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PET Image Denoising Using a Deep Neural
Network Through Fine Tuning

Kuang Gong , Jiahui Guan, Chih-Chieh Liu, and Jinyi Qi

Abstract—Positron emission tomography (PET) is a functional
imaging modality widely used in clinical diagnosis. In this paper,
we trained a deep convolutional neural network to improve PET
image quality. Perceptual loss based on features derived from
a pretrained VGG network, instead of the conventional mean
squared error, was employed as the training loss function to pre-
serve image details. As the number of real patient data set for
training is limited, we propose to pretrain the network using
simulation data and fine-tune the last few layers of the network
using real data sets. Results from simulation, real brain, and
lung data sets show that the proposed method is more effec-
tive in removing noise than the traditional Gaussian filtering
method.

Index Terms—Convolutional neural network (CNN), fine-
tuning, image denoising, perceptual loss, positron emission
tomography (PET).

I. INTRODUCTION

POSITRON emission tomography (PET) is a func-
tional imaging modality that is widely used to observe

molecular-level activities inside tissues through the injection
of specific radioactive tracers. Due to various physical degra-
dation factors and limited number of detected photons, image
resolution, and signal-to-noise ratio (SNR) of PET images are
poor. Improving PET image quality is needed in applications,
such as small lesion detection, lung cancer staging, and early
diagnosis of neurological disease.

Multiple advances have been made in the past decades to
improve PET SNR, such as exploiting time of flight infor-
mation [1], using high-efficiency detectors with depth of
interaction capability [2], extending the solid angle cover-
age [3], [4], and adopting more accurate system modeling
in image reconstruction [5]. Various post processing meth-
ods, such as the HYPR processing [6], nonlocal mean (NLM)
denoising [7], [8], and anatomical guided methods [9], [10],
have also been developed.

Recently, deep neural networks (DNNs) have found suc-
cessful applications in various computer vision tasks, such as
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image segmentation [11], object detection [12], and image
super resolution [13], by demonstrating better performance
than the state-of-the-art methods when a large amount of
training data are available. DNNs, using either convolutional
neural network (CNN) [14]–[16] or generative adversarial net-
work [17], have also been applied to medical image denoising,
and showed comparable or superior results to the traditional
iterative reconstruction but at a faster speed. Most of the
denoising studies use images generated from high dose or
fully sampled data sets as training labels, and images from low
dose or partially sampled data as training inputs. Mean squared
error (MSE) between the network outputs and training labels is
often employed as the training loss function. There exist two
issues in the application of DNN to PET image denoising.
One is the lack of sufficient number of label images for train-
ing. The other is that MSE-based loss function often results
in blurry network outputs [18]–[20].

In this paper, we apply DNN to PET image denoising
and propose solutions to address these issues. First, to gen-
erate label images for training, we sum an hour-long dynamic
PET scan into a high-count frame and use the reconstructed
image as a label. The corresponding noisy input is obtained by
down-sampling the high-count data to a lower count level and
reconstructing the resulting low-count data. Since the num-
ber of real patient data sets is limited, we propose to pretrain
the neural network using computer simulated data and then
fine-tune the network using real data sets. A similar idea was
presented in [21], where an MRI denoising network was first
trained using CT images and then fine-tuned by MRI images.
To address the blurry problem of MSE loss function, percep-
tual loss, which was calculated based on features extracted
from a pretrained network [18], was adopted as the training
loss function. Since the perceptual loss is feature-based, it can
preserve more image details than the MSE loss function. The
idea is similar to the one used in the anatomically constrained
network [22], where features were extracted from the hidden
layer of an auto-encoder.

II. METHOD

A. Convolutional Neural Network

The basic unit of a CNN contains a convolution layer and
an activation layer. The input and output relationship of the
ith unit can be described by

yi = fi
(
yi−1

) = g
(
wi � yi−1 + bi

)
(1)
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where yi−1 ∈ R
N×N×C denotes the unit input with spatial size

N × N and C channels, yi ∈ R
N×N×H is the unit output with

spatial size N × N and H channels, wi ∈ R
M×M×C×H is the

convolutional filter with kernel width M, b ∈ R
1×H is the bias

term, � indicates the convolution operation, and g represents
the nonlinear activation function. In this paper, we use the
rectified linear unit (ReLU) activation function, defined as

g(x) = max(x, 0). (2)

To stabilize and accelerate the deep network training, batch
normalization [23] is added after the convolution operation.
After stacking L units together, the network output can be
written as

yout = fL
(
fL−1

(
...f1

(
xinput

)))
. (3)

For PET image denoising, xinput is an noisy image recon-
structed from a low-count data set, and yout is the denoised
PET image with improved SNR. The ability of a neural net-
work to approximate the mapping from a noisy image to the
corresponding training label is dependent on the network depth
(number of layers) and structure. Deeper networks can have
higher capability, but at a cost of requiring more training
samples and longer training time.

B. Perceptual Loss

In most previous works, MSE between the training label
ylabel and the network output yout was used as the loss function.
It is defined as

Lmse = ∥∥ylabel − yout

∥∥2
2. (4)

It has been observed that MSE-based loss often produced
blurry network outputs [18]–[20]. To preserve image details,
we propose to use the perceptual loss as the objective function,
which is calculated by

Lperceptual = ∥∥φ
(
ylabel

) − φ
(
yout

)∥∥2
2 (5)

where φ represents the feature extraction operator and is based
on the intermediate layer output from a pretrained network.
By comparing feature maps instead of pixel intensities, the
network can be more effective in removing noise while keep-
ing image details. In this paper, we adopted the output before
the first pooling layer from the VGG19 network [24] as the
extracted features. The VGG19 network architecture contains
16 convolutional layers followed by three fully connected lay-
ers. The VGG network was trained using ImageNet, which is
a large database of natural images [25]. A total of 64 feature
maps were extracted with the same spatial size as the input.
This process is illustrated in Fig. 1. We hypothesize that the
low-level features trained from natural images are also present
in medical images. We have tried to use the features extracted
from deeper layers, but the performance is not as good as
that of the first layer. The reason for this is worth further
investigation.

Fig. 1. Schematic of the feature map generation process based on the VGG
network. Top rows are the input images and bottom rows are the feature maps
extracted from the VGG network. Left column is the image reconstructed from
low-count data and right column is the image reconstructed from high-count
data.

C. Network Structure

Our network structure is similar to the residual neural net-
work used in [19]. A schematic of the network architecture
is shown in Fig. 2. The network consists of a cascade of five
residual blocks [26]. Each residual block contains two repe-
titions of a 3 × 3 convolutional layer, a batch normalization
layer, and a ReLU layer. Skip connection is added between
the start and the end of each block. Another skip connection
is added between the first and last stages of the whole net-
work. The number of features for each convolutional layer is
64, and the spatial size of the network input is 128×128. Five
input channels are used to include the center slice as well as
four neighboring axial slices for effective noise removal and
reduction of axial artifacts.

D. Fine-Tuning

Due to limited number of real data sets for training, we
propose to pretrain the network using simulated data first and
then fine-tune the network using real data. Compared with
real data sets, simulated data sets are much easier to generate.
Using realistic phantoms and an accurate physical model of
the PET scanner, simulated data sets can have high similar-
ity to real data sets, which can facilitate the fine tuning. This
framework also allows continuous improvement of the net-
work by incorporating new patient data. Since the front layers
generally extracts low-level image features that are common
to different types of images, we only fine-tune the last few
layers in the red shadow region in Fig. 2. In addition, the
batch normalization layers of the whole network were also
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Fig. 2. Schematic of the neural network architecture. The red shadow region indicates the layers that are fine tuned by real data.

fine-tuned as the intensity levels can be different between the
simulation and real data sets. We separately trained two net-
works, one for brain imaging and one for lung imaging. The
brain-imaging network was pretrained using brain phantoms
from the BrainWeb [27] and the lung-imaging network was
pretrained using the XCAT phantom [28].

III. EXPERIMENTAL SETUP

A. Brain Phantom Simulation

Nineteen 3-D brain phantoms from BrainWeb [27] were
employed in the simulation. Eighteen phantoms were used
for training and one phantom was reserved for testing. The
computer simulation modeled the geometry of a Siemens
mCT scanner [29]. The system matrix was modeled by using
the multiray tracing method [30]. The image array size was
128×128×105 and the voxel size was 2×2×2 mm3. The time
activity curves of blood, gray matter, and white matter were
the same as those used in [31] to mimic an FDG scan. Noise-
free sinogram data were generated by forward-projecting the
ground-truth images using the system matrix and the attenua-
tion map. Poisson noise was then introduced to the noise-free
data after scaling the total counts to the level of a 1-h FDG
scan with 5 mCi injection. Uniform random events were sim-
ulated and accounted for 30% of the noise-free data. Scatters
were not included.

For network training, each 1-h scan was summed into one
frame and reconstructed as the label, and the noisy input was
obtained by down-sampling the 1-h data to 1/5th of counts
and reconstructing the low-count data. All images were recon-
structed using ML EM with 120 iterations. A total of 18
(number of phantoms) × 75 (number of axial slices extracted
from each phantom) training image pairs were generated after
discarding axial slices at the two ends with little activity.
Examples of training images are shown in Fig. 3.

For testing, the last 10-min static frame was extracted from
the 1-h scan and reconstructed as the noisy input. The 10-min
static frame has similar count level as the training input. The
CNN denoised images were compared with those obtained by
traditional Gaussian smoothing and NLM denoising. For quan-
titative evaluation, contrast recovery coefficient (CRC) versus
the standard deviation (STD) curves were calculated based on
reconstructions of 20 independent and identically distributed
(i.i.d) realizations. The CRC was computed between selected

Fig. 3. Three pairs of the training images from the simulated brain phan-
tom data. Top row contains the training labels and bottom row contains the
corresponding noisy inputs.

gray matter regions and background white matter regions as

CRC = 1

R

R∑

r=1

(
ār

b̄r
− 1

)/(
atrue

btrue − 1

)
(6)

where ār = 1/Ka
∑Ka

k=1 ar,k is the average uptake over Ka =
12 gray matter ROIs in realization r, b̄r = 1/Kb

∑Kb
k=1 br,k

is the average value of the background ROIs in realization r,
and R is the number of realizations. The background STD was
computed as

STD = 1

Kb

Kb∑

k=1

√
1

R−1

∑R
r=1(br,k − b̄k)2

b̄k
(7)

where b̄k = 1/R
∑R

r=1 br,k is the average of the kth back-
ground ROI means over realizations and Kb is the number of
background ROIs. When choosing the gray matter ROIs, only
those pixels inside predefined 20-mm-diameter spheres and
containing 80% of gray matter were included. Background
ROIs consist of 37 circular regions with a diameter of 12 mm
drawn in the white matter region.

B. Real Brain Data Sets

After pretraining the network using BrainWeb phantoms,
we fine-tuned the network using real data from a brain PET
scanner [32]. Two dynamic brain PET scans of 70 min with
5 mCi FDG injection were used for the fine-tuning and
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Fig. 4. TAC curves of different organs and lesions used in the XCAT
simulation.

Fig. 5. Three pairs of the training images from the XCAT phantom sim-
ulation. Top row contains the training labels and bottom row contains the
corresponding noisy inputs.

another patient dataset was reserved for testing. In fine-tuning,
images reconstructed using the whole 70 min scan were treated
as the training labels and images from 1/5th of the counts
were used as the training inputs. All image reconstructions
were performed using the ML EM algorithm with 120 itera-
tions. Correction factors for randoms, scatters were included
in the forward model during reconstruction. Attenuation was
derived from a T1-weighted MR image using the SPM-based
atlas method [33]. The reconstructed image array size was
256×256×153 and the voxel size was 1.25×1.25×1.25 mm3.
Two 128 × 128 patches were randomly extracted from each
reconstructed image slice for fine-tuning. As the patch extrac-
tion is a random process, there might be overlapping between
extracted patches. A total of 520 training pairs (two train-
ing data sets, each containing 130 axial slices and each axial
slice generating two patches) were extracted. For comparison,
we also trained the network using the real data directly with-
out the pretraining stage. During testing, network input spatial
size was set to 256×256 so that each image can be processed

Fig. 6. Three orthogonal slices of the reconstructed last-10-min static frame
of the test phantom. First column: ground truth; second column: EM images
smoothed by Gaussian filtering; third column: EM images smoothed by NLM
denoising; fourth column: EM images with CNN using MSE loss; and fifth
column: EM images with CNN using perceptual loss. The images were
selected by matching the background noise level (see Fig. 7).

Fig. 7. CRC-STD curves of the denoised images for the last-10-min static
frame of the test BrainWeb phantom. Markers are plotted every 24 iterations
with the lowest point corresponding to the 24th iteration. The images shown
in Fig. 6 are labeled by � markers.

directly without splitting. As the ground truth of the real data
is unknown, a hot sphere of diameter 12.5 mm, mimicking a
tumor, was added to the test sinogram data. The TAC of the
hot sphere as added to the background was set to the TAC
of the gray matter, so the final TAC of the simulated tumor
region is higher than that of the gray matter because of the
superposition. Twenty i.i.d realizations of low-count test data
were generated and reconstructed. Images with and without the
inserted tumor were reconstructed and the difference was taken
to obtain the tumor only image. The tumor contrast recovery
(CR) was calculated as

CR = 1

R

R∑

r=1

l̄r/ltrue (8)

where l̄r is the mean tumor intensity inside the tumor ROI, ltrue
is the ground truth of the tumor intensity, and R is the number
of the realizations. For the background, 23 circular ROIs with
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Fig. 8. Three orthogonal views of the reconstructed real brain test data set using different methods. Two cortex regions from the sagittal and coronal views
are zoomed in for easier visual comparison. First column: EM image smoothed by Gaussian denoising; second column: EM images smoothed by NLM
denoising; third column: EM image denoised by CNN trained from simulated phantom; fourth column: EM image denoised by CNN from real data only; and
fifth column: EM image denoised by CNN with fine-tuning. The images were selected by matching the background noise level (see Fig. 9).

a diameter of 5 mm were drawn in the white matter and the
STD was calculated according to (7).

C. Lung Phantom Simulation

To pretrain a network for lung imaging, 1-h scan of 19
XCAT phantoms [28] with different organ sizes and genders
were simulated. Eighteen phantoms were used for training
and one phantom was reserved for testing. Apart from the
major organs, 30 hot spheres of diameters ranging from
12.8 to 22.4 mm were inserted into the training phantoms
as lung lesions. For the test image, five lesions with diameter
16.35 mm were inserted. Two-tissue-compartment model mim-
icking an FDG scan with analytical blood input function was
used to generate the time activities [34]. In order to simulate
population differences, each kinetic parameter was modeled
as a Gaussian variable with coefficient of variation equal to
0.1. Mean of the time activities for different organs and lung

lesions are shown in Fig. 4. The scanner geometry mimics a
GE 690 scanner [35]. Uniform random and scatter events were
simulated and accounted for 60% of the noise free prompt
data to match those observed in real data sets. Poisson noise
was added mimicking a 5-mCi FDG injection. Images recon-
structed using counts from the last 40 min were treated as
the training labels and images using one-tenth of the 40-min
counts as the training inputs. All image reconstructions were
performed using the ML EM algorithm with 100 iterations.
Three training pairs from different phantoms are shown in
Fig. 5. The image matrix size is 128×128×49 and the voxel
size is 3.27 × 3.27 × 3.27 mm3. A total of 18 (number of
phantoms) × 49 (number of axial slices extracted from each
phantom) training image pairs were generated. For testing,
the last 5-min static frame was extracted from the 1-h scan
and reconstructed as the noisy input. The 5-min static frame
has similar count level as the training input. The lesion CR
was calculated according to (8). Forty-two background ROIs
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were chosen in the liver region to calculate the STD according
to (7).

D. Real Lung Data Sets

For fine-tuning, five patient data sets (1-h FDG dynamic
scan with 5 mCi injection) acquired on a GE 690 scanner
were employed in the training and another patient data set
was reserved for testing. Normalization, attenuation correction,
randoms, and scatters were generated using the manufacturer
software and included in image reconstruction. Images recon-
structed using counts from the last 40 min were treated as
the training labels and images using one-tenth of the 40-min
counts as the training inputs. All image reconstructions were
performed using the ML EM algorithm with 100 iterations. A
total of 5 (number of patient data sets) × 49 (number of axial
slices extracted from each patient data set) training image pairs
were generated. Spherical lesions with a diameter of 12.8 mm
were inserted in the testing sinograms for quantitative analy-
sis. The TAC of the lesions inserted was similar to the TAC
of the liver, so the final TAC of the simulated lesion region
is higher than that of the liver because of the superposition.
A total of 20 i.i.d realizations of test data were generated
by randomly sampling one-tenth of the last 40-min counts
and reconstructed. For lesion quantification, images with and
without the inserted lesion were reconstructed and the differ-
ence was taken to obtain the lesion only image. The lesion CR
was calculated according to (8). Forty-seven background ROIs
were chosen in the liver region to calculate the STD according
to (7).

E. Implementation Details

The proposed neural network was implemented using
TensorFlow 1.4, which is a deep learning platform with back-
propagation implemented using automatic differentiation. The
Adam algorithm, which is a popular adaptive stochastic gradi-
ent method [36], was used as the optimizer. The learning rate
and the decay rates used the default settings in TensorFlow.
Perceptual loss was used in all CNN training unless noted
otherwise. All training and fine-tuning used a batch size of 30
and 500 epochs. Gaussian filtering and NLM denoising were
used as the reference methods. The full-width-half-maximum
of the Gaussian filter was 1.5 voxels in all cases. For the NLM
method, the patch size was 3×3×3, and the searching window
size was 5 × 5 × 5. The STD of the NLM Gaussian weighting
function was set to be the STD of the image. These param-
eters were chosen empirically to optimize the contrast versus
noise tradeoff. The CRC/CR-STD curves were generated by
varying the ML EM iteration number.

IV. RESULTS

Fig. 6 shows the denoised results of the last 10-min static
frame of the simulated brain phantom data. We can see that
compared with the result using the Gaussian filter, the CNN
denoised images preserve more details of the brain structure
and also has higher contrast between the gray matter and
white matter. The CRC of the gray matter versus STD of
the white matter curves are plotted in Fig. 7 by varying the

Fig. 9. CR-STD curves for the real brain test data set denoised using dif-
ferent methods. Markers are plotted every 24 iterations with the lowest point
corresponding to the 24th iteration. The images shown in Fig. 8 are labeled
by � markers.

EM iteration number. We can see that the CNN denoising pro-
vides much better CRC versus STD tradeoff than the Gaussian
and NLM filters. Comparing with the CNN (same network
structure) trained using MSE loss, the CNN trained using the
perceptual loss achieves a higher CRC at any matched STD
level.

For the real brain data sets, denoised images of one low-
count realization are shown in Fig. 8. We can see that after
applying the CNN method, cortical boundary becomes clearer
and the image noise is reduced. Also the result using CNN
with fine-tuning is sharper and less noisy than the results
without fine-tuning, which indicates the effectiveness of pre-
training plus fine-tuning. Fig. 9 shows the CR-STD curves,
which confirm that the CNN with fine-tuning has the best
CR-STD tradeoffs.

Fig. 10 shows the denoised results of the last 5-min static
frame of the simulated XCAT phantom data. We can see that
the neural network denoising methods result in lower noise
than the Gaussian and NLM denoising methods. Compared
with the CNN trained using MSE loss, the CNN trained with
perceptual loss generates images with higher contrast in the
lesion and myocardium region. The curves of the CR of the
inserted lung lesion versus STD in the liver region are plotted
in Fig. 11, which further confirms our observation.

Fig. 12 shows the reconstructed images of a lung testing
data set. Here, we also included the denoising results using
the CNN trained by phantom data only. We can see that the
CNN methods result in clearer details in the spinal regions
and also lower noise compared with the Gaussian and NLM
denoising methods. Also the contrast of the inserted lesion
is higher in the CNN result with fine-tuning than those from
CNN trained with either real data or phantom data only. Fig. 13
compares the CR-STD curves. It shows that the CNN method
with fine-tuning has the best performance—it provides a nearly
twofold STD reduction as compared with the Gaussian denois-
ing method. By comparing between different CNN denoising
results, we can clearly see the benefits of fine-tuning.
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Fig. 10. Three orthogonal slices of the reconstructed last-5-min static frame of the test XCAT phantom. The locations of these images in CR-STD plots
are marked by � in Fig. 11. First column: ground truth; second column: EM images smoothed by Gaussian filtering; third column: EM images smoothed by
NLM denoising; fourth column: EM images with CNN using MSE loss; and fifth column: EM images with CNN using perceptual loss.

V. DISCUSSION

Deep neural network can learn a complex relationship
between the input and output provided that a large amount
of training data is available. However, training a deep net-
work from scratch with a limited amount of data can lead to
inferior performance due to overfitting, as demonstrated by the
real data studies in this paper. Pretraining followed by fine-
tuning is an effective technique to address this issue, because
features extracted at the early stages can be shared. The benefit
of fine-tuning is clearly demonstrated by comparing the CNN
denoising results with and without fine tuning. Our results also
show that CNN trained by phantom data can be applied to real
data when the simulation models the real imaging condition,
but the performance is worse than the CNN fine-tuned with
real data. In the simulation, we used a precomputed forward
projector to generate data. The forward projector modeled the
solid angle effect and crystal penetration, but not intercrystal
scattering. If simulation data were generated by a more accu-
rate Monte Carlo simulation, such as GATE [37], the results
of the phantom-only CNN might be improved.

In this paper, we used the images reconstructed from 60-min
or 40-min long data sets as the training label and the images
reconstructed from down-sampled data sets as the training
input. While the long scans may have different contrast from
standard static scans, our simulation results have shown that
the learned neural network can be applied to short static
scans with a matched noise level. More quantitative evalua-
tions using clinical data sets are needed for further evaluation.
During the experiments, we found that the best performance
of the neural network was achieved when the noise level of
the testing data was similar to the training data. If there was
a mismatch between the training and testing data noise levels,
the network performance would be degraded. One explana-
tion is that if the noise level is different, then there is a large
chance that the testing data do not lie in the training data
space. Hence, to have the best improvement using neural net-
work methods, a new training session is recommended if the
noise level of the test data is outside of the training noise
level.

Fig. 11. CR-STD curves of the denoised images for the last-5-min static
frame of the test XCAT phantom. Markers are plotted every 20 iterations
with the lowest point corresponding to the 20th iteration. The images shown
in Fig. 10 are labeled by � markers.

When we designed the experiments, we wanted to test the
effect of pretraining using phantoms in two cases: 1) simula-
tion settings are different from the real datasets and 2) simu-
lation settings are almost the same as the real datasets. In the
lung simulation, we made the simulation to be similar to the
real data as much as we can. For the brain study, the simulation
and real data settings (in terms of image pixel size, scanner
geometry, etc.) were chosen to be different to test whether
fine-tuning is still useful when the phantom study and the
later patient study do not match. In both cases, we found that
the image output of CNN with fine-tuning is better than those
of CNNs trained using either simulation or real data alone.
This result is encouraging as it indicates that we may be able
to combine real data from different scanners to increase the
number of training images in practice.

One limitation of our network is that 2-D convolution
was used. To exploit information along the axial dimension,
five input channels were utilized to include neighboring axial
slices. Alternatively, 3-D convolution can be used and may
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Fig. 12. Three orthogonal views of the reconstructed real lung test data set using different methods. Spine regions in the sagittal view are zoomed in for
easier visual comparison. The locations of these images in CR-STD plots are shown as � markers in Fig. 13. First column: EM image smoothed by Gaussian
denoising; second column: EM images smoothed by NLM denoising; third column: EM image denoised by CNN trained from simulated phantom; fourth
column: EM image denoised by CNN from real data only; and fifth column: EM image denoised by CNN with fine-tuning.

Fig. 13. CR-STD curves for the real lung test data set denoised using
different methods. Markers are plotted every 20 iterations with the lowest
point corresponding to the 20th iteration. The images shown in Fig. 12 are
labeled by � markers.

be able to extract more axial information than using mul-
tiple input channels because axial information is preserved
at all layers. Extension to 3-D convolutional network will be
investigated in our future work.

VI. CONCLUSION

In this paper, we have applied a deep neural network to PET
image denoising based on perceptual loss. The proposed pre-
training plus fine-tuning strategy can help to train a deep neural
network with limited amount of real data. Both simulation and
real data experiments show that the proposed framework can

produce images with better quality than post-smoothing using
a Gaussian or NLM filter. Further work will focus on exploring
3-D networks as well as more real data evaluations.
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