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Abstract—Recently, a number of approaches to low-dose
computed tomography (CT) have been developed and deployed
in commercialized CT scanners. Tube current reduction is per-
haps the most actively explored technology with advanced image
reconstruction algorithms. Sparse data sampling is another viable
option to the low-dose CT, and sparse-view CT has been par-
ticularly of interest among the researchers in CT community.
Since analytic image reconstruction algorithms would lead to
severe image artifacts, various iterative algorithms have been
developed for reconstructing images from sparsely view-sampled
projection data. However, iterative algorithms take much longer
computation time than the analytic algorithms, and images are
usually prone to different types of image artifacts that heavily
depend on the reconstruction parameters. Interpolation methods
have also been utilized to fill the missing data in the sinogram of
sparse-view CT thus providing synthetically full data for analytic
image reconstruction. In this paper, we introduce a deep-neural-
network-enabled sinogram synthesis method for sparse-view
CT, and show its outperformance to the existing interpola-
tion methods and also to the iterative image reconstruction
approach.

Index Terms—Deep learning, low-dose computed tomography
(CT), sparse-view CT, view interpolation.

I. INTRODUCTION

W ITH increased use of X-ray computed tomogra-
phy (CT) in clinics, potential radiation hazard has

been alarmed [1], [2]. There have been developed a host
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of approaches toward low-dose CT imaging that include
reducing or modulating the tube current, optimal selection of
the tube voltage [3], [4], and sparse data sampling [5]–[7]
to name a few. Sparse data sampling approach is in con-
trast with the tube current reduction since the former recruits
smaller number of ray measurements with a lower noise
level of the measured data than the latter. Sparse-view sam-
pling, where the X-ray power is supposed to be turned
on-and-off repeatedly, has been actively investigated as a real-
ization of sparse data sampling although its translation to
the commercialized diagnostic CT scanners has yet to come.
Image reconstruction from sparsely sampled data consti-
tutes a unique, ill-posed inverse problem in CT, and the
compressed-sensing-inspired algorithms have been developed
to deal with this problem. Minimizing image sparsity such
as image total-variation under the constraints of data fidelity
and image non-negativity has been searched for in various
optimization solver frameworks [8]–[10]. Exploiting image
sparsity in such iterative image reconstruction approaches,
however, may lead to undesirable image artifacts that heavily
depend on the reconstruction algorithm parameters compared
to the analytically reconstructed images from fully sampled
data. Additionally, the minimal amount of data that guarantees
clinically acceptable image quality in various imaging tasks
with varying degrees of underlying image sparsity should be
carefully determined. The computation time, even though it
may not constitute a critical issue with advanced acceleration
techniques and parallel computing power, can still be a burden.

Direct application of analytic image reconstruction algo-
rithm such as filtered-backprojection (FBP) to the sparse-view
data would lead to images with poor quality and severe
streak artifacts. Attempts have been made to synthesize the
missing view data so that the full data can be fed into the
analytic image reconstruction engine. An interpolation-based
data synthesis in the sinogram space is a straightforward
example. Various approaches have been developed for syn-
thesizing sinogram data: linear interpolation method [11],
a principal component analysis-based method [12], a partial
differential equation-based method [13], a frequency consis-
tency condition-based method [14], intensity-based directional
interpolation method [15], [16], dictionary learning-based
method [17], [18], and some combinatorial methods [19]–[21].
For those interpolation approaches, image reconstruction
results would highly depend on the restoring capability of
the employed interpolation method. Greatly inspired by the
recent progresses of machine learning techniques, we propose
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in this paper to use a deep-neural-network for synthesizing the
missing data in the sparse-view sinograms.

Machine learning has been actively used for clas-
sification tasks such as face recognition [22], tumor
classification [23], [24], and image segmentation [25].
Traditional machine learning techniques train the network so
that a human-defined “features” can be optimally computed
in a given task such as classification and segmentation.
Therefore, the performance of the machine learning heavily
depends on the features that a user defines. Deep learning,
on the other hand, automatically learns its own features
during the network training period. The convolution layer
and the activation function in the deep neural network
can recruit higher dimensional features, of which a human
does not have intuitive analogs, and can enhance the
performance of the neural network for a variety of tasks.
Thanks to such enriched capabilities of the deep learning,
its applications have explosively expanded to diverse fields:
for example, super-resolution image processing [26]–[28],
visual questioning [29], generating artistic features-added
photo [30], and generating new images from the random
data [31]. Deep learning-based approaches have also been
applied to image reconstruction for low-dose CT including
low tube-current CT imaging [32]–[34] and sparse-view
CT imaging [35], [36]. While those approaches exploit the
deep-neural-network in the image domain of CT rather than
in the sinogram domain, this paper focuses on restoring the
missing data in the sinogram domain so that one can recon-
struct images by use of the well-established reconstruction
algorithms in practical uses. There is another approach using
deep neural network for synthesizing sinogram [37]. This
method trains a network to learn residual between input
sinogram and sparsely sampled sinograms from different
angular directions, and concatenates those multiple sparsely-
sampled sinograms to generate a full-view sinogram with an
optimization network. Our approach particularly differs from
it in that our approach trains the network in a patch-based
scheme so that one can adapt the network to a system
containing different number of detector bins by decomposing
into patches. The advancement and wide applications of
the deep learning techniques are partly stimulated by the
advances in high computational power of general purpose
graphic processing unit and by various libraries that are
publically available for individuals to apply to various
fields [38]–[40].

In this paper, we implemented a convolutional-neural-
network (CNN) using the Caffe library [38] for synthesizing
the missing data in the sparse-view sinogram. We would like
to note that the focus of this paper is on demonstrating that
a deep learning-based sinogram synthesis can provide a useful
solution to the low-dose CT imaging. We used real patients’
CT data from The Cancer Imaging Archive (TCIA) [41] and
reprojected the images to generate sinograms for training.
Background of CNN, the structure of the networks used in
this paper, data preparation for training, and some other meth-
ods for a comparison study are described in Section II. The
comparison of the results with the other CNN approach, with
the analytic interpolation methods, and also with an iterative

reconstruction method will be summarized in Section III.
Discussion and conclusions will then follow.

II. METHODS

A. Convolutional Neural Network

CNN [42] is the most commonly used structure of deep-
neural-network for image applications. It is composed of
several layers including convolution layer, pooling layer, and
fully connected layer, and of activation functions. The convo-
lutional layer performs convolutions to the input data with its
output results forming input signals to the next layer. For each
layer, weight (W) and bias (b) together with an input (x) are
given to the layer and a convolution operation is performed as
follows:

W ∗ x + b. (1)

The pooling layer down-samples input data with a specific
method such as maximum pooling, or average pooling. In gen-
eral, the pooling layer makes shift-invariant results by main-
taining specific values from the input. The shift-invariance is
important in the applications such as segmentation and classi-
fication where the position of the target can be arbitrarily given
in the data. Fully connected layer refers to a layer structure
in which each neuron is connected to all the neurons in the
previous layer and in the next layer. Activation function is
applied after fully connected layer or convolutional layer, and
it is in the form of a nonlinear function such as hyperbolic tan-
gent, sigmoid, or rectified linear unit (ReLU) [43]. With the
data passing through the convolution layer, pooling layer, and
activation function, the network finds features for a given task;
therefore, handcrafted features are not required anymore. As
training goes on, the features would evolve toward the goal
with the cost function minimized. The goal in this paper is
to synthesize missing sinogram data, and it constitutes a kind
of regression problem in which CNN-based approaches have
been very successful.

B. Structure of the Proposed Network

We constructed our network based on a residual U-Net.
The U-Net is one of the CNN model proposed for image
segmentation [44]. Residual learning is one of the techniques
that can make a network converge faster and more efficiently.
It trains the network to learn differences between the ground
truth and the input data [26], [45]. Adding the residual learn-
ing scheme to the U-Net showed enhanced performances in
removing streak artifacts in medical imaging [35], [36]. We
employed the residual learning scheme in the network, and
replaced pooling layers by convolutional layers to make the
down-sampling trainable as well. Replacing a nontrainable
layer by a trainable one has shown outperformances in other
applications in [44] and [46]. In our case, the measured val-
ues in the sinogram space are more important than the initial
guessed values in the missing sinogram. Therefore, giving
higher weights to the measured pixels or highly correlated
pixels to them is more appropriate than giving higher weights
to the maximum values as is often done in a max-pooling
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Fig. 1. Network structure for training.

scheme. Using pooling layers is known to yield a faster out-
put than using a stride-based convolution, since pooling does
not require convolution operations. However, the restoration
accuracy should not be compromised by computation time par-
ticularly in medical imaging applications; therefore, additional
computation time associated with a stride-based convolution
is worth taking.

By replacing pooling layers by convolutional layers, the
kernel of the network will be also trained to find optimal down-
sampling weights for the task. The structure of our network is
shown in Fig. 1. We set the stride of the convolutional layers
in association with the down-sampling to be 2, while the other
layers to be 1. The input data has a single channel, and the
number of output channels of the first convolution layer is 64.
The number of channel doubles as the convolution layer with
a stride of 2 is applied up to the maximum number of 1024,
and it reverses back to a single channel in the U-net struc-
ture as shown in Fig. 1. For the convolution layers without
down-sampling, we used a zero-padding scheme to maintain
the size.

Input data are prepared in patches from the sinograms as
will be explained in details later and, at the bottom layer, the
original input data and the output data of the last convolu-
tion layer are summed in a residual learning framework. To
avoid confusion, we would like to use the dedicated terminolo-
gies throughout this paper as follows: the input/output/ground
truth data are used for representing the patches acquired from
the input/output/ground truth onograms, respectively. The cost
function shown in the following equation compares the output
data from the network with the ground truth data:

1

2N

N∑

k=1

∥∥∥xk − yk
∥∥∥

2

2
(2)

where x represents the network output patch, y the ground
truth patch in a vectorial format, and N the number of batches
used for an iteration. The superscript k refers to a patch in the
training set.

TABLE I
SIMULATION CONDITIONS

(a) (b) (c)

Fig. 2. (a) Ground truth sinogram. (b) Sparsely sampled sinogram
from (a) (180 views). (c) Up-sampled sinogram from (b) using linear
interpolation.

C. Training the Network

Since CNN allows a supervised machine learning, we need
to provide training data and ground truth data to the network.
We reprojected seven real patients’ images of Lung CT [47]
from TCIA using distance-driven projection algorithm [48] in
a fan-beam CT imaging geometry in this paper. The number
of slice images used for training and validation was 634. The
CT scan parameters are summarized in Table I. The field-of-
view in Table I means the diameter of a circle covered by the
detector with its center located at the isocenter of the system.

We subsampled the original sinograms by a quarter to make
them sparsely sampled one. In other words, the sparsely view-
sampled sinograms with an equal angular separation between
the sampled views has been prepared by selecting every forth
views from the original full sinograms. Then, we applied
a linear interpolation along the scan angle direction for synthe-
sizing initial full sinograms for training the network. The same
size of the input sinogram with that of the original sinogram
was thus used in this paper. Example images of an original
full sinogram, the sparsely view-sampled sinogram, and the
linearly interpolated one are shown in Fig. 2.

We would like to note again that the convolution operations
have been applied to patch-based data in the CNN. Patch-
based training reduces the memory requirements for input
data and increases number of data used for training. From
both input and ground truth sinograms, we extracted patches
of the same size. We have varied the patch size and found
that the patch size around 50 or bigger results in a similar
network performance with bigger patch sizes requiring longer
computation time due to increasing number of convolution
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(a) (b)

Fig. 3. (a) Up-sampled sinogram for training and (b) patches extracted
from (a).

TABLE II
TRAINING PARAMETERS

operations. Therefore, we have extracted patches in the size
of 50 × 50 with a stride of 10 as shown in Fig. 3. A stride
refers to the sampling interval in pixels between the neighbor-
ing patches. When the stride is smaller than the size of the
patch, each patch has overlapping pixels with its neighboring
patches. With these overlapping regions between patches, the
tiling artifacts in the synthesized sinogram would be mitigated
since the pixel values are averaged in the overlapped regions.
The final output data of the network are still in the form of
patches, which will be combined in the aforementioned way
to form the synthesized sinogram.

Our database contains 2 142 660 patches for training and
918 285 patches for validation. The training parameters of
the network are summarized in Table II. We used adaptive
momentum estimation (Adam) optimizer [49] to optimize the
network. It is one kind of gradient-based optimizers, which has
shown outperformance to the stochastic gradient descent meth-
ods. The method requires a base-learning rate, first momentum,
and second momentum; we set the first and second momen-
tum to be 0.9 and 0.999, respectively, as recommended by
the original paper. The computation was done on a PC with
Intel i7 2.80 GHz, 16 GB of random access memory, and
a GPU of GTX Titan X 12GB memory. Data with a selected
batch number pass through the network in an iteration. After
all the data prepared for training pass through the network, it
completes an epoch. The loss was calculated for every iteration
to update the network parameters, and we averaged losses in
an epoch to plot them.

D. Other Methods for Comparison

For comparing the performance of the proposed method,
we implemented two analytic interpolation methods and

Fig. 4. Twenty successive convolution layers.

Fig. 5. Network structure for conventional U-Net with pooling layers.

another CNN structures. A linear interpolation method and
a directional interpolation method were implemented accord-
ing to [16]. In the linear interpolation method, a linear
interpolation was performed along the angular direction to
fill the missing data. The directional interpolation algorithm
searches for a direction of an imaged object using the gradient
of a sinogram. At a given pixel, the interpolation weights are
calculated from the eigen value and the vector of the gradient
sinogram. A CNN implemented for comparison is composed
of 20 successive convolution layers with ReLU activation func-
tion, of which the structure is shown in Fig. 4. This network
was used in our earlier work by the way [50]. Additionally,
we implemented the conventional U-Net with pooling layers
for down-sampling as shown in Fig. 5. We also compared our
network with the U-Net that is not using a residual learning
scheme to see the effects of skip connection.

E. Image Reconstruction

FBP algorithm [51] was used for image reconstruction from
the ground truth sinogram and also from the synthesized sino-
gram. The array size of the reconstructed images is 512 × 512.
We used the same pixel size of the original patients’ CT
images, and the pixel size varies among the patients accord-
ingly. For each given imaging task, we would thus have
seven FBP-reconstructed images: ground truth image, image
from sparsely sampled sinograms, images from the analytically
interpolated sinograms (linear and directional interpolation),
and images from the sinograms synthesized by three differ-
ent deep neural networks. In addition, we have implemented
an iterative image reconstruction algorithm that can directly
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(a) (b) (c)

Fig. 6. Training and validation loss plot of (a) 20 successive convolution layers, (b) conventional U-Net, and (c) proposed U-Net.

reconstruct from the sparsely sampled sinogram. We imple-
mented a total variation minimization method with projection
on convex sets (POCS-TV) [52].

III. RESULTS

A. Network Training Result

The training loss, or the Euclidean error of the network
output of the successive convolution layers, conventional and
proposed U-Nets are plotted as a function of epochs in Fig. 6.
The solid lines represent the training error, and the scatter
points represent the validation error at every 20 epochs. As
shown in the plots, the Euclidean loss of validation dataset has
similar value to the training error for all networks. Proposed
U-Net has resulted in smaller training and validation errors
compared to the successive convolutional layers and to the
conventional U-Net.

B. Interpolation Results

To evaluate the performance objectively, we recruited
eight patients’ from the same Lung CT dataset that did not
participate neither in training nor validation phases. The num-
ber of slices used for evaluation was 662 slices. The sinograms
have been prepared in the same way according to the CT
scanning geometry and separated into patches with the same
size used for training, and fed into the trained networks.
Two example sinograms used for evaluation are shown in
Figs. 7 and 8 in their absolute differences with the ground
truth sinograms. For comparison, sinogram differences of the
other methods are also shown. As one can see in the figures,
the synthesized sinogram by CNNs have smaller difference
from the ground truth sinogram than the sinograms synthe-
sized by other methods. We plotted line profiles of the absolute
difference of the sinograms in Fig. 9(a) and (b) along the
line segments highlighted by green color in Figs. 7 and 8,
respectively.

For a quantitative comparison, we computed normal-
ized root mean-square-error (NRMSE), which is the root
mean-square-error divided by the difference between max-
imum and minimum values of the ground truth images,
peak signal-to-noise ratio (PSNR), and structural similar-
ity (SSIM) [53]. Comparison results are summarized in

(a) (b) (c)

(d) (e) (f)

Fig. 7. (a) Ground truth sinogram of patient #1, difference between
ground truth sinogram and interpolated sinogram using (b) linear interpola-
tion, (c) directional interpolation, (d) 20 convolution layers, (e) conventional
U-Net, and (f) proposed U-Net, display window: [0.25, 0.45].

TABLE III
NRMSE OF INTERPOLATED SINOGRAMS

Tables III–V. Although the sinograms synthesized by CNNs
have similar values, the proposed network produced more
accurate recovery than the other networks.
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TABLE IV
PSNR OF INTERPOLATED SINOGRAMS

TABLE V
AVERAGE SSIM OF INTERPOLATED SINOGRAMS

(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) Ground truth sinogram of patient #5, difference between
ground truth sinogram and interpolated sinogram using (b) linear interpola-
tion, (c) directional interpolation, (d) 20 convolution layers, (e) conventional
U-Net, and (f) proposed U-Net, display window: [0.25, 0.4].

Reconstructed images from the onogram in Figs. 7 and 8 are
shown in Figs. 10 and 11, respectively. For a better
visual comparison, we display enlarged images of the red-
boxed region-of-interest in Figs. 12 and 13, respectively.
Quantitative comparison results, similarly to the onogram
comparison, of the reconstructed images are also summarized
in Tables VI–VIII.

(a) (b)

Fig. 9. Line profiles of the green line in difference sinograms of (a) patient #1
and (b) patient #5.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 10. Reconstructed image of (a) ground truth sinogram, (b) sparse-
view sinogram (180 views), (c) POCS-TV (180 views), interpolated sinogram
using (d) linear interpolation, (e) directional interpolation, (f) 20 convolu-
tion layers, (g) conventional U-Net, and (h) proposed U-Net from patient #1,
display window: [−700HU, 300HU].

As shown in Figs. 10 and 11, the images reconstructed by
FBP algorithm directly from the sparsely sampled data suffer
from severe streak artifacts. The images reconstructed by the
TV minimization algorithm are subject to cartoon artifacts and
they seem to miss small structures. Moderate streak artifacts
remain in the images reconstructed from the synthesized ono-
gram by linear and directional interpolation methods. Images
synthesized by CNN have smaller streak artifacts than other
methods. Particularly, the reconstructed images from the ono-
gram synthesized by the proposed convolution only U-Net
shows the least streak artifacts. Results in Tables VI–VIII also
support the visual findings in a quantitative way; NRMSE,
PSNR, and SSIM were best in the proposed U-Net case among
all the tested methods.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 11. Reconstructed image of (a) ground truth sinogram, (b) sparse-
view sinogram (180 views), (c) POCS-TV (180 views), interpolated sinogram
using (d) linear interpolation, (e) directional interpolation, (f) 20 convolu-
tion layers, (g) conventional U-Net, and (h) proposed U-Net from patient #5,
display window: [−400HU, 170HU].

C. Sharpness Comparison

To compare sharpness of the reconstructed images acquired
from different interpolation schemes, we computed modulation
transform function (MTF) in the images. We selected per-
pendicular line segments from edge structures in the images.
Each line profile from the image is regarded as an edge
spread function and differentiated it to obtain the line spread
function (LSF). MTF was obtained by performing a Fourier
transform of LSF. We used green line segments shown in
Figs. 10 and 11 to calculate MTF and the results are plotted
in Fig. 14(a) and (b), respectively.

The plots in Fig. 14 show that the reconstructed images from
the data synthesized by CNNs have sharpness closer to the
ground truth than the other methods. The linear and directional
interpolations led to rather a smoother edge. Sharpness from
the iterative reconstruction algorithm lies between the CNN-
based methods and the analytic interpolation methods.

D. Application to Different Sampling Schemes

We applied the proposed U-Net trained at a subsampling
factor of 4 to various data with different subsampling factors
in order to see whether the matching such subsampling factor
is important. We subsampled the sinograms of patient #1 with
different sampling factors and synthesized the sinogram using
the proposed network. We used subsampling factors of 8, 6, 3,
and 2, each of which resulting in 90, 120, 240, and 360 views
from the original sinogram, respectively.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 12. Enlarged ROI of Fig. 10, display window: [−500HU, 200HU].

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 13. Enlarged ROI of Fig. 11, display window: [−150HU, 150HU].

Sinogram synthesis results are shown in Fig. 15 and their
quantitative comparison results in terms of NRMSE, PSNR,
and SSIM are summarized in Table IX. Also, the recon-
structed images are shown in Fig. 16 and their quantitative
comparison results are summarized in Table X. The proposed
network outperforms the linear interpolation at every sampling
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TABLE VI
NRMSE OF RECONSTRUCTED IMAGES

TABLE VII
PSNR OF RECONSTRUCTED IMAGES

TABLE VIII
AVERAGE SSIM OF RECONSTRUCTED IMAGES

(a) (b)

Fig. 14. MTF plots of reconstructed images.

rate. However, its outperformance is maximized when the
same sampling rate is used for both training and testing, i.e.,
180 views.

E. Effect of Residual Learning

To demonstrate the significance of the residual learning
scheme, we implemented and trained the same network as
the proposed one without residual connection. Training loss
of the network is presented in Fig. 17. Compared to Fig. 6,

(a) (b)

(c) (d)

Fig. 15. Difference between ground truth sinogram and interpolated sinogram
using the proposed U-Net from (a) 90 views, (b) 120 views, (c) 240 views,
and (d) 360 views, display window: [0.25, 0.45].

TABLE IX
QUANTITATIVE COMPARISON RESULTS OF INTERPOLATED

SINOGRAMS WITH DIFFERENT SAMPLING SCHEMES

the training loss shows quite a poorer convergence at the same
number of iterations than the proposed method.

We synthesized the sinograms using the above trained
network and compared the sinograms and reconstruction
results as shown in Figs. 18 and 19 for the patient #1 and #5.
Fig. 20 shows the enlarged ROI images of Fig. 19.

From a visual comparison, the network trained without the
residual learning scheme does not seem to improve sinogram
synthesis from the linear interpolation method. Quantitative
comparison results are summarized in Tables XI and XII.
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(a) (b)

(c) (d)

Fig. 16. Reconstructed image of interpolated sinogram from (a) 90 views,
(b) 120 views, (c) 240 views, and (d) 360 views, display window:
[−700HU, 300HU].

TABLE X
QUANTITATIVE COMPARISON RESULTS OF RECONSTRUCTED IMAGES OF

INTERPOLATED SINOGRAMS WITH DIFFERENT SAMPLING SCHEMES

IV. DISCUSSION

This paper reveals that the CNN-based interpolation or syn-
thesis of the sparsely sampled sinogram can effectively make
up the missing data and can produce reconstructed images
of comparable quality to the ones reconstructed from the
fully sampled sinogram. It is thought that an over-smoothing
during the POCS-TV reconstruction resulted in higher dis-
crepancies compared to the ground-truth FBP reconstructed
image, which contains its own noise characteristics, in this
paper. Although the POCS-TV reconstruction results from
the sparsely sampled data are rather poor in this paper, we
would like to note that such an iterative algorithm strongly
depends on the optimization cost function and reconstruc-
tion parameters. Therefore, we cannot exclude a chance that
a fine-tuned iterative algorithm can produce a reasonably
acceptable image quality in a given imaging task. However,
it is a common understanding that such compressed-sensing-
inspired algorithms are in general subject to cartoon image

Fig. 17. Training and validation loss of proposed U-Net without residual
connection.

(a) (b)

Fig. 18. Difference of interpolated sinogram using proposed U-Net with-
out residual connection and ground truth sinogram of (a) patient #1, display
window: [0.25, 0.45], and (b) patient #5, display window: [0.25, 0.4].

artifacts and that they may miss small structures in the
reconstructed images from the sparsely sampled data. In con-
trast, the proposed method is free of such parameter tuning,
which indeed highlights its strength.

We would like to note that we have used different
display window for each patient case to better highlight
the performance differences in the investigated methods.
Therefore, the visual perception of image quality between
patient #1 case and #5 may be different as shown in Fig. 19.
The proper comparison, however, should be made between
Figs. 10–13 and Fig. 19 accordingly. The performance of the
proposed method is indeed consistently higher than the others
in all the patient cases as summarized in Tables VII and VIII,
which shows its robustness against patient diversity.

The training took about ten days for the successive con-
volutional layers, and about 18 and 24 days for the con-
ventional U-Net, and the proposed U-Net in our computing
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(a) (b)

Fig. 19. Reconstructed image of interpolated sinogram using proposed U-Net
without residual connection from (a) patient #1, display window: [−700HU,
300HU], and (b) patient #5, display window: [−400HU, 170HU].

(a) (b)

Fig. 20. Enlarged ROI of Fig. 19. (a) Display window: [−500HU, 200HU].
(b) Display window: [−150HU, 150HU].

environment, respectively. However, the sinogram synthesis
after the networks complete the training took about 10 s,
40 s, and 50 s for the successive convolutional layers, con-
ventional U-Net, and the proposed U-Net, respectively. One
may argue that using more layers in the successive convolu-
tional network so as to require similar training time to that of
the U-Nets can possibly reach a higher performance. While
we do not exclude such a chance that the successive con-
volutional network can achieve a similar performance to the
U-Nets, we want to emphasize that the number of layers would
be much larger and the training time accordingly would be way
longer than the ones in the U-Nets. Considering the number
of training parameters in the network that would contribute
to the computation complexity, the successive convolutional
network would need substantially larger number of layers to
have a similar computational complexity since the U-Nets
use varying number of channels and convolution schemes at
different layers.

Since we used relatively a small stride while making the
training dataset, the data redundancy in the dataset is rela-
tively high. While it helps increasing the number of training
data, it also increases the training time. We will further
investigate on reducing redundancies of the dataset as an
attempt to increase the training speed in the future with-
out compromised performance of the network. The network
showed the best performance when the test sinograms had
the same subsampling factor with the trained sinograms. It
would be interesting to investigate on the image quality as the

TABLE XI
QUANTITATIVE COMPARISON RESULTS OF INTERPOLATED SINOGRAMS

USING PROPOSED U-NET WITHOUT RESIDUAL CONNECTION

TABLE XII
QUANTITATIVE COMPARISON RESULTS OF RECONSTRUCTED IMAGES OF

INTERPOLATED SINOGRAMS USING PROPOSED U-NET WITHOUT

RESIDUAL CONNECTION

subsampling factor varies assuming that the network has been
trained by each data set at a given subsampling factor.

Based on our preliminary study, we will continue investi-
gating the utility of the deep network in clinical environments
that include fan-beam CT, cone-beam CT, and helical multiple
fan-beam CT. Additionally, an irregular angular sampling in
the sparse-view data acquisition as well as handling missing
detector channel problem would be our future study.

V. CONCLUSION

In this paper, we implemented a U-Net structure for inter-
polating sparsely sampled singoram to reconstruct CT images
by an FBP algorithm. We trained the network with the
reprojected data from the real patients’ CT images. We
compared the performance of the proposed method to the
linearly interpolated sinogram, the directionally interpolated
sinogram, and the interpolated sinograms using the other
CNNs. Reconstructed images have also been compared like-
wise, and the reconstructed image by the proposed method
was also compared to the image reconstructed by a TV-
minimization algorithm directly from the sparsely sampled
data. The proposed network produced promising results and is
believed to play an important role as an option to the low-dose
CT imaging.
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