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Abstract—Monolithic crystals are considered as an alternative
for complex segmented scintillator arrays in positron emission
tomography systems. Monoliths provide high sensitivity, good
timing, and energy resolution while being cheaper than highly
segmented arrays. Furthermore, monoliths enable intrinsic depth
of interaction capabilities and good spatial resolutions (SRs)
mostly based on statistical calibrations. To widely translate mono-
liths into clinical applications, a time-efficient calibration method
and a positioning algorithm implementable in system architecture
such as field-programmable gate arrays (FPGAs) are required.
We present a novel positioning algorithm based on gradient
tree boosting (GTB) and a fast fan beam calibration requiring
less than 1 h per detector block. GTB is a supervised machine
learning technique building a set of sequential binary decisions
(decision trees). The algorithm handles different sets of input
features, their combinations and partially missing data. GTB
models are strongly adaptable influencing both the positioning
performance and the memory requirement of trained positioning
models. For an FPGA-implementation, the memory requirement
is the limiting aspect. We demonstrate a general optimization
and propose two different optimization scenarios: one without
compromising on positioning performance and one optimizing
the positioning performance for a given memory restriction. For
a 12 mm high LYSO-block, we achieve an SR better than 1.4 mm
FWHM.

Index Terms—Field-programmable gate array (FPGA), gra-
dient tree boosting, machine learning, monolithic scintillator,
positron emission tomography (PET).

I. INTRODUCTION

POSITRON emission tomography (PET) is a functional
imaging technique with high sensitivity manifoldly uti-

lized in preclinical and clinical applications. To detect the
two 511 keV gamma particles originating from a positron-
electron annihilation, these gamma particles are converted
into optical photons by scintillation crystals. The optical pho-
tons are registered by photomultiplier tubes, avalanche diodes
or silicon photomultipliers (SiPM). Our group presented an
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MR-compatible preclinical PET insert employing segmented
crystal arrays read out by digital SiPM (dSiPM) [1]. To
improve the spatial resolution (SR) and to allow the deter-
mination of depth of interaction (DOI), one possibility is to
reduce the pitch size and introduce multiple layers of seg-
mented crystal elements separated by thin insensitive material
significantly increasing the costs by a factor of 3–6.

Monolithic crystals are widely considered an alternative
in research [2]–[7]. Monoliths are easier to fabricate than
segmented arrays and have a higher sensitivity due to the
reduction of insensitive material required for the segmenta-
tion. Several studies have shown good coincidence resolving
times [3] and energy resolutions [2]. Furthermore, monoliths
provide a SR better than 2 mm FWHM [2] and DOI can be
directly derived from the light distribution [8]–[10].

However, monoliths are not yet widely employed in clini-
cal systems due to different reasons described in the following.
To achieve high SR, mostly statistical positioning models are
employed. The detector is illuminated with a parallel hole col-
limated gamma beam at known positions and the response is
measured to create reliable positioning models. A wide range
of positioning algorithms including maximum likelihood (ML)
estimation [11], neural networks [12], [13], support vector
machines [4], and k nearest neighbor searches (kNN) [9], [14]
have been proposed. However, methods based on parallel
hole collimated data require calibration times of days up to
weeks [9]. Such calibration times seem unlikely to be feasi-
ble when calibrating a whole PET ring. One possible solution
to reduce the calibration time to hours is the utilization of a
fan beam collimator [9]. Until now, this calibration method is
experimentally validated only for the kNN algorithm on the
level of single detector blocks [15].

The feasibility to implement the positioning algorithm in
a system architecture for a large number of detector stacks
is another important point to translate monoliths into clinical
systems. An implementation of the positioning algorithm in
an field-programmable gate array (FPGA) is advantageous to
reduce the amount of data which has to be transferred out
of the PET system to a control PC. The kNN algorithm is
computing-intensive as a distance metric for each event under
test with all training events is calculated. Assuming m training
events of dimension c, the complexity is O(mc) for calculating
the distance metrices. The found distances need to be sorted
to find the kNNs requiring additionally O(mk) which leads
to O(mc + mk) in total. The memory requirement is O(mc).
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The kNN algorithm can be speeded up by prepositioning
events and searching the nearest neighbors only in a subset
of the reference data [2]. However, the memory requirement
governed by the number of training events remain. Based on
the data given in [2], we estimate a memory requirement of
more than 800 MB for a single detector stack of scintillator-
dimensions of 32 mm × 32 mm × 22 mm. Although it may
be possible to reduce the memory requirement for scintilla-
tors of smaller height, this memory requirement is impractical
for currently available FPGAs. Adding external memory would
overcome this, but would add further complexity in the system
design at higher costs, requires additional space and increases
the power consumption. The increased power consumption and
the space requirements are especially critical for highly inte-
grated PET and PET/MR systems. Thus, it is of high interest
to find computationally efficient positioning algorithms with
low memory requirements.

In this paper, we present a calibration method capa-
ble to utilize both parallel hole and fan beam collimated
data. Employing the fan beam collimator, a full calibration
for planar positioning requires less than 1 h. We demon-
strate a positioning method based on gradient tree boosting
(GTB) regression. GTB is a supervised machine learning
method building predictive models organized as an indepen-
dently evaluable set of chains of binary decisions (decision
trees). Thus, determining the position of an event is fully
parallelizable and computational efficient because only sim-
ple comparisons with two possible outcomes are evaluated.
The positioning performance and memory requirement of the
trained models can be influenced during the training process.
An FPGA implementation is already shown while the memory
requirement of the models is the limiting factor to fit the avail-
able memory of the FPGA [16], [17]. We present two different
optimization scenarios: one optimized for a high positioning
performance and one to find the best positioning performance
for given memory restrictions.

II. MATERIALS

We used the technology evaluation kit (TEK) of Philips
Digital Photon Counting (PDPC) as a coincidence setup to
read out two sensor tiles built up from DPC 3200-22 digital
photon counters. As exchangeable collimators, a parallel hole
as well as a fan beam collimator were utilized. A monolithic
LYSO crystal of 12 mm height was studied. For detecting coin-
cidences, a pixelated array was chosen. The complete setup
was placed in a light-tight temperature chamber.

A. Photodetectors

We used an array, also referred to as tile, of 16 independent
dSiPM DPC 3200-22 of dimensions of 32.6 mm × 32.6 mm
from PDPC [18]. Each DPC consists of four pixels resulting in
a photosensor with 64 pixels and a pixel pitch of 4 mm. Each
pixel contains 3200 single photon avalanche diodes (SPAD)
on an active area of 3.2 mm × 3.88 mm. Every SPAD is
connected to an individual logic circuit for charging and read-
out. We deactivated 10% of the noisiest SPADs to reduce the
overall dark counts based on a dark count measurement [19].

The sensor applies a configurable two-level trigger scheme to
detect and validate gamma particle interactions. Applying trig-
ger scheme 2, 2.33 detected photons are required on average
to generate a trigger signal [20]. Then, a validation interval
starts within which the second threshold has to be fulfilled.
On average 17 photons need to be detected (validation set-
ting 0x55:OR) to validate a trigger and start the integration
time [20]. If one pixel validates, all four pixels of the cor-
responding DPC are read out. The information of one DPC
are referred to as hit. As stated before, every DPC is inde-
pendent. Subsequently, not all 16 DPCs of the tile necessarily
trigger and validate the trigger generating hits, especially for
low photon densities. The tile offers a neighbor logic feature
to force a read-out of the whole tile [21]. Neighbor logic is
not applied to reduce dead time of the whole tile caused by
inappropriate validations. More details of the sensor tile can
be found in [22].

B. Scintillator Crystals and Wrappings

A monolithic LYSO crystal (Epic Crystals, Kunshan,
Jiangsu, China) with a ground plane of 32 mm × 32 mm
matching the active sensor tile area and 12 mm height was
studied. The crystal was wrapped with highly reflective Teflon
tape (Klinger, Idstein, Germany). The monolith was coupled to
the tile with the two-component dielectric silicon gel Sylgard
527 (Dow Corning, Midland, MI, USA). As coincidence detec-
tor, we used a 12 mm high pixelated array with a pitch of 1 mm
as employed in [23] and [24].

C. Collimator Setup

The whole setup was placed in a light-tight temperature
chamber. Small fans additionally cooled the photodetectors
to 5 ◦C. In a PET, respectively, PET/MR system, the cho-
sen temperature can be achieved with a liquid cooling system
as demonstrated for the Hyperion IID insert [1]. The detector
under study was placed on the electrically driven two-axis
translation stage LIMES 90 (OWIS, Staufen im Breisgau,
Germany). The translation stage sends its position by a feed-
back loop to a control PC. The maximum position repetition
error is specified as 2 µm by the manufacturer. Up to two 22Na
sources with an active diameter of 0.5 mm and an activity
of approximately 10 MBq each were used with both colli-
mators. The radioactive sodium salt is backed in epoxy and
encapsulated in an acrylic cylinder of 25.4 mm diameter and
6 mm height. The coincidence setup was operated with two
exchangeable collimators.

1) Parallel Hole Collimator: The parallel hole collimator
has a length of 51 mm and bore diameter of 0.5 mm. An
additional lead shielding enclosing the collimator and sources
suppresses random coincidences and scattered coincidences.
A detailed description and characterization of the parallel hole
collimator is given in [25].

2) Fan Beam Collimator: We present a newly developed
fan beam collimator with an adaptable beam width. The work-
ing principle is based on a bottom shielding and two shielding
cakes as shown in Fig. 1. The distance between shielding cakes
and bottom shielding defines the beam width. To prevent a
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Fig. 1. Principle of the fan beam collimator. Side view: the distance between
bottom shielding and shielding cakes defines the beam width. Top view: the
geometrical shape of the shielding cakes restrict the span of the fan beam.
The coincidence detector determines the area of the coincident beam inside
the fan beam.

Fig. 2. Mechanical realization of the fan beam collimator as three-quarter
section view. Four screws maintain the distance between bottom shielding and
each shielding cake. An additional top shielding reduces scatter events and
shields the sources. The source alignment tool hosts the radioactive sources
inside the collimator.

loss of coincident gammas by unintended absorptions, a larger
beam width was preventively chosen for the coincidence detec-
tor. The maximal span of the fan beam of 5 cm when exiting
the lead block is defined by the geometrical shape of the
shielding cakes.

The mechanical realization additionally contains a top
shielding and a source alignment tool (see Fig. 2). The source
alignment tool aligns the active area of the sources to one line
parallel to the slit and changes the height of this line in the
beam slit. To maintain the distance, each cake is equipped with
four screws with a metric fine pitch thread of 0.5 mm/turn. The
excess length of the screws can be varied between 0 mm and
14 mm. A dial indicator of 0.01 mm precision was used to
determine the excess length. In order to minimize scattering,
the screws are positioned outside of the direct beam path.

III. METHODS

A. Beam Characterization

We determined the beam profile as described by
Ritzer et al. [25] as well as the coincidence rate: while mov-
ing the target detector step-wise into the beam, the coincidence
count rate of the setup is measured. The integral flux across
the part of the beam profile already illuminating the scintil-
lator is described by the measured coincidence rate m(x) at

detector position x. The beam profile b(x) is the derivative of
the measured rate m(x). With discrete measurement points xi,
discrete derivation of the count rate m(x) leads to

bi := b((xi + xi+1)/2) = m(xi+i) − m(xi)

xi+i − xi
.

The obtained beam profile is described using a Gaussian fit.
At the maximum of the beam profile, half of the beam covers
the crystal. This point was assigned as the edge of the crystal.
Using this method, the coordinate system of the stepper motor
was aligned with a crystal coordinate system.

B. Data Acquisition and Preprocessing

All measurements were conducted at a tile temperature
of 5 ◦C. The data acquisition process depends on the uti-
lized collimator. In all cases, the edges of the crystal were
determined by the method explained in the previous section.
For the parallel hole collimator, the crystal was irradiated at
defined positions on a 2-D equidistant and perpendicular grid
of 0.75 mm pitch. Thus, the calibration included 1849 points
over the crystal surface. Using the fan beam collimator, parallel
lines of 0.25 mm pitch were irradiated. Then, the crystal was
rotated by 90◦ and the calibration was repeated. This results
in a total of 256 line measurements. For a pitch of 0.75 mm,
only 86 line measurements are required.

For later analysis, the recorded data was preprocessed as
described in the following employing a tool developed in this
group by Schug et al. [23]. For both detectors, a gamma
interaction generates up to 16 hits. The hits related to one
gamma interaction are merged and called a cluster. The
assigned timestamp of the cluster is the timestamp of the ear-
liest hit. We used a cluster window of 40 ns to merge the
hits. The TEK setup allows to apply a coincidence window
on the DPC hits during the measurement. We applied a coin-
cidence window of 40 ns for the hits in the TEK setup to
account for the cluster window needed afterward. Then, coin-
cident clusters were searched employing a sliding coincidence
window of 20 ns. To distinguish pixels missing in a cluster
from a zero photoncount, missing pixels are marked with a
negative value. Missing pixels can be identified because the
corresponding DPCs do not generate a hit and are not present
while merging to clusters.

We discarded clusters with a total photoncount below a
threshold of 700 photons to reject noise. Based on the obtained
photon distribution, this equals an energy threshold of approx-
imately 290 keV. On average, 10% of all clusters with the
lowest photoncount were ignored. Qualified clusters are called
events. No further quality cuts were applied.

The recorded data was separated in three data sets: 1) train-
ing data to train GTB models; 2) validation data to tune the
hyperparameters of GTB models (validation); and 3) test data
to finally determine the positioning performance of trained
GTB models (evaluation). The number of events per irradiation
position and the pitch of irradiation positions of the training
data were varied in the following (see Section III-D1). At max-
imum, 10 000 events per irradiation position for the fan beam
collimator and 1000 events per irradiation position for the par-
allel hole collimator were used. In all cases, validation and test
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TABLE I
INPUT COMBINATIONS AND THEIR INCLUDED FEATURES. THE CF

INCLUDE COG, MAIN DIE, MAIN PIXEL, ROW AND COLUMN SUMS

data contained events of the finest measured grid of 0.25 mm.
Both validation and test data set consisted of 1250 events per
irradiation position for the fan beam collimator and 125 events
per irradiation position for the parallel hole collimator.

As described in more detail later on, GTB is able to han-
dle arbitrary input features and to recognize their respective
information content. Hence, we tested the influence of sev-
eral input features based on the raw data of the DPCs as well
as physically motivated features calculated from the raw DPC
data and their combination on the positioning performance (see
Table I).

In some cases and system designs, it can be beneficial to
reduce the number of input features as demonstrated and dis-
cussed in [26]. We used principal component analysis (PCA) to
reduce the 64 pixel counts to 16 values. On average, these 16
values represented 80% of the total information for our data.
Details on PCA and the used scikit-learn implementation can
be found in [27] and [28].

Statistical positioning algorithms have no information about
the physical properties of the given problem. For example,
the center of gravity (COG) is strongly correlated with the
interaction position of the gamma particle. Using such fea-
tures or adding them to the raw data can be beneficial for the
positioning performance of the GTB models. We defined a set
of features referred to as calculated features (CF) in the fol-
lowing. The CF contained index numbers of DPC and pixel
with the highest photon count (main DPC and main pixel),
the COG position as well as the row and column sums. It is
emphasized that all CF can directly be calculated on base of
the raw data, no further information are required. Missing DPC
hit information in an event influences both the CFs and PCA
leading to an uncertainty or jitter. The GTB needs to detect
this uncertainty and to adapt it during the training process.

C. Performance Parameters

We used several parameters to test and characterize the
performance of the positioning models. Using the parallel hole
collimator, the performance parameters are based on the point
spread function (PSF) of the detector response. The PSF is
defined as the 2-D distribution of the positioning errors in
both x- and y-direction. Using a fan beam collimator, only
one of the spatial coordinates is known from the collimator
position. Thus, performance parameters are calculated based
on the line spread function (LSF) of the detector defined as
the 1-D positioning error distribution. The known collimator
position defines the true position of an event. The following
performance parameters are employed.

1) Bias Vector: The bias vector represents the mean posi-
tioning error at a given position. In general, the distribu-
tion of the bias vector magnitude follows no Gaussian
profile due to edge effects. Thus, we report the median
and the 90th percentile of the bias vector magnitude dis-
tribution probing the central region and the tails of the
distribution, respectively.

2) SR: The SR is defined as the full width at half maxi-
mum of the projected PSF or LSF. The fitting procedure
was performed in accordance to the NEMA NU 4-2008
standard [29]. The SR is not sensitive to bias vector
effects.

3) Intrinsic Spatial Resolution (SR*): The SR* is an esti-
mate for the intrinsic detector resolution. We corrected
the SR by quadratically subtracting the finite beam
diameter determined as described in Section III-A.

4) Percentile Radius rx: The percentile radius rx is the
radius enclosing the given percentile x of all assigned
events around the true irradiation position. Thus, the
percentile radius is sensitive to the bias vector. For per-
centile radii based on PSF, the Euclidean distance is
employed with no projection needed. As for the bias
vector distribution, we report the r50 and the r90.

5) Score of Radius 1.5 mm: The score value is the fraction
of correctly assigned events. An event is called correctly
assigned if it is found within the given radius of 1.5 mm
around the collimator position. As the percentile radius,
the score value is sensitive to the bias vector.

D. Gradient Tree Boosting Position Estimation

As a supervised machine learning technique, GTB employs
training data with known irradiation positions to build
predictive regression models. In the following, the main
aspects of the algorithm are described using a toy model of a
1-D crystal coupled to a four-channel photosensor made up of
two 1-D DPCs with two channels each [see Fig. 3(a)]. Detailed
reviews of decision trees and gradient boosting can be found
in [30] and [31]. A mathematical description of the employed
XGBoost implementation is given in [32].

Like many other machine learning algorithms, GTB tends
to a phenomenon called overfitting; the residual variation as
it was part of the underlying set of training data is introduced
into the model, decreasing the performance of the predictions
on unknown data [33]. To avoid overfitting effects, the hyper-
parameters of the GTB models introduced in the following
were tuned with the validation data test. The final evaluation of
the positioning performance was based on the test data set not
invoked either in training nor in validation of the GTB mod-
els. Both validation and evaluation employed the performance
parameters described before.

Trained GTB models are ensembles of so-called decision
trees [see Fig. 3(b)]. The ensemble is trained in an additive
manner: the first decision tree is based on the given irradiation
position. Every following decision tree is trained on the resid-
uals of the previous ensemble (irradiation position–estimated
position). Thus, every newly added decision tree corrects the
results of the previous ensemble. We use an additional factor
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(a)

(c) (d)

(b)

Fig. 3. Illustration of gradient tree boosting. (a) A 1-D crystal is coupled to a four-channel photosensor. Each two pixels are grouped to one DPC in this
example. The listed input features are used to train a GTB model with the interaction position as output. (b) The trained GTB models contain two decision
trees. Every decision tree is a sequential chain of binary decisions leading to a prediction. The second decision tree corrects the prediction of the first one. (c)
Two evaluation examples are shown and the results employing the GTB model in (b). Both decision trees can be evaluated in parallel. The final prediction is
the sum of all predictions of the ensemble. (d) Estimation of the memory requirement of a node and a leaf employing C standard library data types.

(< 1) called learning rate scaling the residuals and thereby
the references for the next training. A smaller learning rate
reduces the influence of a single tree leaving space for fur-
ther optimization. Decreasing the learning rates improves the
performance of trained models at the cost of needing a larger
number of decision trees [34].

Every single decision tree is a sequential model combining
a chain of binary decisions (node) leading to a prediction [leaf,
see Fig. 3(b)]. A single node evaluates one input variable with
a single split value. The maximum number of binary decisions
in a single decision tree is called maximum depth d. While
the training is an additive process, the final decision trees can
be completely independently evaluated in parallel to find the
position of an event under test. The final prediction is the sum
of all predictions of the ensemble [see evaluation examples
in Fig. 3(c)]. Due to the additive training based on residuals,
the corrections get smaller for decision trees of higher order.
In the given example, the decision trees output a prediction
for the interaction position of the gamma based on the input
features such as the photon counts and the COG.

Comparable to the ensemble, every single decision tree is
trained in an additive manner as well. The algorithm starts with
the first node and greedily adds these new nodes improving
the objective loss function of current decision tree most. The
root mean squared error (RMSE) is employed as objective loss
function. No further nodes are added if the maximum depth
is reached or the improvement is not justified compared to
the higher complexity penalized by a loss function. In this
way, GTB automatically chooses the features with the highest

information content from the provided set of input features.
Features with low information content, for example, caused by
uncertainty or jitter as mentioned before, are less likely to be
considered. In our example, the main DPC is used earlier than
single photon counts due to the higher information content.

GTB handles missing features in both training models and
prediction of events. Thus, nearly all data including partially
read out clusters can be used for calibration and position-
ing reducing the required calibration times. In case of sensors
which are self-triggering and validating on pixel level, a trig-
ger caused by dark counts leads to a validation phase. During
this validation phase, triggers of a real gamma interaction can-
not be detected causing a dead time. This reduces the rate of
events with information of all pixels present. Using a position-
ing algorithm able to handle such events opens up the potential
to reduce dead-time effects and to increase the sensitivity of a
system compared to algorithms requiring complete data such
as standard kNN-implementations.

As motivated before, the future goal is an implementation
of trained GTB in FPGAs. The feasibility of an implementa-
tion is already shown while the memory requirement of the
models is the limiting factor to fit the available memory of
the FPGA [16], [17]. C data types of the standard library are
used to estimate the memory requirement. Further optimization
might be possible when using optimized data types for an
FPGA implementation. A single node object requires a total
of 11 B and a leaf object 6 B [see Fig. 3(d)]. The number
of nodes is less than or equal to 2d − 1. At maximum, 2d

leaves are present. Thus, the total memory requirement MR
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of a single decision tree is

MR(d) =
(

2d − 1
)

· 11 B + 2d · 6 B. (1)

The training and output of one GTB model is strictly 1-D
and completely independent for every direction. Therefore,
two separate models for x- and y-direction are needed.
Subsequently, both positioning steps are parallelizable in a
system architecture. The separation of both positioning direc-
tions enables the use of a fan beam collimator.

The introduced hyperparameters, number of decision trees,
maximum depth, learning rate, and the input features directly
influence the performance and the memory requirement of
GTB models. In the following, their effect is discussed and two
optimization scenarios are described: 1) a high-performance
optimization without considering the memory requirements
and 2) an optimization process to find the best performing
models fulfilling given memory-requirement restrictions.

1) General Optimization Process: We developed a proto-
col to study the influence of several parameters which can be
divided up into three areas: 1) the measurement process (bin-
ning of the calibration grid, number of events per calibration
point); 2) the algorithm hyperparameters (number of decision
trees, maximum depth, learning rate); and 3) the input parame-
ters (as defined in Table I). Trained models were verified based
on all defined performance parameters with the validation data
to avoid overfitting. First, we randomly tested different com-
binations of the given parameters to find a suitable start point
for the following process. The parameter ranges for the initial
search were adapted to suggestions found in [31]. The course
off all performance parameters as well as the objective loss
function of the GTB models were plotted against the num-
ber of decision trees to check the dependencies between the
single parameters. Second, always one of the listed parame-
ters was varied keeping all other parameters constant. For all
parameters regarding the measurement process and the algo-
rithm parameters, GTB models for up to 1000 decision trees
were trained. For the different input features, GTB models of a
fixed number of decision trees were trained varying the maxi-
mum depths. Based on the variation of the maximum depth, an
ensemble size of 100 decision trees was selected. We chose to
present the averaged 90th percentile radius as validation met-
ric to include bias effects and to be sensitive to the tails of the
LSF or PSF, respectively.

2) High-Performance Optimization: Based on the results of
the general optimization process (see Section V), the binning
of the calibration grid was set to 0.75 mm, the number of
training events to 5000 for the fan beam collimator (250 for
the parallel hole collimator) per irradiation position and the
input set to CFs and raw data (CF+r). Then, we conducted
an exhaustive search validating all possible combinations of
the algorithm hyperparameters: The discrete hyperparameters,
number of decision trees and maximum depth, were varied
ranging from 1 to 1000 and from 4 to 12 by steps of 1, respec-
tively. The continuous learning rate was probed for the values
[0.05, 0.1, 0.2, 0.3, 0.4, 0.7].

To select the GTB models of the best positioning
performance, we adapted the classical optimization problem of

TABLE II
USED BEAM WIDTHS AND COINCIDENCE RATES OF

PARALLEL HOLE AND FAN BEAM COLLIMATOR

1-D functions. The course of all performance parameters was
discretely derived with respect to the number of decision trees.
The first intersections with the ordinate axis were searched for
every performance parameter excluding the SR (see Section V)
leading to a list of numbers of decision trees. Then, starting for
the highest number of decision trees, the other parameters were
tested for overfitting effects. A performance parameter was
assumed to be overfitting if the derivative was positive (nega-
tive for the score value). In case one parameter was overfitting,
the next highest number of decision trees was tested repeating
the procedure. The final evaluation of the GTB models was
performed using the test data.

3) Memory-Requirement-Performance Optimization: The
limiting factor for an FPGA implementation is the memory
requirement of trained models as described before. Thus, it is
of high interest to find the best performing models for given
memory resources. Employing the same set of parameters as
listed above (see Section III-D2), we trained models for dif-
ferent learning rates and maximum depths. In contrast to the
high-performance-optimization, an empirically suitable con-
vergence criterion based on the r90 determined the number of
decision trees in the ensemble: the number of decision trees
was fixed if the newly added decision tree improved the aver-
aged r90 less than 0.01 mm. The r90 and the SR were plotted
for all found models against the memory requirement allowing
to find the best suitable models.

IV. RESULTS

A. Beam Characterization

The results of the beam characterization are summarized
in Table II. The parallel hole collimator reached a coinci-
dence rate of 24s−1 and the fan beam collimator of 199s−1

for a significant narrower beam width which equals a factor
of about 8.

B. Data Acquisition

Taking all irradiation positions into account, the photopeak
position calculated based on the total photonsum was found
for 1240 photons with an FWHM of 396 photons which
equals an energy resolution of approximately 32 %. Fig. 4
shows obtained read-out characteristics with a Gaussian fit.
The Gaussian distribution describes the data well.

C. General Optimization Process

The randomized parameter search lead to a maximum depth
of 10, a learning rate of 0.1 and raw data of 5000 training
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Fig. 4. Histogram and Gaussian fit (dashed line) of read out DPCs for events
acquired by a homogeneous illumination of the crystal surface.

Fig. 5. Performance parameters and the objective loss function (RMSE) of
the GTB models (top) and their discrete derivative (down) against the number
of decision trees. The abscissa is plotted linear up to 100 decision trees and
logarithmic afterward. A maximum depth of 10 and a learning rate of 0.1
were applied with raw data as input. The course of all shown performance
parameters is strongly correlated. The SR increases with a higher number
of decision trees. The derivative of the SR has the highest fluctuation of all
performance parameters.

events acquired every 0.75 mm as start point for the training
process. The GTB objective loss function RSME is strongly
correlated with all performance parameters (see Fig. 5). All
performance parameters except the SR continuously decrease
until their optimum is reached. Their derivatives tends to 0
with a decreasing slope for a higher number of decision trees.
After their optimum, the performance parameters fluctuate or
worsen again. The SR increases adding more decision trees
especially up to about 25 decision trees. The derivative of the
SR is neither continuous nor monotonous.

Results of the general optimization process of the fan
beam calibration along one direction are exemplarily shown in
Fig. 6. We used the found start point for the training process
if not stated otherwise.

The GTB models show a very similar course of the r90 for
all studied pitches ranging from 0.25 mm to 0.75 mm of the
calibration grid [see Fig. 6(a)]. The performance increases less
than 2% for those models trained with the finest available irra-
diation pitch compared to the coarsest one evaluated at their

respective optima. Fig. 6(b) displays the r90 as a function of
the irradiation position for the coarse and the fine calibration
grid. In the upper plot, both distributions are showing a very
similar course. Their characteristics are the same in general
including the behavior at the edges. A significant improve-
ment of the r90 is observed close to 3 mm and 29 mm for both
pitches of the calibration grid. The lower plot displays the dif-
ference between the corresponding r90 distributions fluctuating
unsystematically around 0.

In case the number of training data is increased, the model
performance improves until a sufficient amount of data is given
[see Fig. 6(c)]. After this point, just small improvements can
be observed if further training data are added. As an example,
doubling the training events from 5000 to 10 000 per calibra-
tion point boosts the r90 by less than 1.5% evaluated at their
respective optima.

The positioning performance of the models increases for
larger maximum depths [see Fig. 6(d)]. Increasing step-wise
the maximum depth, the performance-boost gets less toward a
maximum depth of 10. For even higher maximum depths, no
further gain of the positioning performance is observed. The
positioning performance of the GTB models converges to a
global optimum point for a large number of decision trees as
visible toward 1000 decision tress.

For higher learning rates, the best positioning performance
of the respective GTB models is reached for a smaller num-
ber of decision trees [see Fig. 6(e)]. However, the positioning
performance deteriorates compared with the models employing
a smaller learning rate. This is clearly visible for the learn-
ing rate of 0.7. Less than 10 decision trees are needed to
reach the optimum point. However, the maximum performance
is reduced about 20% compared to a learning rate of 0.05
evaluated at their respective optima.

In general, the performance increases for all evaluated com-
binations of input features except CF increasing the maximum
depth up to 10 [see Fig. 6(f)]. For a depth of 12, only raw
data as input lead to a slightly better performance. The other
input combinations do not improve or slightly deteriorate.
For maximum depths up to 6, all input combinations includ-
ing CF lead to better results than raw data. For maximum
depths larger than 6, models trained with raw data increase
their performance compared to CF, PCA and combination
CF+PCA. Combination CF+r and combination CF+PCA+r
have almost the same characteristics.

D. High-Performance Optimization

The best positioning performance was found for GTB mod-
els of maximum depth 10, learning rate 0.1 and 71 to 77
decision trees requiring in total around 2 MB of memory
for both planar directions. 2-D spatial distributions of the
bias vector and r50 are shown for the parallel hole cali-
bration in Fig. 7. The bias vector is randomly distributed
in the central region of the crystal. At the edges, a bias
toward the center is observed. The r50 is homogeneously dis-
tributed in the central region and deteriorates toward the crystal
edges.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Exemplary optimization process for data measured with the fan beam collimator. Unless stated otherwise, ensembles of maximum depth 10 and
learning rate 0.1 are trained on raw data of 5000 training events per position on a calibration grid of 0.75 mm pitch. The test data have a pitch of 0.25 mm. In
case the number of decision trees is shown on the abscissa, a linear scale is chosen up to 100 decision trees and a logarithmic scale afterward. (a) Averaged
r90 against the number of decision trees varied for the pitch of the calibration grid. (b) Spatial r90-distributions for models trained with calibration grids
of 0.25 mm and 0.75 mm, respectively. Top: both r90-distributions as overlay. Down: difference of the distributions. (c) Averaged r90 against the number
of decision trees varied for the number of training events per position. (d) Averaged r90 against number of decision trees for different maximum depths.
(e) Averaged r90 against number of decision trees for different learning rates. (f) Averaged r90 against the maximum depth for different input combinations
(see Table I). All models consist of 70 decision trees.

(a) (b)

Fig. 7. Exemplary spatial distribution of the parallel hole collimator calibration based on the GTB models of the best positioning performance. (a) Bias
vector distribution. The color scale represents the bias vector magnitude. (b) r50 distribution.

Table III shows the performance parameters for calibrations
of both parallel hole and fan beam collimator. In general, the
performance parameters of both calibration methods probing
the central area of the LSF lead to very similar results. The
r90 is around 6% better for the fan beam calibration. For both
calibrations method, an SR* of 1.40 mm FWHM or better is
achieved.

E. Memory-Requirement-Performance Optimization

Fig. 8 exemplarily shows the SR and r90 for possible GTB
models against the memory requirement for the calibration
in y-direction of the crystal. Every chosen maximum depth
(denoted next to each line) is probed for several learning rates
resulting in a specific number of decision trees defined by the
convergence criterion and plotted as one line. For more clarity,
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TABLE III
OVERVIEW OF THE BEST ACHIEVED POSITIONING PERFORMANCE FOR

PARALLEL HOLE AND FAN BEAM COLLIMATED CALIBRATION.
FOR THE PARALLEL HOLE CALIBRATION, PERFORMANCE

PARAMETERS BASED ON THE PSF ARE GIVEN AS TOT

Fig. 8. Planar positioning performance calibrated in the y-direction of the
crystal against memory requirement. The numbers next to the lines denote the
maximum depth of the models.

the results of selected maximum depths are shown. For a
given amount of memory, multiple combinations of maximum
depth and learning rate fulfill possible memory restrictions.
For maximum depths of 6 and 8, the r90 deteriorates while
the SR still improves. GTB models of maximum depth 8
obtain a similar positioning performance compared to GTB
models of maximum depth 10 with significantly less memory
requirements.

V. DISCUSSION

The used method for beam characterization works well and
allows a reliable determination of the crystal edges. The beam
widths are larger than the bore diameter and the slit width,
respectively. The beam spreads as a function of the distance
between collimator and detector caused by geometrical effects
and Compton-scatter of gamma particles with the collimator.

The given characteristics of the photon distribution indicate
that no photopeak events are excluded for training and testing
the GTB models. Due to missing hit information in events,
the total photonsum is no stable energy criterion. Thus, the
obtained photon distribution is not suitable for an energy cali-
bration leading to good energy resolutions. A dedicated energy
calibration needs to account for the missing hit information.
Furthermore, the scintillator should be divided up into voxels
with their own energy calibration to include spatial variations
in the characteristics of the detector. Currently, we are investi-
gating a dedicated energy calibration which is not in the scope
of this paper.

The photon densities in the employed monolith are too low
to generate a significant amount of events with hits of all
16 DPCs present (see Fig. 4). In only 0.038% of all cases,
the events include hits of all 16 DPCs. This emphasizes the
need for a calibration and positioning algorithm that is able to
handle missing data.

The general optimization process shows the connections
between the performance parameters and the influence of the
algorithm parameters. The course of the SR is not as stable as
these of the other defined performance parameters (see Fig. 5).
As the determination procedure of the SR includes a projec-
tion and a binning process, the SR can be affected by binning
artifacts. Thus, the SR is not suitable for determination of the
GTB models with the best positioning performance. In the
region of a small number of decision trees (up to about 25
decision trees in the shown example), the SR has very small
values and worsens for increasing model ensembles. At the
beginning of the training process, the possible predictions of
GTB models are limited to the number of leafs. Subsequently,
the predictions are discrete which is beneficial for the SR.
Increasing the number of decision trees, more predictions are
possible increasing the general positioning performance of the
model while deteriorating the SR.

Fig. 6(a) and (b) demonstrates that the GTB algorithm
builds reliable regression models. Thus, the number of cal-
ibration points and the calibration time needed can be
reduced without compromising too much on the positioning
performance. Therefore, a pitch of 0.75 mm of the calibration
grid is employed for the training data. Most other calibra-
tion methods found in literature employ a calibration grid of
0.25 mm [2], [4], [9], [15]. Thus, GTB allows to reduce the
calibration time by a factor of 3 for the fan beam collimator
keeping the number of training events per irradiation position
constant. The course of the r90 toward the scintillator surfaces
is based on two effects: very close to the surfaces, the bias
vector dominates the r90 and leads to a deterioration. Near the
positions of 3 mm and 29 mm, the bias vector has vanished
while the photon pattern is still affected by the reflections
of the scintillator surfaces. These reflections have a higher
flux compared to reflections at the surfaces caused by gamma
interactions at central irradiation positions due to geometri-
cal aspects. Thus, the reflections of gamma interactions close
to the surfaces are not part of a uniform background. This
leads to more distinct photon patterns compared to central
positions of the crystal which is beneficial for the position-
ing performance of GTB models. Furthermore, the maximum
width of the r90 distribution is geometrically limited by the
scintillator surfaces. This effect is also beneficial for the r90.

Beside the number of irradiation positions, the number of
training events is directly proportional to the measurement
time. As shown in Fig. 6(c), no significant increase in the
positioning performance for more than 5000 training events
is observed for the fan beam calibration. The GTB algorithm
finds all causal connections in the data within this data set size.
We set the number of training events per irradiation position
to 5000 for the fan beam calibration and to 250 for the parallel
hole calibration. This leads to a calibration time of less than
1 h for both planar directions for the fan beam calibration and
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1 d for the parallel hole collimator. The GTB algorithm offers
the possibility to further reduce the measurement time while
still providing reliable positioning models.

Maximum depths larger than 10 are not reasonable for the
presented geometry as they do not lead to a further improved
accuracy [see Fig. 6(d)]. For an FPGA implementation, the
maximum depth is the most critical parameter because the
memory requirement is O(n2d) with d the maximum depth
and n the number of decision trees.

A high learning rate can be used to create well-performing
positioning models with a low memory requirement. GTB
models with a large learning rate tend faster to overfitting
effects and perform worse compared to those models trained
with small learning rates.

All models containing CF as input features show a signif-
icant increased performance compared to input combinations
without them. The GTB algorithm efficiently utilizes the phys-
ical information provided by the chosen set of CF and also
accounts for the uncertainties caused by missing hit infor-
mation. Especially for models of a small maximum depth,
the CF are easier to interpret. For higher maximum depths,
the GTB model has “learned” causal connections between the
raw data and is able to outperform the CF. However, adding
CF to the raw data as input still improves the performance
due to additional information content. Input combinations PCA
and PCA+r perform worse than those input combinations con-
taining raw data due to the information loss of the PCA. As
mentioned before, 80% of the information are preserved in the
first 16 PCA components. However, this demonstrates that the
GTB models are able to handle PCA transformed input fea-
tures. Input combinations CF+PCA+r shows no performance
boost compared to CF+r because the PCA does not add
additional information to the training process.

GTB models show a homogeneous positioning performance
over the whole central crystal region with the typical bias
effects at the edges (see Fig. 7) found in monolithic scin-
tillators. The r50 deteriorates at the crystal edges because this
performance parameter is sensitive to bias vector effects.

Calibrations based on parallel hole and fan beam instrumen-
tations work well and lead to very similar results. This is due
to the fact that the used GTB models are only 1-D. A 2-D
implementation might benefit from point data in the sense
of a more efficient memory requirement. Small deviations
in single performance parameters such as the r90 can origin
from the influence of the different size of the gamma beams.
Furthermore, the rate of scattered gamma particles in the colli-
mator may differ for both instrumentations. Considering these
aspects, both calibration processes lead to nearly equivalent
performances.

Comparing the positioning performance in x- and y-
direction (see Table III), the GTB models perform equivalently
along both directions. Small deviations may occur due to
statistical effects.

Fig. 8 helps to select the best training and model param-
eters for a given memory restriction. Taking both displayed
performance parameters into account, an optimum point for
every maximum depth can be chosen before overfitting effects
occur. This optimization scenario demonstrates the potential of

the adaptability of the GTB algorithm. The memory require-
ment can be adjusted by modifying the discussed parameters.
The memory requirement of the models is orders of magnitude
lower compared to our estimates of 4 MB of an ML or 800 MB
of a kNN implementation based on data of [2] and [11].
For example, employing the shown model of maximum depth
6 and 16 kB memory requirement (32 kB for both directions),
the SR is around 1.7 mm which outperforms most pixelated
clinical detector blocks used in whole-body PET [35].

VI. CONCLUSION

The presented GTB-based positioning algorithm allows a
time-efficient calibration and is able to create positioning mod-
els suitable to be implemented on an FPGA. Compared to a
parallel hole collimator, the developed fan beam collimator
accelerates the full planar positioning calibration by a factor
of 20 to less than 1 h. Our developed positioning algorithm
flexibly handles different input features and their combinations
including PCA transformed data. Calibrations with parallel
hole and fan beam collimator lead to equivalent results. GTB
accepts missing features for training and prediction which
is beneficial for sensitivity in PET systems. Additional fea-
tures based on physical properties such as the first moment
(COG) significantly improve the positioning performance. The
flexibility of handling all kind of input features enables pos-
sibly future optimizations. We trained GTB models for two
scenarios demonstrating the versatility of the algorithm: one
without compromising on positioning performance and one
optimizing the positioning performance for a given memory
restriction. For a 12 mm high monolithic block, we achieved
an SR of 1.24 mm FHWM and 1.40 mm FWHM for y- and
x-direction corrected for the finite beam size. Future work will
evaluate the applicability and performance of the algorithm to
DOI positioning as well as for different scintillator geome-
tries. Furthermore, the aim of an FPGA implementation will
be realized.
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