by ele-
ment, on each pixel or voxel value of the output vector of the
convolution (where the output is often referred to as a feature
map). It is called an activation function, as it often serves to
suppress values in the output, and let others pass through (as
activated values). So, for a single layer convolutional network
we would have

x̂ = σ�

(
Cθ̂�

m
)
. (22)

If we choose σ�(.) to be a rectified linear unit (ReLU) [49], it
sets any negative values to zero, retaining all positive values
as they are. Fig. 5 shows examples of the utility of apply-
ing this nonlinearity, which in the figure is shown in the
thresholded column. The thresholded feature maps show, for
example, edges, or a tumour location. Hence, the nonlinearity
can give even more useful feature maps of specific interest,
with background aspects removed. For the case of ReLU,
the nonlinearity amounts to thresholding, deleting background
information, and keeping desired features. Many other non-
linear activation functions exist, including, for example, leaky



READER et al.: DEEP LEARNING FOR PET IMAGE RECONSTRUCTION 7

ReLU (LReLU, attenuating rather than removing negative val-
ues), sigmoid (for constraining outputs to be from 0 to 1)
and hyperbolic tangent (tanh, for constraining outputs to be
from −1 to +1). Furthermore, the use of an offset or scalar
bias value b just prior to an activation such as ReLU, allows
adjustment of the level of thresholding without changing the
activation function σ(.)

x̂ = σ�

(
Cθ̂�

m + bθ̂�

)
(23)

where the bias is a single trainable offset scalar parameter, the
single value of which is now included into the overall vector
of parameters for the layer, θ̂�.

Given the utility of convolution with a bias and activation
for delivering a feature map, we note that for a given input
image, it would be useful to obtain more than just one sin-
gle feature map. This is already shown in Fig. 5, where we
have 3 different feature maps arising from one image. This
involves generating more than one output, by using more than
one kernel in a convolutional layer. So starting from (23) we
can use multiple kernels in this one single convolutional layer,
to obtain multiple outputs—one for each kernel

x̂ = σ�

⎛

⎜⎜⎝

⎡

⎢⎢⎣

C1
θ̂�

...

CK
θ̂�

⎤

⎥⎥⎦m + bθ̂�

⎞

⎟⎟⎠ (24)

where the output vector x̂ is now K times larger (i.e., there are
as many output images as there are kernels). This corresponds
to the number, k = 1 · · · K, of convolution matrices applied to
m. Note further that we have a unique scalar bias value for
each kernel, represented in (24) by a single vector b, and that
this vector and each of the kernels all depend on the overall
set of parameters, θ̂�, for this layer.

Fig. 5 illustrates (24) for the choice of just three kernels—
which in this figure are purely handcrafted to show the
flexibility of different kernels. In deep learning however, the
kernels are randomly initialized, and the training process
adapts the kernel values to obtain the feature maps necessary
to make the outputs ultimately serve to match the target (i.e.
to minimize the loss function).

Finally, we note that often we require just one image output,
whereas using multiple kernels in a layer delivers multiple
outputs. These multiple outputs are referred to as channels.
We can easily join these channels together into one single
output by applying one more convolutional layer, with just
one kernel (to give just one output), but with the single kernel
having multiple channels (one for each of the input channels
to the layer). This adds together the feature maps as follows:

x̂ =
[

C1,1
θ̂�+1

· · · C1,K
θ̂�+1

]
σ�

⎛

⎜⎜⎝

⎡

⎢⎢⎣

C1,1
θ̂�

...

CK,1
θ̂�

⎤

⎥⎥⎦m + bθ̂�

⎞

⎟⎟⎠ (25)

where we use a second superscript to denote the channel num-
ber, with the first superscript kept for the kernel number. There
are as many channels for this one kernel in this second layer
(labelled � + 1) as there are kernels (hence outputs) from the

first layer (labelled �). A simple choice is to use single pixel
or voxel kernels for each of the channels of the single kernel,
so that the final output is just a weighted sum of the feature
maps from the previous layer (as was illustrated in Fig. 5).

E. Deep Networks: Mappings With Multiple Layers

We now more explicitly consider using a series, or cascade,
of mappings, to form a deep network. To start with, we could
take the purely linear mapping of (20) as a series of matrix
operators, a series of layers, each layer defined by a set of
parameter values, so for � = 1 · · · L FC layers we would have

x̂ = Fθ̂L
· · · Fθ̂�

· · · Fθ̂2
Fθ̂1

m (26)

forming a deep neural network, with the overall complete set
of parameters of the mapping given by θ , composed of all the
parameters for each of the layers. More generally we have,
at a given layer �, an intermediate, latent or hidden vector of
results (i.e., not visible at the input or output), z�, given by

z� = Fθ̂�
z�−1 (27)

for � = 1 · · · L, with the final output being x̂ = zL and with
the first input being z0 = m. Construction of the number
and size of these mappings refers to the architecture of the
network. At first sight, for such a purely linear model, it can
seem that (20) and (26) are completely equivalent when appro-
priate choices of parameters are made. However, the precise
architecture does profoundly matter (e.g., sizes of matrices
used), in terms of model constraints, number of summations
and products involved, and ease of training of the parameters.
As a first example, we could use the form of (26) to learn
a diagonalization of a linear mapping which is comparable
to a truncated version of the SVD-inverse, using a series of
3 matrix layers. A further illustrative example is that of the dis-
crete Fourier transform (DFT), which can also be represented
by (20), whereas a linear rearrangement of this purely linear
transform into a fast Fourier transform (FFT), which could be
written as (26), has a profound impact on processing speed.

Of course, convolutions can also be cascaded into a series,
increasing depth of the mapping. We could have

x̂ = Cθ̂L
· · · Cθ̂�

· · · Cθ̂2
Cθ̂1

m. (28)

Just as (26) was not trivial due to the capability of varying
the size of the matrices in the series of layers, so also (28)
should not be regarded as trivial—it is possible to use stride to
vary the size of the latent output vector at each layer (the fea-
ture map sizes), thereby imposing constraints on the model,
as will be discussed further below. We note here that such
a series of convolutions allows the concept of receptive field
to be understood—a pixel or voxel in the input m can reach
or affect a voxel in the output image or map, according to the
overall reach of successive application of a series of convo-
lution kernels. So rewriting (27) for convolution, generally, at
a given layer � we would have

z� = Cθ̂�
z
�−1

. (29)

Recalling that we might also generate more than one output
feature map at a given layer � by using more than one kernel
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Fig. 5. Demonstration of a two-layer convolutional mapping, with a nonlinearity included (nonlinear shift-invariant). The input image is convolved with
three different kernels (each having just one channel, as there is only one input image), giving three convolved outputs. Each convolution output is then, in
effect, thresholded by adding some positive or negative offset (a bias) (a single unique value for each convolved output), then setting negatives to zero (e.g.,
by a ReLU activation). These three resulting feature maps are then summed with differing weights to deliver a final output image, where in the example
shown a 3-channel kernel is used to achieve this, with the last channel being the example of a zero kernel which can remove that feature. The number of
inputs to a convolutional layer determines the number of channels needed by a kernel in the layer, and the number of kernels used determines the number of
outputs from the layer. The brain phantom used in this example (and in Figs. 5, 7, and 8) is from [104].

in a convolutional layer, we can write

z� =

⎡

⎢⎢⎣

C1
θ̂�

...

CK
θ̂�

⎤

⎥⎥⎦z

�−1

(30)

where the output z� would now be K times the size of the input
vector z�−1, according to the number, k = 1 · · · K, of convolu-
tion matrices applied to z�. If we use the model of (30), then
to add on another convolutional layer, it will need to operate
on more than one output image—we will have a multichannel
input z�−1, and so we need a kernel for each of these inputs
present in z�−1—this gives rise to the need for a multichannel
kernel. Combining the idea of multiple kernels, with each
being multichannel, we have the overall LSI mapping of

W θ̂�
=

⎡

⎢⎢⎣

C1,1
θ̂�

· · · C1,C
θ̂�

...
. . .

...

CK,1
θ̂�

· · · CK,C
θ̂�

⎤

⎥⎥⎦ (31)

for channels c = 1 · · · C, and kernels k = 1 · · · K, at layer
�. It is easy to note from (31) that when using multichannel
kernels, the mapping adds together the outputs for each chan-
nel of the kernel, so that again each single kernel, whether
multichannel or not, still gives just one output image to present
to the next layer.

We finish this section by noting that we can cascade these
multikernel, multichannel mappings

x̂ = W θ̂L
· · · W θ̂�

· · · W θ̂2
W θ̂1

m (32)

and since we often desire the output size of x to be a single
image, usually the very last layer W θ̂L

is a multichannel single
kernel (e.g., with each kernel being just a delta function). This
is in order to synthesize a single output image from multiple
input feature maps from the penultimate layer, equivalent to
just a weighted sum of these input channels, where the weights
are learned.

A simple linear autoencoder [50] can take the form of (32),
by downsampling in early layers (i.e., using a convolution
stride greater than 1) and increasing the number of kernels
(feature maps), and then upsampling in later layers (through
use of fractional stride) and reducing the number of fea-
ture maps. In the context of an autoencoder, the goal is to
match the input and output, requiring the mapping to pass
through a latent space bottleneck [e.g., as a midpoint layer
in (32)] which should capture features (high feature dimen-
sion via a high number of kernels) with only limited spatial
information (high level of downsampling). Noise is unlikely to
be represented in this compressed latent representation space.
This will be considered further later in this section when the
case of a convolutional encoder–decoder mapping is covered.

F. Convolutional Neural Networks

The multilayer convolution mapping can be extended to
include nonlinearities between layers. First, a general layer
can be given by

z� = σ�

(
W θ̂�

z
�−1

+ b�

)
(33)
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Fig. 6. Example CNN, based on [55], composed of three convolutional layers, designed to map low-dose PET images to full-dose PET images. Here,
there are 4 input channel images: a T1-weighted MR, 2 different PET reconstructions of the same low-dose PET data [one with, one without resolution
modeling (RM)], and a post-processed PET reconstruction (nonlocal means). These 4 inputs are fed into three convolutional layers. The final convolutional
layer is composed of a multichannel single kernel, to synthesize just one output image intended to predict the full-dose PET image.

where the bias is such that it is a single trainable offset
scalar parameter for each kernel, such that the argument of
the activation function in (33) is explicitly given by

W θ̂�
z�−1 + b� =

⎡

⎢⎢⎣

C1,1
θ̂�

· · · C1,C
θ̂�

...
. . .

...

CK,1
θ̂�

· · · CK,C
θ̂�

⎤

⎥⎥⎦z�−1 +

⎡

⎢⎢⎣

b1
θ̂�

...

bK
θ̂�

⎤

⎥⎥⎦.

(34)

We can of course use a series, cascade or stack of convolu-
tional layers, and create what is known as a convolutional
neural network (CNN) [51], [52], as shown, for example,
in Fig. 6. Fig. 6 gives an example CNN trained to map
low-dose PET images to higher dose equivalents. Yet, as
should be clear from Figs. 5 and 6, CNNs can in fact have
wide-ranging uses, even such as mapping ML-EM recon-
structions to MAP-EM reconstructions, for accelerated recon-
struction (Rigie et al. [53]). Mappings based on (34), with
only convolutional layers, are known as fully convolutional
networks (FCNs). However, convolutional and FC layers can
be used together in a general CNN.

A final important note for this section is the universal
approximation theorem (UAT) [54]. In general, for a deep
neural network we have

z� = σ�

(
Xθ̂�

z
�−1

+ bl

)
(35)

where the matrix X can be any matrix, whether representing
multiple multichannel convolutions, or a fully general linear
mapping. It has been shown that exploiting the nonlinearity
between layers allows many practical and useful mappings
to be approximated well, if sufficient layers are used. This
is a very important result, meaning that essentially any useful
image processing mapping can in theory be replaced by a suffi-
ciently well-trained deep network, offering complete flexibility
in terms of inputs and desired outputs.

G. Encoders, Decoders, Generative Models, and GANs

Deep learning can be used for representation learning (or
feature learning) whereby a network learns how to repre-
sent input information in a different way, which is useful
to a desired task. Viewed this way, a deep network is just
a change of representation of the input information, either
lossless, or indeed discarding information irrelevant to the
desired task of the mapping. Image reconstruction itself can
be regarded as a change of representation of the very same
information contained in the data—just represented in the form
of an image instead of measured data. In this context, there
are three important classes of deep networks that are explic-
itly identified as encoders, decoders, and generators. Strictly
speaking any arbitrary layer or series of layers of a deep
network can be regarded as any of these three classes, as it
depends on the task and our interpretation of the representa-
tion at a particular stage or layer in a network, in terms of
how we interpret the kinds of vectors (feature maps) going
into, and out of, one or more layers.

An encoder transforms an input vector to a different rep-
resentation or feature vector, often referred to as a latent
space, which might be a more compact form, or a more useful
representation. So we have, for example

z = E
(
m; θ̂E

)
(36)

where E is the encoding operator learned from training data,
which in general is a nonlinear operator specified by possi-
bly many layers of encoder parameters, θ̂E, corresponding to
a cascade of mappings, each of which is given by the form
of (35).

Preferably the encoded latent representation should not lose
any information of interest, but should provide a representa-
tion which is more useful, such as being more compressed
(lower dimensionality), semantically rich or in a form which
simplifies the desired task which is to be performed on the
input. In the context of PET imaging, an input vector may be
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sinogram data or already directly interpretable as an image.
A trivial untrained linear example of an encoder would be use
of a number of rows of the DFT analysis matrix, often called
the Fourier encoding matrix in the context of MR imaging.
This encodes (analyzes) an input image into coefficients in
k-space, for a set of sinusoidal functions of various spatial
frequencies (k). If we were only interested in images of low
spatial resolution, then a compact, limited (sparse) number
of nonzero k-space coefficients can of course encode spatially
extensive images with densely populated nonzero pixel values.
More generally however, an encoder mapping is learned from
training data rather than mathematically designed, and is also
nonlinear. The nonlinearity of the encoder can be considered
as either activating or eliminating various encoding analysis
operators, in a fashion that depends on the particular input
data. This can also be seen as partitioning the input domain,
and having conventional linear encoders for different regions
of the input domain [56].

A decoder transforms from a (coded or latent) representa-
tion into something that we might choose to identify directly
as having explicit meaning or utility (so no longer coded),
such as an image, although again, this is somewhat arbitrary,
depending on our interpretation. A general decoder could be
denoted

x̂ = D
(
z; θ̂D

)
(37)

where D is the overall, generally nonlinear decoding operator,
specified by the possibly many layers of decoder parameters,
θ̂D (which would in general have been learned from training
data). Similar to the encoder, this decoding operator could be
given by a cascade of mappings, each of which is given by
the form of (35).

A trivial untrained linear example would be the inverse DFT,
which decodes a spectrum by using the k-space coefficients as
the amplitudes of sine and cosine basis functions to synthe-
size an output. With the simple linear example of the DFT
encoder and inverse DFT decoder, we could again consider
using a compressed latent space representation of an image
or signal, by only retaining or using a subset of the k-space
coefficients. Using a random subset of k-space would corre-
spond to one example of compressed sensing MR imaging, as
a case of sparse coding. More generally though, the decoder
mapping is nonlinear, and so can be broadly considered as
using a set of learned representation basis vectors which are
chosen according to the input code vector.

In the context of PET image reconstruction, dictionary
learning is another good example of a decoder mapping. The
goal in dictionary learning methods is to learn an image rep-
resentation set of basis functions (learnable either from the
data in hand, prior data, and/or data from another modal-
ity), and express the reconstructed image as a weighted sum
(a synthesis) of those learned basis functions. The latent space
is the set of coefficients for the basis functions, and these
should either be non-negative or sparse, to ensure that only
key signal is retained and that data noise cannot survive
the representation. An example is the work of Tahaei and
Reader [57].

Fig. 7. Principles of an encoder (transform/analysis/compressing) operator
and a decoding (generator/synthesis/decompression) operator, in this example
case for mapping from fully 3-D sinograms, to a latent space, and then out to
a 3-D PET image. This would correspond to the case of a direct mapping for
PET reconstruction, to be covered later in this review. It is important to note
that a decoder or generator can be used in isolation as an image generator for
any given input vector (latent space or code vector).

Fig. 7 illustrates the principle: we seek a different, but
useful, latent space, encoded representation of an image or
sinogram data. This is such that, for example due to its com-
pactness (reduced dimensionality or sparseness), in this latent
representation space noise cannot be represented, but only
information useful to the imaging task (e.g., clean and noise-
free PET images). Also, tasks can be accomplished in simpler
way in this latent space, and/or manipulations of data made
easier (just as, by analogy, analysis and manipulations are
sometimes easier in the Fourier domain than the space or
time domain). With a coded description found in this clean
latent representation space, we can then use a generator or
decoder network to produce an end-point image correspond-
ing to that representation. Of course, since the latent space
should be designed to encode only the desired image features,
the generated image will be composed only of such features.

A decoder can however be used in a more general sense,
as we could freely design or randomly create our own latent
space vectors, input these to a decoder, and so generate ran-
dom sets of meaningful signals or images. Hence, the decoder
can be used as a standalone generator, or a generative model.
For the DFT example, this corresponds to designing or ran-
domly choosing values in k-space, then applying an inverse
DFT to generate images containing those spatial frequencies.
Of course, random choices of spatial frequencies would lead to
quite random output images. However, deep mapping decoders
trained on useful image sets allow far more powerful and
meaningful representations of images (beyond the simplicity
of the Fourier basis vectors), such that randomly coded inputs
result in new, never seen before, image samples drawn from
highly complex high-dimensional probability density func-
tions. Another simple example would be the KEM method,
with its use of (16)—random positive values for z could be
used, generating many different images, but all constrained
to be within the manifold of objects composed from the
dictionary of basis functions in B.
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Just as designation of an encoder, latent space, and decoder
are all open to our interpretation, so also the demarcations
between the encoder, latent space, and decoder are open to
our interpretation. Consequently, there are infinitely many
encoder operators, latent spaces, and decoders available for
any given set of images. This can be seen by considering the
very simple case of linear encoders and decoders: there are
infinitely many linearly independent basis vectors that could
be chosen for the encoder/decoder matrices [e.g., whether
learned from data via principal or independent component
analysis (PCA, ICA), or just mathematically devised such as
the DFT].

Any given latent space and generator pairing models a prob-
ability density function, in the J-dimensional output image
space. By using many example images to train an encoder,
latent space, and decoder such that the input matches the out-
put (an autoencoder), we can find a latent space, or better
still a probability density function in the latent space (as done
by a variational autoencoder [58]), such that random sampling
of latent space vectors will map, via the decoder, to produce
the distribution in the desired subspace/manifold of expected
object vectors x.

We can also provide nonrandom input vectors to genera-
tors, such as images or sinograms, in which case the generator
becomes what is known as a conditional generator (Fig. 8).
For example, sinogram data or a provisional image can be
supplied to the network, and a high quality sample predicted
from that conditional information. (In such cases, it is help-
ful to regard the conditional input information as first being
encoded to a latent space, from which the generator then gen-
erates an image). When input images are used, this means
that even very simple denoising mappings can in effect be
regarded as conditional generators—they map a fixed input
image to a fixed point in the output manifold. In contrast, of
course, a fully fledged trained generator should, with random
inputs, be able to always output meaningful images, populat-
ing the entire manifold of useful images based on the training
data.

Training of generative models can be enhanced, to deliver
more realistic results (i.e., more closely resembling samples
from the training data), through use of a discriminator. So-
called generative adversarial networks (GANs) train a second
network, a discriminator, to impose improved performance
of the generator network [7]. Discriminators improve the
performance of a generator by learning to discriminate
between real samples from the training data (drawn from the
real probability density function in the manifold of the space
of x), and samples from the generator. The output of the dis-
criminator is used as a penalty in the training loss function for
the generator: if the discriminator can recognize a generated
sample as being a generated one (a fake sample), this penal-
izes the loss function for the generator, such that it has to train
better to seek a lower loss. The generator and discriminator
are trained in an alternating manner, to reach a point whereby
the generator can produce samples for which the discriminator
only has 50% success rate in correctly classifying a synthetic
sample as real or as synthesized. GANs have been applied
in the context of MR reconstruction [59], and very recently

Fig. 8. Generators and conditional generators (GANs are a special case,
where the generator has been trained with the assistance of a discriminator,
encouraging outputs to look comparable to real data examples). Any network
or mapping can in principle be regarded as a generator, in that an input will be
mapped to an output, through a (possibly only notional) latent space. Hence,
generators can even be regarded as including the encoder as well. Conditional
GANs, when conditioned on specific input data or images, can be regarded as
encoding the input, then generating an output, e.g., using a CNN or U-Net. As
such, any image denoising operator can be viewed as a conditional generator
(or conditional GAN if trained in conjunction with a discriminator), and are
usually easier to implement than fully fledged generative models (which are
required to generate meaningful output sample images when given random
inputs, or random latent space values).

for PET reconstruction ([60], considered later in this review)
as well as for post-reconstruction processing of PET images
[55], [61], [62].

In summary, generators can be regarded as standalone
decoders, or as synthesizers, in the form of a deep neural
network which takes as direct input the latent space repre-
sentation. The parameters of the generator are usually learned
from unlabeled training data examples. These networks ideally
should be able to generate all feasible reconstructed images
of interest with appropriate probabilities based on the training
samples.

We finish this section by mentioning the popular U-Net
deep architecture [63]. This architecture very much follows
the form of an encoder and decoder, but the critical differ-
ence is that there are skip connections included, which allow
each downsampling section of the encoder mapping to be
skipped, with feature maps at each downsampling stage being
transferred directly as channel inputs to the respective upsam-
pling (decoder) stage. Fig. 9 shows an example of this network.
The use of skip connections allows higher resolution feature
maps to be directly included for consideration as extra chan-
nel inputs for the decoder, and in effect serve to increase the
expressive potential of the overall network. The approach has
proven highly successful in the original application area of
image segmentation, and PET image reconstruction methods
have since also made use of U-Nets, which when supplied with
input images can be regarded also as conditional generator
networks. Nonetheless, improvements have subsequently been
proposed, such as deep convolutional framelets, to overcome
some of the limitations with U-Nets [64], [65].
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Fig. 9. Example of a U-Net architecture, in this case composed of a convo-
lutional downsampling encoder (using stride 2 convolutions to downsample
by a factor of 2) and a convolutional upsampling decoder (using fractional
stride of 0.5 to upsample by a factor of 2). Crucially there are skip con-
nections between each stage of down/up sampling, enabling greater levels of
representation capacity, or expressivity, of the network.

H. Optimization and Generalization

From a conventional perspective, the highly parameterized
nonlinear deep networks just described would be highly chal-
lenging to optimize. We finish this section by noting that
the algorithmic technology, based on backpropagation, for
seeking to minimize loss functions such as (18) has become
available via toolboxes, such as TensorFlow and PyTorch,
using gradient-based algorithms centered on stochastic gra-
dient descent (SGD). We refer to excellent reviews of these
optimization topics [66], regarding them as enabling tech-
nologies, permitting the design and practical training of deep
nonlinear networks.

While it is already a significant endeavor to minimize a loss
function with a highly nonlinear parameterization, there is also
the further challenge of reducing the generalization error—i.e.,
how well the trained network performs when tested on new,
never seen before test data. This is a major research area, with
existing strategies including regularization of the loss func-
tion (e.g., norms of the parameters, to stop them becoming
too large in uniquely fitting the training data only), dropout
(i.e., randomly switching off a fraction of the parameters in
a given FC or convolutional layer to stop them memorizing
training data), data augmentation (i.e., artificially enlarging the
domain of the training data by manipulating and processing
existing training data), and transfer learning. Transfer learn-
ing concerns using networks previously trained for other tasks
and data, and applying these to a new task. For PET this
has been done in a post-reconstruction context, using a pre-
trained VGG network [67] to assist in PET denoising [68],
and the VGG network has also been used in PET recon-
struction, as will be mentioned below. Domain adaptation,
similar to transfer learning, involves performing the same
task but on different source domain data, such as for exam-
ple data from different scanners [69] or from different PET
centers. In the context of PET image reconstruction, general-
ization error reduction can be regarded as improving domain
adaptation. The case of performing the same task on different
domains has already been progressing at a rapid rate, for exam-
ple, in the context of MR brain segmentation from different
centers [70].

IV. OVERVIEW OF DEEP LEARNING IN PET
RECONSTRUCTION

There are at least four key ways in which to exploit the
potential of deep learning mappings within PET image recon-
struction, compared and summarized in Table I. One specific
case which will not be covered in this article is that of post-
reconstruction processing (e.g., [62] and [71]), as this no
longer involves the reconstruction process. In this section we
provide a brief overview of five key current approaches, before
exploring four of them in greater detail in Sections V–VIII of
the review.

A. Deep Learning for Direct Reconstruction

The first approach is a full end-to-end mapping, a direct
reconstruction method, which uses a deep network to map
from raw sinogram data m directly to an end-point recon-
structed image estimate x̂. This is represented simply by (as
covered in Section III)

x̂ = F
(
m; θ̂

)
. (38)

Hence, every aspect of the image reconstruction (the physics,
imaging model, and statistics) needs to be learned by the deep
mapping, which can require a large quantity of training data. In
principle, these approaches avoid modeling errors, and once
trained result in fast and potentially highly accurate recon-
structions. Key examples will be covered in more detail in
Section V below, but they tend to be characterized by relatively
high training data needs, with high (even prohibitively so at
present) computational demands for fully 3-D reconstruction.

B. Deep Learning for Image Generation: Synthesis
Regularization

A second approach is to use deep learning only as an
image constraint, requiring that an estimate of the image be
represented by a deep mapping generator

x = F(z; θ) (39)

with all other components of the image reconstruction task
corresponding to the conventional ones described earlier in
Section II. The core idea of (39) is to require that any image
estimate x be the output of a deep network F operating on
some input code vector, z. A simple example is for the input
code z to be a current noisy image, with the generator F only
needing to be a denoiser, thereby regarding it as a conditional
generator. Notably, this allows considerable flexibility for inte-
grating sophisticated denoisers into PET image reconstruction,
including fully 3-D reconstruction. These approaches will be
covered in more detail in Section VI below.

C. Deep Learning for Analysis Regularization

A third approach is to use a deep network inside a con-
ventional prior or penalty function, as just a component of an
otherwise conventional image reconstruction method using an
analysis regularization strategy. For example, any of the deep
object models from a synthesis strategy (e.g., image gener-
ation/image synthesis/denoising) can be used, but instead of
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TABLE I
SUMMARY OF CONVENTIONAL AND DEEP LEARNING-BASED PET RECONSTRUCTION, DISTINGUISHED ACCORDING TO THE WAY THE

OBJECT (IMAGE), DATA MEAN, AND DATA NOISE ARE EACH MODELLED, AS WELL AS THE TYPE OF REGULARIZATION

AND ALGORITHMIC PRACTICALITIES

imposing these as hard constraints, the analysis prior stipu-
lates that a reconstructed image x, while being optimized to
agree with the measured data m (e.g., through the Poisson log
likelihood), should not deviate too far from a deep denoised
version of the image. This is less constraining than the synthe-
sis approach [72], just as MAP-EM methods are, for example,
less constraining than KEM methods (see previous Sections
II-B and II-C).

D. Deep Learning for the Entire Prior: Unfolded Methods

A fourth approach is to use deep learning for the entirety of
the penalty or prior, thereby completely discarding any ana-
lytic, intuitive, or handcrafted component. This means there is
no chosen potential function and no explicit analysis operator,
but instead the entire prior, including any effective potential
function, is deep learned. To achieve this, iterative reconstruc-
tion algorithms can be unrolled, or unfolded into a series of
modules or blocks, such that each and every iterative update
is explicitly an update operator in a long cascaded series of
blocks (using the gradient of the data fidelity term and the
gradient of the penalty term). This long chain of processing
blocks gives a deep overall mapping network, for which deep
learning can be used to find the mapping which corresponds
to where the gradient of the penalty is required. The over-
all network combines trainable components, (the gradient of
the unknown penalty) and fixed operator components—i.e.,
the data-consistency update, usually derived from the gradi-
ent of the Poisson log likelihood for PET reconstruction. This
approach can be viewed simply as interleaving partial or com-
plete reconstruction operators with deep denoising operators,
in repeated blocks. Each such block performs a number of

MAP-EM image reconstruction updates (from just one, up to
possibly even a completely converged reconstruction), using an
analysis regularization based on a prior image. The prior image
is a deep-learned denoised version of the previous reconstruc-
tion estimate. A deep network, which usually depends on
the overall block number, is used to denoise the outcome of
the reconstruction operator, in order to provide an updated
denoised prior image for the next block. These unfolded
networks will be considered in detail in Section VII below, and
notably are generally practical for fully 3-D reconstruction.

E. Deep Learning for Preprocessing and Post-Processing

As mentioned, deep learning for post-reconstruction pro-
cessing (or even for preprocessing of the raw sinogram data),
is not under consideration in this review. In both cases, the
approach is typically to upgrade low-dose PET data or images
to high-dose equivalents, lowering noise and enhancing spa-
tial resolution. There have now been numerous methods for
post-reconstruction deep learned denoising in PET (e.g., [62],
[71], [73], and [74]).

A noteworthy exception, which can be viewed as reconstruc-
tion (or possibly post-processing) is the use of backprojected
images, whereby the raw PET data (sinograms or list-mode
data) are first backprojected into a 3-D image array prior
to application of a reconstruction algorithm to recover the
quantitative radiotracer distribution. Exploiting backprojected
images dates back a long time in PET (e.g., [44] and [75]),
and more recently the backprojection can also exploit time-
of-flight (TOF) information, to produce histo-images (distinct
from the original proposal of [76] which has a histo-image for
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TABLE II
DIRECT DEEP LEARNING METHODS FOR RECONSTRUCTION

each view). Such TOF-backprojected images are excellent can-
didates for deep-learned mappings such as CNNs, as recently
demonstrated with promising results [77].

V. DIRECT DEEP LEARNING PET IMAGE

RECONSTRUCTION METHODS

In this section direct deep learning methods are considered
in more detail, with Table II summarizing a comparison of key
contributions. In particular, there are two pioneering examples
of direct methods for PET image reconstruction, which have
however only been applied to small 2-D slices (128×128): the
methods of automated transform by manifold approximation
(AUTOMAP) [12] and DeepPET [14]. Subsequent examples
of direct reconstruction include Liu et al. [78] and Whiteley
and Gregor [79] (which notably included multislice recon-
struction), and more recently a version of DeepPET with
a discriminator added on [60].

A. Direct: Fully Connected Layers With CNNs

Section III introduced FC layers and CNNs, and it should
be clear that we are at liberty to combine these mappings
sequentially, making a deeper network composed of both FC
and convolutional layers. For example, a FC layer could be
used to learn a mapping comparable to the inverse of the
Radon transform [see previous (20) and discussion], and then
a series of convolutional layers (a CNN) can be applied to the
output of the FC layer in order to denoise via use of a more
compressed representation. This is the approach of the direct

deep learning method proposed by Zhu et al. in 2018, called
AUTOMAP [12], shown in Fig. 10. AUTOMAP was proposed
mainly for MR image reconstruction, but was also demon-
strated for PET reconstruction. It has inspired other researchers
to develop comparable methodology for PET (e.g., [79]).

The AUTOMAP architecture first reformats the complex
MRI k-space data into a vector of real numbers only (for
PET, this stage can be considered as just reshaping a PET
sinogram into a column vector), followed by two FC layers
(each with a tanh activation) to learn a mapping comparable
to the inverse DFT in the case of MR, or comparable to an
inverse of the Radon transform in the case of PET. This is fol-
lowed by reshaping back to a 2-D image, ready for input to the
CNN. The CNN in AUTOMAP is used to denoise by seeking
to represent the image as a sparse collection of features found
from the convolutional layers. Sparse features can be learned
by the use of ReLU activation layers within the CNN used by
AUTOMAP, (rather than by a bottleneck). This imposes a lim-
ited latent space for a compressed representation, occupying
a limited manifold of the J-dimensional object space, mainly
modeling real object features rather than noise features.

AUTOMAP reported good results for variously undersam-
pled MRI reconstructions, although the PET reconstruction
results were less convincing, with visual quality inferior to
ordinary Poisson OSEM [80]. This was likely due to the use
of single slice rebinned [81] input sinograms, precorrected
for attenuation as input to AUTOMAP, and the fact that
AUTOMAP had been trained with MR images which had
undergone only a simple 2-D Radon transform followed by the
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Fig. 10. Schematic of the AUTOMAP architecture [12], which starts with
two main FC layers (each with tanh activation) followed by a CNN with three
convolutional layers. This architecture was designed for MRI reconstruction,
but was also demonstrated for PET reconstruction from sinogram data. The
brain phantom used in this example (and in Figs. 11 and 14) is based on
BrainWeb [105].

introduction of Poisson noise. Hence, the learned object man-
ifold was for T1w MR images rather than [18F]FDG-PET, and
there was also a mismatch in the imaging model between the
simulated training data and the test real data. Both of these lim-
itations would have compromised the potential performance of
the network.

B. Direct: Convolutional Encoder–Decoder

The principles of an encoder, latent space, and decoder
have been applied to direct PET image reconstruction by
Häggström et al. with their DeepPET architecture [14], as
shown in Fig. 11. This convolutional encoder decoder (CED)
was the second main proposed direct architecture for direct
PET image reconstruction. Instead of using FC layers to map
from a sinogram to the object space, the CED approach uses
convolutional downsampling to transform progressively from
the sinogram domain toward a learned latent space representa-
tion which has only very limited spatial sampling but is instead
extremely rich in the number of features (latent variables). This
latent space representation is then upsampled progressively in
the decoder part of the network, in order to express the latent
space information in the form of a PET image.

The input sinograms are precorrected, and so the
network needs to learn a non-Poisson noise distribution.
Häggström et al. report the benefits as greatly accelerated
image reconstruction (up to 100 times faster), de novo learning
of the imaging physics and the data noise distribution, thereby
obviating any modeling assumptions in either regard.

Whilst the results reported are of high quality for the sim-
ulated data case, as would be expected due to a match in the
imaging model used for training data and that used for the
supplied test simulated data, the real data results (particularly
for the brain data) still leave room for improvement. There is
a need for high quality (ideally ground truth) reference data to
go hand in hand with the measured data, in order to train the
network correctly for real PET data.

An adversarial version of this kind of network was proposed
by Liu et al. [78], with the key differences being the use
of a U-Net (as a conditional generator) instead of the CED,

and the addition of an adversarial/discriminator network.
Subsequently, an extended version of the CED DeepPET with
a discriminator added on was also proposed by Hu et al. [60].

VI. DEEP LEARNING FOR REGULARIZATION WITHIN

CONVENTIONAL RECONSTRUCTION

Recall that conventional model-based reconstruction, cov-
ered in Section II, used regularization via analysis or synthesis,
but that one of the drawbacks was the use of handcrafted
or mathematically convenient analysis or synthesis methods.
Upgrading from a handcrafted prior to a data-driven one is
a simple route for deep learning to bring benefits into con-
ventional image reconstruction. The approaches reviewed in
this section retain all the standard model-based reconstruc-
tion components (i.e., our knowledge of the imaging physics
and statistics), but just use deep learning for where we are
less certain and are in need of data/evidence-based prior
information—the regularization component.

Generators can be used in an otherwise conventional
image reconstruction framework, either in a synthesis capacity
(whereby only images which are outputs of a generator can be
used to optimize the reconstruction objective function) or in
an analysis capacity (whereby transformation of the image by
a network into a latent space should result only in a sparsely
coded description).

A. Regularization by Deep-Learned Synthesis/Generative
Models

There are three main approaches to a deep-learned synthe-
sis model. The first is to estimate an input code vector z for
a fixed deep network F [82], to deliver an image such that
a reconstruction objective function (e.g., Poisson likelihood)
is optimized. The second is to use a potentially arbitrary input
code z, whether random noise or a prior image, and estimate
the network parameters θ [13], in order to optimize the recon-
struction objective function. Third, one could seek to estimate
both θ and also z in a simultaneous or alternating manner.
A simple example is for the input code z to be a current noisy
image, with the generator F only needing to be a denoiser,
thereby regarding it as a conditional generator.

We will start with the case of estimating a code vector z
directly, which when mapped through an operator produces the
image vector x. Recall from the introduction that the kernel
method [KEM, (16) and (17)] was a synthesis method of regu-
larization. This synthesis approach was in fact the motivation
behind the work of Gong et al. [82], who, instead of using
a linear set of basis functions B, used a pretrained CNN as the
generative mapping (fixed choice of θ for a fixed mapping F),
imposing the following model for the radiotracer distribution’s
parameter vector x [see again (1)]:

x = F(z; θFIX) (40)

where the goal is to estimate the representation parameter code
vector z such that when it is mapped through the fixed gener-
ator CNN F, an image x is delivered which is consistent with
the data. However, of course, the constraints of the CNN rep-
resentation will mean that the forward model of x will not be
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Fig. 11. Schematic of the CED architecture used by DeepPET for direct PET image reconstruction [14] and extended by inclusion of a discriminator by
DPIR-Net [60]. PET scan information expressed in the sinogram domain is progressively transformed by simultaneous reduction of spatial sampling and
increasing of the number of feature maps, until a feature-rich latent space representation is obtained. This latent representation is decoded back out to an
image-space representation of the same information, by increasing the spatial sampling and reducing the number of feature maps.

entirely consistent with the data, due to both the CNN’s con-
straints and the fact that the data contains noise. The estimation
of z is purely by use of a constrained maximum-likelihood
objective function, using (5) (the Poisson log likelihood)

x̂ = argmax
x

L(x | m)

s.t. x = F(z; θFIX) (41)

where L is the Poisson log likelihood, given by the negative
of (5). Given the constraint in (41), that a nonlinear CNN map-
ping must generate the solution vector x, we can no longer use
the conventional EM algorithm which assumes a linear for-
ward model operating on the representation parameter vector.
Using the approach of an augmented Lagrangian, Gong et al.
first convert the constrained maximization problem of (41)
into a penalized unconstrained problem instead. This results
in integrating conventional reconstruction methodology into
the broader algorithmic framework of the alternating direction
method of multipliers (ADMM).

The first step of the method is a conventional MAP-EM
problem to find an update of the image x, using a quadratic
penalty with a prior image [see (14)] F(zn) obtained by the
CNN operating on the current estimate of the code vector zn

xn+1 = argmax
x

L(x|m) − ρ

2

∥∥x − (
F
(
zn; θFIX

) − μn)∥∥2

(42)

where μ is initially zero, and r relates to the strength of the
penalty. Equation (42) is solved by a conventional MAP-EM
algorithm such as (15) given earlier. The latent code zn is
subsequently updated to seek to match this new image estimate

zn+1 = argmin
z

ρ

2

∥∥∥F(z; θFIX) −
(

xn+1 + μn
)∥∥∥

2
. (43)

Equation (43) is solved by nonlinear least squares [the authors
used a first-order approximation of the gradient of the objective
function (44) with respect to z]. Finally, μn is updated by

μn+1 = μn + xn+1 − F
(

zn+1; θFIX

)
(44)

where in effect μ is an image showing the data-unique features
which had not been expressed by the CNN, as it corresponds to
the discrepancy between the new reconstructed image estimate
xn+1 (based on agreement with the data) and the constrained
output of the CNN operating on the code vector F(zn+1).

The ADMM approach then reverts back to (42) to repeat the
series of three updates. It can be seen that in effect, after the
first iteration, μ increases the penalty in the MAP-EM image
reconstruction stage to encourage the image x to agree more
with the CNN output (which is good if it denoises, but bad
if it loses true image features). In a similar manner, for the
update of the latent code z, the effect of μ is now to empha-
size importance of the data-unique features which had not been
successfully represented in the previous iteration. It requires
the network output to agree more with the data-based recon-
struction, emphasizing regions of the image where there had
been disagreements. Where the data contains features which
are not readily expressed by the network F, extra penalties
occur, to seek to reduce the discrepancy of network output
with the data.

Gong et al. report improved lesion contrast, for a given
noise level, compared to post-reconstruction CNN denoising
(see Fig. 12), which perhaps is not surprising, as post-
reconstruction CNN denoising no longer demands agreement
with the original raw data, whereas the CNN representation
method does.

The same authors extended their work, inspired by the “deep
image prior” (DIP) [83] to use instead a fixed input vector
z, defined to be, for example, the patient’s MR image (the
original DIP used random noise), and then trained a condi-
tional generative CNN mapping F, such that the parameters
of the network map the fixed z to the current reconstructed
image [13]. The algorithm follows a similar framework to that
just described in (42) to (44), with the key difference being that
instead of updating the latent code vector z in (43), Gong et al.
now update the network parameters instead

θn+1 = argmin
θ

ρ

2

∥∥∥F
(
zFIX; θ

) −
(

xn+1 + μn
)∥∥∥

2
. (45)
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Fig. 12. Example results of using the CNN representation method (“Iterative CNN”) compared to post-reconstruction CNN denoising (which does not involve
consistency with the data) [82]. For a given standard deviation (STD) in the liver region, the contrast recovery (CR) in the lesion in the lung is better when
using a CNN representation of the image. Both CNN methods outperform the 3 conventional methods, by lowering image noise in the liver region by up to
a factor of 2.

Equation (45) is solved by training a deep CNN to map the
fixed prior zFIX (the subject’s MR image) to match the cur-
rent MAP-EM update xn+1, with an emphasis (given by μ)
in regions where the CNN had previously failed to represent
features in the data-based reconstruction x. The crucial point
to note is that the method does not use any training data, and
can be viewed as unsupervised deep learning. Gong et al. com-
pared the method to using a CNN penalty method, as shown
in Fig. 13, where it can be seen that PET-unique regions
are more clearly defined in the DIP method. The method
was subsequently extended to 4-D image reconstruction for
the Patlak model [84]. In the context of dynamic PET image
reconstruction, Yokota et al. [85] used U-Nets as represen-
tations of parametric images, with random z inputs, thereby
placing more demand on the network training. Furthermore,
a GAN approach, which enhances the generator, has also been
proposed [86].

Table III provides a representative summary of methods
for synthesis-based deep learning methods in the literature.
The limitations of these methods are that the hyperparameters,
mainly r, need selecting for the components of the ADMM
optimization. However, performance is intended to be indepen-
dent of r, given the original objective function (41) is purely
an unpenalized maximum likelihood with just an object model
constraint.

B. Regularization by Deep-Learned Analysis

A more flexible (less constrained) approach to using deep
generators in reconstruction is via a regularization analy-
sis framework. This allows a balance between data-fidelity
expressed at the pixel/voxel level and a penalty for deviation
from a constrained, learned object model. An example would
be a quadratic penalty

R(x) =
J∑

j=1

([
F
(
xn; θFIX

)]
j−xj

)2
(46)

where in (46) F would be a denoiser, or a conditional genera-
tor. Alternatively, the prior can stipulate that the reconstructed

Fig. 13. Example results [13] for the deep image prior (DIPRecon), offering
improved lesion contrast compared to the kernel method (KEM with MRI)
and a CNN penalty method.

image should not deviate too far from a sparse-coded image

R(x) =
J∑

j=1

([
F
(
zn; θFIX

)]
j−xj

)2
(47)

where, depending on the architecture of the mapping, it may
also be necessary to explicitly require sparsity of the code
vector z, by adding a penalty for highly populated code vectors
which deliver a large norm

R(x) =
J∑

j=1

(
[F(z; θ)]j−xj

)2 + ‖z‖. (48)

A penalty comparable to (48) was the approach used by
Xie et al. [87]. In these formulations it is noted that a conven-
tional potential function, such as a quadratic as shown in (14),
is still used, as was the case in Kim et al. [88]. Otherwise, all
other image reconstruction components remain conventional
in definition. Gong et al. [13] also used a CNN penalty as an
example method to compare with in their work using the deep
image prior, as was shown in Fig. 13.
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TABLE III
SYNTHESIS REGULARIZATION DEEP LEARNING METHODS FOR PET RECONSTRUCTION

VII. UNROLLING OR UNFOLDING ITERATIVE

RECONSTRUCTION WITH DEEP LEARNING

The direct deep learning methods previously described
in Section V do not make any use of the imaging
system model A, nor the statistical-noise model described in
Section I. Instead, large quantities of training data are needed
to learn these from scratch (see Table II). This is potentially
advantageous, as it avoids modeling errors, but arguably it is
wasteful, discarding years of progress in modeling expertise
and reconstruction algorithm development. Furthermore, by
excluding these models, there is potential for the direct meth-
ods to perform potentially inexplicable mappings, which may
limit confidence, especially for unexpected (out of domain)
inputs to the network.

In contrast, the deep learning regularization methods cov-
ered in Section VI do make use of existing models, exploiting
deep learning only for image regularization. However, these
approaches still retain the mathematically convenient potential
functions which operate on these images for the regularizing
penalty. The choice of potential function is not motivated by
the data, but only by convenience.

There has been increasing work in physics-informed
AI/deep learning (e.g., [89]), and image reconstruction is no
exception. The goal here is to combine the power of the AI

paradigm with our existing knowledge of the imaging physics
and statistical modeling, seeking a hybrid new image recon-
struction methodology that exploits the best of AI with the
best of our understanding of imaging physics and reconstruc-
tion. This has the further advantage of using AI only for
the parts of the reconstruction process for which we are not
confident—such as precisely how to regularize, and to what
strength, leaving the imaging system physics model and noise
model to be what we are confident and know they should be.
This has the advantage of interpretability, important for clin-
ical imaging such as PET. The methods of Section VI have
taken steps toward this, but as mentioned, do retain a con-
venient handcrafted potential function. The methods in this
section will now also replace the potential function via deep
learned mappings, based on unrolling conventional iterative
reconstruction.

Fig. 14 shows the general framework for three of the
key methods which will be covered in detail below. The
first proposal of turning an iterative reconstruction method
into an unfolded deep network was in fact by Gregor and
LeCun, as early as 2010 [90]. Examples for medical imag-
ing reconstruction include, from the world of MRI, the work
of Hammernik et al. [91] (named a variational network).
However, this section will focus on PET image reconstruction.
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Fig. 14. General framework for three major unrolled methods for PET image reconstruction with integration of deep learning for the regularization. The
unrolled series of updates is composed of n = 1 · · · N blocks. For BCD-Net, training is done at the block level, where the goal is to denoise an update to
make it best match a high quality (or true) reference. In contrast, both MAPEM-Net and FBSEM-Net conduct their training based on the very end image (last
iteration), necessitating backpropagation through all N blocks during training in order to update the parameters for the denoiser network. For MAPEM-Net,
there are K = 2 MAP-EM updates within a block, and training of each block-dependent denoiser Fn (depends on n) is such that the very last iteration matches
the high quality reference (such as the last iteration of ML-EM from high quality data). For BCD-Net, K can vary from 1 to many iterates, and training
is done for each individual block’s denoiser Fn, such that the iteration at that stage matches the high quality reference-this avoids backpropagation through
the whole series of blocks. For FBSEM-Net, K = 1, and training is such that the last iteration should match the high quality reference (e.g., high quality
ML-EM reconstruction, or MAP-EM with light regularization from higher count data). The “Prior” indicates a fixed image used in an L2 norm penalty for
the MAP-EM update.

A. EM-Net and MAPEM-Net

We first consider the method of Gong et al., named EM-
Net [92], which writes a general MAP-EM iterative update as
follows:

xn+1 = xn − α

[
AT

(
I − m

Axn + ρ

)
+ βR′(xn)

]
(49)

where a is the update step size, the first term in the square
parentheses is the negative of the gradient of the Poisson
log-likelihood data-fidelity term, and R′ is the gradient of R,
evaluated at xn. EM-Net replaces R′ by a deep network, to
obtain

xn+1 =
{

xn − αn xn

ATI

[
AT

(
I − m

Axn + ρ

)
+ F

(
xn; θ

)]}

+
(50)

where the step size a is learned and iteration (n) dependent, and
a non-negativity constraint is imposed. Just one same trained
U-Net is used for F for all iterations, to learn the gradient
of the unknown penalty function. The training of this single
mapping F, and the step sizes, was based on a MSE loss
function which required the last iterative output, xN , for noisy
data, to match the last iterative output from a reconstruction
from high count reference data. However, Gong et al. subse-
quently reported that direct replacement of the gradient of the
prior by a CNN may be too smooth to capture its required
high spatial frequency components, and hence they proposed
MAPEM-Net [93], another unfolded method.

The approach of MAPEM-Net is to extend the constrained
ML problem (41), as was used for a deep learned image
generator/CNN representation) to be now a constrained MAP
problem instead

x̂ = argmax
x,z

L(x | m) − βR(z)

s.t. x = z. (51)

Following a similar ADMM algorithmic approach to that
covered in the earlier section for synthesis deep learned
regularization (42)–(44), the following updates are obtained:

xn+1 = argmax
x

L(x | m) − ρ

2

∥∥x−(zn − μn)
∥∥2 (52)

zn+1 = argmin
z

ρ

2

∥∥∥z −
(

xn+1 + μn
)∥∥∥

2 + βR(z) (53)

μn+1 = μn + xn+1 − zn+1. (54)

Updates (52) and (54) compare directly with updates (42)
and (44), but with z replacing F(z). The update for x, as
before in (42), is readily achieved by one or more iterations
of MAP-EM. However, the key change is for the z update,
(53), which now includes a penalty R(z), and Gong’s imple-
mentation opts for replacing the entirety of update (53) by
an iteration-dependent deep network acting to denoise the
MAP-EM output, to obtain

zn+1 = Fn
(

xn+1
)
. (55)

The resulting algorithm is therefore very simple. One or
more MAP-EM updates are performed for (52) (Gong et al.
chose just two updates), then the result is denoised via a deep
network [Gong et al. used an iteration-dependent U-Net
for (55)]. This denoised image is then used as the prior image
for the quadratic penalty in the next set of one or more MAP-
EM updates [for solving problem (52) again]. It is important
to note that while (52) uses an L2 norm (quadratic) penalty,
nonetheless the prior being used in the reconstruction, R(z),
is completely learned and so is very unlikely to correspond to
a quadratic potential.

The approach is shown schematically later on in Fig. 14, in
a framework enabling comparison to two rival methods.
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Fig. 15. Explicit schematic of the FBSEM-Net method [94], whereby a CNN with a skip connection, a “residual learning unit” is trained, along with the
hyperparameter for the fusion of the denoised image with the EM update [(60) expresses the fusion step explicitly].

Fig. 16. Example slices for 3-D simulated [18F]FDG data for FBSEM-Net, trained to match high-count reference data, when using ∼100 times less data along
with a T1w MR image for further information. FBSEM-Net is compared to conventional OSEM (no MRI benefit), without and with point spread function (PSF)
modeling, MAP-EM with MRI guidance, and to a post-reconstruction denoised reconstruction using a U-Net supplied with MRI information.

B. FBSEM-Net

The unrolled method of Mehranian and Reader [94]
is derived from the forward-backward splitting (FBS)
algorithm [95] for solving the penalized Poisson log-
likelihood. First, for a current estimate xn−1, the
denoising (regularization) update is given by

xn
Reg = xn−1 − γβR′(xn−1

)
(56)

which is a gradient descent toward the minimum of R with
a step size of γ . The actual update of the current image
estimate is then given by

xn = argmax
x

L(x|m) − 1

2γ

∥∥∥x − xn
Reg

∥∥∥
2

(57)

which is a proximal mapping [just as used elsewhere, e.g.,
(52) for MAPEM-Net] associated with the Poisson log-
likelihood L with γ as a regularization hyperparameter that
limits the degree of data fidelity of x to m by requiring
proximity to xn

Reg. Note the difference in (57) compared
to (52) is the absence of the residual image (Lagrange
multiplier) m.

Following the approach of De Pierro [96], a separable sur-
rogate is then defined for the objective function in (57), so
that it can be rewritten as:

xn = argmax
x

∑

j

xn
j,EMln

(
xj
) − xj − 1

2γ sj

(
xj − xn

j,Reg

)2
(58)
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Fig. 17. Example results for real [18F]FDG data for FBSEM-Net, trained to match 30 min reference data, when using 2 min data along with a T1w MR
image for further information. FBSEM-Net is compared to conventional OSEM (no MRI benefit) and to a post-reconstruction denoised reconstruction using
a U-Net supplied with MRI information.

where xn
EM is given by the standard EM update [compare to

the earlier (6) in Section II]

xn
j,EM = xn−1

j

sj

∑

i

aijmi∑
k aikxn−1

k + ρi
, sj =

∑

i

aij. (59)

By setting the derivative of the surrogate objective func-
tion (58) to zero, a closed-form solution is obtained [97]

xn+1
j = 2xn

j,EM
(

1 − δjxn
j,Reg

)
+
√(

1 − δjxn
j,Reg

)2 + 4δjxn
j,EM

δj = 1

γ sj
(60)

which compares with the MAP-EM update (15) given back in
Section II. For FBSEM-Net, the gradient of the prior in (56) is
replaced by a CNN, and hence the whole update (56) becomes
a residual network (i.e., using a skip connection)

xn
Reg = F

(
xn−1

)
(61)

where the training of the deep network F, including the train-
ing of γ , is such that the end iteration after a series of updates
matches a high quality image (e.g., a large number of iterations
of ML-EM from high count data, or a lightly regularized MAP-
EM if the count level is not sufficiently high in the reference
data). Equation (61) compares closely to (55) in the method of

MAPEM-Net, but here a fixed network F is used, not changing
from iteration to iteration. These equations lead to a train-
ing framework which is also shown in Fig. 14, and more
specifically in Fig. 15. Figs. 16 and 17 show example results
from this approach for simulated and real data, respectively,
including comparison with post-reconstruction deep denoising
via a U-Net. The learned prior, which in the results shown
also exploits an MR image as an input channel to assist the
deep denoiser, notably enhances reconstructed image qual-
ity compared to conventional reconstruction. More details are
available in [94].

C. BCD-Net

The method called BCD-Net [98] was adapted to low-
statistics PET reconstruction by Lim et al. in 2018 [99], [100],
predating EM-Net, MAPEM-Net, and FBSEM-Net. BCD-Net
is very similar to the aforementioned methods, again inter-
leaving a MAP-EM reconstruction (composed of just one or
potentially very many iterations) with a deep learned denoising
of the reconstruction update. The processed reconstruction is
then used as a prior in the next full MAP-EM reconstruction.
This iterative process continues, and the deep-learned pro-
cessing of the reconstruction depends on the overall iteration
number.

BCD-Net first conducts an initial number of EM iterations to
get a current image estimate xn, which is denoised by a block
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TABLE IV
UNROLLED PET RECONSTRUCTION WITH DEEP LEARNING: ARCHITECTURES

n dependent CNN

zn+1 = Fn(xn). (62)

Then this denoised image is used as a prior for a full MAP-
EM reconstruction

xn+1 = argmax
x

L(x | m) − ρ

2

∥∥∥x − zn+1
∥∥∥

2
. (63)

The method then repeats, starting again from (62).
Specifically for BCD-Net, the method is proposed initially
with a simple 3 layer network, although is extendable in princi-
ple to deeper architectures, such as a U-Net, as was considered
by Lim et al.

Table IV summarizes the different deep architectures used
by the various unrolled methods, and Table V summarizes
the key similarities and differences between MAPEM-Net,
FBSEM-Net, and BCD-Net. An advantage of the BCD-Net
method, compared to the other unrolled methods, is lower
demand on computational memory, as distinctly separate
reconstruction and denoising training at the block level is exe-
cuted without the need for a very deep single network to be in
memory. In contrast, the other unrolled methods involve back-
propagation through all blocks, which is memory intensive
during training.

VIII. SUMMARY AND FUTURE PERSPECTIVES

After briefly reviewing the core components of PET image
reconstruction and the foundations of deep learning, the var-
ious ways of integrating the data-driven benefits of deep
learning into image reconstruction have been reviewed. Table I

summarized four core ways in which deep learning can be
integrated into the PET image reconstruction process.

Direct deep learned mappings from sinograms to images
abandon all prior knowledge of physics and the noise distri-
bution of the data, and seek instead to learn these from scratch.
This has the advantage of avoiding any inaccurate modeling
assumptions, but the disadvantage of entrusting these models
to purely what is included in the training data only. However,
if given sufficient training data, these should prove to be pow-
erful and rapid reconstruction methods, although likely still
computationally challenging for true fully 3-D reconstruction.
It is notable from Table II that these methods, demonstrated
in 2-D, tend to need training dataset sizes ranging from tens
of thousands to hundreds of thousands of image slices (each
paired with their measured data).

The synthesis approach uses deep learning for the object
model only, using a deep network as a representation, then
leaving the rest of the image reconstruction to follow con-
ventional approaches. However, this requires the final recon-
structed image to be the output of a network only, with the
potential advantages and disadvantages this may entail in terms
of what is, and is not, expressed. Alternative analysis methods
use these same or similar deep learned object models not as
an imposed representation, but instead as a means of analysis
regularization, whereby the reconstructed image is penalized
if it deviates too far from the object representation model.
This could be included, for example, within a conventional
L2 penalty term for a MAP reconstruction. The advantages of
the synthesis and analysis approaches compared to full direct
deep learning mappings include: demonstrated practicality for
3-D reconstruction, reduced need for training data (typically
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TABLE V
COMPARISON OF KEY DISTINGUISHING FEATURES BETWEEN THE THREE UNROLLED METHODS: BCD-NET, MAPEM-NET, AND FBSEM-NET

of the order of tens of 3-D images are used), and exploitation
of conventional image reconstruction knowledge that we can
trust (e.g., imaging physics, data corrections, and the Poisson
noise model). However, their reconstruction speed will be
comparable to conventional iterative methods.

Going a step further, it is possible to completely learn the
regularization, not even relying on a quadratic or similar poten-
tial function to describe the penalty. For these approaches,
which make even fewer assumptions regarding even how to
regularize, it is necessary to unroll or unfold the iterative
algorithm, as was shown in Fig. 14. Such approaches have
similar training data needs to the synthesis/analysis group
(of the order of tens of 3-D images), and similar execution
times, but can be demanding for computational memory during
training if they require backpropagation of gradients through
all the unrolled blocks. Notably, BCD-Net avoids that need,
potentially being a more practical method. Results in the lit-
erature show promise for the use of unrolled methods, but
there is however now a need to compare performance between
these various approaches for the same sets of training and
test data (which should be as diverse as possible), prefer-
ably robustly comparing to post-reconstruction deep learning
alternatives as well.

Likely future directions may include fully Bayesian deep
learning [101] for PET image reconstruction, whereby not just
MAP estimates are sought, but the entire posterior probabil-
ity distribution. This allows uncertainty in the deep learned
modeling itself to be expressed, which is useful for when
high quality images are produced that may nonetheless contain
uncertain features which need to be indicated to the radi-
ologist, or specified alongside any quantitative measures of
interest. The practicalities of using an image with a counter-
part uncertainty image may be challenging for translation to
clinical use.

Another major area of research is the need for ground
truth data or high quality reference data paired with the
measured data for conventional supervised learning. There
will likely be a lot of potential for seeking out improved
ground truth reference information, or even for development
of self-supervised deep learning for image reconstruction
(e.g., [102] for MRI). In these methods, rather than supply-
ing targets/labels, instead the algorithms are provided with the
knowledge of how to produce targets/labels, usually based
on degradation of supplied data (such as reduced sampling,
or introduction of noise) in order to recover the full input

data. Furthermore, another important development is that of
cycle GANs [4], which provide a powerful means of avoid-
ing the need for matched training pairs in deep mappings.
Instead, these learn, effectively unsupervised, how to map one
distribution to another distribution, allowing use of pools of
inputs and targets, unpaired. Cycle-consistent GANs, origi-
nally proposed in the context of image-to-image translation,
could prove immensely useful in the image reconstruction
context, as indeed is beginning to be the case already for
MRI [103].

This present review has focused strictly on methods which
involve raw PET data, primarily in the form of sinograms. As
acknowledged, there has however been significant work on
post-reconstruction deep learning for denoising and resolution
enhancement, and perhaps these simpler approaches are more
likely to be adopted at least in the shorter term. This is due to
their reduced memory requirements (use of images rather than
sinograms) and their apparently competitive performance with
full deep-learning reconstruction methods that use the raw PET
data. Recent work has shown that the relatively simple post-
reconstruction methods can fare very well indeed (see again
the findings with a post-reconstruction U-Net in [94], as was
shown in Figs. 16 and 17 in this present review). The potential
advantage of direct use of raw PET (sinogram) data (whether
in direct methods or unrolled methods) perhaps is still in need
of more convincing demonstration. Therefore, methods like
that of Whiteley et al. [77] with their use of TOF backpro-
jected images as the starting point for deep learning, do look
promising in the near future.
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