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Deep Learning-Based Image Segmentation on
Multimodal Medical Imaging

Zhe Guo ', Xiang Li

Abstract—Multimodality medical imaging techniques have
been increasingly applied in clinical practice and research stud-
ies. Corresponding multimodal image analysis and ensemble
learning schemes have seen rapid growth and bring unique
value to medical applications. Motivated by the recent success
of applying deep learning methods to medical image process-
ing, we first propose an algorithmic architecture for supervised
multimodal image analysis with cross-modality fusion at the fea-
ture learning level, classifier level, and decision-making level.
We then design and implement an image segmentation system
based on deep convolutional neural networks to contour the
lesions of soft tissue sarcomas using multimodal images, including
those from magnetic resonance imaging, computed tomography,
and positron emission tomography. The network trained with
multimodal images shows superior performance compared to
networks trained with single-modal images. For the task of tumor
segmentation, performing image fusion within the network (i.e.,
fusing at convolutional or fully connected layers) is generally bet-
ter than fusing images at the network output (i.e., voting). This
paper provides empirical guidance for the design and application
of multimodal image analysis.

Index Terms—Computed tomography (CT), convolutional
neural network (CNN), magnetic resonance imaging (MRI),
multimodal image, positron emission tomography (PET).

I. INTRODUCTION

N THE field of biomedical imaging, use of more than one

modality (i.e., multimodal) on the same target has become
a growing field as more advanced techniques and devices
have become available. For example, simultaneous acquisi-
tion of positron emission tomography (PET) and computed
tomography (CT) [1] has become a standard clinical practice
for a number of applications. Functional imaging techniques
such as PET which lacks anatomical characterization while
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providing quantitative metabolic and functional information
about diseases can work together with CT and magnetic res-
onance imaging (MRI) which provide details on anatomic
structures via high contrast and spatial resolution to bet-
ter characterize lesions [2]. Another widely used multimodal
imaging technique in neuroscience studies is the simultaneous
recording of functional MRI (fMRI) and electroencephalog-
raphy (EEG) [3], which offers both high spatial resolution
(through fMRI) and temporal resolution (through EEG) on
brain dynamics.

Correspondingly, various analyses using multimodal
biomedical imaging and computer-aided detection systems
have been developed. The premise is that various imaging
modalities encompass abundant information which is different
and complementary to each other. For example, in one deep-
learning-based framework [4], automated detection of solitary
pulmonary nodules were implemented by first identifying sus-
pect regions from CT images, followed by merging them with
high-uptake regions detected on PET images. As described in
amultimodal imaging project for brain tumor segmentation [5],
each modality reveals a unique type of biological/biochemical
information for tumor-induced tissue changes and poses “some-
what different information processing tasks.” Similar concepts
have been proposed in the field of ensemble learning [6], where
decisions made by different methods are fused by a “meta-
learner” to obtain the final result, based on the premise that the
different priors used by these methods characterize different
portions or views of the data.

There is a growing amount of data available from
multimodal medical imaging and a variety of strategies for
the corresponding data analysis. In this paper, we investi-
gate the differences among multimodal fusion schemes for
medical image analysis, based on empirical studies in a seg-
mentation task. In their review, James and Dasarathy provide
a perspective on multimodal image analysis [7], noting that
any classical image fusion method is composed of “registra-
tion and fusion of features from the registered images.” It is
also noted in the survey work of [8] that networks represent-
ing multiple sources of information “can be taken further and
channels can be merged at any point in the network.”

Motivated by this perspective, we advance one step fur-
ther from the abstraction of image fusion methods in [7] and
propose an algorithmic architecture for image fusion strate-
gies that can cover most supervised multimodal biomedical
image analysis methods. This architecture also addresses the
need for a unified framework to guide the design of method-
ologies for multimodal image processing. Based on the main
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stages of machine learning models, our design includes fusing
at the feature level, fusing at the classifier level, and fusing at
the decision-making level. We further propose that optimizing
a multimodal image analysis method for a specific application
should consider the possibility of all the three strategies and
select the most suitable one for the given use case.

Successes in applying deep convolutional neural
networks (CNNs) for natural image [9] and medical
image [10], [11] processing have been recently reported.
Further, for the task of automatic tumor segmentation,
CNNs have been applied to segmentation of tumors in
brain [5], [12], [13], liver [14], breast [15], lung [16], [17],
and other regions [18]. These deep learning-based methods
have achieved superior performance compared to traditional
methods (such as level set or region growing) with good
robustness toward common challenges in medical image
analysis, including noise and subject-wise heterogeneity.
Deep learning on multimodal images (which are also referred
to as multisource/multiview images) is an important topic with
growing interest in the computer vision and machine learning
community. To name a few, works in [19] proposed the cross-
modality feature learning scheme for shared representation
learning. Work in [20] developed a multiview deep learning
model with deep canonical correlated autoencoder and shared
representation to fuse two views of data. Similar multisource
modeling has also been applied for image retrieval [21] by
incorporating view-specific and view-shared nodes in the
network. In addition to the correlation analysis, consistency
evaluation across different information sources is used by
multisource deep learning framework in [22] to estimate
trustiness of information sources. When image views/sources
are unknown, the multiview perceptron model introduced
in [23] explicitly perform classification on views of the input
images as an added route in the network. Various methods
have also been developed for deep learning-based works for
multimodal/multiview medical analysis. For example, work
in [24] used shared image features from unregistered views
of the same region to improve classification performance.
Framework proposed in [25] fuses imaging data with non-
image modalities by using a CNN to extract image features
and jointly learn their nonlinear correlations using another
deep learning model. The multimodal feature representation
framework introduced in [26] fuses information from MRI
and PET in a hierarchical deep learning approach. The
unsupervised multimodal deep belief network [27] encoded
relationships across data from different modalities with
data fusion through a joint latent model.

However, there has been little investigation from a sys-
tematic perspective about how multimodal imaging should be
used. There are few empirical studies on how different fusing
strategies can affect segmentation performance. In this paper,
we address this problem by testing different fusion strategies
through different implementations of CNN architecture.

A typical CNN for supervised image classification consists
of: 1) convolutional layers for feature/representation learning,
which utilize local connections and shared weights of the con-
volutional kernels followed by pooling operators, resulting in
translation invariant features and 2) fully connected layers for

classification, which use high-level image features extracted
from the convolutional layers as input to learn the complex
mapping between image features and labels. CNN is a suitable
platform to test and compare the different fusion strategies as
proposed above in a practical setting, as we can customize
the fusion location in the network structure: either at the
convolutional layers, fully connected layers, or network output.

II. MATERIALS AND METHODS

A. Algorithmic Architecture for Multimodal Image Fusion
Strategies and Summary of Related Works

As any supervised learning-based method consists of three
stages: 1) feature extraction/learning; 2) classification (based
on features); and 3) decision making (usually a global classifi-
cation problem but varies), we summarize the three strategies
for fusing information from different image modalities, as
shown below.

1) Fusing at Feature Level: Multimodality images are used
together to learn a unified image feature set, which shall
contain the intrinsic multimodal representation of the
data. The learned features are then used to support the
learning of a classifier.

2) Fusing at the Classifier Level: Images of each modality
are used as separate inputs to learn individual fea-
ture sets. These single-modality feature sets will be
then used to learn a multimodal classifier. Learning
the single-modality features and learning the classifier
can be conducted in an integrated framework or sep-
arately (e.g., using unsupervised methods for learning
the single-modality features then train a multimodality
classifier).

3) Fusing at the Decision-Making Level: Images of each
modality are used independently to learn a single-
modality classifier (and the corresponding feature set).
The final decision of the multimodality scheme is
obtained by fusing the output from all the classifiers,
which is commonly referred to as “voting” in [6],
although the exact scheme of decision making varies
across methods.

Any practical scenario using supervised learning on
multimodal medical images belongs to one of these fusion
strategies, and most of the current literature reports can be
grouped accordingly. Works in [28] (co-analysis of fMRI and
EEG using CCA), [29] (co-analysis of MRI and PET using
PLSR), and [30] (co-learning features through pulse-coupled
neural network) perform feature-level fusion of the images.
Works in [31] (using features of contourlets), [32] (using fea-
ture of wavelet), [33] (using features of wavelets), and [34]
(using features learned by linear discriminant analysis) per-
form the classifier-level fusion. Several other works in image
segmentation, such as [35] (fusing the results from differ-
ent atlases by majority voting) and [36] (fusing the support
vector machine results from different modalities by majority
voting), as well as the multimodal brain tumor segmenta-
tion framework [5] (using majority vote for fusing results
from different algorithms, rather than modalities) belong to
decision-level fusion.
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B. Data Acquisition and Preprocessing

In this paper, we use the publicly available soft-tissue sar-
coma (STS) dataset [37] from the cancer imaging archive
[38] for model development and validation. MRI is mainly
used for the diagnosis of STS, while other options includ-
ing CT or ultrasound [39], [40]. As STS poses high risk
of metastasis (especially to lung) leading to low survival
rates, a comprehensive characterization of STSs including
imaging-based biomarker identification is a crucial task for
better adapted treatment. Accurate segmentation of the tumor
region plays an important role for image interpretation, anal-
ysis, and measurement. The STS dataset contains a total of
four imaging modalities: FDG-PET/CT and two anatomical
MR imaging sequences (T1-weighted and T2-weighted fat-
saturated). Images from all those four modalities have been
preregistered to the same space. It should be noted that
throughout this paper we regard T1- and T2-weighted imag-
ing as two “modalities” because they portray different tissue
characteristics. The STS dataset encompasses 50 patients with
histologically proven STSs of the extremities. The FDG-PET
scans were performed on a PET/CT scanner (Discovery ST,
GE Healthcare, Waukesha, WI, USA) at the McGill University
Health Centre. PET attenuation corrected images were recon-
structed (axial plane) using an ordered subset expectation
maximization (OSEM) iterative algorithm. PET slice thickness
resolution was 3.27 mm and the median in-plane resolution
was 5.47 x 5.47 mm?. For MRI imaging, T1 sequences were
acquired in the axial plane for all patients while T2 (or short
tau inversion recover) sequences were scanned in different
planes. The median in-plane resolution for T1-weighted MR
imaging was 0.74 x 0.74 mm? and T2-weighted MR was
0.63 x 0.63 mm?. The median slice thickness was 5.5 mm
and 5.0 mm for T1 and T2, respectively.

The gross tumor volume (GTV) was manually annotated
based on the T2-weighted MR images by expert radiologists
with access to the other modalities. After drawing the GTV
on T2 images, corresponding contours of these annotations
for the other modalities were then obtained using rigid regis-
tration with the commercial software MIM (MIM software
Inc., Cleveland, OH, USA). As the PET/CT images have
a much larger fields of view than the MR images, they were
truncated to the regions with MR images. In addition, the
PET images were first converted to standardized uptake val-
ues (SUVs) and linearly up-sampled to the same resolution
of other modalities. Pixel values for all three modalities are
linearly normalized to the value interval of 0-255 according
to the original pixel value.

The final data used as input in this analysis has four modal-
ities of imaging (PET, CT, T1, and T2 MR), all in the same
image size for each subject while the size varies across dif-
ferent subjects. A sample multimodal image set is illustrated
in Fig. 1. In the analysis, image patches with the size of
28 x 28 are extracted from all images. A patch is labeled
as “positive” if its center pixel is within the annotation (i.e.,
tumor-positive) region and labeled as “negative” otherwise. On
average, around 1 million patches were extracted from each
subject, with around 0.1 million positive patches. During the
training phase, to balance the number of positive and negative

Fig. 1. Multimodal images on the same position from a randomly selected
subject. (a) PET; (b) CT; (c) T1; and (d) T2. The image size of this subject is
133 x 148. Red line is the contour of ground truth from manual annotation.
Two yellow boxes illustrate the size of patches (28 x 28) used as the input for
CNN. The center pixel of one patch is within the tumor region and another
patch outside the tumor region.

patches, we randomly selected negative patches to the same
number of positive patches. During the testing phase, we used
all the patches for segmentation.

C. Multimodal Image Classification Using CNN

We implemented and tested three fusion strategies in three
different patch-based CNNs with corresponding variations in
network structures, as illustrated in Fig. 2: 1) the Type-I
fusion network represents feature-level fusing; 2) the Type-II
fusion network represents classifier-level fusing; and 3) the
Type-III fusion network represents decision-level fusion. All
the networks use same set of image patches as input. The
network outputs, which are the labels of the given patches, are
aggregated by assigning the corresponding label to the pixel
in the patch center in the output label maps. All the single
and multimodal networks were implemented in TensorFlow
and run on a single NVIDIA 1080Ti GPU. Training time for
a single-modal network on the current dataset was around 3 h.
For multimodal networks of all types, the training time was
around 10 h. Testing time (i.e., segmentation on new images)
of any single or multimodal network was negligible (<2 min).

For the Type-I fusion network, patches from different
modalities are transformed into a 3-D tensor (28 x 28 x k, where
k is the number of modalities) and convoluted by a 2 x 2 x k
kernel as shown in Fig. 2(a), to fuse the high-dimensional
features to the 2-D space thus performing the feature-level
fusion. Outputs from the k-dimensional kernel are then convo-
luted by typical 2 x 2 kernels. For the Type-II fusion network,
the features are learned separately through each modality’s
own convolutional layers. Outputs of the last convolutional
layers from each modality, which are considered the high-
level representation of the corresponding images, are used to
train a single fully connected network (i.e., classifier), as in
Fig. 2(b).
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Fig. 2. Tllustration of the structure for (a) Type-I fusion networks, (b) Type-II
fusion network and (c) Type-III fusion network. The yellow arrows indicate
the fusion location.

For the Type-III fusion network, for each modality we train
a single-modal 2-D CNN to map its own image to the anno-
tation. The prediction results (i.e., patch-wise probability) of
these single-modality networks are then ensembled together to
obtain the final decision (i.e., patch-wise label). The ensemble
can be done in many ways: the simplest form is major-
ity voting (i.e., label of a patch is set to the majority label
from classifiers). In this paper, we utilized the random forest
algorithm [41] to train a series of decision trees for the patch-
wise label classification, as random forest has been shown to
be capable of achieving better generalizability and avoid over-
fitting in many applications. The random forest algorithm uses
bootstrap sampling of the data to learn a set of decision trees,
where a random subset of data is used at each decision split.
Details of implementation can be found in [42]. The random
forest algorithm in this paper uses an ensemble of 10 bagged
decision trees, each tree with maximum depth of 5. These
hyper parameters were determined through grid search.

D. Experiments on Synthetic Low-Quality Images

While it is expected that multimodal imaging should offer
additional information for lesion classification resulting in bet-
ter performance compared with single-modality methods, it
is interesting to investigate the extent of such a benefit. To
answer this question, and at the same time simulate a prac-
tical scenario of low-dose imaging, we generated synthetic
low-quality images by adding random Gaussian noise into
the original images and used them for training and testing
in both the single-modality and multimodality networks, fol-
lowing the same tenfold cross-validation scheme. Images after
adding Gaussian noise were normalized to the same value

Fig. 3. Sample multimodal image before and after adding Gaussian noise.
(a) Ground truth shown as red contour overlaid on PET image, (b) CT
image, and (c) T2 image. After adding noise, (d) PET image, (e) CT image,
and (f) T2 image. The magnitude factor k equals to 1.

interval as the original images to ensure similar settings in
the imaging parameters. A sample multimodal image before
and after adding noise is visualized in Fig. 3.

As seen in Fig. 3, when the noise magnitude is 1 (standard
deviation equal to the 90% of the cumulative histogram distri-
bution value of the image), low-quality PET images maintain
good contrast of the tumor region with blurred boundaries.
Similarly, tumor regions can be visually identified from the
low-quality T2 image, but the contrast is very low. On the other
hand, the contrast of CT image after adding noise became
so low that tumors cannot be distinguished from background.
Apparently performing segmentation on these synthetic images
will be challenging for certain modalities, which is similar to
the case of low-dose image analysis.

E. Segmentation and Performance Evaluation

The whole image set containing PET, CT, and MR
T1-weighted and T2-weighted images from 50 patients
were divided into training (including validation) and test-
ing sets, based on the tenfold cross-validation scheme. In
each run of the cross-validation experiment for the single-
modality and Type-I/Il networks, PET 4+ CT 4 TI1 or
PET + CT + T2 images from 45 patients were used for train-
ing the three-modality network, while the remaining 5 patients
were used for testing and performance evaluation. With a total
of ten runs, images from every patient were tested. In each
run, the same number (around 5 million) of positive and neg-
ative samples were used as training input. Model performances
were evaluated based on pixel-wise accuracy by comparing the
predicted label with the ground truth from human annotation,
as well as Sgrensen—-Dice coefficient [43] (DICE coefficient)
which equals to twice the number of voxels within both regions
divided by the summed number of voxels in each region to
measure the similarity between predicted region and annota-
tion region. It should be noted while labels of all the patches
from the five test patients in each run were predicted during
the testing phase, we calculated the prediction result based
on equal numbers of positive and negative patches, in order to
overcome the problem of unbalanced samples. For the Type-III
network with random forest, the prediction was based on
the single-modality networks in the tenfold cross validation.
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Fig. 4. Box chart for the statistics (median, first/third quartile and the
min/max) of the DICE coefficient across 50 subjects. Each box corresponds
to one specific type of network trained and tested on one specific combination
of modalities. For example, the first box from the left shows the prediction
statistics of Type-I fusion network trained and tested on images from PET,
CT, and T1-weighted MR imaging modalities.

Patch-wise probabilities of each patch being within the tumor
region from the single-modality networks are then combined
to train a random forest (training labels of the patches are
ground truth) in the same tenfold cross-validation approach.

We also performed comparison between the model
performance using three modalities (PET, CT, and MRI T1 or
T2) and two modalities (PET + CT, CT + T2 and PET + T2).
Hyper parameters remain similar for these networks with alter-
ation of network structure for the number of modalities. For
example, multimodal PET + CT fusion Type-I network has
two input channels, the images will go through 2 x 2 x 2 con-
volutional kernel followed by 2-D 2 x 2 kernels. All fused
networks were implemented with Type-I, Type-II, and Type-III
strategies. Raw outputs of the networks, which are of patch-
wise classification results, were transformed to the “label map”
by assigning each pixel in the input image the label of the
patch centered at it.

IIT. RESULTS

A. Performances Comparison Between Single-Modality
Networks and Multimodality Fusion Networks

DICE coefficient of single and multimodality networks are
summarized in the box charts of Fig. 4: average DICE of
Type-I, II, and III fusion networks on PET + CT + TI1 is
82%, 80%, and 77%, respectively. Average DICE of Type-
I, II, and III fusion networks on PET + CT + T2 is 85%,
85%, and 84%, respectively. Average performance of a single-
modality network is 76%, 68%, 66%, and 80% for PET, CT,
T1, and T2 images. From the statistics, it can be seen that
the DICE of single-modality networks are all lower than the
multimodality fusion networks, while no network achieved
result higher than 80%. The networks trained and tested on
the T2-weighted MR had the best performance. The reason is
that: 1) annotation is performed on T2 images and 2) T2 relax-
ation is more sensitive to STS, as illustrated in Fig. 1(d). It
is also interesting to observe that the performance of PET-
based network is the worst in average while PET is designed
to detect the tumor presence. This is mainly caused by the
necrosis in the center of large tumor which barely show uptake
in FDG-PET images.

(@

Fig. 5. (a) Ground truth shown as red contour line overlaid on T2-weighted
MR image. (b) Result from Type-II fusion network based on PET + CT + T1.
(c) Result from single-modality network based on T2. (d)—(f) Results from
single-modality network based on PET, CT, and TI, respectively. (g) 3-D
surface visualization of the ground truth. (h) 3-D surface visualization of the
result from Type-III fusion network based on PET + CT + T1. (i) 3-D surface
visualization of the result from single-modality network based on T2.

Although the annotation was mainly performed on the T2-
weighted images, the fusion network trained and tested on the
combination of PET, CT, and T1 (without T2) achieved bet-
ter result, on average compared to the single-modality network
based on T2 images (by around 2% improvement). Such result
shows that while modalities other than T2 might be inaccurate
and/or insufficient to capture the tumor region in single, the
fusion network (using any of the fusion scheme) can automat-
ically take advantage of the combined information. An illus-
trative example is shown in Fig. 5, where the multimodality
fusion network Fig. 5(b) can obtain the better result comparing
with T2-based single-modality network [Fig. 5(c)]. A closer
examination of the single-modality networks based on PET,
CT, and T1 shows that neither of these three modalities can
lead to a good prediction: PET [Fig. 5(d)] suffers from the
necrosis in the center issue as discuss above, while a large
region of false positive is presented in CT, T1, and T2 results
[Fig. 5(c), (e), and (f)].

B. Performance Comparison on Synthetic Low-Quality Image

By training and testing the single-modality and
multimodality networks on the synthetic low-quality
images with Gaussian noise, we obtained label maps and
corresponding prediction accuracies. Model performance on
both original images and low-quality images are summarized
in Fig. 6, under the noise magnitude k of 1. From the
statistics, three important observations can be made.

First, when the image quality degrades, the segmentation
performance decreased for all the networks. However, the level
of decrease for single-modality networks was far higher than
the multimodality networks. For example, the result of seg-
mentation on single-modality low-quality CT images decreases
to random guessing, which is in correspondence with what has
been observed in Fig. 3. On the other hand, performance of
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Fig. 6. Box chart for the statistics (median, first/third quartile and the
min/max) of the DICE coefficient across 50 subjects. Red box stands for
networks trained and tested on original clean images and blue box stands for
networks based on synthetic noised image.

all Type-I and II networks only slightly decrease: their DICE
measurements are all above 80%.

Second, it is interesting to find that the performance of
multimodality networks based on low-quality images is on
the same level or even higher than the performance of single-
modality networks based on original images, as indicated by
the arrows in Fig. 6. The observation indicates that multimodal
imaging can be useful in low-image quality settings (such
as low-dose scans), as its analytic performance is far less
impacted by the degraded image quality. Fig. 7 shows an
example consisting of the results from three single-modality
networks (on original image) and one Type-II fusion network
(on low-quality image). Networks based on PET as a sin-
gle modality cannot define correct tumor boundaries while at
the same time they generate false positives outside the tumor
region. Networks based on single CT and T2 MRI can delin-
eate the rough tumor boundaries but with either false positive
outliers [Fig. 5(c), from T2]) or incorrect boundary definition
[Fig. 7(b), from CT]. On the other hand, the performance of
a multimodal fusion network on the same subject is clearly
superior [Fig. 7(d)], although it was trained and tested on
noised images (as visualized in the background). Further
examination of multimodal fusion network performance on
low-quality images with different noise magnitudes shows that
on low-to-mid noise magnitudes (k = 0.5/1), the performance
of multimodal fusion networks is similar to performance on
original clean images. Specifically, for k = 0.5 (i.e., standard
deviation of Gaussian noise is almost half of the image inten-
sity), there is no significant difference (p < 0.05) between
the segmentation result on original and noised images for
each subject. At higher noise magnitudes (k = 2), the model
performance deteriorates to below 80% (0.62% for Type-I,
75% for Type-1I, and 52% for Type-Ill fusion networks),
which is worse than the single-modality performance on
T2 images.

Third, among different fusion strategies, fusion networks
of Type-I and II perform largely the same per the statistics,
both on original images and on low-quality noised images.
While Type-III networks with random forest have consistently
worse performance. It is important to find it performs the
worst among the three strategies, as it is commonly applied
in multimodal image studies. Finally, with regard to the

Fig. 7. Network result on different modalities. Contour line of the ground
truth annotation (red line) and network performance (yellow line). (a) Single
PET network on PET image. (b) Single CT network on CT image. (c) Single
T2 network on T2 image. (d) Fused noisy PET/CT T2 image on noisy T2.
(e)—(h) 3-D surface visualization of the segmentation results in (a)—(d).
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Fig. 8. Box chart for the statistics (median, first/third quartile and the
min/max) of the DICE coefficient across 50 subjects. Red box stands for
network train and test on Type-I network, blue box stands for Type-II network,
and green stands for Type-III. Performances of single-modality network are
shown as gray boxes to the left for reference.

computational complexity which affects training and testing
time as well as hardware cost, and the ease of implemen-
tation, networks with earlier fusion (Type-I) are superior for
their simplicity in model structure.

C. Performance Comparison Using Different Modality
Combinations

Based on the observations on model performance differ-
ence between multimodal and single-modal networks and the
detailed investigation of the label maps from network results,
we have found that additional imaging modalities can offer
new information to the segmentation task even with low-
ered image quality. Yet it is still unclear how (and whether)
different modalities contribute to the multimodality network.
In other words, if little or no performance increase is con-
sistently observed from a certain combination of imaging
modalities compared with its single-modality counterpart, then
we can conclude that the extra modality is not contribut-
ing to the segmentation task. To this end, we trained and
tested the multimodal fusion networks on additional combi-
nations of imaging modalities as introduced in the methods
section. Statistics of the performance of these networks are
summarized in Fig. 8.

From Fig. 8, it can be observed that a fusion network based
on PET + T2 has similar but lowered performance compared
to a fusion network based on PET + CT 4 T2, showing CT
has a limited contribution to the segmentation. More impor-
tantly, a fusion network based on PET + CT has significantly
(p < 0.05) higher performance than single-modality networks
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Fig. 9.
segmentation result (yellow line). (a) Single-modality network on T2.
(b) Multimodality network on T2 + PET (Type-I). (c) Multimodalities
network on T2 + PET + CT. (d)—(f) 3-D surface visualization of the
segmentation results in (a)—(c).

Contour line of the ground truth annotation (red line) and

on PET or CT for Type-I and Type-II fusion strategies, indi-
cating that a low-contrast imaging modality (such as CT) can
significantly improve the segmentation accuracy for functional
imaging (PET). To further illustrate this, Fig. 9 is an example
case of segmentation from a single-modality network based
on T2 images, a multimodality network based on T2 + PET
images and a multimodality network based on T2 + PET + CT
images. By gradually adding extra modalities, the resulting
tumor region segmentation is shown corresponding improve-
ments: a single-modality T2 network can delineate a rough
boundary of the tumor but also generates false positives in
the bottom left corner due to the confusing boundaries of the
anatomical structures. This error is then corrected by utilizing
functional information from PET images (where such anatomi-
cal deviations show little contrast) to form a multimodal fusion
network [Fig. 9(b)]. By incorporating CT images, the seg-
mentation boundary is further smoothed, achieving the best
possible performance.

IV. CONCLUSION

Based on the network performance comparison, we empiri-
cally demonstrate several findings. First, comparison results
between multimodality and single-modality networks in
Sections III-A and III-B show that multimodal fusion networks
perform better than single-modal networks. More interest-
ingly, fusion networks based on synthetic low-quality images
perform better than single-modality networks on high-quality
images, at certain noise levels. This finding brings in new
evidence for the benefit of multimodal imaging in medical
applications in which one of the modalities can only provide
images with limited quality, such as screening or low-dose
scans. It is then a better option to utilize more than one
modality for better analytics.

Second, comparison results of fusion strategies in
Section III-A shows that for the task of tumor region segmen-
tation using CNN, performing fusion within the network (at
the convolutional layer or fully connected layer) is better than
outside the network (at network output through voting), even
when the voting weights are learned by using sophisticated
classification algorithms such as random forest. As voting
is commonly used by multimodal analytics, this conclusion

could provide empirical guidance for the corresponding model
design (e.g., consider an integrated multimodal framework
through registration rather than voting).

Third, modality combination results in Section III-C show
that multimodal fusion networks can take advantage of the
additional anatomic or physiological characterizations pro-
vided by different modalities, even if the extra modality can
only provide limited contrast in the target region. This con-
clusion is in accordance with “weak learnability” in the field
of ensemble learning [44], indicating that as long as a learner
(or source of information, as the imaging modality in this con-
text) can perform slightly better than random guessing, it can
be added into a learning system to improve its performance.

Although we have only tested the framework on a single
dataset using one set of simple network structures, most of
the current conclusions we draw from the empirical results are
not dependent upon the exact data used. We are aiming to test
more network structures including end-to-end semantic seg-
mentation networks, on datasets with more types of modalities
in future work.

In addition, as fully CNN, such as U-Net [45], has been
widely used in medical image analysis especially seman-
tic segmentation, we performed the same segmentation task
using U-Net based on Type-I fusion scheme. Structure of
U-Net used in this paper consists of four convolution layers
for encoding and four deconvolution layers for decoding, in
accordance with input image size (128 x 128). Other model
parameters and implementation details can be found in our
previous work [46]. Comparison between the segmentation
result from U-Net-based and CNN-based fusion networks (all
Type-I) shows that these two methods achieved very simi-
lar performance, with relative difference <0.5%. This result
shows that with the same fusion scheme, actual performance
is similar for different segmentation methods (e.g., between
patch-based and encoder-decoder-based methods). Further, it
shows that fusion schemes introduced in this paper is not
dependent on the implementation of segmentation, thus it
can serve as a general design rule for multimodal image
segmentation.

Our algorithmic architecture (three fusion strategies) only
covers supervised, classification-purposed methods. Yet we
also note that there exist unsupervised methods in medical
image analysis such as gradient flow-based methods for image
segmentation [47], as well as well-established deformable
image registration algorithms [48]. These unsupervised meth-
ods can also be applied to multimodal images, while their
fusion schemes can be studied by an extension of the current
framework.

While the empirical study is performed on a well-registered
image dataset, we recognize that registration across different
imaging modalities is a vital part of any fusion model. All
three types multimodal fusion networks used in this paper
assumes good voxel-level correspondence, while erroneous
registration across different modalities in an incoming patient
can lead to dramatically decreased prediction performance
within the misaligned region, depending on the number of
modalities affected by the misalignment and its severity. This
limitation has inspired us for a plan to develop an integrated
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framework consisting of iterative segmentation and registra-
tion through alternative optimization, with shared multimodal
image features.
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